
Partial Order Reduction Without the
Proviso

Ratan Nalumasu
Ganesh Gopalakrishnan

UUCS-96-008

Department of Computer Science
University o f Utah

Salt Lake City, UT 84112 USA

August 6, 1996

A b s tra c t

In this paper, we present a new partial order reduction algorithm that can help reduce both space
and time requirements of on-the-fly explicit enumeration based verifiers. The partial order reduction
algorithms described in [God95, HP94, Pel94, Pel96] were observed to yield very little savings in
many practical examples. The reason was traced to the prov iso in these algorithms that often caused
their search to generate many unnecessary states. Our algorithm, called the two-phase algorithm,
avoids the proviso, and follows an execution strategy consisting of alternating phases of p a rtia l order
reduction o f determ in istic s ta tes and depth-first search. In this paper, we describe the two-phase
algorithm, prove its correctness, describe a new verification tool employing it, and provide a number
of significant examples, including directory based protocols of a multiprocessor, that demonstrate the
superior performance of the two-phase algorithm.

1 In tr o d u c tio n

To motivate the problem studied here, consider two processes P and Q where P is w h i l e (1) x++
a n d Q is w h ile (1) y++ . If x and y are local variables, P and Q are executed using the interleaving
semantics, and if all the safety properties of interest are of the form p (x) or q (y) (i.e. binary relations
such as x < y are not of interest), then it is not necessary to execute the concurrent actions x++
and y++ in both orders; i.e., it suffices to either execute x+ + followed by y + + , or vice versa. This
technique (and suitable generalizations thereof) o f avoiding some of the possible interleavings of
independent actions is known as p a rtia l order reduction [G od95,G P93,H P94,Pel93,Pel94,Pel96,
Val90, Val93] whose semantic underpinnings can be traced to Mazurkiewicz traces [Maz89].

In general, a straightforward realization of state-space enumeration based on the interleaving model
of concurrency executes all transitions enabled at every state even when the transitions are pairwise
independent (soon to be defined formally). Clearly this can result in a state explosion. Partial order
reduction methods, such as employed in [God95,HP94], attempt to mitigate this problem by exe
cuting only a subset of these transitions (and postponing the rest) w ithout affecting the truth va l
ues of the properties being verified. However, a naive implementation of partial order reduction
may postpone some of these transitions indefinitely, which clearly does not preserve all properties.
This problem is referred to as ignoring problem . Current implementations of partial order reduc
tion [God95,HP94] solve the ignoring problem by using a proviso, first reported in [Pel94, Pel96].
Proviso ensures that the subset of transitions selected a state do not generate a state that is in the stack
maintained by the depth first search (DFS) algorithm. If a subset of transitions satisfying this check
cannot be found at a state S , then all transitions from S are executed by the DFS algorithm. The pro
visos used in the two implementations, [God95] and [HP94], differ slightly. [God95] and [HGP92]
require that at least one of the transitions do not generate a state in the stack, while [HP94] requires
a stronger condition that no transition generates a state in the stack. In addition to solving the ignor
ing problem, the stronger proviso is sufficient to preserve all stutter free LTL formulae (including
the liveness properties) properties, while the weaker check preserves only stutter free safety proper
ties [HGP92,HP94,Pel94,Pel96]. We observed that in a large number o f practical examples arising in
our problem domain (validation o f directory based coherence protocols and server-client protocols),
the proviso causes the partial order reduction process to be ineffective. As an example, on invalidate,
a distributed shared memory protocol (described later), the algorithm of [HP94] aborts its search by
running out of memory after generating more than 963,000 states. [God95] algorithm also aborts its
search after generating a similar number of states. We believe, based on our intuitions, that protocols
of this complexity ought to be easy for on-the-fly explicit enumeration tools to handle (an intuition
confirmed by our algorithm that finishes comfortably on this protocol). This paper addresses two
questions: (i) whether partial order reduction algorithms to preserve safety properties that avoid the
proviso can be developed; (ii) if so, do these algorithms perform better than the algorithms using the
proviso on realistic protocols? The answer both questions is “yes”, as will be described.

In this paper we present a new partial order reduction algorithm called the two-phase algorithm that
avoids the proviso. It follows a simple execution strategy consisting of alternating phases o f p a rtia l
order reduction o f determ in istic s ta tes and depth-first search. A new verification tool employing

1

the two-phase algorithm has been implemented, and applied on a number of protocols. In general,
the two-phase verifier exhibits superior performance than the two algorithms that use the proviso
mentioned earlier. In particular, the invalidate protocol finishes comfortably generating only 193,389
states.

This paper describes the two-phase algorithm, its correctness proof, and performance statistics. The
rest of the paper is organized as follows. Section 2 provides background information about model
checking and partial order reduction. Section 3 describes the algorithm presented in [HP94] and the
two-phase algorithm. In Section 4 we prove that the two-phase algorithm preserves stutter free safety
properties (this section may be skipped during first reading). Section 5 summarizes characteristics
of the algorithms on a number of examples. Section 6 provides concluding remarks and plans for
future work.

2 Background

The tools SPIN (based on [HP94,Pel94,Pel96]) and PO-PACKAGE (based on [God95]) as well as
our two-phase verifier use Promela [Hol91] as input language. In Promela, a concurrent program
consists of a set of sequential processes communicating via a set o f global variables and channels.
Channels may have a capacity o f zero or more. For zero capacity channels, the rendezvous communi
cation discipline is employed. The state of a sequential process consists of a control state (“program
counter”) and data state (the state of its local variables). In addition, the process can also access
global variables and channels. For the sake of simplicity we assume that a channel is a point to point
connection between two processes with a non-zero capacity, i.e., we do not consider the rendezvous
communication. In the actual implementation o f our verifier, these restrictions have been removed.
Any process that attempts to send a message on a full channel blocks until a message is removed
from the channel. Similarly, any process attempting to receive a message from an empty channel
blocks until a message becomes available on that channel.

We now define the following terms with the aid of Figure 1, where g is a global variable, 1 is a local
variable, c is an output channel and d is an input channel for P, and guarded commands are written
as i f . . .fi. Similar classifications are employed in other partial-order reduction related works.

local: A transition is said to be local if it does not involve a global variable. Examples: c ! 7 , d ? l ,
1 = 0 , 1 = = 0 , 1 ! = 0 , and s k ip .

global: A transition is said to be global if it involves a global variable. Example: g = l .

unconditionally safe: A local transition is said to be unconditionally safe if its executability cannot
be changed by the execution of any other process. Examples: 1=0, 1= = 0, 1 ! =0.

conditionally safe: A local transition is said to be conditionally safe if its executability can be changed
by the execution of (a transition of) some other process. Example: c ! 7; when c is full, the

2

p rocess P
{

in t 1 ;
i f

c ! 7 -> sk ip;
| d ? 1 -> sk ip;

f i ;
1 = 0;
g = 1;
i f

1 == 0 -> sk ip
| 1 != 0 -> sk ip

f i ;
}

Figure 1: A sample process to illustrate definitions

statement cannot be executed. However, as soon as another process consumes a message from
c , the statement becomes executable. Hence this is a conditionally safe transition with the con
dition being that c is not full. Another example: d ? l , with the condition that d is not empty.

safe: A transition t is safe in a state 5 if t is an unconditionally safe transition or t is a conditionally
safe transition whose condition evaluates to true in 5 .

internal: A control state of a process is said to be internal if all the transitions possible from it are lo
cal transitions. Example: In Figure 1, the control state corresponding to the first i f statement
is internal since the two transitions possible here, namely c ! 7 and d ? l are local transitions.

deterministic: A process P is said to be deterministic in a product state S if P is internal in 5 ,
written deterministicP, S), if all transitions from the control state are safe, and exactly one
transition of P is executable. Example: In Figure 1, if control state of P is at the second i f
statement, P is deterministic since only one of the two conditions 1==0 and 1 ! = 0 can be
true. In general, determining whether a given process is deterministic in a given state requires
knowledge of the values of variables and/or contents channels.

non-deterministic: A process P is said to be non-deterministic in a state 5 if P is not deterministic
in 5 .

The above definitions are made in order to effect partial-order reduction. For example assume that
in a product state 5 , I is a safe and executable transition of process P (specifically let I be a receive
action on channel c and c has k > 0 messages), m is an executable transition of a different process
Q , and execution o f / in 5 results in a state 51 . Then, m will be executable in 5 1 for the following
reason. Since m was executable in 5 the only way m can become unexecutable in 51 is if m also
attempts to receive a message from c and k is 1. But since all channels are assumed to be point-to-
point and m is a transition of a different process, m cannot be a receive transition from c. Thus m

3

continues to be executable. Therefore, in S , it is permissible to consider the interleaving /; m and
never consider m; /, i.e., m can be postponed in S'. A similar argument can show that if I is a safe and
unexecutable transition, and if execution of m in 5 results in a state 5 2 then / will be unexecutable
in 52 . Partial order reduction make use of these two properties to reduce the amount of interleaving
in the following fashion. Whenever a state 5 is explored by the partial order reduction algorithm,
instead of considering all successors of the 5 , the algorithm attempts to find a process P such that
P is in an internal state and all transitions o f P from that internal state are safe, and considers the
transitions o f P only. The algorithm also needs to address the ignoring problem, i.e., care must be
taken to ensure that m is not postponed indefinitely.

The two-phase algorithm performs the search in the following way. Whenever a state 5 is explored
by the algorithm, in the first phase all deterministic processes are executed one after the other, re
sulting in a state S'. In the second phase, the algorithm explores a ll transitions enabled at S'. The
second phase of executing all transitions of S ' assures that the ignoring problem is addressed.

3 Algorithms

This section provides an overview of the algorithm presented in [HP94] and the two-phase algo
rithm. The algorithm presented in [HP94] attempts to find a process in an internal state such that
all transitions of that process from that internal state are safe and that none of the transitions of the
process result in a state that is in the stack. This is the stronger proviso, as pointed out earlier. If
a process satisfying the above criterion can be found, then the algorithm examines all the enabled
transitions of that process. If no such process can be found, all enabled transitions in that state are
examined. In general, an algorithm using the strong proviso generates more states than another al
gorithm using the weak proviso, since the weak proviso can be satisfied more often than the strong
proviso, and any time a process satisfying the above criterion cannot be found, all process in that state
are examined by the algorithm. Since the two-phase algorithm is intended to preserve only safety, to
obtain an equitable comparison of its performance against that of [HP94] algorithm we implemented
the [HP94] algorithm such that the algorithm uses the weaker proviso, and refer to this implemen
tation as “the Proviso algorithm”. The proviso algorithm is shown in as d fs l() in Figure 2. In this
algorithm, C hoose() is used to find a process satisfying the above criterion. As mentioned earlier,
the use of proviso (weak or strong) can cause the algorithm to generates many unnecessary o f states.
In some protocols, e.g., Figure 3 (a), all reachable states in the protocol are generated. Figure 3 (c)
shows the state space generated on this protocol. Another algorithm that uses the (weak) proviso and
sleepsets [GHP92], [God95] (implemented in the tool PO-PACKAGE), also exhibits similar state
explosion.

The two-phase algorithm is shown as dfs2() in Figure 2. In the first phase, dfs2() executes deter
ministic processes. States generated in this phase are saved in the temporary variable l i s t . These
states are added to c a c h e during the second phase. In the second phase, a ll transitions enabled at
s are examined.

4

i n i t i a l i z e sta ck to contain i n i t i a l s ta te
i n i t i a l i z e cache to conta in i n i t i a l s ta te

i n i t i a l i z e stack to conta in i n i t i a l s ta te
i n i t i a l i z e cache to $

d f s l (
{

s
(

dfs2 i

}

:= to p (s ta c k) ;
i , found) := Choose (s) ;
f (found) {

tr := { t | t i s enabled in s
and PID(t) = i } ;

nxt := su ccesso rs o f s obtained by
execu tin g tr a n s it io n s in tr ;

e ls e {
tr := a l l enabled tr a n s it io n s from s;
nxt := su ccesso rs o f s obtained

by execu tin g tr a n s it io n s in tr ;
}

for each succ in nxt do {
i f succ not in cache then

cache := cache + {succ};
push(succ, s tack);
d f s l ();

}
p o p (s t a c k) ;

s := t o p (s t a c k) ;
l i s t := {s};
/* Phase I: p a r t ia l order s tep */
for i := 1 to n processes {

w h ile (d e t e r m i n i s t i c (s , i)) {
/* Execute the on ly enabled

tr a n s it io n o f p rocess i */
s := n e x t (i , s);
i f (s e l i s t) goto NEXT_PROC;
l i s t ;= l i s t + {s};

}
NEXT_PROC: /* next i */

}
/* Phase II: c l a s s i c a l DFS */

i f (s ^ cache) {
cache := cache + l i s t ;

nxt := a l l su ccesso rs o f s;
fo r each succ in nxt {

i f (succ £ cache)
push(succ, s tack);

dfs2 () ;
}

} e l s e {
cache :=

}
pop (s ta c k) ;

cache l i s t ;

Figure 2: d fsl() is a partial order reduction algorithm using proviso. dfs2() is performs avoids pro
viso using a different execution strategy.

The two-phase algorithm outperforms the proviso algorithm and [God95] algorithm when the pro
viso is invoked many times; confirmed by the examples in Section 5. In most reactive systems, a
transaction typically involves a subset of processes. For example, in a server-client model of compu
tation, a server and a client may communicate without any interruption from other servers or clients
to complete a transaction. After the transaction is completed, the state of the system is reset to the
initial state. If the partial order reduction algorithm uses the proviso, state resetting cannot be done
as the initial state will be in the stack until the entire reachability analysis is completed. Since at
least one process is not reset, the algorithm generates unnecessary states, thus increasing the num
ber of states visited. As shown in Figure 3, in certain examples, d fs l() generates all the reachable
configurations of the systems. In realistic systems also the number of extra states generated due to
the proviso can be high. The two-phase algorithm does not use the proviso. Instead it alternates one
step of partial order reduction step with one step of complete depth first search. Thus on protocols

5

that have less non-determinism (and hence that have a large number o f states that are determinis
tic with respect to at least one process) and that reach the initial configuration after completion of
a transaction perform better with the two-phase algorithm. We have found this to be the case with
virtually all the protocols arising in the context of distributed shared memory multiprocessor imple
mentation [Ava], If, on the other hand, the protocol under consideration has lot of non-determinism,
the two-phase algorithm would not perform well.

Appendix B shows a slightly different version of the two-phase algorithm obtained from the follow
ing observation. Execution o f a process, say P 2 , in the first phase may make P I deterministic. Since
the processes are examined in strict order in the f o r loop o f the first phase, P I will be not be ex
ecuted in the first phase. Intuitively, it seems that executing P I in the second phase instead of the
first phase generates more states. Hence, it is beneficial to execute P I in the first phase itself. But
such a modification to the algorithm results in a more complex control structure. A similar effect can
be achieved by modifying the second phase. If the second phase examines only non-deterministic
processes, a similar effect can be achieved. An algorithm with this modification to the second phase
is shown in Appendix B.

4 Correctness of the Two-phase Algorithm

We show that dfs2() preserves all stutter free safety properties. dfs3() (Figure 7 in Appendix B) can
be shown to preserve safety properties along the same lines. To establish the correctness of dfs2(),
we need the following two lemmas.

Lem m a 1: A state S is added to c a c h e only after ensuring that all transitions enabled at S will be
executed at S or at a successor of S . This lemma asserts that dfs2() does not suffer from ignoring
problem.

Proof: Proof is based on induction on the “time” a state is entered into c a c h e .

Induction Basis: During the first call o f dfs2() the outer “i f ’ statement o f the second phase will be
executed; during this phase, all states in l i s t are added to c a c h e in the body o f the “if” statement.
Following that the algorithm examines all successors o f s . Let s' be an arbitrary element of l i s t .
By the manner in which l i s t is generated, s' can reach s via zero or more deterministic transitions.
By the definition of deterministic transition, any transition enabled at s', but not executed in any of
the states along the path from s' to s will remain executable at s . Since all transitions out of s are
considered in the second phase, it follows that all unexecuted transitions out o f s' are also considered.
Hence the addition of s' to c a c h e satisfies Lemma 1.

Induction H ypothesis: Let the states entered into c a c h e during the first i - 1 calls to dfs2() be Si,
s 2, . . sn- i • Assume by induction hypothesis that all transitions enabled at every state s,- in this list
are guaranteed to be executed at s; or a successor of .s,.

6

Induction Step: We wish to establish that the states entered into c a c h e during the ith call to dfs2()
also satisfy the Lemma. There are two cases to consider:

1. the outer “if” statement of the second phase is executed .

2 . the “else” statement of the second phase is executed

In the first case, all successors of s are considered in the body of the “if” statement. Let s' be an
arbitrary element of l i s t . Any transition enabled at a state s' and not taken in the path from s' to s
is also enabled at s. Therefore s' can be added to c a c h e without violating the lemma. In the second
case, s is already in c a c h e ; it was entered during an earlier call to dfs2(). By induction hypothesis,
all transitions enabled at s are already executed or guaranteed to be executed. Hence all transitions
enabled at s' were either already considered at s or guaranteed to be executed by the hypothesis.
Hence adding s' to c a c h e does not violate the lemma. Thus in both cases, l i s t can be added to
c a c h e without violating the lemma.

Lemma 2: dfs2() terminates after a finite number of calls.

Proof: There are two parts to the proof: (a) eventually no new calls to dfs2() are made, and (b) the
w hi l e loop in the first phase terminates. To prove (a), note that new calls to dfs2() are made only in
the body of the outer “if” statement in the second phase. Before these calls are made, all elements of
l i s t are added to c a c h e . The precondition to execute the “if” statement is that s is not in cac h e .
By construction of l i s t , s is in l i s t . Thus the number of states in c a c h e increases at least by
one as a result of adding l i s t to c a c h e . In other words, if number of states in c a c h e before the
i th level call of dfs2() is made is k, then the number of states in c a c h e before i + 1th level call of
dfs2() is made is at least k + 1. Thus the maximum depth of calls to dfs2() cannot exceed the number
of states in the protocol, which is finite. To prove (b), note that one new state is added to l i s t in
each iteration of w h i le loop. Again, since the number of states in the protocol is finite, eventually
no new states can be added to l i s t , thus the while loop terminates.

Theorem 1: dfs2() finds all safety violations present in the protocol.

P ro o f .-(Informal) The proof of the theorem follows from the observation that finding a safety viola
tion requires that every enabled transition be executed. Further, a transition need not be executed at a
state if it is executed at a successor of that state obtained by executing a sequence of safe transitions.
dfs2() satisfies these two conditions. In particular, dfs2() might not execute a transition t from a state
s if a safe transition t is taken from s. This can happen during the first phase of dfs2() where only
deterministic processes are considered (a deterministic process has exactly one enabled transition
which is also a safe transition). Lemma 1 guarantees that all enabled transitions at every state are
considered by dfs2(). Hence, dfs2() is safety preserving.

The fact that dfs3() preserves safety properties follows from the observation that the transitions in
7

the second phase that would be considered by dfs2() but not by dfs3() would be considered by dfs3()
in its first-phase during the subsequent recursive calls of dfs3(). [Nal] presents a complete proof that
dfs3() preserves safety properties.

5 Case studies

In this section, we present the results of running the proviso algorithm, the two-phase algorithms,
and the [God95] algorithm on two artificial protocols and several realistic protocols.

5.1 Best case

Figure 3 presents an example of the protocol that runs more efficiently with the two-phase algorithms.
Table 1 shows the results of running the algorithms on this protocol. On a system comprising of n
processes, the two-phase algorithms generates 2n + 1 states while the proviso algorithm generates
3" states.

(a) Best case (b) State space by 2 phase

(c) State space generated by proviso algorithm

Figure 3: Best case protocol, (a) The protocol, (b) State space that generated by the 2-phase algo
rithms. (c) State space generated by SPIN using weak proviso. Dotted lines in (c) show some of the
transitions that were not attempted due to proviso. The thick line in (c) shows one of the transitions
that would be taken by the algorithm, but find that the state is already generated.

N Proviso Algorithm [God95] Algorithm First two-phase
Algorithm

Second two-phase
Algorithm

4 81/0.32 70/0.35 9/0.33 9/0.33
5 243/0.34 217/0.42 11/0.33 11/0.33 .
6 729/0.38 683/0.64 13/0.33 13/0.33
7 2187/0.50 2113/1.4 15/0.33 15/0.33
8 6561/0.83 6422/4.34 17/0.33 17/0.33

Table 1: Number of states saved in the hash table, and time taken by different algorithms on Best
Case.

Figure 4: Worst case protocol. Statistics for this protocol are in Table 2.

5.2 W orst case

Figure 4 shows an example of the protocol that runs better with the proviso algorithm than the two-
phase algorithms. This protocol has a total of 3" states where n is the number of processes in the
system. As can be seen, the proviso algorithm can reduce the number of states to 2n+1 — 1 states,
while the two-phase algorithms fail to bring any reductions. The reason for the bad performance of
two-phase algorithms is that none of the reachable states is deterministic with respect to any process.
Hence, the two-phase algorithms degenerate to classical depth first search.

N Proviso Algorithm [God95] Algorithm First two-phase
Algorithm

Second two-phase
Algorithm

5 63/0.33 64/0.37 243/0.39 243/0.35
6 127/0.39 128/0.42 729/0.49 729/0.45
7 255/0.43 256/0.51 2187/0.76 2187/0.76
8 511/0.43 512/0.7 6561/1.71 6561/1.62
9 1023/0.51 1024/1.21 19683/4.88 19683/4.92

Table 2: Number of states saved in the hash table, and time taken by different algorithms on Worst
Case.

9

Figure 5: Wavefront arbiter of size 3x3. The dotted line shows one of the three wrapped diagonals.
All the lockable C-elements on a wrapped diagonals may operate concurrently to implement the ar
bitration.

N Proviso Algorithm First two-phase
Algorithm

Second two-phase
Algorithm

6 281/0.53 172/0.42 156/0.40
7 384/0.68 230/0.47 210/0.42
8 503/0.91 296/0.56 272/0.47
9 638/1.30 370/0.69 342/0.55
10 789/1.76 452/0.89 420/0.66

Table 3: Number of states saved in the hash table, number of transition traversed and time taken for
the reachability analysis of the wavefront arbiter by different algorithms. [God95] algorithm is not
reported since it couldn’t handle the large number of processes involved.

5.3 W avefron t A rb ite r

A cross-bar arbiter that operates by sweeping diagonally propagating “wavefronts” within a circuit
array [Gop94] is shown in Figure 5. To request a cross-bar connection at a location i j a request is
placed at the “lockable” C-element [Gop94] at this location. This request attempts to “pin down” the
wavefront at this location. When this attempt succeeds, the crossbar connection i j can be used. A
property maintained by this arbiter is that no two C-elements on any row or a column can support a
wavefront concurrently. This allows the arbiter to support concurrent arbitration requests (e.g., those
falling on the wrapped diagonal in the figure) that don’t conflict on a row or a column. The results for
this protocol are presented in table 3. Statistics for [God95] algorithm is not reported on this example
as the protocol contains a large number of processes that the implementation could not handle.

1 0

Protocol Proviso Algorithm [God95] Algorithm First two-phase
Algorithm

Second two-phase
Algorithm

M igratory
Invalidate

34906/5.08
Unfinished

28826/14.45
Unfinished

23163/2.84
193389/19.23

23163/2.84
193389/19.23

Table 4: Number of states saved in the hash table, time taken in seconds for reachability analysis on
migratory and invalidate protocols by different algorithms.

5.4 D SM Protocols

Several realistic directory-based distributed shared memory protocols from the Avalanche multipro
cessor project [Ava] underway at the University of Utah were experimented with. Directory based
protocols to implement shared memory in multiprocessors are gaining popularity due to the scalable
nature of the protocols. In a directory based system, every cache line has a designated home node—a
processor responsible for maintaining the coherency of that line. Whenever a node tries to access a
cache line for reading or writing if the line is not present in the local cache in an appropriate state, a
message is sent to the home node of that line. The home node, upon receiving the request may need
to contact some or all of the nodes that currently hold the line in their caches. The home node then
will supply the data with the required access permissions to the requester.

Some of the well known directory based coherency protocols are write invalidate, write update, and
migratory. A brief explanation of these protocols is provided for the sake of completeness. When
ever a cache line managed by the write invalidate protocol is modified by a node, the node sends a
message to the home node. The home node in turn invalidates all the nodes holding a copy of the
shared line in their caches. In the write update protocol, on the other hand, the new value of the data
is broadcast to all the nodes holding a copy of the cache line in their caches. The migratory protocol
does not send such updates or invalidate messages, but instead ensures that the line is present in at
most one node’s cache1. Table 4 presents the results of running the different algorithms on the mi
gratory and the invalidate protocols. Migratory protocol contains about 200 lines of Promela code
and invalidate protocol contains about 330 lines of Promela code excluding comments. All the verifi
cation runs were limited to 64 MB of memory. It can be seen that proviso algorithm did not complete
the search on invalidate protocol. This algorithm aborted search after generating more than 963,000
states due to unavailability of more memory. In contrast, the two-phase algorithm completed the
search generating only a modest 193,389 states.

1 This is a simplistic view of the protocol, as the protocol allows a line to be present at multiple nodes for a short period
of time for the sake of efficiency.

11

N Proviso Algorithm [God95] Algorithm First two-phase
Algorithm

Second two-phase
Algorithm

2 295/0.47 242/0.47 272/0.34 169/0.35
3 11186/3.43 8639/7.74 3232/0.83 3037/0.92.
4 Unfinished Unfinished 62025/14.9 59421/14.5

Table 5: Number of states saved in the hash table, and time taken for reachability analysis on
Server/Client protocol by different algorithms.

5.5 A Server/C lien t pro tocol

A protocol consisting of N servers and N clients was studied. In this protocol, whenever a client is
free, it chooses one of the N servers, and starts communicating with the server. A server waits until
a message is received from any one of the N clients, and then services the client. A service consists
of doing a simple local calculation, sending the result of the computation to the client, waiting for a
terminate message from the client, and then acknowledging the terminate message with another mes
sage. The results of running this protocol are presented in Table 5. Proviso algorithm and [God95]
algorithm did not finish the search in a total of 64 Megabytes of memory when the protocol consists
of 4 servers and 4 clients.

5.6 O th e r P rotocols

We also ran the two-phase protocols on the protocols provided as part of SPIN distribution. Some
of the protocols supplied with SPIN distribution are not perpetual processes (i.e., they terminate or
deadlock). Sort protocol in the SPIN distribution terminates after a finite number of steps, and the
snoopy protocol has a large number of sequences where the protocol deadlocks. Sort is a protocol
to sort a sequence of numbers. Since this protocol has no non-determinism and terminates after a fi
nite number of steps, the proviso algorithm and two-phase generate equal number of states. Snoopy
is a cache coherency protocol to maintain consistency in a bus based multiprocessor system. This
protocol contains a large number of deadlocks, and therefore the two-phase algorithm is not as ef
fective. Pftp is a flow control protocol. This protocol contains little determinacy. Hence two-phase
algorithm is not as effective. Run times of these protocols are summarized in Table 6 .

6 Conclusions

We have presented two closely related new algorithms for partial order reduction to preserve safety
properties. Unlike the proviso algorithm or [God95] algorithm, these algorithms do not use proviso.

12

Protocol Proviso Algorithm [God95] Algorithm First two-phase
Algorithm

Second two-phase
Algorithm

Sort
S noopy
Pftp

174/0.35
20323/6.22
161751/34.5

173/0.6
10311/10.53

125877/150.7

174/0.33
20186/5.08

230862/36.3

174/0.39
18842/5.0

230862/39.4

Table 6 : Number of states saved in the hash table, and time taken for reachability analysis on proto
cols supplied as part of SPIN distribution by different algorithms.

Instead they alternate one step of partial order reduction step (using deterministic moves) with one
step of classical depth first search (using all moves). These algorithms are shown to perform bet
ter than other the previous algorithms on protocols where the proviso is invoked many times. As
shown using case studies, the number of states explored by these algorithms can be substantially
less than the number of states explored by other algorithms on reactive systems where the initial
state is reached after a transaction is completed. However, in certain cases, the two-phase algorithms
may generate more states than the algorithms using proviso. This can happen if the amount of non
determinism is high in the protocol and the proviso is invoked very few times as the protocol termi
nates or deadlocks.

It is possible to modify the first phase of the two-phase algorithms to make use of all safe transi
tions instead of using just deterministic transitions. The advantage of such an algorithm would be
that, unlike the two-phase algorithms that degenerate to full state search on such protocols as worst-
case, this algorithm would degenerate to the proviso algorithm (we have implemented this algorithm
whose control structure turns out to be quite complex.) Also, [HP94] preserves all stutter free LTL
formulae [Pel94, Pel96] while the two-phase algorithms preserve only stutter free safety properties.
At present, it is not clear, if there is a simple variation of the two-phase algorithm that preserves all
stutter free LTL formulae.

13

A Promela Constructs

Figure 6 illustrates the core constructs of Promela and condition for a statement to be local, exe
cutable and if the statement is local, the condition under which the statement is safe.

Statement Meaning local executable safe

x = E Assignment x is local, and E
contains only
locals

true true

await(B) Wait until B
becomes true

B contains no
global variables

B is true true

c ! E Send the value of
expression on
channel c

E contains no
global variables

c is not full c is not full

c ? V Receive the first
message of the
channel into
variable v

v is local c is not empty c is not empty

c ? C Remove the first
message from the
channel which is
constant C

true First message on c
is constant C

c is not empty

goto label Assignment to
control state

true true true

Figure 6 : Core constructs of Promela and conditions under which they are local, executable and safe

14

B A more efficient two-phase algorithm

i n i t i a l i z e s t a c k t o c o n t a i n i n i t i a l s t a t e
i n i t i a l i z e c a c h e t o $

d f s 3 ()

{ ,
s := t o p (s t a c k) ;
l i s t := { s } ;
/ * P h a s e I : p a r t i a l o r d e r s t e p * /
f o r i := 1 t o n p r o c e s s e s {

w h i l e (d e t e r m i n i s t i c (s , i)) {
s := n e x t (i , s) ;
i f (s € l i s t) g o t o NEXT_PROC;
l i s t := l i s t + { s } ;

}
NEXT_PROC: / * n e x t i * /

}
/ * P h a s e I I : c l a s s i c a l DFS * /
i f (s 0 c a c h e) {

c a c h e := c a c h e + l i s t ;
1 p r := { a l l p r o c e s s e s i n n o n - d e t e r m i n i s t i c s t a t e i n s } ;

t r := { t | a l l t r a n s i t i o n s e n a b l e d i n s s u c h t h a t P I D (t) € p r } ;
n x t := s u c c e s s o r s o f s o b t a i n e d b y e x e c u t i n g t r a n s i t i o n s i n t r ;
c a l l _ d f s := t r u e ;
f o r e a c h s u c c i n n x t {

i f (s u c c £? c a c h e)
c a l l _ d f s := f a l s e ;
p u s h (s u c c , s t a c k) ;
d f s 3 () ;

}
i f (c a l l _ d f s) {

p u s h (s , s t a c k) ;
d f s 3 () ;

}
}
e l s e {

c a c h e := c a c h e + l i s t ;

}
p o p (s t a c k) ;

}

Figure 7: Two-phase algorithm to implement partial order reduction that avoids the proviso. In the
second phase only non-deterministic processes are considered.

15

References

[Ava]

[GHP92]

[God95]

[Gop94]

[GP93]

[HGP92]

[Hol91]

[HP94]

[Maz89]

[Nal]

[Pel93]

[Pel94]

[Pel96]

[Val90]

[Val93]

Patrice Godefroid, Gerard Holzmann, and Didier Pirottin. State-space caching revisited.
In C o m p u te r A id e d V erif ica tio n , pages 178-191, Montreal, Canada, June 1992.

Patrice Godefroid. P a r t ia l - O r d e r M e th o d s f o r th e V erif ica tio n o f C o n c u rre n t S y s te m s : A n

a p p r o a c h to th e S ta te -E x p lo s io n P ro b le m . PhD thesis, Univerite De Liege, 1994-95.

Ganesh Gopalakrishnan. Developing micropipeline wavefront arbiters using lockable C-
elements. IE E E D e s ig n & T est o f C o m p u te r s , ll(4):55-64, Winter 1994.

Patrice Godefroid and Didier Pirottin. Refining dependencies improves partial-order veri
fication methods. In C o m p u te r A id e d V erifica tio n , pages 438^50, Elounda, Greece, June
1993.

Gerard Holzmann, Patrice Godefroid, and Didier Pirottin. Coverage preserving reduction
strategies for reachability analysis. In In te rn a tio n a l S y m p o s iu m o n P r o to c o l S p e c if ic a tio n ,

T estin g , a n d V er if ica tio n , Lake Buena Vista, Florida, USA, June 1992.

Gerard Holzmann. D e s ig n a n d V a lid a tio n o f C o m p u te r P r o to c o ls . Prentice Hall, 1991.

Gerard Holzmann and Doron Peled. An improvement in formal verification. In F O R T E ,
Bern, Switzerland, October 1994.

A. Mazurkiewicz. Basic notions of trace theory. In L in e a r T im e, B ra n c h in g T im e, a n d

P a r t ia l O r d e r in L o g ic s a n d M o d e ls f o r C o n c u rre n c y , volume 354. Springer Verlag, Lec
ture Notes in Computer Science, 1989.

See http://www.cs.utah.edu/~ratan/verif/two2.html.

Doron Peled. All from one, one for all: On model checking using representatives. In
C o m p u te r A id e d V erif ica tio n , pages 409-423, Elounda, Greece, June 1993.

Doron Peled. Combining partial order reductions with on-the-fly model-checking. In
C o m p u te r A id e d V erif ica tio n , pages 377-390, Stanford, California, USA, June 1994.

Doron Peled. Combining partial order reductions with on-the-fly model-checking. J o u r

n a l o f F o r m a l M e th o d s in S y s te m s D e s ig n , 8 (l):39-64, 1996.

Antti Valmari. A stubborn attack on state explosion. In C o m p u te r A id e d V erif ica tio n ,

pages 156-165, New Brunswick, NJ, USA, June 1990.

Antti Valmari. On-the-fly verification with stubborn sets. In C o m p u te r A id e d V erif ica tio n ,

pages 397-408, Elounda, Greece, June 1993.

See http://www.cs.utah.edu/projects/avalanche for details.

16

http://www.cs.utah.edu/projects/avalanche
http://www.cs.utah.edu/~ratan/verif/two2.html

