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A bstract
M any algorithm s have an efficient hardware formulation as a regular array o f  cells, which can be im ­

plem ented in VLSI as regular circuit structures. B it-sliced microprocessors, pa ttern  m atching circuits, as­
sociative cache m em ories, fine-grain systo lic  arrays, and em bedded m em ory-w ith-logic structures are repre­
sentative o f  the regular array design style. In this paper, we illustrate a verification approach for regular 
arrays. Our approach for the verification o f  regular arrays combines form al verification at the high level 
and sym bolic sim ulation at the low  level (e.g., switch-level). The verification approach is based on a sim ple  
hardware specification formalism called HOP, a parallel com position algorithm  for regular arrays called PCA, 
and  a switch-level sym bolic sim ulator(e.g., COSM OS). We illustrate our verification approach on the Least 
R ecently Used(LRU) prio rity  algorithm im plem ented as a two-dimensional array o f  LRU  cells in VLSI. We 
also show a new technique o f encoding input constraints as param etric boolean expressions on inputs to 
reduce the num ber o f  sym bolic sim ulation vectors required for verification. The use o f  this technique in LRU  
array verification results in the sim ulation o f  only  one sym bolic sim ulation vector independent o f  the size o f  
the LR U  array.
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A b s t r a c t .  M any algorithms have an efficient hardware formulation as a regular array of cells, which can be imple­
mented in V L S I  as regular circuit structures. Bit-sliced microprocessors, pattern matching circuits, associative cache 
memories, fine-grain systolic arrays, and embedded memory-with-logic structures are representative o f  the regular array 
design style. In this paper, we illustrate a verification approach for  regular arrays. Our approach fo r  the verification of 
regular arrays combines formal verification at the high level and symbolic simulation at the low levelfe.g., switch-level). 
The verification approach is based on a simple hardware specification formalism called HOP, a parallel composition  
algorithm fo r  regular arrays called P C  A, and a switch-level symbolic simulatorfe.g.,  COSMOS). We illustrate our veri­
fication approach on the Least Recently Used(LRU) priority algorithm implemented as a two-dimensional array of LRU  
cells in VLSI. We also show a new technique o f  encoding input constraints as parametric boolean expressions on inputs 
to reduce the number of symbolic simulation vectors required for  verification. The use o f  this technique in L R U  array 
verification results in the simulation of only one symbolic simulation vector independent of the size of the L RU  array.

1 Introduction

Regular arrays and VLSI technology have a close connection: regular circuit structures in VLSI 
allow easy and area-efficient implementation of regular arrays. Regular structures are an im portant 
part of any VLSI methodology. One advantage of these regular structures is tha t they enable one 
to increase the regularity factor [13] of the design. For design productivity, it pays to have large 
regularity factor; it also pays from a layout viewpoint [7].

Many algorithms have an efficient hardware formulation as a regular array of cells and they can 
be implemented as area-efficient VLSI circuits. Logic and memory can be intermixed to build large 
regular structures. This mixing is particularly easy in the VLSI circuit domain. Examples of regular 
array designs include associative cache memories, pipelined multipliers, memory-with-logic struc­
tures, convolvers, and fine-grain systolic arrays. Iterative Logic Array(ILA)s of combinational and 
sequential cells form the basis of bit-sliced microprocessors and other easily testable regular designs
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[16]. W ith regular array designs being employed in numerous applications, as mentioned above, the 
verification of regular arrays becomes an im portant step in their design and implementation as VLSI 
circuits.

W ith the increase in the complexity of VLSI circuits, the use of a Hardware Description Lan- 
guage(HDL) in VLSI design is becoming necessary. Similarly, formal verification of VLSI circuits 
is becoming an essential step in the design of many large and complex VLSI circuits to ensure the 
correctness of these designs. The use of an HDL in VLSI design helps in the formal verification of 
designs and offers several other advantages. For instance, an HDL description can serve as an unam­
biguous specification of the design and facilitate easy integration with the design tools [17]. Several 
formal verification approaches have been suggested for the verification of digital circuits, but current 
formal hardware verification approaches cannot accurately model low-level circuit details. Since the 
simulators(e.g., switch-level) can model low-level circuit details accurately, an approach combining 
the capabilities of formal verification at the high level and symbolic simulation at the low-level can 
derive the advantages of both the approaches.

Bryant has proposed symbolic switch-level simulation for formal hardware verification [4]. His 
verification approach has been applied to verify a static RAM, data paths, and pipelined circuits 
[2, 3]. The combination of formal verification at the high-level and simulation-based verification at 
the low-level has been proposed in [9, 15]. Our verification approach for datapath  and control circuits 
is based on a simple hardware specification formalism called HOP, a parallel composition algorithm 
called PARCOMP, and a switch-level simulator(COSMOS). The details of this verification approach 
are discussed in [9].

In this paper, we illustrate our verification approach for regular arrays which is based on HOP, 
PC A -a parallel composition algorithm for regular arrays, and COSMOS. We use the Least Recently 
Used(LRU) priority algorithm, implemented as a two-dimensional array of LRU cells in VLSI, as an 
example to illustrate our verification approach. In order to reduce the symbolic simulation effort, 
a new technique to encode the input constraints as parametric boolean expressions on inputs is 
incorporated in our verification approach. This encoding technique reduces the number of symbolic 
simulation vectors required for simulation; it also reduces the corresponding verification effort. The 
validity of this encoding technique relies on a property of the symbolic simulator similar to the 
monotonicity property of a ternary simulator. In the LRU verification, this technique reduces the 
number of symbolic simulation vectors required to one, independent of the LRU array size.

It is im portant to develop efficient ways to handle input constraints for the verification of regular 
arrays, because many regular arrays are designed to be operated under input constraints (e.g.: 
“inputs must be unary” ). Designing regular arrays to operate under input constraints is a frequently 
employed circuit saving measure (e.g. internal decoders can be avoided). In such cases, it is the 
responsibility of the submodule tha t provides the inputs to guarantee tha t the constraints are never 
violated. This, in turn is often guaranteed by circuit state invariants tha t disallow the submodules 
from going into many of their state combinations.
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1.1 O utline o f  P aper

The remainder of the paper is organized as follows. Section 2 outlines our verification approach 
for regular arrays. It also discusses a new technique of using parametric boolean expressions on 
inputs to encode input constraints, and reduce the simulation effort. Section 3 explains the LRU 
algorithm and its hardware implementation as a two-dimensional array of LRU cells. Section 4 
shows the verification of the LRU algorithm using our verification approach and presents the results. 
Improvement in verification time with the use of our encoding technique is also reported. Section 5 
concludes the paper and reports our ongoing effort in extending the verification approach discussed 
in this paper.

2 Verification Approach

Our verification approach for regular arrays combines formal verification at high-level and symbolic 
simulation at low-level to derive the advantages of both, in the framework of a simple hardware 
specification formalism called HOP. Formal verification is shown to be an effective technique for the 
verification of regular arrays at high level. Formal verification can provide im portant information 
about the circuit, such as invariants, to facilitate circuit verification at low level using symbolic 
simulation.

2.1 O verview  o f H O P

The language HOP supports the specification and functional simulation of hardware designs, and 
also assists in formal verification [10, 8]. In order to use HOP for verification, a reference behavioral 
specification (desired behavior) for the circuit is first written in HOP. This specification consists of 
a collection of transitions. Each transition of a HOP specification specifies the present  state of the 
system, control inputs under which the transition is taken, data input values consumed by the system 
if the transition is taken, a boolean guard which must be true for the transition to be taken, control 

outputs generated when the transition is taken, data outputs generated when the transition is taken, 
and the next state attained. States, inputs, and outputs are modeled symbolically, i.e., involving 
variables th a t range over bit vectors. In this paper, we leave out the guards in the transitions, in 
order to simplify PCA (to be discussed below). However, the prohibition of guards does not restrict 
the class of regular arrays tha t can be modeled, because the equivalent effect can be had through 
the use of i f j t h e n . e l s e  functions in specifying the next-state and the outputs.

Following the syntax suggested in [4], we write each HOP transition in the form shown in equa­
tion 1:

in i t ia l  {act ion s} resu l t  (1)

where in i t ia l  specifies the initial system state, act ion specifies the control and data inputs applied, 
and resu l t  specifies the control and data outputs generated, and the next state attained. We shall
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refer to HOP transitions also as transition assertions.

A structural description of the circuit design is then written. A structural description consists 
of transition assertions for the submodules used, and a netlist specifying their interconnections. For 
the purposes of this paper, we shall stick to structural descriptions tha t describe rectangular arrays, 
where adjacent cells can be connected in the x direction or the y direction only. In addition, we 
also allow embedded “feed-through connections” , by which values can be broadcast to  all the cells 
along the x direction or along the y direction. Feed-through connections are also useful for realizing 
embedded busses. We do not consider this use of feed-through connections. Therefore, feed-through 
connections are assumed to be inputs only.

2.2 P C A : Parallel C om position  A lgorithm  for R egular A rrays

A behavioral description can be derived from a regular array description written in HOP by 
employing an algorithm called PCA. This algorithm works as follows.

We are given:

1. one cell of the array in question (all cells are assumed to be identical);

2. a general description of the connectivity through recurrence relations of the general form1:

Vi £ (X S I Z E — 1) . j  € Y S I Z E  . connect(cel l [ i , j ] .por tp,ce ll [ i - \-  1 , j ] .por tq )

V i € X S I Z E  . j  £ (Y S I Z E  — 1) . connect(cel l [i , j ) . por tp  , cell [i , j  4- 1 ] .por tq )

3. appropriate boundary conditions for the recurrence relations describing the connectivity;

4. description of the global connectivity through formulae of the form

V i € X S I Z E  . (V j  6 Y S I Z E  . connect  (cel l[i, j ] . por tp", globalport[i]))

V j  € Y S I Z E  . (V i € X S I Z E  . connect (cel l[i, j ] .portp", globalport'[j]))

5. the array does not manifest any combinational cycles in any of its states of execution. (This is 
checked as described below.)

Each cell is described through a collection of possible transitions. An example is given in figure 2(b). 
The transitions captured in this example are:

S ta te  = dps  { I c l k r i s e  A cin — col@ A r in  = rou;@}

S ta te  — (A n d  (O r  r in  dps) ( N o t  cin))  (2)

S ta te  = (A n d  (O r  r in  dps) ( N o t  cin))  { I c l k f a l l  A w —I w }

S ta te  = (A n d  (O r  r in  dps) ( N o t  c in)))  A (\e = ( O r  w  dps) (3)

JTo simplify our notations, we use tlie convention from set-theory of treating  numbers as sets: 0 is the em pty set, 
and N ,  where N  > 0, is the set containing 0 through N  — 1. We also use the notation cell[i,j] .x  to  select aspect x 
(port or sta te) of cell[i,j].
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Here, dps stands for “data path state”. We adopt certain port naming conventions, to enhance 
readability: Ip is an input port name, \p an output port name, and p@ a global ( “feed-through 
connected”) port name. Notice that each transition essentially specifies, for each “step” of the 
computation, tlie next-state and output equations.

The steps in the PC A Algorithm are the following:

1. Describe each transition describing a cell through equations of the form

next-statei  = / ( present .s ta te , inputs)

output jportj  = g(present^state , inputs)

where i and j  range over all the state bits and the output ports, respectively.

In case of the LRU, the next-state equation derived from the first transition (ignoring the clock 
input which is assumed to be global) is:

next-state  = (And (Or r in dps) (Not  cin))

The equation for the output on !e is not of interest during the first transition. (It can be taken 
to be incompletely specified, or undefined.) The equation for the output on !e for the second 
transition is

!e =  (Or  w dps).

2. Express the connectivity as described above. In case of the LRU, ports !e and 1w connect, and 
the rest are feed-through connections.

3. Repeat the following steps for each transition, and its corresponding equations.

4. Replace the names of local ports used in the transition that are connected to a global port by 
the name of the global port. (In the LRU example, substitute in col@ and row© .)

5. Find out the dependency between cell[i, j] .port  and: (i) cell[i +  l ,j] .port' ;  or (ii) cel l [i , j  +  
1 \ .port , as follows. Treat connectivity equations as rewrite rules, and rewrite the port names 
used in transition equations using these rewrite rules. For the LRU, we get

cel l [ i , j  +  l].!e = (Or  cell[i,j].le cel l [ i , j  +  l].dps)

6. In general, in this rewriting process, two cases can arise:

(a) The dependencies are acyclic (the normal case), as with the LRU: no node of a cell depends 
on itself;

(b) A node of a cell depends upon itself. This can arise if two adjacent cells, or a two-by-two 
square of cells introduce a cycle that straddles them. When this is detected, PCA is 
aborted.
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7. Generalize the dependencies. We have shown that [12] the dependencies of all regular arrays are 
expressible using one of the following higher order functions: fo ldr , map, iterate.  We illustrate 
the use of fo ld r  below, fo ld r  takes a two-ary function f n ,  a boundary value bv, and a vector 
of items vec, and returns an item as follows:

fo ld r ( fn ,  bv, vec) =  fn (yec{0], fn(vec[  1] , . . .  fn(vec[m ax], bv) . . .) ) .

An example, where [1,2,3] denotes a vector, is:

fo ld r ( i+ \  0, [1,2,3]) =  (1 +  (2 +  (3 +  0))).

For the LRU, the !e port output at the right boundary of the cell is obtained through general­
ization, as

c e l l [ i ,Y S I Z E  — l].!e =  fo ldr(O r, cell[i, 0].?to, s l ice(ce ll[ i , j ] .dps ,i)) (4)

where slice(cel[i, j].dps, i) returns the vector of dps values along the ith row. Similarly, PCA  
obtains generalized next-state equations for the entire array; for the LRU array, it is:

cell[i,j].next-dps =  (And (Or rin[i] cell[i, j ] .dps)(N ot cin[j])) (5)

The fact that behaviors can be so generalized has been mentioned in [19]. We have implemented 
PCA in Standard ML of New Jersey, and it generalizes the behaviors of a very large class of regular 
arrays. An interesting feature of our algorithm is that it automatically constructs (in the lambda 
notation) the two-ary function to be used in the fo ld  operation. It checks for cycles using a graph 
representation of the connectivity. (Details are skipped.) The inferred behavior of the LRU array 
that we use in the rest of this paper was automatically obtained using PCA.

2.3 F o rm a l V erifica tion

There are three levels at which formal verification can be conducted: verify that the requirements 
have been realized by an abstract data type model; verify that the abstract data type model is 
implemented correctly by the chosen regular array organization; and finally, verify that the transistor 
circuit realizes the regular array’s intended functionality. In case of the LRU, these steps are: (i) LRU 
policy .vs. LRU array operations (e.g., as reported in [14]); (ii) LRU array operations .vs. LRU 
regular array behavior determined by PCA; and (iii) PCA inferred behavior .vs. transistor circuits. 
We now touch upon (ii) in this section, and then detail (iii), which is the problem attacked in this 
paper.

In the verification problem numbered (ii), above, the abstract data type model of the system is 
compared against the inferred behavior of the cell array as follows:

• Discover a homomorphism h : s ta te s _ o f  _inf erred_behavior — ► states_of_adt_m odel,
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b l b2 in i in2 in3 in4

0 0 0 0 0 1

0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

Parametric Boolean Expressions b l A b2 b l A ib 2 —ib 1 A b2 -ib l A -ib2

Figure 1: Input Constraints and Parametric Boolean Expressions

• For any sequence of operations s that begins with the r e s e t  operation, show that sequence s, 
when applied to the implementation (characterized by the derived behavior) results in state 
S ', and sequence s when applied to the specification results in state 5  such that h(S')  =  S.

• Show that when the implementation is in state S ', and the specification is in state S, such that 
h(S') — S, they (the implementation and the specification) produce identical outputs.

The above technique is routinely used in verification (e.g. [1, 6, 11]).

2.4 H an d lin g  In p u t C o n s tra in ts

Every circuit relies on some input constraints for its correct operation. The circuit is expected 
to operate correctly when operated under the constraints it is designed for, and may malfunction 
if input constraints are violated. Thus, a circuit needs to be verified only for inputs satisfying the 
input constraints (unless it is required to know the circuit behavior under anomalous inputs, which 
we are not interested in). As mentioned in section 1, most regular arrays come with their own input 
constraints. Typical examples include arrays whose rows and/or columns can be selected (e.g. “only 
one row/column must be selected at a time”), arrays embedded within a larger module where the 
submodule that provides the input to the array guarantees its input constraints, arithmetic circuits 
employing various number encoding schemes, etc.

In our verification approach, we use switch-level symbolic simulation to verify regular arrays at 
low-level. We use parameterized boolean expressions on the inputs to encode the input constraints 
of the regular array being verified. The use of this new technique offers several advantages: it 
reduces the number of symbolic simulation vectors required, and thus reduces the simulation effort. 
It also reduces the corresponding verification effort. In addition, this technique can be applied when 
the modules of a large system are verified separately; the interface constraints of the module being 
verified separately can be encoded as parametric boolean expressions on the inputs of the interface, 
for efficient verification. This technique can also be applied to encode constraints among the state 
variables of the circuits (e.g. “the value in register ri must be greater than that in register r%” , etc..)

To illustrate this technique, consider a circuit with four inputs i n i ,  in 2 , in3 and in4 and the
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input constraint that one and only one input be 1 at any time for its correct operation. The four 
valid combinations of values of the inputs i n i , in 2 , in3  and in 4  are shown in Figure 1. This input 
constraint can be encoded using the two parameter boolean variables, say, b l and b2, such that

( in i  A ->m2 A ->in3 A ->m4) V (->ml A in2 A ->m3 A ->inA) V 

(~>inl A ~<in2 A in3 A ->m4) V (-ural A ->in2 A ->in3 A inA)

= 361 62 .

((m l = 61 A 62) A (in2 — 61 A ->62) A 

(in3 = ->61 A 62) A (inA =  —>61 A -|62))

where F  =  Q means that J~ and Q are logically equivalent.

Now, a parametric boolean expression can be obtained for each of the inputs as shown in Figure 1. 
These parametric boolean expressions capture the input constraint of the circuit. (Related techniques 
for obtaining parametric solutions of boolean equations have been reported in [5].)

In general, given n inputs ■ - ,hi,  and the input constraint which results in m  valid combi­
nations of values of these inputs, the number of parametric boolean variables required to encode the 
input constraint is |"log2 rn\ ■ The validity of the use of parametric boolean expressions, encoding 
the input constraints, on the inputs of the circuit for symbolic simulation relies on the following 
property of the symbolic simulator (roughly analogous to the monotonicity property assumed in [4]): 
Suppose the circuit in question is simulated with a scalar input i (ground value) that satisfies the 
input constraints, and the simulation results (next-states and outputs) be ( s i ,o i ) .  Suppose the same 
circuit is now simulated with the parametric boolean expressions e at its inputs, and the simula­
tion results thus obtained be (32, 02)- Then, for those instantiations a  such that ea  = i, we have 
(.s2a ,o 2a ) =  (s i,o i) .

We derive the parametric boolean expressions for the inputs based on the input constraints of the 
regular array and use them in the symbolic simulation of the regular array.

2.5 S u m m a ry  o f  th e  V erifica tion  A p p ro ach

In summary, the outline of the combined verification approach is given below. Many of the following 
steps have not been automated yet, but they are currently being automated.

1. Write the behavioral specification of the regular array in HOP.

2. Write the HOP description of a cell of the regular array.

3. Write a structural description in the form of a connectivity description of the cells in the regular 
array.

4. Derive a behavioral description from the structural description through PCA.
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5. Verify that the derived behavior has the same externally observable behavior as the desired 

behavior.

6. Obtain a transistor level implementation of the regular array corresponding to the structural 

description in HOP.

7. Derive the parametric boolean expressions for inputs corresponding to input constraints of the 
regular array.

8. Substitute these parametric boolean expressions for the inputs in the symbolic expressions 
of the states and outputs of the regular array obtained through PCA, to get the reference 

specification required for the verification of symbolic simulation results.

9. Derive the symbolic simulation vectors based on the transitions of the derived behavior of the 
regular array, with parameterized boolean expressions on the inputs.

10. Load the circuit description into an appropriate simulator(e.g., COSMOS), apply symbolic 
simulation vectors obtained in the above step, and verify that the simulation responses match 
with the reference specifications of the circuit.

The above verification approach is illustrated on the LRU algorithm implemented as a two­
dimensional regular array of LRU cells.

3 LRU A lgorithm

Least Recently Used(LRU) page-replacement policy is based on the common observation that 
pages that have been heavily used in the last few instructions will probably be heavily used again in 
the next few. Conversely, pages that have not been used for a long time will probably remain unused 
for a long time. Thus, in LRU policy, when a page fault occurs, the page that has been unused for 
the longest time is thrown out.

The full implementation of LRU policy in software is expensive, as updation of the list of pages 
in the memory is required on every memory reference. There are several ways to implement LRU 
with special hardware. One hardware implementation of LRU algorithm which we consider here [18] 
maintains an array o f n x n  bits, initially all zeros, for a machine with n page frames. Whenever 
page k is referenced, the hardware sets all the bits of row k to 1 and sets all the bits of column k to
0. At any instant, the row with all bits set to 0 indicates the least recently used row, hence the least 
recently used page frame.

The LRU array is realized as a two-dimensional regular array of LRU cells. Each LRU cell of the 
regular array consists of a state bit which can be set to 1 by keeping the row® input to 1 and col@ 
input to 0; the state bit can be set to 0 by keeping the col@ input to 1. On rising edge of the clock- 
indicated by Ickrise (read:“control input clkrise”) in the state diagram-the state bit of the LRU
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(a) (b)

Figure 2: LRU cell and its HOP state diagram

col<3

row®

r w ! e(lru)

A lg o r i th m :  S e t  row; r e s e t  c o l ;  f i n d  row w i th  a l l  z e r o s  

Figure 3: An LRU Array
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col 0 
0

col\
1

col2
0

CO/3

0
LRU Output

rowo 0 roo 0 0̂2 ^03 eo =  0̂3 V tq2 V roo
rou>\ 1 1 0 1 1 e i  = 1
row2 0 ^20 0 T22 2̂3 e2 =  ^23 V r 22 V r 2o
rows 0 ^30 0 7*32 7*33 e 3 = r 33 V r32 V Tzo

Figure 4: Expected values of simulation with inputs rowi : 1 and col\ : 1

cell is set to 0 or 1 depending upon rowQ and colQ inputs. On falling edge of the clock-indicated 
by I c k f a l l  in the state diagram-the output !e is computed as logical OR of ?w input of the cell 
(which is ! e output of the previous cell) and the state bit of the LRU cell. The output of each row 
is logical OR of the state bits of the LRU cells in the row. Functionality of the LRU cell is shown in 
Figure 2(a) and corresponding HOP state diagram is shown in Figure 2(b). A 4 X 4 LRU array is 
shown in Figure 3.

The operation of the LRU array relies on the input constraint that only the «th (0 < i <  3) rowQ 
bit and the ith colQ bit are 1, when page i is referenced.

4 Verification of The LRU A lgorithm

Following the verification approach described in section 2, the LRU algorithm is verified at three 
levels. At the first level, the LRU array based algorithm is verified against an abstract specification 
of the LRU policy. This verification step ensures that the LRU policy realized as a two-dimensional 
array with operations as described in Section 3 above, implements the LRU policy correctly. For 
the LRU array algorithm described in the previous section, it has been shown that, at any instant, 
there is at least one row in the LRU array with all zeros and the rows with all zeros indicate the 
least recently used page frames. This verifies the LRU array algorithm at the first level, and proves 
that the LRU array algorithm is a correct formulation for the LRU policy. (A proof of this nature 
has been reported in [14].)

At the second level, the LRU regular array behavior determined by PCA is verified against the 
abstract specification of the LRU array algorithm. The formal verification at this level is based on 
the homomorphism relation between states of the inferred behavior and the states of the abstract 
specification. We are skipping the details of this proof in this paper.

Finally, the transistor level implementation of the LRU array corresponding to the structural 
description in HOP is verified against the PCA inferred behavior. However, the PCA inferred 
behavior cannot be directly used as the reference specification because PCA does not take input
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bl b2 towq/ coIq r o w \ j c o l \ row^/col' i r o w z / c o l 3
0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0
1 1 0 0 0 1

Expressions ->bl A  -ib2 -.bl A  b2 bl A  ->b2 b l  A  b2

Figure 5: Parametric boolean expressions for row and column inputs

constraints into account. Therefore we first obtain the PCA inferred behavior and then substitute 
into it the input and initial state values used during the transistor level symbolic simulation; this 
forms the reference specification.

The inferred behavior of the LRU array by PCA is shown in Section 2.2 through equations 4 
and 5. The input constraint of the LRU array is that only bits rowi and coli be 1, when page i 
(0 < i <  3) is referenced. The LRU array is verified for all combinations of the input values which 
satisfy this input constraint. The LRU array is initialized to symbolic state values (as detailed 
below). Inputs satisfying the input constraint are applied, and the resulting new state and output 
values are compared against the expected values.

We considered two alternatives for the symbolic simulation and the corresponding verification of the 
4 x 4  LRU array. In one alternative, we used scalar values satisfying the input constraint mentioned 
above on the row and column inputs. It required four symbolic simulation vectors to simulate and 
verify the LRU array. In the other alternative, we encoded the input constraint as parametric boolean 
expressions on the row and column inputs, with two parameter boolean variables b l and b2, as shown 
in Figure 5. In both these symbolic simulation alternatives, it was possible to set the initial state of 
each cell of the LRU array to an independent symbolic variable.

This technique reduced the number of symbolic simulation vectors from four to one. In general, 
log2 n parametric boolean variables are required to encode the input constraint of an n x n LRU 
array. Only one symbolic simulation vector (independent of the size n of the LRU array) is necessary.

In both the alternatives, the expected values for the state and output variables of the LRU array 
were obtained by substituting the input and initial state values used in the symbolic simulation into 
the PCA inferred behavior. For example, the expected (i . e.  reference) symbolic expressions for the 
state and output of the LRU array, for input values row\  : 1 and col\ : 1, are shown in Figure 4. 
Initial symbolic state values for the LRU array are rjj (0 < i , j  <  3).

The system times for running the symbolic simulation, and the corresponding verification, for a 
4 x 4  LRU array, using symbolic simulator COSMOS on Sun 4, for the two alternatives are 0.2 
seconds and 0.09 seconds, respectively. With the use of the encoding technique, the improvement in
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the simulation and verification time is expected to be significant for large LRU array sizes.

5 C o n c lu s io n s  a n d  F u tu r e  W o rk

This paper illustrated our verification approach for an important class of digital circuits-regular 
arrays. Not all regular arrays are alike, however. For example, some of the regular arrays employed 
in practice are purely combinational; some support storage within the cells without any logic blocks 
in the cells; some have logic and memory; some have cells that cannot affect its neighbors’ state; 
some are fine-grained systolic arrays; etc. The reference behavioral specification that the designer 
would like to write for these arrays also varies according to the nature of the array. For example, for 
non-systolic designs, it is possible to specify simple and intuitive next-state (over one clock cycle) and 
output functions for the cells; in this case, the behavior inferred by PCA also specifies the behavior of 
the whole array over one cycle. For fine-grained systolic arrays, however, the highest level behavior 
that the designer would like to write may be a function (i.e., mapping of states and inputs to states 
and outputs) that is realized in the array only over multiple clock cycles. Currently PCA can only 
infer what happens over one cycle; however, we are in the process of investigating extensions to 
PCA to infer what happens over time. When this work is finished, we expect our work to become 
applicable to systolic systems also.

We are also working on combining the verification technique for regular arrays presented in this 
paper, as well as the technique we presented in [9], so that large systems containing multiple regular 
arrays, as well as irregular structures can be verified. This technique will involve partitioning the 
system into its constituent regular arrays as well as irregular parts, and verifying these parts sepa­
rately. The interface constraints of each of the partitions can be encoded using parametric boolean 
expressions, as described earlier.

As mentioned before, input constraints at the inputs of one module M \  often arise because module 
M 2 that provides these inputs is never allowed to go into certain states (due to circuit state invari­
ants). In such cases, while verifying M 2 separately, it would become necessary to initialize M 2 into 
its allowed states; our parametric encoding scheme can lend help here too.
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