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Abstract

One of the most important services required by most 
distributed applications is some form of shared data 
management, e.g., a directory service manages shared 
directory entries while groupware manages shared doc
uments. Each such application currently must im
plement its own data management mechanisms, be
cause existing runtime systems are not flexible enough 
to support all distributed applications efficiently. For 
example, groupware can be efficiently supported by a 
distributed object system, while a distributed database 
would prefer a more low-level storage abstraction. The 
goal of Khazana is to provide programmer’s with config
urable components that support the data management 
services required by a wide variety of distributed appli
cations, including: consistent caching, automated repli
cation and migration of data, persistence, access con
trol, and fault tolerance. It does so via a carefully de
signed set of interfaces that support a hierarchy of data 
abstractions, ranging from flat data to C + + /Java ob
jects, and that give programmers a great deal of control 
over how their data is managed. To demonstrate the 
effectiveness of our design, we report on our experience 
porting three applications to Khazana: a distributed file 
system, a distributed directory service, and a shared 
whiteboard.
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1 Introduction

Distributed systems involve complicated applications 
with complex interactions between disparate compo
nents. The environment in which these applications 
operate introduces additional challenges in terms of 
fault tolerance and security. As a result, researchers 
have developed a wide variety of systems to ease the 
chore of building distributed applications. The ear
liest distributed systems provided support for inter
process communication via message passing [8, 27] or 
remote procedure calls [3], but provided little sup
port for transparent distribution of data and execu
tion or for fault tolerance. More sophisticated systems 
have provided such support via a variety of basic ab
stractions, including distributed files [5, 12, 23, 9, 28], 
distributed objects [20, 21, 19], and distributed shared 
memory (DSM) [1, 7, 22, 24]. Each of these models is 
useful for certain types of applications. For example, 
systems like Petal [23] that support a flat persistent 
storage abstraction are ideal for supporting distributed 
file systems and distributed directory services, systems 
with fairly simple persistent coarse-grained data struc
tures. In contrast, distributed object systems such as 
CORBA [19] are useful for hiding the complexities of 
client-server systems, while distributed shared mem
ory systems like Treadmarks [1] are useful for running 
shared memory codes on top of distributed systems.

Currently, distributed applications must implement 
their own data management mechanisms, because no 
existing runtime system can support the very different 
needs of each application efficiently. This approach 
has the advantage of allowing each system to optimize 
its data management mechanisms to suit its specific 
needs. However, it requires a great deal of redundant 
programmer effort to develop and maintain each such 
set of ad hoc mechanisms. It also makes it difficult to 
share state between applications or reuse code devel-
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Figure 1: Khazana’s Three Layer Organization

oped for one distributed application when implement
ing another.

We have built Khazana to demonstrate that a single 
distributed runtime system can support a wide range 
of applications with reasonable performance. Khazana 
is designed to make it easy to implement distributed 
applications quickly and then gradually improve their 
performance by refining the underlying consistency 
protocols and communication mechanisms. Program
mers can access and manipulate shared data at a level 
of abstraction and with consistency mechanisms ap
propriate for their application’s needs. Any specialized 
consistency protocols, fault tolerance mechanisms, etc., 
that are developed to support one application can be 
used to manage data for other applications with similar 
needs.

Khazana’s internal structure is illustrated in Fig
ure 1. It consists of three layers: (i) a base layer that 
exports a flat global address space abstraction, (ii) 
a language-independent distributed object layer, and 
(iii) a collection of layers that export language-specific 
distributed object abstractions (e.g., C + +  and Java).

The base layer is intended to directly support appli
cations with fairly simple “flat” data structures, such 
as file systems and directory services. It also exports 
sufficient “hooks” to the two upper layers for them to 
support a variety of object abstractions efficiently. For 
example, unlike Petal [23], Khazana’s base layer pro
vides mechanisms that give applications or other run
time layers control over how data is kept consistent.

The object layers provide functionality, such as au
tomatic reference swizzling and remote method invo
cation, appropriate for applications with complex data 
structure like shared whiteboards. This functionality 
is unnecessary for applications like file systems or di
rectory services, where its presence would only hurt 
performance. The difference between the two object 
layers is that the language-independent layer exports 
“raw” pointers and objects, while the language-specific 
layers hide the details of Khazana’s object model be
hind that of an existing object-oriented language like 
C + +  or Java.

To demonstrate that a variety of applications with 
quite different needs can be supported effectively by 
Khazana, we have built a distributed file system, a 
distributed directory service, and a shared whiteboard 
that use Khazana to manage their shared state. The 
base layer’s persistent flat address space abstraction 
proved to be well-suited for the distributed file system 
and distributed directory service, both of which em
ploy fairly flat data abstractions. However, depending 
on the mix of lookup and update operations on the 
directory service, it sometimes made sense to migrate 
the directory data to the clients (like a DSM system), 
while at other times it made sense to migrate the op
eration to the data (like an RPC system). Khazana’s 
layered design and flexible interfaces made it easy to 
support both models, even to the extent of letting the 
application decide dynamically which model to use for 
each operation. The shared whiteboard program ex
ploits the object layers’ smart pointer and automatic 
swizzling capabilities to create pointer-rich data struc
tures that can be shared between whiteboard instances 
and stored on disk. Manipulating its pointer-rich data 
structures via the core layer would have imposed a sig
nificant burden on the programmer.

Combining elements of distributed shared memory, 
distributed file systems, and distributed object systems 
into a unified runtime system for distributed applica
tions had a number of benefits. First, we do not impose 
the performance overheads of an object system on ap
plications and services where it is not warranted, such 
as a file or directory service. Second, we are able to 
exploit the location management, communication, con
sistency, and security mechanisms present in the core 
layer, thereby avoiding redundant development. Kha
zana’s core layer provides a facility to deliver arbitrary 
“update” messages to one or all applications using a 
particular piece of data. The object layers use this fa
cility to support location-transparent remote method 
invocations (RMI), whereby computation migrates to 
the data rather than vice versa. This facility could be 
used to support application-specific consistency mech
anisms, such as employing a reliable multicast proto
col [16] to manage updates to streaming multimedia 
images. Also, since the base layer tracks the locations 
of objects in the system and knows which ones are cur
rently instantiated, there is no need for a separate ob
ject request broker (ORB), as in CORBA. Finally, if an 
object migrates, or one instance fails, the underlying 
consistency management routines will simply forward 
the update message (method invocation) to a different 
node that has registered its willingness to handle such 
operations. Thus, the Khazana object layer is inher
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ently fault tolerant, due to the fault tolerance support 
in the core layer.

The remainder of this paper is organized as follows. 
We present the organization of a Khazana system in 
Section 2. We then describe the design and implemen
tation of the core Khazana layer (Section 3), followed 
by the object layers (Section 4). Section 5 contains a 
description of our experience porting three test applica
tions to Khazana (a distributed file server, a directory 
server, and a shared whiteboard) and the lessons that 
we derived from this effort. We then compare Khazana 
to previous and contemporary systems in Section 6 and 
draw conclusions in Section 7.

2 Organization of a Khazana  
System

Khazana is designed with the premise that most dis
tributed applications and services at their core do 
roughly the same thing: manage shared state. What 
differs dramatically is what this shared state represents 
(e.g., files, database entries, game state, or interactive 
video images) and how it is manipulated (e.g., broad
cast to a collection of cooperating applications, queried 
from a “central” server, or modified frequently in re
sponse to changes in the environment). We developed 
Khazana to explore the extent to which a carefully de
signed and sufficiently flexible runtime system can sup
port the data management needs of a wide variety of 
applications.

Figure 2 presents a high-level view of a 5-node 
Khazana-based distributed system. The cloud in the 
center of the picture represents the globally shared 
storage abstraction exported by Khazana. The stor
age that Khazana manages consists of an amalgam of 
RAM and disk space spread over the nodes that partic
ipate in the Khazana system. Nodes can dynamically 
enter and leave Khazana and contribute/reclaim local 
resources (e.g., RAM or disk space) to/from Khazana. 
In this example, nodes 1, 3, and 5 are providing the 
disk space for storing persistent data; nodes 2 and 4 
can access regions and cache them in local DRAM, 
but do not store them on the local disk. Each object 
in the figure, e.g., the square, represents a single piece 
of data managed by Khazana. In this example, node
1 is caching a complete copy of the “square” object, 
while nodes 3 and 5 are each caching a part of it.

Khazana’s global shared storage abstraction is im
plemented by a collection of cooperating daemon pro
cesses (BServers) and client libraries. BServers run 
on some (not necessarily all) machines of a potentially

Figure 2: Typical Khazana-Based Distributed System: 
The cloud represents Khazana’s global shared storage 
abstraction. Applications on any of the five nodes can 
manipulate shared objects, represented by the various 
shapes. The highlighted “square” object is currently 
being accessed by three nodes; a complete copy resides 
on Node 1, while nodes 3 and 5 combine to store a 
second replica.

wide-area network. Each node running a BServer is 
expected to contribute some portion of its local disk 
space to the global storage. Note that although we use 
the term “server” , these daemon processes are in fact 
peers that cooperate to provide the illusion of a unified 
resource.

Khazana is designed to scale to a WAN environ
ment, with nodes within a single LAN forming a clus
ter. Each such cluster designates a single node as the 
cluster manager, which maintains hints about what 
data is cached in the local cluster, a set of free address 
ranges from which local nodes can allocate storage, and 
other such non-critical information. The cluster man
ager is selected using a voting scheme based on process 
ids. If the cluster manager fails, the remaining nodes 
vote on a replacement.

Khazana is free to distribute state across the net
work in any way it sees fit, subject to resource limita
tions, perceived demand, and the specified replication 
and consistency policies for the object. Portions of re
gions can be stored on different nodes, as illustrated 
in Figure 2. Presumably Khazana chooses these nodes 
because they access the region most frequently, are the 
most stable, or have the most available resources. Cur
rently, our data placement schemes are quite simplis
tic (first touch, replicate on demand), but a goal of 
the project is to develop caching policies that address 
the needs for load balancing, high performance, high 
availability, and constrained resources.
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3 Khazana Core Layer

The core Khazana layer exports the abstraction of a 
persistent globally shared storage space addressed by 
128-bit global addresses. The basic storage abstraction 
is that of a region, which is simply a contiguous range of 
global addresses managed using common mechanisms 
(e.g., coherence protocol, minimum storage granular
ity, security key, and replication policy). To the core 
layer, regions are simply a range of bytes -  it is up to 
higher level software (e.g., the object layers or appli
cation code) to interpret the contents of a region. The 
minimum unit of storage managed by the core layer 
is specified on a per-region basis and is referred to as 
a page. The default page size is 4-kilobytes, which 
matches the most common machine virtual memory 
page size.

In effect, the core layer can be thought of as a glob
ally accessible disk against which distributed applica
tions read and write data, similar to Petal [23]. As will 
be described below, however, Khazana provides a finer 
level of control over how individual regions are man
aged than Petal, and Khazana’s address-based nam
ing scheme allows applications to embed references to 
other structures in their data. The core layer is de
signed to handle the common problems associated with 
sharing generic state between applications, including 
replicating and caching data, keeping copies of the data 
coherent, tracking the location(s) of data, avoiding loss 
of data due to node or network failures, managing dis
tributed system resources, and enforcing security re
strictions on data access.

The basic operations supported by the core layer 
are:

kh_reserve()/kh_unreserve(): These operations 
reserve (unreserve) a region of Khazana’s 128-bit 
address space, without allocating physical storage 
for it.

k h _ a llo ca te ()/k h jfre e ():  These operations allo
cate (free) physical storage for the specified region, 
or portion thereof. A region cannot be accessed 
until physical storage is allocated for it.

kh_lock()/kh_unlock(): Once storage for a region 
has been allocated, an application gains access to 
its contents by locking it. Applications can specify 
a number of locking modes -  including read, write, 
and read-with-intent-to-overwrite. Khazana en
forces particular lock modes in different ways de
pending on the consistency protocol used to man
age the region.

khjread()/kh_w rite(): Once an application has 
locked a region, it can access its contents via 
explicit read and write operations. Our design 
calls for clients to be able to “map” parts of 
global memory to their virtual memory space and 
read and write to this mapped section (akin to 
a memory-mapped file or conventional DSM sys
tem), but this functionality has not yet been im
plemented.

khjreg ister()/k h _up d ate(): Khazana lets applica
tions register to be notified of various Khazana in
ternal events by supplying a callback routine and 
an event type as parameters to k h jreg isterO . 
The callback routine is called on occurrence of the 
specified event. One useful event is an “object” 
update, initiated implicitly by kh_unlock() or ex
plicitly via kh_update().

k h _ g e ta ttr ()/k h _ se ta ttr  (): Applications can 
query and modify each region’s attributes. 
Among the attributes currently supported are 
the number of persistent replicas of the region 
maintained by Khazana, the coherence protocol 
used by Khazana to keep the region consistent, 
and a security key used to control access to the 
region.

The first two sets of functions give applications the 
ability to allocate large contiguous pieces of the shared 
address space from which they can later allocate subre
gions of storage. For example, a distributed file system 
might khJreserveO  enough address space to contain 
an entire file system, but only k h _ a llo ca te() the disk 
space to back files as the file system fills. We found that 
the separation of address space allocation and storage 
allocation made it easier for applications and library 
routines to manage their own storage at a fine grain.

Applications can use k h_register () to register call
back routines to be invoked whenever certain events oc
cur. For example, callback functions can be set up to 
respond when a remote node performs a kh_unlock() 
or kh_update() operation. kh_unlock() causes a 
Khazana-created update message to be sent to regis
tered listeners, while kh_update() takes as input an 
arbitrary “update” message to be sent. Khazana does 
not interpret the contents of these update messages, so 
they can be used to support application-level consis
tency protocols or to send arbitrary messages to regis
tered listeners.

Figure 3 illustrates how the core layer functionality 
is decomposed into five major components: the Kha
zana core API, the location service, the consistency 
management service, the RAM buffer cache, and the

4



N ode 1

"Smart"
Client

Figure 3: Khazana Core Layer Internals

disk buffer cache. These functions are divided between 
client libraries and BServers as follows.

C lient Libraries: We provide two client core li
braries, referred to as the thin client and the smart 
client. The thin client simply bundles up client re
quests and forwards them to a nearby BServer, which 
implements all of the Khazana core functions. The thin 
client is, in essence, simply an RPC client stub.

The smart client, in contrast, actually implements 
most core Khazana functions and protocols. In par
ticular, it aggressively caches data and locks associ
ated with this data locally in its internal buffer cache 
and consistency manager. To keep this data consis
tent with copies stored elsewhere in the system, the 
smart client exchanges consistency protocol messages 
with BServers and remote smart clients. In most ways, 
the smart client is a peer to the BServers for regions 
its client is accessing. However, smart clients do not 
manage a disk cache, because they only execute as long 
as their client application does. Also, for security pur
poses, smart clients are not given access to Khazana- 
internal metadata, so they must contact a BServer to 
perform address space range lookups, examine or mod
ify attributes of reserved regions, reserve/free address 
space, or allocate/free space in the global storage hier
archy.

The smart client interface has been carefully defined 
to isolate buffer management from Khazana consis
tency management functionality. Thus the smart client 
can be used both to manage consistency of application- 
level buffers or to provide a default buffer cache im
plementation that can physically share pages with a 
Khazana server running on the local machine. One 
motivation for this was the observation that some ap
plications (e.g., file systems and databases) prefer to 
handle their own buffer cache management issues like 
cache size and replacement policy.

C on sisten cy  M anagem ent: The core layer sup

ports a DSM-style programming interface that allows 
different applications to communicate in much the 
same way that different threads of a shared memory 
program communicate. When an application wishes 
to access a piece of shared state, it must lock a range 
of global addresses region in an appropriate mode, e.g., 
obtaining a read lock prior to reading it and a write 
lock prior to modifying it. The application can then 
explicitly read or w rite  the data, and when it is done 
accessing the data, unlock it.

The semantics of the various lock modes (read, 
write, etc.) are entirely dependent on the coherence 
protocol being used to manage the region. A default 
coherence protocol is provided that enforces conven
tional mutual exclusion semantics on regions, but an 
important feature of Khazana’s core layer design is 
that it exports consistency management operations to 
program modules called Consistency Managers (CMs) 
running in the BServers and smart clients. CMs are 
somewhat independent from the rest of a BServer or 
smart client, and are free to interpret “read lock” and 
“write lock” events as they see fit. Their only role 
is to determine when locks can be granted and when 
data needs to be updated or invalidated. They do not 
perform the actual data or lock transfers -  that is left 
to the Khazana communication services. They coop
erate to implement the required level of consistency 
among the replicas using Brun-Cottan-style decompos
able consistency management [4],

A lock request represents a request for permission 
to perform a certain operation on a region (or portion 
thereof). The application encapsulates all semantics 
of the requested operation affecting consistency in an 
application-defined object called an intent (following 
Brun Cottan’s terminology [4]). When a CM receives 
a lock request and intent, it checks to see if the request 
conflicts with ongoing operations given the semantics 
of the particular coherence protocol.

An application can define a set of functions that the 
CM can invoke to make decisions affecting consistency, 
such as whether two operations conflict or whether two 
operations can be applied to different copies in different 
order. If necessary, the CM delays granting the lock 
request until the conflict is resolved.

Once a lock is granted, Khazana performs the sub
sequent permitted operations (e.g., reads and writes) 
on the local replica itself, notifying the CM of any 
changes. The CM then performs consistency-protocol- 
specific communication with CMs at other replica sites 
to inform them of the changes. Eventually, the other 
CMs notify their Khazana daemon of the change, caus
ing it to update its replica.

Client
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Service

C
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M
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■Gciunts
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Several benefits result from decomposing the entity 
that determines when consistency operations must oc
cur (the CM) from the rest of the system. Khazana’s 
consistency management mechanism is highly flexible, 
so applications can tune their consistency manage
ment protocols based on specific application character
istics. More importantly, the hooks exported by this 
decomposed consistency management scheme can be 
exploited by the object layers in a number of ways. For 
example, one “consistency protocol” allows an applica
tion to register functions to handle particular events. 
This protocol allows the object layer to detect when an 
object is first loaded and transparently swizzle it. It 
also can be used to support remote method invocation 
(RMI), as will be described in detail in Section 4.

L ocation  M anagem ent: Khazana’s core layer 
maintains two primary data structures: a globally dis
tributed address map  that maintains global informa
tion about ranges of Khazana addresses and a collec
tion of per-region region descriptors  that store each 
region’s attributes (i.e., security attributes, page size, 
and desired consistency protocol). A particularly im
portant attribute associated with each region is its 
home node.  A region’s home node is responsible for 
maintaining a current copy of its region descriptor and 
tracking the set of nodes maintaining copies of the re
gion’s data. The address map also contains informa
tion regarding what regions of address space are re
served, allocated, and free.

Khazana daemon processes maintain a pool of lo
cally reserved, but unused, address space, which they 
obtain in large chunks (multiple gigabytes) from their 
local cluster manager. Whenever a client request uses 
up the locally reserved address pool, the local BServer 
pre-reserves another large region to be locally subdi
vided. Once space is located to satisfy the reserve re
quest, reserving a region amounts to modifying address 
map tree nodes so that they reflect that the region is 
allocated and where. Deallocating a region involves 
reclaiming any storage allocated for that region. For 
simplicity, we do not defragment (i.e., coalesce adjacent 
free) ranges of global address space managed by differ
ent Khazana nodes. We do not expect this to cause 
address space fragmentation problems, as we have a 
huge (128-bit) address space at our disposal and do 
reclaim storage.

To initiate most operations, Khazana must obtain 
a copy of the region descriptor for the region contain
ing the requested range of addresses. There are three 
methods by which Khazana can locate the region de
scriptor, each of which it tries in turn: (i) by examining 
a node-local cache of recently used region descriptors,

(ii) by querying the local cluster manager,  and, when 
all else fails, (iii) by performing a distributed tree walk 
of the address map data structure.

To avoid expensive remote lookups, Khazana main
tains a cache of recently used region descriptors called 
the region directory.  The region directory is not  kept 
globally consistent, but since regions do not migrate 
home nodes often, the cached value is usually accu
rate. If this cached home node information is out of 
date, which will be detected when the queried node 
rejects the request, or if there is no local cache entry, 
Khazana queries the local cluster manager.

If neither the region directory nor the cluster man
ager contain an up to date region descriptor, Khazana 
resorts to searching the address map tree, starting at 
the root tree node and recursively loading pages in 
the tree until it locates the up to date region descrip
tor. The address map is implemented as a distributed 
tree itself stored in Khazana, where each subtree de
scribes a range of global address space in finer detail. 
If the region descriptor cannot be located, the region 
is deemed inaccessible and the operation fails back to 
the client. This distributed tree walk is expensive, and 
thus avoided whenever possible.

S torage M anagem ent: Node-local storage in the 
form of both DRAM and secondary storage is treated 
as a cache of global data indexed by global addresses. 
Each node’s local storage subsystem maintains a page 
directory,  indexed by global addresses, that contains 
information about global pages cached locally, includ
ing their local location (DRAM page or file location) 
and a list of other nodes caching the page. Like the re
gion directory, the page directory is node-specific, not 
stored in global shared memory, and the list of nodes 
caching a page is only a hint. The local storage sys
tem provides raw storage for pages without knowledge 
of global memory region boundaries or their seman
tics. There may be different kinds of local storage (e.g., 
main memory, disk, and tape) organized into a storage 
hierarchy based on access speed, as in xFS[2]. In re
sponse to data access requests, the local storage system 
simply loads or stores the requested data from or to its 
local store (either RAM or disk).

Fault Tolerance: Khazana handles partial system 
failures by (optionally) replicating regions of data. In 
particular, address map pages are always replicated on 
at least two distinct nodes. The use of a local region di
rectory cache and a cluster-level directory cache make 
Khazana less sensitive to the loss of address map nodes, 
but if a tree search is unavoidable, a region’s avail
ability depends on the availability of the address map 
tree nodes in the path of the tree search. Should all
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copies of an address map tree node become unavailable 
for an extended period of time, the address map can 
be recreated via a (slow) global recovery algorithm in 
which each node forwards a summary of the contents of 
its local storage system to a designated recovery node, 
which uses this information to rebuild the global ad
dress map. Similarly, Khazana allows clients to specify 
a minimum number of primary replicas that should be 
maintained for each page in a Khazana region, which 
allows them to trade off availability for performance 
and resource consumption.

To make it easier to recover locks when nodes fail or 
network partitions occur, we are modifying Khazana to 
implement locks as leases. Currently clients can hold 
locks indefinitely, so we cannot automatically recover 
locks lost due to node failures unless we are sure that 
the problem is not a temporary network partition. Us
ing leases to implement locks would simplify lock token 
recovery immensely -  you simply refuse to reissue the 
lock token until the lease expires, at which time you 
can reissue it safely. We will need to experiment with 
various default lease times to tradeoff failure-free per
formance, when long leases are preferable, against fault 
recovery time, when short leases are preferable.

Security: Since we envision Khazana being used 
to store sensitive system state, it provides a simple ac
cess control mechanism on which higher-level software 
can enforce a variety of access control mechanisms. Al
though a 128-bit address space might itself seem to be 
sufficiently large that addresses would make good capa
bilities, Khazana addresses are not allocated randomly 
and thus make poor capabilities. Khazana’s built-in 
access control mechanism is based on secret keys — 
when a client creates a region, it can specify a 128- 
bit key that must be presented as part of any future 
kh_lock() operation on the region. Khazana provides 
no key management support -  we assume that services 
manage their own keys. The key distribution services 
can, of course, themselves be built on top of Khazana. 
BServers never exports keys to clients, so a key cannot 
be compromised by insecure applications.

In a secure environment, we assume that authen
tication and encryption mechanisms will be available. 
Using such services, BServers will be able to authenti
cate themselves to one another, thereby ensuring that 
they are not exporting Khazana metadata to clients 
masquerading as a BServer. In addition, all inter-node 
communication between BServers and clients could be 
encrypted to make physical packet sniffing ineffective. 
The current Khazana prototype enforces the basic ac
cess control mechanism, but is not integrated with an

addr_t pu t_ in_g loba l(buf , sz, key)
char *buf; /* Data to  be s tored  */  
s iz e _ t  sz; /* Size of da ta  */
key_t key; /* Security  key */

{
addr_t add r; 
lock_context_t lock;

/* Reserve address space fo r  ‘b u f ’ */
/* and specify  w r i te - in v a l id a te  p r o t . */ 
kh_reserve(&addr, sz , key, WT_INV);

/* Allocate physica l s torage */
kh_a l lo ca te (ad d r , s z ) ;

/*  Get exclusive  (write) access */
kh_lock(addr, sz ,  WRITE, &lock, key);

/* Store ‘b u f ’ in  a l loca ted  region. */ 
kh_write(addr, lock, buf);

/* Unlock region, which pushes data  */
/* to  p e r s i s t e n t  s torage . */
kh_unlock(lock);

r e tu r n ( a d d r ) ;

Figure 4: Simple Khazana Programming Example: 
Stores buf in Khazana and returns 128-bit address of 
where it was stored.

authentication service nor does it encrypt its commu
nications.

U sin g  K hazana’s Core Layer D irectly: Pro
gramming directly on top of Khazana’s core layer is 
similar to programming on top of a DSM system. Data 
structures that an applications wishes to share with 
other applications or other instances of itself running 
on other nodes are allocated and stored in Khazana re
gions. A clustered application, such as the file system 
described in Section 5.2, can start multiple instances of 
itself, each of which independently can access and mod
ify the same application “objects” by mapping, lock
ing, accessing, and unlocking the objects’ constituent 
Khazana regions. Depending on the consistency pro
tocol selected for the region(s), Khazana can enforce 
strict mutual exclusion-style locking semantics, such as 
is required by a filesystem or a loosely coherent update 
protocol, such as is appropriate for interactive group
ware applications.

Figure 4 presents a bare bones example of using the 
basic Khazana operations. In this example, the appli
cation wishes to store a buffer into Khazana space, and
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protect it with a particular secret key. It first must re
serve enough address space and allocate enough phys
ical storage to hold the data. As part of the reserve 
operation, it specifies the secret key that must be used 
to access the region in the future, as well as indicat
ing that the region should be managed using the write 
invalidate protocol (WT-INV). The application then ac
quires exclusive access to the region, initializes its con
tents, and signals completion of the write operation by 
unlocking the region. In this case, locking the data is 
superfluous, since no other node knows of the region’s 
existence and thus there can be no data races on ac
cess to it. However, it is also true that the lock will be 
held in the application’s address space (in the smart 
client), so the overhead of executing these superfluous 
operations is small.

Once data is placed in Khazana space, any num
ber of clients can access it. They only need to know 
its address and access key. They coordinate access to 
the data using fairly conventional locking mechanisms, 
which enforce the specified level of concurrency control. 
In the case of the write-invalidate protocol, locking is 
strict, meaning that either one node can hold a write 
lock or an arbitrary number of nodes can hold a read 
lock. Clients need not concern themselves with how 
many other nodes are accessing the region (or portion 
of a region) nor where the data is physically stored or 
cached. As long as they obey the locking semantics as
sociated with their selected consistency protocol, they 
are guaranteed correct behavior. It is up to Khazana’s 
caching policies to provide efficient performance, for 
example by automatically replicating or migrating data 
to nodes where it is being accessed frequently or that 
historically respond to requests most quickly.

4 The Khazana Object Layers
Khazana’s flat shared storage abstraction works well 
for some services (e.g., file systems and directory ser
vices) , but it is a poor match for applications that use 
“reference-rich” data structures or legacy applications 
written in object-oriented languages. The Khazana ob
ject layers are intended to simplify the use of Khazana 
for building these kinds of applications. Its design 
evolved as we gained experience converting the x f ig  
drawing program into a groupware application built 
on Khazana. We found that the flat storage abstrac
tion exported by the core Khazana layer needed to be 
extended in a number of ways to support a broader set 
of applications.

First, applications with complex data structures 
need to be able to embed references within their shared

data. Khazana’s address space is much larger than a 
single machine’s virtual address space, so references 
to Khazana data cannot be mapped to virtual ad
dresses. Without some level of runtime support, ap
plications must swizzle Khazana addresses into local 
virtual memory addresses, and vice versa, by hand - a 
tedious chore that can be automated.

Second, a purely pull-based coherence model, where 
changes to data are only detected when a client locks 
the data, is a poor match for interactive applications 
that wish to be notified when state that they care 
about changes. In a shared memory system, this is 
equivalent to needing signals in addition to locks. In 
general, such applications can benefit from some form 
of signaling or push-based coherence.

Third, applications like x f ig  tend to have a large 
number of objects of varying sizes, many of which are 
fine-grained. As such, a 4-kilobyte page may hold 
many individual objects. Implementing fine-grained 
variable-sized objects on a page-based system without 
adequate support for fine-grained sharing can lead to 
inefficient space utilization and false sharing, which can 
result in poor performance.

Finally, moving data to the computation is not al
ways the right execution model. When an application 
wants to make a small change to a large data structure, 
or when it will not reuse a data structure and thus 
would get no benefit from maintaining a local cached 
copy of it, it is better to move the computation to an 
existing instance of the data rather than replicating it. 
Thus, some form of transparent RPC or RMI support 
is needed.

Khazana’s object layer addresses these problems by 
providing an efficient and largely transparent environ
ment for manipulating persistent objects that are then 
stored and shared via Khazana’s shared address space. 
It layer consists of two parts, a language-independent 
layer and a language-specific layer. The language- 
independent layer supports basic operations to manip
ulate arbitrary-sized (not just page-sized) data objects. 
These operations include mechanisms to allocate/free 
persistent objects, retrieve objects into virtual memory 
in a synchronized way, store them persistently, con
vert persistent references from/to in-memory virtual 
addresses, and manage an in-memory cache of objects. 
The language-independent layer does not address such 
vital issues as dynamic type identification and check
ing, object access detection and loading, class inheri
tance, or transparent concurrency control (via locking). 
Instead, these issues are handled by each language- 
specific layer.

At the core of our current C+-I- object-layer is a
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s t r u c t  Emp_Record {
Date S ta r t ,  F in ish; 
in t  Salary; }; 

c la ss  Person {
s t r in g  Name, Address;
Date DOB;
. . .  >;

c lass  Employee: public Person {
Emp_Record My_Record;

/*  Smart p o in te r  th a t  r e f e r s  */
/*  to  a > persis ten t<  o b jec t .  */
Ref <Person> Supervisor;
. . .  };

Figure 5: S im ple K hazana C -|—\- T yp e D eclara
tions: The Emp_Record and Person classes are normal 
C + +  class declarations. Employee, however, contains 
a reference to a persistent object, Supervisor. When
ever the program traverses such a reference, e.g., via 
emp->Supervisor, the object is loaded from Khazana 
automatically, if necessary.

preprocessor that parses conventional class declara
tions and augments them with overloaded new and 
d e le te  operators, special constructors, and synchro
nization methods. Objects created from these aug
mented classes can then be stored and retrieved trans
parently to/from the shared store. In addition, the 
preprocessor generates support libraries that imple
ment class metadata reinitialization and maintain a 
static cache for information relevant to the objects’ 
state of consistency (e.g. their lock contexts and in
tents). Changes introduced by the preprocessor do not 
modify object layout and thus can be integrated trans
parently to other modules of the program that Eire not 
converted by the preprocessor.

W riting a K hazana-based  C-|— Program : To 
write a Khazana C + +  program, a programmer first 
declares the classes whose objects will be stored and 
manipulated by Khazana. Figure 5 contains an exam
ple of such class declarations. In this example, there 
are three persistent types (Emp_Record, Person, and 
Employee). Emp-Record and Person contain only sim
ple data that can be loaded and stored directly from 
the Khazana store without interpretation. Employee 
objects, on the other hand, contain a reference to an
other persistent object, Supervisor, which must be 
handled carefully.

Running this header file through our C + +  prepro
cessor produces a set of header and C + +  files that are 
used to support these classes. In addition, the prepro

Employee (KhClass k h ) :
Person(kh),
MyRecord (kh) ,
Supervisor(kh)
{ . . . } ;

Bool lock(op_mode_t opmode);
Bool unlockO ;
void* opera tor  new(size_t s iz e ,  KhClass k h ) ; 
void* opera tor  new(size_t s iz e ,  void *mem); 
void* opera tor  new(size_t s i z e ) ; 
void operator  de le te(vo id*  l o c a l . r e f );

>

Figure 6: M eth o d s added to  Employee class by 
K hazana C-|—|- preprocessor. The new construc
tor, Employee (KhClass kh), is called when loading an 
existing persistent instance of class Employee into the 
local memory. The lock  and unlock operations Eire for 
Khazana synchronization. The three added new oper
ators are used to create a new persistent object, to 
load (reinitialize) an existing persistent instance of an 
Employee object, and to create a new local instance of 
an Employee object, respectively.

c l a s s  Employee: p u b l i c  P e r s o n  {

cessor adds several non-virtual methods to the classes 
that have been declared. Figure 6 shows the meth
ods that the preprocessor adds to the Employee class. 
Some of these methods, like the ones used to load and 
reinitialize the data, are transparent to the program
mer. Others, like the lock  and unlock methods, are 
provided for programmers to insert in their code to 
implement concurrency control, when and where ap
propriate.

The set of support files produced by the prepro
cessor extends a number of object-oriented features of 
C + +  to the persistent distributed environment of Kha
zana. It supports automatic class loading, which is ac
complished statically. Persistent object creation and 
management is done transparently by utilizing spe
cial constructors, overloaded new and reimplemented 
d e le te  operators. The C + +  layer appends a spe
cial type information tag to each instance of an object 
stored in Khazana, and uses it for object loading and 
dynamic type checking. Persistent references (Object 
IDs, or oids) are generally hidden from the programmer 
and are swizzled and unswizzled automatically through 
the use of smart pointers. Concurrency control han
dlers are generated by the preprocessor for each class. 
Finally, the preprocessor generates additional code to
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in t  kh_object_swizzle (void* obj, i n t  type) { 
KhClass kh; 
switch (type_id) {

case TYPE_CLASS_A :
obj = neu(obj) A(kh); break;

case TYPE_CLASS_B :
obj = new(obj) B(kh); break;

re tu rn  0;

Figure 7: O bject in itialization: When a persistent 
object is first loaded into memory, it is automatically 
initialized using the special new operator added by the 
C + +  preprocessor. The type of the object is stored in 
a special tag with each persistent object instance.

support RMI. The details of these mechanisms are de
scribed below.

C lass loading: Class usage detection and loading 
occurs at compile time. Instead of storing the class 
metadata (including the member and reference lay
out, method information, and class type and hierar
chy information) as a separate persistent schema ob
ject, classes are linked at compile time. The C + +  pre
processor parses user-specified class declarations and 
adds several methods that allow transparent object 
loading and synchronization.

O bject loading: Objects are brought in from Kha
zana to virtual memory at the time of first access. Ob
jects in Khazana are addressed by a unique Object- 
ID (oid). Currently, an oid is the same as the 128- 
bit Khazana address where the object has been stored. 
However, the language-independent layer may choose 
to prefetch objects in addition to the one requested. 
All objects that are brought in to local memory must 
be initialized, which is done via a callback mechanism. 
An example of how this is done is given in Figure 7. 
The language-specific layer registers a callback func
tion, k h _ob ject_sw izz le(), that is called any time a 
new object is mapped into local memory. This function 
reinitializes the object (e.g., setting up vtbl pointers) 
so that it resembles an object of the same class that 
has been created locally. Similarly, the C + +  layer pro
vides a callback that is called every time an object is 
flushed. This design allows any conversion between the 
in-memory representation and the persistent (unswiz- 
zled) Khazana representation to be made as lazily as 
possible.

R eference sw izzling: We implement references to 
persistent objects using a smart point template class,

called Ref<T>, where T is the type of the object to 
which the reference points. The Supervisor reference 
in the Employee class is an example use of this facil
ity. Smart pointers have been discussed previously, so 
we will not go into the details of the implementation 
here [13]. The overloaded dereference operators enable 
us to trap object access and thereby transparently con
vert the oid into a local memory reference. This may 
involve fetching and reinitializing the object.

While smart pointers ensure that programmers can 
use pointers to Khazana objects just as they would use 
pointers to regular objects, there is some performance 
overhead. In particular, every smart pointer access 
involves a table lookup. Programmers can avoid this 
problem by caching the pointer to the local copy of 
the object, rather than always accessing the object’s 
contents via its persistent reference (smart pointer). 
While an object is locked, it is guaranteed not to move 
in local memory, so during this time the pointer value 
may be cached and a per-access table lookup can be 
avoided.

R em o te  m eth od  invocation: The object layers 
build on the underlying Khazana coherence manage
ment hooks, described in Section 3, to implement RMI. 
Recall that the k h_register () interface lets applica
tions register a callback function to be invoked when 
certain events occur, while kh_update() allows a pro
gram to send an arbitrary application-level “update” 
message to one or more remote instances of an object. 
For each class that has been annotated to be “immo
bile,” meaning that operations on it should be per
formed via RMI, the C + +  preprocessor generates two 
classes: “stubs” and “real classes,” similar to a nor
mal RPC stub generator. Which sets of routines (stub 
or real classes) gets linked to an application depends 
on whether or not it indicated that the objects were 
immobile (stubs) or normal (real classes). To support 
RMI, server stubs register interest in “updates” to the 
object using the k h _ reg ister () interface. The client 
stub on the sending side of the RMI marshals param
eters into a packet and hands it over to Khazana CM 
via the kh.update interface. To the CM, it looks like 
a regular object update, which it propagates to the re
ceiving node and passes up to the registered callback 
function of the application running there -  the server 
stub. The roles are reversed for propagating responses. 
In this way, Khazana is able to support both DSM-like 
“migrate the data” style distributed computing and 
RPC-like “migrate the computation” style distributed 
computing on top of a common storage management 
platform.

E vent notification: Khazana allows applications
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to register interest in Khazana-internal events. In ad
dition to supporting RMI, this facility can be used to 
signal applications in response to modifications to spe
cific regions, changes to region attributes such as the 
security token, and changes to the set of nodes caching 
a particular region copy location. This facility is used 
by the shared whiteboard program described in Sec
tion 5.4. Each instance of the whiteboard application 
is notified when another node modifies the drawing, 
so it can redraw the screen without having to poll, an 
expensive operation across a network. Notification ser
vices like this have proven useful in a variety of interac
tive, groupware-style applications [11]. Currently our 
update and notification mechanisms are serial, but we 
are considering exploiting a lightweight reliable mul
ticast protocol, such as SRM [16], to make it more 
efficient.

O perations not supported: The language- 
independent layer does not provide certain services 
that might be expected from a full blown distributed 
object system. In particular, it provides no level of au
tomatic garbage collection nor any form of automated 
data format conversion to support heterogeneous exe
cution environments. We also do not currently support 
atomic transactions as primitive operations at either 
the core or object layers, assuming instead that when 
necessary they will be built as part of a higher level 
library. These decisions may change as we gain more 
experience using Khazana.

5 Evaluation

In this section, we describe a series of experiments we 
have performed on Khazana to determine how effective 
it is at making distributed application development (or 
porting) easy. In Section 5.1, we report the perfor
mance of fundamental Khazana operations (e.g., the 
time to lock and access regions of data under varying 
circumstances). We also present the results of three 
whole application experiments: the Khazana file sys
tem (Section 5.2), a Khazana-based name service (Sec
tion 5.3), and a port of the x f ig  drawing program to 
Khazana.

We ran all experiments on dedicated 300MHz Pen- 
tiumPro workstations running FreeBSD, connected by 
a 100Mbps Ethernet. All the benchmarks were per
formed on regions with 4-kilobyte pages.

The buffer caches in the smart clients were config
ured to be large enough to hold all of the experimental 
data. By configuring the buffer cache so, we avoid 
spurious conflict misses and can easily control when a

request would hit in the local client buffer cache and 
when it would be required to invoke a remote server.

5.1 Microbenchmark Performance
Table 1 presents the results of a series of microbench
marks performed on Khazana. The Null R PC  and 
Send Page times were measurements of the IPC sub
system underlying, with no Khazana operation is in
volved. Thus, they represent the raw performance 
lower bound.

The first set of numbers reported in Table 1 are for 
a single client and a single BServer running on a dif
ferent node. kh_reserve requires little more than a 
null RPC time. The time to kh_allocate storage for 
a region, however, increases with the number of pages 
to be allocated. This is because this operation must 
perform disk I/O . The Cold fetch numbers refer to the 
time taken by kh_read to fetch data stored in the re
mote BServer. These results are consistently close to 
double the raw data transfer times, indicating that the 
performance of large data transfers needs to be im
proved. The difference between the Cold-fetch results 
and the raw data transfer times represents the over
head of receiving and manipulating the data in page
sized chunks, kh-unlock takes very little time because 
it is a local operation in the “smart client”. The smart 
client will normally keep the data in its local cache 
in the expectation that the local client will access it 
again soon. It does periodically flush its cache, but 
this is an asynchronous operation, and thus its impact 
is not reflected in these results. kh_flush operations 
take slightly longer than the corresponding “cold fetch” 
owing to the extra overhead of ensuring that all the 
data is reliably flushed to the server.

Warm fetch refers to a kh_lock/kh_write pair that 
does not need to fetch the data from the server. In 
this case, the client already has the data read locked, 
and wishes to upgrade the lock to a write lock. In 
that case, the client merely upgrades its lock with the 
parent and does not incur the overhead of fetching the 
data since it is already cached locally. It is in the case 
of the “warm fetch” and kh_unlock that the smart 
client’s complexity results in significant performance 
wins compared to the thin client library. Recall that 
all data fetch operations translate into a data send over 
the network in the thin client, since the library does 
not offer any caching. The smart client thus effectively 
exploits locality in data access to improve performance.

The bottom of Table 1 presents our measurements 
for the same operations when they are spread over two 
servers by the same client. In particular, the client 
performs the kh_reserve at one server and approaches
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the other server for all other operations. This is anal
ogous to the case of applications like the file server 
where one instance of the application khjreserve’s an 
entire region and individual instances of the program 
k h_allocate and access parts of that region as the 
need arises. All of the numbers match those of the sin
gle client and server case except for the time taken by 
k h_allocate. In this case, the additional delay may be 
ascribed to the fact that Khazana attempts to allocate 
storage for a region as close as possible to the request 
for storage. As a result, the k h .a llo ca te  operation 
is implemented similar to a 2-phase protocol with the 
home node where the region was reserved acting as the 
coordinator.

5.2 Clustered File Service
In this section we describe our experience porting the 
Linux file system (ex t2 fs) to use Khazana for its per
sistent storage. Our goal was to evaluate how easily 
an existing single-machine service could be ported to 
Khazana, thereby creating a distributed version of the 
service. We also wanted to evaluate how well the re
sulting clustered file service performed under load.

We started out with an OSkit [17] port of e x t2f s  
that implements e x t2f s  as a user-level library. We 
modified e x t2f  s ’s buffer cache to use the smart client’s 
kh_lock operation to lock each buffer cache entry in ex
clusive mode before accessing it and to use kh_unlock 
when it was through with the cache entry. Since the 
smart client caches page locks, lock requests after the 
initial copy of a file system block is fetched from a 
BServer can be handled locally. We modified e x t2f s  
to fetch the superblock in read-only mode except when 
modifying. We refer to the modified user-mode file sys
tem as BFS.

We used the u serf s [25] public domain library pack
age to allow BFS to be mounted via the Linux kernel’s 
VFS (virtual file system) interface via the mount sys
tem call. We also modified the Linux mke2f  s program 
to reserve, allocate and format a Khazana region as 
an e x t2 filesystem. By running multiple instances of 
BFS on different nodes in the system, we get what is 
in effect a clustered file server. After making these 
fairly modest changes to the e x t2f s  library, we had a 
working clustered version of e x t2f s J.

Unfortunately, the initial implementation suffered 
serious performance problems because it always locked 
buffer cache blocks in exclusive mode. Since e x t2f s  
was written as a single-node file system, there was

'We also found and removed quite a few bugs in the ext2fs 
and userfs sources, which took far more time to handle than 
the changes required to Khazana-ify them.

no reason for it to distinguish between read locks and 
write locks. So, despite the fact that most buffer cache 
accesses only involve reading the data, cache entries 
were write locked, which led to extensive shuttling of 
file system blocks between the BFS instances. To at
tack this problem, we hand modified e x t2f  s to indicate 
the mode of access explicitly while fetching blocks from 
the buffer cache. Thus, in the common case, when the 
file system operation merely needed to read the con
tents of the buffer cache, we only needed to acquire 
a shared lock, which significantly reduces the amount 
of communication Khazana needed to perform to keep 
data consistent.

To evaluate the performance of our clustered version 
of e x t2f s ,  we ran the Andrew benchmark suite on a 
number of configurations of the system. First, to give 
us a baseline to compare against, we ran a single-client 
version of the Andrew benchmark against a single-node 
instance of e x t2 fs  running directly on top of Linux. 
This experiment took 17.059 seconds to complete.

After determining a baseline for our performance,

we varied the number of clients from one to four. On 
each client node we ran an instance of the Khazana- 
ified version of e x t2f s ,  which the client used as the 
file server for its run of the Andrew benchmark. In 
this experiment, the clients can exploit the caching 
ability of the Khazana smart client to avoid commu
nicating with the (logically remote) “file server” when 
possible. The results of this set of experiments can be 
found in Figure 2. From this experiment we can see 
that Khazana-ifying ex t2 f s adds about 33% overhead 
compared to the non-Khazana version when running a 
single client and server (24.376 seconds versus 17.059 
seconds). However, performance is quite stable as we 
increase the number of clients running the benchmark. 
Even when the load is increased by a factor of four, per
formance only degrades by 40% (from 24.276 seconds 
to as much as 38.264 seconds).

In summary, porting single-machine e x t2f s  to run 
as a clustered file system on top of Khazana was rela
tively simple and involved very localized modifications 
to e x t2f s .  The set of modifications needed to re
duce communication overhead, viz. changing e x t2f s  
to specify access modes during block access, though 
more extensive, was conceptually straightforward. Our 
initial performance results showed that this port re
sulted in a version of the filesystem that was approx
imately 33% slower than the initial version, but with 
good scaling. We believe these results are quite con
servative, since we have not yet put great effort into 
malting Khazana highly efficient.
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Configuration Operation Number of 4kB Pages
1 4 10 35

null RPC 0.469
Send page 1.101 2.596 5.277 18.346

One kh_reserve 0.600
Server kh_allocate 0.856 0.999 1.896 4.324
One Cold fetch 1.141 4.641 11.573 20.930
Client kh_unlock 0.315 1.278 3.081 10.639

kh_f lush 1.686 6.611 16.976 n /a
Warm Fetch 1.200 1.275 1.373 1.979

Two Servers kh_reserve 1.187
One Client kh_allocate 3.319 3.568 4.691 7.890

Table 1: Khazana Microbenchmark Results (All times are in milliseconds)

Client 1 Client 2 Client 3 Client 4
1 client
2 clients
3 clients
4 clients

24.376
32.315
35.881
38.264

31.524
32.547
36.578

30.293
35.365 33.492

Table 2: Khazana Clustered File Server Results (All times are in seconds): In this experiment, we ran the Andrew 
benchmark on from one to four nodes. We ran one BServer, on Client 1, one instance of e x t2f s  with the smart 
client per benchmark client. The baseline performance of a single Andrew benchmark client running directly on 
top of a user-level ex t2 f s file system is 17.059 seconds.

5.3 Directory Service
The Khazana directory server is a B+-tree of fixed- 
page-size nodes that maps a key that includes a vari
able length symbolic name to a set of values. The B+- 
tree is an efficient data structure for indexing a set of 
tuples based on a key value. For instance, it is used ex
tensively in databases. It is often used as the primary 
data structure when implementing a centralized direc
tory/name service that maintains mappings from sym
bolic names to directory information (e.g., mappings 
from machine names to IP addresses, as in DNS).

Typical directory services are characterized by fre
quent lookups, but relatively infrequent updates. To 
evaluate the performance of a directory service with a 
B+-tree as its central data structure on Khazana, we 
took a straightforward single node B+-tree implemen
tation and ported it to run on Khazana using the smart 
client interface.

In our implementation, every B+-tree operation 
locks two levels worth of B+-tree nodes at a time in 
exclusive mode as it descends the tree. The tests we 
ran on the B+-tree were deliberately designed to gen
erate high contention for locks to test the worst-case 
performance of Khazana.

Table 3 shows the average and total times to in
sert (name, value) pairs into an empty B+-tree imple
mented using a file on a Unix filesystem and the same 
B+-tree implemented on top of Khazana. To obtain 
the numbers in the first two rows, 621 names were in
serted into a B+-tree of node-size 512 bytes. The Kha
zana version of the test was run with a BServer pro
cess and B+-tree process on the same machine. The 
B+-tree running on top of Khazana is approximately 
8 times slower than the local filesystem version. This 
is mainly due to the context switch overhead between 
the B+-tree and Khazana server processes.

To obtain the next three rows of results, fifty (name, 
value) pairs were randomly picked up from a static 
file with 621 entries and inserted into an empty B +- 
tree by each of one, two, and three B+-tree processes 
respectively. The unusually high average insert time on 
some of the entries was due to the transient starvation 
for exclusive locks on B+-tree nodes.

5.4 Shared Whiteboard
xf ig  is a freely available drawing tool for X Windows 
on Unix written to run on a single processor machine. 
Our port of xf ig  to Khazanaallows users on multiple
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Client 1 Client 2 Client 3
Average

Time
Total
Time

Average
Time

Total
Time

Average
Time

Total
Time

Non-Khazana Local filesystem 0.82 0.509

Khazana
1 Client 6.57 4.074
2 Clients 26.20 1.308 30.5 1.526
3 Clients 52.62 26.31 46.5 2.327 48.9 2.446

Table 3: Directory Service Performance (milliseconds)

machines to share and collaboratively edit a drawing. 
This shared whiteboard example differs from the dis
tributed file service and distributed directory service 
examples in the following ways:

• It is a collaborative “groupware” application that 
makes extensive use of pointers in its data struc
tures.

• It manipulates objects at a finer grain than the 
page size of the regions involved. In fact since the 
objects that it manipulates vary in size from as 
small as 4 bytes to about 100 bytes, there is no 
common object size that one may choose as the 
region page size.

The difficulties we faced in our port of x f ig  to run 
directly atop the core layer of Khazana motivated the 
design of object layers, as described earlier.

x f ig  maintains linked lists of objects (lines, arcs, 
points, etc). Every time an object is created or mod
ified, these lists are modified to reflect the change. 
While this design works well as a uniprocessor pro
gram, it presents several challenges when converted 
into a distributed application. Persistent references to 
shared graphical objects must be swizzled into virtual 
memory pointers prior to their use. In addition, since 
objects are no longer modified by just one instance of 
the program, there must be a way for remote instances 
of the program to determine when the object list is 
changed that they will update their display. Finally, 
since many small objects usually reside on the same 
page, care must be taken to ensure that false sharing 
does not ruin performance.

To create a distributed version of x f ig , we made a 
series of source-level changes to the original program. 
First, we converted all object references in shared data 
structures into Khazana smart pointers, which auto
mated the process of swizzling and unswizzling these 
references. Next, we overrode the default versions of 
m alloc and fr e e  with versions that allocated objects 
from a persistent Khazana region. Then, to enforce

concurrency control when multiple clients attempt to 
modify the drawing, we surrounded all accesses to 
shared data structures with locks -  setting the mode 
(read or write) appropriately. This part of the port
ing effort could not be handled automatically by our 
object layer support. Normally, all pages were locked 
in “listen” mode. In this mode clients are informed, 
via an upcall, whenever there is a change (update) to 
the page. Read locks were used when the program 
navigated the data structure (e.g., when it was updat
ing its display) and write locks were used when the 
drawing was being changed. All data structure navi
gation has to be done with a read lock on the data. 
As in our distributed file service, the determination of 
what lock operation was appropriate at any given use 
of the shared data was determined manually The final 
change involved adding a callback routine that invokes 
the generic redisp lay_canvas() function whenever a 
change event occurs. One can imagine more sophis
ticated upcalls being written that act appropriately 
based on the change itself.

The original port of x f ig  to Khazana’s core 
layer involved changes to almost all the source 
files to ensure that pointers are swizzled and 
kh_lock()/kh_unlock() statements inserted, and 500 
lines of new code for the allocator and the glue code 
between Khazana and x f ig . The object layer support 
significantly reduced the amount of work required to 
handle the object issues, although we had to spend 
considerable time and effort to port x f ig , a C pro
gram, to C + +  so that our preprocessor could handle 
it.

The results of the port are encouraging. As Table 4 
shows, the time taken for a change on one whiteboard 
screen to be propagated is tiny compared to the time 
required to update the display. The numbers reported 
here are for modifying a single object, but the results 
will not change significantly with a change in the num
ber of objects since the overhead is so small compared 
to the rate of display updates. Additionally, since Kha
zana only transmits the changed object to all sharers,
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the number of objects on the screen would not impact 
the time required for data to be available to all par
ticipants. Overall, the performance impact of porting 
x f ig  to Khazana is an increase in redisplay time of 
about 50%. We expect that those numbers would re
main largely constant for all drawing sizes. Users also 
do not experience any unreasonable delay in reading a 
saved picture from Khazana as opposed to that from a 
file.

6 Related Work

The goal of Khazana closely resembles that of the 
Apollo Domain system from over a decade ago [22] -  
a universal distributed storage infrastructure on which 
large classes of applications and services can be built. 
Domain provided a system-supported abstraction of a 
shared address space spanning multiple workstations 
that could be used to communicate between appli
cations. For example, clients could invoke file sys
tem operations by mapping the appropriate file sys
tem metadata into their address space and operating 
on this metadata themselves. A number of lessons 
were learned from this effort. In particular, directly 
exposing the internal representations of operating sys
tem data structures made it difficult to evolve the sys
tem over time -  some form of data hiding, such as is 
present naturally in object systems, is useful. We ad
dress this problem by not requiring that all distributed 
services use Khazana’s shared storage abstraction. For 
example, Khazana’s core layer abstractions can be used 
to support inter-fileserver clustering and client data 
caching, but directory operations could be buried in
side of library routines or performed via RPC opera
tions.

Distributed object systems (e.g., Emerald[21], Mon
ads [20], CORBA[19], and Legion [18]) provide uni
form location-transparent naming and access to het
erogeneous networked objects. In these systems, ser
vices can export a well-typed set of object interfaces 
to clients, which can invoke operations on service ob
jects by binding to a particular instance of a service 
interface and invoking said service. The addition of 
object brokers, such as are present in CORBA [19], 
provided a degree of location transparency, and the ad
dition of an object veneer made it easier for servers to 
change their internal implementation without impact
ing their clients. However, these systems proved to 
be effective primarily when used to support the same 
type and granularity of services previously supported 
by ad hoc client-server systems: large servers export

ing coarse grained operations on large datasets (e.g., 
mail daemons and file servers).

Building distributed applications and services on 
top of Khazana is analogous to building shared memory 
parallel applications on top of a software distributed 
shared memory system. DSM systems provide a purely 
shared memory abstraction [24, 7, 1], which can sup
port the efficient execution of shared memory parallel 
programs [10]. However, these systems are not well- 
suited for supporting distributed systems applications, 
such as file systems and name servers. They do not 
support a number of elements critical to such appli
cations: data persistence beyond the execution of a 
single program, security, efficient high availability, and 
the ability for multiple independent applications to ac
cess and modify shared data.

Many contemporary projects closely resemble Kha
zana -  we can only touch on a few of them here.

Khazana is closest in spirit and design to Perdis [15] 
and Globe[29]. Both provide functionality similar to 
Khazana but use distributed shared objects as their 
base abstraction. Like Khazana, however, both sys
tems expose the lower level storage layer to applica
tions that wish to avoid the overheads associated with 
a strictly object-based model. Their reasons for em
ploying a multi-layer design is based on similar expe
rience to our own -  forcing all applications to use a 
single abstraction (in this case, objects) is ineffective 
and inefficient. We find it interesting that they came to 
the same conclusion despite starting from the opposite 
abstraction (distributed objects) as we did (distributed 
virtual disk).

Petal[23] exports the notion of a distributed virtual 
disk. It has been used to implement Frangipani[28], 
which is similar to our clustered userfs-based file sys
tem. Petal works at a lower level than Khazana, in 
particular it provides no means of consistency manage
ment. Petal was conceived as a globally accessible, dis
tributed storage system. On the other hand, Khazana 
attempts to provide infrastructure for the development 
and deployment of distributed services. In general, 
many distributed services with fine-grained objects are 
likely to find the file abstraction to be too heavyweight.

GMS[14] allows the operating system to utilize 
cluster-wide main memory to avoid disk accesses, 
which could support similar single-cluster applications 
as Khazana. However, GMS was not designed with 
wide area scalability, persistence, security, high avail
ability, or interoperability in mind, which limits its ap
plicability.

Bayou[12] is a system designed to support data shar
ing among mobile users. Bayou focuses on providing
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Client A Client B Client C Original xfig
Data available (ms) 2.197 3.361 0.991
Redisplay time (ms) 77.5 90.933 90.780 52.013

Table 4: Shared Whiteboard Performance (milliseconds)

a platform to build collaborative applications for users 
who are likely to be disconnected more often than not. 
It is most useful for disconnected operations and uses a 
very specialized weak consistency protocol. In the cur
rent implementation, Khazana does not support dis
connected operations or such a protocol, although we 
are considering adding a coherence protocol similar to 
Bayou’s for mobile data.

Like Khazana, xFS[2] rejects the use of servers and 
instead use a collection of peer processes to support a 
distributed system service. However, like Bayou[12], 
xFS was designed to meet the restricted goals of a 
filesystem, and as such is inappropriate for support
ing general system services and applications.

Finally, object databases [6, 26] provide the neces
sary distributed storage abstraction, but most are im
plemented in a client-server environment and the sys
tems we know of were not implemented with wide-area 
networks and high scalability in mind. Therefore, they 
do not have the degree of aggressive caching and repli
cation provided by Khazana.

7 Conclusions

Currently, distributed applications must implement 
their own data management mechanisms, because no 
existing runtime system can support the very differ
ent needs of each application efficiently. We have 
built Khazana to demonstrate that a single distributed 
runtime system can support a wide range of applica
tions with reasonable performance. Khazana consists 
of three layers: (i) a base layer that exports a flat global 
address space abstraction, (ii) a language-independent 
distributed object layer, and (iii) a collection of lay
ers that export language-specific distributed object ab
stractions (e.g., C + +  and Java). Khazana provides 
programmer’s with configurable components that sup
port the data management services required by a wide 
variety of distributed applications, including: consis
tent caching, automated replication and migration of 
data, persistence, access control, and fault tolerance.

We reported on our experience porting three appli
cations to Khazana: a distributed file system, a dis
tributed directory service, and a shared whiteboard.

As we showed via our experience porting ex2fs and 
building a directory service from scratch to run atop 
Khazana, the base layer’s simple “flat” data abstrac
tion is a good match for certain types of applications, 
such as file systems and directory services. For exam
ple, when we ran the Andrew filesystem benchmark 
on the Khazana version of ex t2 fs , it was only 40% 
slower on four nodes than on one node despite qua
drupling the workload. The directory service demon
strated similarly solid performance. What makes these 
results particularly heartening is that Khazana is still 
fairly untuned, and we should be able to improve the 
performance of the core system substantially when it 
becomes a major focus.

While porting x f ig  to Khazana to create a shared 
whiteboard program, however, we found that an 
object-like extension to Khazana could benefit ap
plications with small data structures interconnected 
via pointers. In particular, manually swizzling every 
pointer to a “shared” graphical object was very tedious 
when done by hand. This problem motivated Kha
zana’s support for objects. The object layers provide 
functionality, such as automatic reference swizzling 
and remote method invocation, appropriate for appli
cations with complex data structure like our shared 
whiteboard program. When we reimplemented x f ig  
using our object layer support, performance remained 
the same as in the original hand-coded version, easily 
within the bounds of tolerance for human perception. 
In general, we believe that we have demonstrated that 
Khazana can be used to quickly implement a variety 
of distributed applications at a reasonable cost.

In summary, the contributions of this paper are:

• We demonstrate that a single distributed runtime 
system can support a wide range of applications 
with reasonable performance (within 50% of the 
performance of hand-tuned versions of the appli
cations, even using a very untuned version of Kha
zana) .

• We provide insight into how such a runtime system 
should be organized.

• We demonstrate the benefits of combining ele
ments of distributed shared memory, distributed 
file systems, and distributed object systems.
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Future work will be focussed in four areas: (i) im
proving the performance, scalability, and fault toler
ance of the core Khazana layer, (ii) greatly expand
ing the number of distributed applications run on top 
of Khazana to identify issues that we may have over
looked in our initial design, and (iii) adding support 
for a Java object layer.
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