
Verification of Regular Arrays by Symbolic Simulation

PR A B H A T JA IN 1
GANESH G O PA LA K R ISH N A N 2

PR A B H A K A R KUDVA

UUCS-91-022

D epartm en t of C om puter Science ’
U niversity of U tah

Salt Lake City, U T 84112, USA

O ctober 28, 1991

A bstract
M any algorithm s have an efficient hardware formulation as a regular array o f cells, which can be im ­

plem ented in VLSI as regular circuit structures. B it-sliced microprocessors, pa ttern m atching circuits, as­
sociative cache m em ories, fine-grain systo lic arrays, and em bedded m em ory-w ith-logic structures are repre­
sentative o f the regular array design style. In this paper, we illustrate a verification approach for regular
arrays. Our approach for the verification o f regular arrays combines form al verification at the high level
and sym bolic sim ulation at the low level (e.g., switch-level). The verification approach is based on a sim ple
hardware specification formalism called HOP, a parallel com position algorithm for regular arrays called PCA,
and a switch-level sym bolic sim ulator(e.g., COSM OS). We illustrate our verification approach on the Least
R ecently Used(LRU) prio rity algorithm im plem ented as a two-dimensional array o f LRU cells in VLSI. We
also show a new technique o f encoding input constraints as param etric boolean expressions on inputs to
reduce the num ber o f sym bolic sim ulation vectors required for verification. The use o f this technique in LRU
array verification results in the sim ulation o f only one sym bolic sim ulation vector independent o f the size o f
the LR U array.

1S upported in p a rt by the U niversity of U tah G raduate Research Fellowship
2S upported in p a rt by NSF Aw ard M IP-8902558

Formal Aspects o f VLSI Research Group
University o f Uta.li, Department o f Computer Science

Verification of Regular Arrays by Sym bolic Sim ulation

PRABHAT JAIN*
GANESH GOPALAKRISHNAN'1'
PRA BH A KA R KUDVA

University o f Utah
Dept, of Computer Science
Salt Lake City, Utah 84112

K eyw ords: Symbolic Simulation, Formal Verification of VLSI, Regular Array Verification, Input Constraints, Para­
m etric Boolean Expressions

A b s t r a c t . M any algorithms have an efficient hardware formulation as a regular array of cells, which can be imple­
mented in V L S I as regular circuit structures. Bit-sliced microprocessors, pattern matching circuits, associative cache
memories, fine-grain systolic arrays, and embedded memory-with-logic structures are representative o f the regular array
design style. In this paper, we illustrate a verification approach for regular arrays. Our approach fo r the verification of
regular arrays combines formal verification at the high level and symbolic simulation at the low levelfe.g., switch-level).
The verification approach is based on a simple hardware specification formalism called HOP, a parallel composition
algorithm fo r regular arrays called P C A, and a switch-level symbolic simulatorfe.g., COSMOS). We illustrate our veri­
fication approach on the Least Recently Used(LRU) priority algorithm implemented as a two-dimensional array of LRU
cells in VLSI. We also show a new technique o f encoding input constraints as parametric boolean expressions on inputs
to reduce the number of symbolic simulation vectors required for verification. The use o f this technique in L R U array
verification results in the simulation of only one symbolic simulation vector independent of the size of the L RU array.

1 Introduction

Regular arrays and VLSI technology have a close connection: regular circuit structures in VLSI
allow easy and area-efficient implementation of regular arrays. Regular structures are an im portant
part of any VLSI methodology. One advantage of these regular structures is tha t they enable one
to increase the regularity factor [13] of the design. For design productivity, it pays to have large
regularity factor; it also pays from a layout viewpoint [7].

Many algorithms have an efficient hardware formulation as a regular array of cells and they can
be implemented as area-efficient VLSI circuits. Logic and memory can be intermixed to build large
regular structures. This mixing is particularly easy in the VLSI circuit domain. Examples of regular
array designs include associative cache memories, pipelined multipliers, memory-with-logic struc­
tures, convolvers, and fine-grain systolic arrays. Iterative Logic Array(ILA)s of combinational and
sequential cells form the basis of bit-sliced microprocessors and other easily testable regular designs

‘supported in part by the University of U tah G raduate Research Fellowship.
^Supported in p art by NSF Award MIP-8902558

(Jain @cs. utah.edu)
(gan esh @ bliss. utah.edu)

(pkudva@cs.utah.edu)

mailto:pkudva@cs.utah.edu

VERIFICATION OF REGULAR A R R A Y S B Y SYMBOLIC SIMULATION 2

[16]. W ith regular array designs being employed in numerous applications, as mentioned above, the
verification of regular arrays becomes an im portant step in their design and implementation as VLSI
circuits.

W ith the increase in the complexity of VLSI circuits, the use of a Hardware Description Lan-
guage(HDL) in VLSI design is becoming necessary. Similarly, formal verification of VLSI circuits
is becoming an essential step in the design of many large and complex VLSI circuits to ensure the
correctness of these designs. The use of an HDL in VLSI design helps in the formal verification of
designs and offers several other advantages. For instance, an HDL description can serve as an unam­
biguous specification of the design and facilitate easy integration with the design tools [17]. Several
formal verification approaches have been suggested for the verification of digital circuits, but current
formal hardware verification approaches cannot accurately model low-level circuit details. Since the
simulators(e.g., switch-level) can model low-level circuit details accurately, an approach combining
the capabilities of formal verification at the high level and symbolic simulation at the low-level can
derive the advantages of both the approaches.

Bryant has proposed symbolic switch-level simulation for formal hardware verification [4]. His
verification approach has been applied to verify a static RAM, data paths, and pipelined circuits
[2, 3]. The combination of formal verification at the high-level and simulation-based verification at
the low-level has been proposed in [9, 15]. Our verification approach for datapath and control circuits
is based on a simple hardware specification formalism called HOP, a parallel composition algorithm
called PARCOMP, and a switch-level simulator(COSMOS). The details of this verification approach
are discussed in [9].

In this paper, we illustrate our verification approach for regular arrays which is based on HOP,
PC A -a parallel composition algorithm for regular arrays, and COSMOS. We use the Least Recently
Used(LRU) priority algorithm, implemented as a two-dimensional array of LRU cells in VLSI, as an
example to illustrate our verification approach. In order to reduce the symbolic simulation effort,
a new technique to encode the input constraints as parametric boolean expressions on inputs is
incorporated in our verification approach. This encoding technique reduces the number of symbolic
simulation vectors required for simulation; it also reduces the corresponding verification effort. The
validity of this encoding technique relies on a property of the symbolic simulator similar to the
monotonicity property of a ternary simulator. In the LRU verification, this technique reduces the
number of symbolic simulation vectors required to one, independent of the LRU array size.

It is im portant to develop efficient ways to handle input constraints for the verification of regular
arrays, because many regular arrays are designed to be operated under input constraints (e.g.:
“inputs must be unary”). Designing regular arrays to operate under input constraints is a frequently
employed circuit saving measure (e.g. internal decoders can be avoided). In such cases, it is the
responsibility of the submodule tha t provides the inputs to guarantee tha t the constraints are never
violated. This, in turn is often guaranteed by circuit state invariants tha t disallow the submodules
from going into many of their state combinations.

VERIFICATION OF REGULAR A R R A Y S B Y SYMBOLIC SIMULATION 3

1.1 O utline o f P aper

The remainder of the paper is organized as follows. Section 2 outlines our verification approach
for regular arrays. It also discusses a new technique of using parametric boolean expressions on
inputs to encode input constraints, and reduce the simulation effort. Section 3 explains the LRU
algorithm and its hardware implementation as a two-dimensional array of LRU cells. Section 4
shows the verification of the LRU algorithm using our verification approach and presents the results.
Improvement in verification time with the use of our encoding technique is also reported. Section 5
concludes the paper and reports our ongoing effort in extending the verification approach discussed
in this paper.

2 Verification Approach

Our verification approach for regular arrays combines formal verification at high-level and symbolic
simulation at low-level to derive the advantages of both, in the framework of a simple hardware
specification formalism called HOP. Formal verification is shown to be an effective technique for the
verification of regular arrays at high level. Formal verification can provide im portant information
about the circuit, such as invariants, to facilitate circuit verification at low level using symbolic
simulation.

2.1 O verview o f H O P

The language HOP supports the specification and functional simulation of hardware designs, and
also assists in formal verification [10, 8]. In order to use HOP for verification, a reference behavioral
specification (desired behavior) for the circuit is first written in HOP. This specification consists of
a collection of transitions. Each transition of a HOP specification specifies the present state of the
system, control inputs under which the transition is taken, data input values consumed by the system
if the transition is taken, a boolean guard which must be true for the transition to be taken, control

outputs generated when the transition is taken, data outputs generated when the transition is taken,
and the next state attained. States, inputs, and outputs are modeled symbolically, i.e., involving
variables th a t range over bit vectors. In this paper, we leave out the guards in the transitions, in
order to simplify PCA (to be discussed below). However, the prohibition of guards does not restrict
the class of regular arrays tha t can be modeled, because the equivalent effect can be had through
the use of i f j t h e n . e l s e functions in specifying the next-state and the outputs.

Following the syntax suggested in [4], we write each HOP transition in the form shown in equa­
tion 1:

in i t ia l {act ion s} resu l t (1)

where in i t ia l specifies the initial system state, act ion specifies the control and data inputs applied,
and resu l t specifies the control and data outputs generated, and the next state attained. We shall

VERIFICATION OF REGULAR A R R A Y S B Y SYMBOLIC SIMULATION 4

refer to HOP transitions also as transition assertions.

A structural description of the circuit design is then written. A structural description consists
of transition assertions for the submodules used, and a netlist specifying their interconnections. For
the purposes of this paper, we shall stick to structural descriptions tha t describe rectangular arrays,
where adjacent cells can be connected in the x direction or the y direction only. In addition, we
also allow embedded “feed-through connections” , by which values can be broadcast to all the cells
along the x direction or along the y direction. Feed-through connections are also useful for realizing
embedded busses. We do not consider this use of feed-through connections. Therefore, feed-through
connections are assumed to be inputs only.

2.2 P C A : Parallel C om position A lgorithm for R egular A rrays

A behavioral description can be derived from a regular array description written in HOP by
employing an algorithm called PCA. This algorithm works as follows.

We are given:

1. one cell of the array in question (all cells are assumed to be identical);

2. a general description of the connectivity through recurrence relations of the general form1:

Vi £ (X S I Z E — 1) . j € Y S I Z E . connect(cel l [i , j] .por tp,ce ll [i - \- 1 , j] .por tq)

V i € X S I Z E . j £ (Y S I Z E — 1) . connect(cel l [i , j) . por tp , cell [i , j 4- 1] .por tq)

3. appropriate boundary conditions for the recurrence relations describing the connectivity;

4. description of the global connectivity through formulae of the form

V i € X S I Z E . (V j 6 Y S I Z E . connect (cel l[i, j] . por tp", globalport[i]))

V j € Y S I Z E . (V i € X S I Z E . connect (cel l[i, j] .portp", globalport'[j]))

5. the array does not manifest any combinational cycles in any of its states of execution. (This is
checked as described below.)

Each cell is described through a collection of possible transitions. An example is given in figure 2(b).
The transitions captured in this example are:

S ta te = dps { I c l k r i s e A cin — col@ A r in = rou;@}

S ta te — (A n d (O r r in dps) (N o t cin)) (2)

S ta te = (A n d (O r r in dps) (N o t cin)) { I c l k f a l l A w —I w }

S ta te = (A n d (O r r in dps) (N o t c in))) A (\e = (O r w dps) (3)

JTo simplify our notations, we use tlie convention from set-theory of treating numbers as sets: 0 is the em pty set,
and N , where N > 0, is the set containing 0 through N — 1. We also use the notation cell[i,j] .x to select aspect x
(port or sta te) of cell[i,j].

VERIFICATION OF REGULAR A R R A Y S B Y SYMBOLIC SIMULATION 5

Here, dps stands for “data path state”. We adopt certain port naming conventions, to enhance
readability: Ip is an input port name, \p an output port name, and p@ a global (“feed-through
connected”) port name. Notice that each transition essentially specifies, for each “step” of the
computation, tlie next-state and output equations.

The steps in the PC A Algorithm are the following:

1. Describe each transition describing a cell through equations of the form

next-statei = / (present .s ta te , inputs)

output jportj = g(present^state , inputs)

where i and j range over all the state bits and the output ports, respectively.

In case of the LRU, the next-state equation derived from the first transition (ignoring the clock
input which is assumed to be global) is:

next-state = (And (Or r in dps) (Not cin))

The equation for the output on !e is not of interest during the first transition. (It can be taken
to be incompletely specified, or undefined.) The equation for the output on !e for the second
transition is

!e = (Or w dps).

2. Express the connectivity as described above. In case of the LRU, ports !e and 1w connect, and
the rest are feed-through connections.

3. Repeat the following steps for each transition, and its corresponding equations.

4. Replace the names of local ports used in the transition that are connected to a global port by
the name of the global port. (In the LRU example, substitute in col@ and row© .)

5. Find out the dependency between cell[i, j] .port and: (i) cell[i + l ,j] .port' ; or (ii) cel l [i , j +
1 \ .port , as follows. Treat connectivity equations as rewrite rules, and rewrite the port names
used in transition equations using these rewrite rules. For the LRU, we get

cel l [i , j + l].!e = (Or cell[i,j].le cel l [i , j + l].dps)

6. In general, in this rewriting process, two cases can arise:

(a) The dependencies are acyclic (the normal case), as with the LRU: no node of a cell depends
on itself;

(b) A node of a cell depends upon itself. This can arise if two adjacent cells, or a two-by-two
square of cells introduce a cycle that straddles them. When this is detected, PCA is
aborted.

VERIFICATION OF REGULAR A R R A Y S B Y SYMBOLIC SIMULATION 6

7. Generalize the dependencies. We have shown that [12] the dependencies of all regular arrays are
expressible using one of the following higher order functions: fo ldr , map, iterate. We illustrate
the use of fo ld r below, fo ld r takes a two-ary function f n , a boundary value bv, and a vector
of items vec, and returns an item as follows:

fo ld r (fn , bv, vec) = fn (yec{0], fn(vec[1] , . . . fn(vec[m ax], bv) . . .)) .

An example, where [1,2,3] denotes a vector, is:

fo ld r (i+ \ 0, [1,2,3]) = (1 + (2 + (3 + 0))).

For the LRU, the !e port output at the right boundary of the cell is obtained through general­
ization, as

c e l l [i ,Y S I Z E — l].!e = fo ldr(O r, cell[i, 0].?to, s l ice(ce ll[i , j] .dps ,i)) (4)

where slice(cel[i, j].dps, i) returns the vector of dps values along the ith row. Similarly, PCA
obtains generalized next-state equations for the entire array; for the LRU array, it is:

cell[i,j].next-dps = (And (Or rin[i] cell[i, j] .dps)(N ot cin[j])) (5)

The fact that behaviors can be so generalized has been mentioned in [19]. We have implemented
PCA in Standard ML of New Jersey, and it generalizes the behaviors of a very large class of regular
arrays. An interesting feature of our algorithm is that it automatically constructs (in the lambda
notation) the two-ary function to be used in the fo ld operation. It checks for cycles using a graph
representation of the connectivity. (Details are skipped.) The inferred behavior of the LRU array
that we use in the rest of this paper was automatically obtained using PCA.

2.3 F o rm a l V erifica tion

There are three levels at which formal verification can be conducted: verify that the requirements
have been realized by an abstract data type model; verify that the abstract data type model is
implemented correctly by the chosen regular array organization; and finally, verify that the transistor
circuit realizes the regular array’s intended functionality. In case of the LRU, these steps are: (i) LRU
policy .vs. LRU array operations (e.g., as reported in [14]); (ii) LRU array operations .vs. LRU
regular array behavior determined by PCA; and (iii) PCA inferred behavior .vs. transistor circuits.
We now touch upon (ii) in this section, and then detail (iii), which is the problem attacked in this
paper.

In the verification problem numbered (ii), above, the abstract data type model of the system is
compared against the inferred behavior of the cell array as follows:

• Discover a homomorphism h : s ta te s _ o f _inf erred_behavior — ► states_of_adt_m odel,

VERIFICATION OF REGULAR A R R A Y S B Y SYMBOLIC SIMULATION 7

b l b2 in i in2 in3 in4

0 0 0 0 0 1

0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

Parametric Boolean Expressions b l A b2 b l A ib 2 —ib 1 A b2 -ib l A -ib2

Figure 1: Input Constraints and Parametric Boolean Expressions

• For any sequence of operations s that begins with the r e s e t operation, show that sequence s,
when applied to the implementation (characterized by the derived behavior) results in state
S ', and sequence s when applied to the specification results in state 5 such that h(S') = S.

• Show that when the implementation is in state S ', and the specification is in state S, such that
h(S') — S, they (the implementation and the specification) produce identical outputs.

The above technique is routinely used in verification (e.g. [1, 6, 11]).

2.4 H an d lin g In p u t C o n s tra in ts

Every circuit relies on some input constraints for its correct operation. The circuit is expected
to operate correctly when operated under the constraints it is designed for, and may malfunction
if input constraints are violated. Thus, a circuit needs to be verified only for inputs satisfying the
input constraints (unless it is required to know the circuit behavior under anomalous inputs, which
we are not interested in). As mentioned in section 1, most regular arrays come with their own input
constraints. Typical examples include arrays whose rows and/or columns can be selected (e.g. “only
one row/column must be selected at a time”), arrays embedded within a larger module where the
submodule that provides the input to the array guarantees its input constraints, arithmetic circuits
employing various number encoding schemes, etc.

In our verification approach, we use switch-level symbolic simulation to verify regular arrays at
low-level. We use parameterized boolean expressions on the inputs to encode the input constraints
of the regular array being verified. The use of this new technique offers several advantages: it
reduces the number of symbolic simulation vectors required, and thus reduces the simulation effort.
It also reduces the corresponding verification effort. In addition, this technique can be applied when
the modules of a large system are verified separately; the interface constraints of the module being
verified separately can be encoded as parametric boolean expressions on the inputs of the interface,
for efficient verification. This technique can also be applied to encode constraints among the state
variables of the circuits (e.g. “the value in register ri must be greater than that in register r%” , etc..)

To illustrate this technique, consider a circuit with four inputs i n i , in 2 , in3 and in4 and the

VERIFICATION OF REGULAR A R R A Y S B Y SYMBOLIC SIMULATION 8

input constraint that one and only one input be 1 at any time for its correct operation. The four
valid combinations of values of the inputs i n i , in 2 , in3 and in 4 are shown in Figure 1. This input
constraint can be encoded using the two parameter boolean variables, say, b l and b2, such that

(in i A ->m2 A ->in3 A ->m4) V (->ml A in2 A ->m3 A ->inA) V

(~>inl A ~<in2 A in3 A ->m4) V (-ural A ->in2 A ->in3 A inA)

= 361 62 .

((m l = 61 A 62) A (in2 — 61 A ->62) A

(in3 = ->61 A 62) A (inA = —>61 A -|62))

where F = Q means that J~ and Q are logically equivalent.

Now, a parametric boolean expression can be obtained for each of the inputs as shown in Figure 1.
These parametric boolean expressions capture the input constraint of the circuit. (Related techniques
for obtaining parametric solutions of boolean equations have been reported in [5].)

In general, given n inputs ■ - ,hi, and the input constraint which results in m valid combi­
nations of values of these inputs, the number of parametric boolean variables required to encode the
input constraint is |"log2 rn\ ■ The validity of the use of parametric boolean expressions, encoding
the input constraints, on the inputs of the circuit for symbolic simulation relies on the following
property of the symbolic simulator (roughly analogous to the monotonicity property assumed in [4]):
Suppose the circuit in question is simulated with a scalar input i (ground value) that satisfies the
input constraints, and the simulation results (next-states and outputs) be (s i ,o i) . Suppose the same
circuit is now simulated with the parametric boolean expressions e at its inputs, and the simula­
tion results thus obtained be (32, 02)- Then, for those instantiations a such that ea = i, we have
(.s2a ,o 2a) = (s i,o i) .

We derive the parametric boolean expressions for the inputs based on the input constraints of the
regular array and use them in the symbolic simulation of the regular array.

2.5 S u m m a ry o f th e V erifica tion A p p ro ach

In summary, the outline of the combined verification approach is given below. Many of the following
steps have not been automated yet, but they are currently being automated.

1. Write the behavioral specification of the regular array in HOP.

2. Write the HOP description of a cell of the regular array.

3. Write a structural description in the form of a connectivity description of the cells in the regular
array.

4. Derive a behavioral description from the structural description through PCA.

VERIFICATION OF REGULAR A R R A Y S B Y SYMBOLIC SIMULATION

5. Verify that the derived behavior has the same externally observable behavior as the desired

behavior.

6. Obtain a transistor level implementation of the regular array corresponding to the structural

description in HOP.

7. Derive the parametric boolean expressions for inputs corresponding to input constraints of the
regular array.

8. Substitute these parametric boolean expressions for the inputs in the symbolic expressions
of the states and outputs of the regular array obtained through PCA, to get the reference

specification required for the verification of symbolic simulation results.

9. Derive the symbolic simulation vectors based on the transitions of the derived behavior of the
regular array, with parameterized boolean expressions on the inputs.

10. Load the circuit description into an appropriate simulator(e.g., COSMOS), apply symbolic
simulation vectors obtained in the above step, and verify that the simulation responses match
with the reference specifications of the circuit.

The above verification approach is illustrated on the LRU algorithm implemented as a two­
dimensional regular array of LRU cells.

3 LRU A lgorithm

Least Recently Used(LRU) page-replacement policy is based on the common observation that
pages that have been heavily used in the last few instructions will probably be heavily used again in
the next few. Conversely, pages that have not been used for a long time will probably remain unused
for a long time. Thus, in LRU policy, when a page fault occurs, the page that has been unused for
the longest time is thrown out.

The full implementation of LRU policy in software is expensive, as updation of the list of pages
in the memory is required on every memory reference. There are several ways to implement LRU
with special hardware. One hardware implementation of LRU algorithm which we consider here [18]
maintains an array o f n x n bits, initially all zeros, for a machine with n page frames. Whenever
page k is referenced, the hardware sets all the bits of row k to 1 and sets all the bits of column k to
0. At any instant, the row with all bits set to 0 indicates the least recently used row, hence the least
recently used page frame.

The LRU array is realized as a two-dimensional regular array of LRU cells. Each LRU cell of the
regular array consists of a state bit which can be set to 1 by keeping the row® input to 1 and col@
input to 0; the state bit can be set to 0 by keeping the col@ input to 1. On rising edge of the clock-
indicated by Ickrise (read:“control input clkrise”) in the state diagram-the state bit of the LRU

VERIFICATION OF REGULAR A R R A Y S B Y SYMBOLIC SIMULATION 10

(a) (b)

Figure 2: LRU cell and its HOP state diagram

col<3

row®

r w ! e(lru)

A lg o r i th m : S e t row; r e s e t c o l ; f i n d row w i th a l l z e r o s

Figure 3: An LRU Array

VERIFICATION OF REGULAR A R R A Y S B Y SYMBOLIC SIMULATION 11

col 0
0

col\
1

col2
0

CO/3

0
LRU Output

rowo 0 roo 0 0̂2 ^03 eo = 0̂3 V tq2 V roo
rou>\ 1 1 0 1 1 e i = 1
row2 0 ^20 0 T22 2̂3 e2 = ^23 V r 22 V r 2o
rows 0 ^30 0 7*32 7*33 e 3 = r 33 V r32 V Tzo

Figure 4: Expected values of simulation with inputs rowi : 1 and col\ : 1

cell is set to 0 or 1 depending upon rowQ and colQ inputs. On falling edge of the clock-indicated
by I c k f a l l in the state diagram-the output !e is computed as logical OR of ?w input of the cell
(which is ! e output of the previous cell) and the state bit of the LRU cell. The output of each row
is logical OR of the state bits of the LRU cells in the row. Functionality of the LRU cell is shown in
Figure 2(a) and corresponding HOP state diagram is shown in Figure 2(b). A 4 X 4 LRU array is
shown in Figure 3.

The operation of the LRU array relies on the input constraint that only the «th (0 < i < 3) rowQ
bit and the ith colQ bit are 1, when page i is referenced.

4 Verification of The LRU A lgorithm

Following the verification approach described in section 2, the LRU algorithm is verified at three
levels. At the first level, the LRU array based algorithm is verified against an abstract specification
of the LRU policy. This verification step ensures that the LRU policy realized as a two-dimensional
array with operations as described in Section 3 above, implements the LRU policy correctly. For
the LRU array algorithm described in the previous section, it has been shown that, at any instant,
there is at least one row in the LRU array with all zeros and the rows with all zeros indicate the
least recently used page frames. This verifies the LRU array algorithm at the first level, and proves
that the LRU array algorithm is a correct formulation for the LRU policy. (A proof of this nature
has been reported in [14].)

At the second level, the LRU regular array behavior determined by PCA is verified against the
abstract specification of the LRU array algorithm. The formal verification at this level is based on
the homomorphism relation between states of the inferred behavior and the states of the abstract
specification. We are skipping the details of this proof in this paper.

Finally, the transistor level implementation of the LRU array corresponding to the structural
description in HOP is verified against the PCA inferred behavior. However, the PCA inferred
behavior cannot be directly used as the reference specification because PCA does not take input

VERIFICATION OF REGULAR A R R A Y S B Y SYMBOLIC SIMULATION 12

bl b2 towq/ coIq r o w \ j c o l \ row^/col' i r o w z / c o l 3
0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0
1 1 0 0 0 1

Expressions ->bl A -ib2 -.bl A b2 bl A ->b2 b l A b2

Figure 5: Parametric boolean expressions for row and column inputs

constraints into account. Therefore we first obtain the PCA inferred behavior and then substitute
into it the input and initial state values used during the transistor level symbolic simulation; this
forms the reference specification.

The inferred behavior of the LRU array by PCA is shown in Section 2.2 through equations 4
and 5. The input constraint of the LRU array is that only bits rowi and coli be 1, when page i
(0 < i < 3) is referenced. The LRU array is verified for all combinations of the input values which
satisfy this input constraint. The LRU array is initialized to symbolic state values (as detailed
below). Inputs satisfying the input constraint are applied, and the resulting new state and output
values are compared against the expected values.

We considered two alternatives for the symbolic simulation and the corresponding verification of the
4 x 4 LRU array. In one alternative, we used scalar values satisfying the input constraint mentioned
above on the row and column inputs. It required four symbolic simulation vectors to simulate and
verify the LRU array. In the other alternative, we encoded the input constraint as parametric boolean
expressions on the row and column inputs, with two parameter boolean variables b l and b2, as shown
in Figure 5. In both these symbolic simulation alternatives, it was possible to set the initial state of
each cell of the LRU array to an independent symbolic variable.

This technique reduced the number of symbolic simulation vectors from four to one. In general,
log2 n parametric boolean variables are required to encode the input constraint of an n x n LRU
array. Only one symbolic simulation vector (independent of the size n of the LRU array) is necessary.

In both the alternatives, the expected values for the state and output variables of the LRU array
were obtained by substituting the input and initial state values used in the symbolic simulation into
the PCA inferred behavior. For example, the expected (i . e. reference) symbolic expressions for the
state and output of the LRU array, for input values row\ : 1 and col\ : 1, are shown in Figure 4.
Initial symbolic state values for the LRU array are rjj (0 < i , j < 3).

The system times for running the symbolic simulation, and the corresponding verification, for a
4 x 4 LRU array, using symbolic simulator COSMOS on Sun 4, for the two alternatives are 0.2
seconds and 0.09 seconds, respectively. With the use of the encoding technique, the improvement in

VERIFICATION OF REGULAR A R R A Y S B Y SYMBOLIC SIMULATION 13

the simulation and verification time is expected to be significant for large LRU array sizes.

5 C o n c lu s io n s a n d F u tu r e W o rk

This paper illustrated our verification approach for an important class of digital circuits-regular
arrays. Not all regular arrays are alike, however. For example, some of the regular arrays employed
in practice are purely combinational; some support storage within the cells without any logic blocks
in the cells; some have logic and memory; some have cells that cannot affect its neighbors’ state;
some are fine-grained systolic arrays; etc. The reference behavioral specification that the designer
would like to write for these arrays also varies according to the nature of the array. For example, for
non-systolic designs, it is possible to specify simple and intuitive next-state (over one clock cycle) and
output functions for the cells; in this case, the behavior inferred by PCA also specifies the behavior of
the whole array over one cycle. For fine-grained systolic arrays, however, the highest level behavior
that the designer would like to write may be a function (i.e., mapping of states and inputs to states
and outputs) that is realized in the array only over multiple clock cycles. Currently PCA can only
infer what happens over one cycle; however, we are in the process of investigating extensions to
PCA to infer what happens over time. When this work is finished, we expect our work to become
applicable to systolic systems also.

We are also working on combining the verification technique for regular arrays presented in this
paper, as well as the technique we presented in [9], so that large systems containing multiple regular
arrays, as well as irregular structures can be verified. This technique will involve partitioning the
system into its constituent regular arrays as well as irregular parts, and verifying these parts sepa­
rately. The interface constraints of each of the partitions can be encoded using parametric boolean
expressions, as described earlier.

As mentioned before, input constraints at the inputs of one module M \ often arise because module
M 2 that provides these inputs is never allowed to go into certain states (due to circuit state invari­
ants). In such cases, while verifying M 2 separately, it would become necessary to initialize M 2 into
its allowed states; our parametric encoding scheme can lend help here too.

R e fe re n c e s

1. Harry G. Barrow. Verify: A program for proving correctness of digital hardware designs. Artifi­
cial Intelligence, 24:437-491, 1984.

2. Randal E. Bryant. Formal verification of memory circuits by switch-level simulation. IEEE
Transactions on Computer-Aided Design, 10(1):94—102, January 1991.

3. Randal E. Bryant, Derek L. Beatty, and Carl-Johan H. Seger. Formal hardware verification by
symbolic ternary trajectory evaluation. In Proc. A C M /IE E E 28rd Design Automation Confer­
ence, pages 397-402, June 1991.

VERIFICATION OF REGULAR A R R A Y S B Y SYMBOLIC SIMULATION 14

4. Randall E. Bryant. A methodology for hardware verification based on logic simulation. Technical
Report CMU-CS-90-122, Computer Science, Carnegie Mellon University, March 1990. Accepted
for publication in the JACM.

5. Eduard Cerny and Miguel A. Marin. A computer algorithm for the synthesis of memoryless logic
circuits. IEEE Transactions on Computers, C-23(5):455-465, May 1974.

6. Avra Cohn. Correctness properties of the Viper block model: The second level. In G.Birtwistle
and P.A.Subrahmanyam, editors, Current Trends in Hardware Verification and Automated The­
orem Proving, chapter 1, pages 1-91. Springer-Verlag, 1989. '

7. Lance A. Glasser and D. W. Dobberpuhl. The Design and Analysis of VLSI Circuits. Addison-
Wesley, Reading, MA., 1985.

8. Ganesh Gopalakrishnan and Richard Fujimoto. Design and verification of the rollback chip using
hop: A case study of formal methods applied to hardware design. Technical Report UU-CS-TR-
91-015, University of Utah, Department of Computer Science, 1991.

9. Ganesh Gopalakrishnan, Prabhat Jain, Venkatesh Akella, Luli Josephson, and Wen-Yan Kuo.
Combining verification and simulation. In Carlo Sequin, editor, Advanced Research in V L S I :
Proceedings of the 1991 University of California Santa Cruz Conference. The MIT Press, 1991.
ISBN 0-262-19308-6.

10. Ganesh C. Gopalakrishnan. Specification and verification of pipelined hardware in HOP. In Proc.
Ninth International Symposium on Computer Hardware Description Languages, pages 117-131,
1989.

11. John V. Guttag, Ellis Horowitz, and David R. Musser. Abstract data types and software vali­
dation. Communications of the ACM, 21(12):1048-1064, December 1978.

12. Prabhakar Kudva. PCA: An algorithm for the Parallel Composition of regular Arrays, 1991.
Implementation in Standard ML, plus software documentation.

13. B. Lattin. Vlsi design methodology: The problem of the 80’s for microprocessor design. In
C.L.Seitz, editor, Proc. of the Caltech Conference on VLSI, pages 248-252. MIT Press, 1979.
Pasadena, CA.

14. Paliath Narendran. Verification of the lru algorithm, 1989. Unpublished Memorandum.

15. Carl-Jolian Seger and Jeffrey Joyce. A two-level formal verification methodology using HOL and
COSMOS. Technical Report 91-10, Dept, of Computer Science, University of British Columbia,
Vancouver, B.C., June 1991.

16. Thirumalai Sridhar and John P. Hayes. Design of easily testable bit-sliced systems. IEEE
Transactions on Computers, C -30(ll):842-856, November 1981.

VERIFICATION OF REGULAR A R R A Y S B Y SYMBOLIC SIMULATION 15

17. Eliezer Sternheim, Rajvir Singh, and Yatin Trivedi. Digital Design with Verilog HDL. Automata
Publishing Company, Cupertino, CA, 95014, 1990. ISBN 0-9627488-0-3.

18. Andrew S. Tanenbaum. Operating Systems: Design and Implementation. Prentice Hall, Engle­
wood Cliffs, NJ, 1987. ISBN 0-13-637406-9.

19. Cheng-Wen Wu and Peter Cappello. Easily testable iterative logic arrays. IEEE Transactions
on Computers, 39(5):640-652, May 1990.

