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Abstract
We present a symbolic simulation based verification approach which can be applied to large synchronous 

circuits. A  new technique to encode the state and input constraints as parametric Boolean expressions over 

the state and input variables is used to make our symbolic simulation based verification approach efficient. 
The constraints which are encoded through parametric Boolean expressions can involve the Boolean con

nectives (■, + ,  —>), the relational operators (< , < ,  > ,  > ,  = ), and logical connectives (A, V ). This technique 
of using parametric Boolean expressions vastly reduces the number o f symbolic simulation vectors and the 
time for verification, thus making our verification approach applicable to large synchronous circuits. Our 
verification approach can also be applied for efficient modular verification o f large designs; the technique 
used is to verify each constituent sub-module separately, however in the context o f the overall design. Since 
regular arrays are part o f many large designs, we have developed an approach for the verification o f regular 
arrays which combines formal verification at the high level and symbolic simulation at the low level(e.g., 
switch-level). We show the verification o f a circuit called Minmax, a pipelined cache memory system, and an 
LRU array implementation o f the least recently used block replacement policy, to illustrate our verification 
approach. The experimental results are obtained using the COSMOS symbolic simulator.
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A b s tra c t. We present a symbolic s im u la tion  based verifica tion  approach which can be applied to large synchronous 

circu its . A  new technique to encode the state and input constraints as parametric Boolean expressions over the state 

and input variables is used to make ou r symbolic s im u la tion  based verifica tion  approach effic ien t. The constraints 

which are encoded through param etric Boolean expressions can involve the Boolean connectives the relational

operators (< ,  < , > , > , —),  and logical connectives (A ,V ) .  This technique o f  using param etric Boolean expressions 

vastly reduces the number o f  symbolic s im u la tion  vectors and the tim e fo r  verifica tion , thus making ou r verifica tion  

approach applicable to large synchronous circu its . O ur verifica tion  approach can also be applied f o r  e ffic ien t modular 

verifica tion  o f  large designs; the technique used is to verify each constituen t sub-module separately, however in the 

context o f  the overa ll design. S ince regular arrays are part o f  many large designs, we have developed an approach fo r  

the verifica tion  o f  regular arrays which combines fo rm a l verifica tion  at the high level and symbolic s im u la tion  at the low 

levelfe.g ., sw itch-level). We show the verifica tion  o f  a c ircu it called Minmax, a pipelined cache m em ory system, and an 

L R U  array im p lem en ta tion  o f  the least recently used block replacem ent policy , to illustrate our verifica tion  approach. 

The experim enta l results are obtained using the C O S M O S  symbolic s im ulator.

1 Introduction

Most digital VLS I circuits are checked for correct operation through scalar valued simulation. 

In this approach, scalar bit vectors— vectors over 0 and 1— are used as inputs to the circuit being 

simulated. As most real-world circuits require an impracticably large number of scalar vectors to 

check for all possible execution paths, scalar simulation alone is insufficient to verify a VLSI digital 

circuit.

Several formal verification approaches have been suggested for the verification o f digital VLSI 

circuits. But, current formal hardware verification approaches cannot accurately model low-level 

circuit details (e.g., charge sharing). On the other hand, formal verification at the high level can 

provide useful information (e.g., circuit state invariants) for efficient symbolic simulation at the low
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level, in addition to its other advantages. Since the simulators (e.g., switch-level) can model low-level 

circuit details accurately, an approach combining the capabilities of formal verification at the high 

level and symbolic simulation at the low-level can derive the advantages of both the approaches.

Bryant has proposed symbolic switch-level simulation for formal hardware verification [3]. In [3, 1], 

it is shown that a symbolic simulator can be used to verify (check for all possible execution paths) 

many non-trivial circuits. His verification approach has been applied to verify a static RAM , data 

paths, and pipelined circuits [4, 5, 6]. Our verification approach for datapath and control circuits is 

based on a simple hardware specification formalism called HOP [8], a parallel composition algorithm 

called PARCOM P, and a switch-level simulator(COSMOS). In the past, we have studied the problem 

of generating minimally instantiated symbolic simulation vectors for non-regular designs, and also 

developed techniques to integrate the formal verification phase with the symbolic simulation phase. 

The combination of formal verification at the high-level and symbolic simulation based verification at 

the low-level has been proposed in [10, 13]. We have obtained encouraging results in this regard [10, 

12, 11].

In order to reduce the symbolic simulation effort, a new technique to encode the state and input 

constraints as parametric Boolean expressions on the state and input variables is incorporated in 

our verification approach. This technique of using parametric Boolean expressions vastly reduces the 

number o f symbolic simulation vectors and the time for verification, and thus makes our verification 

approach applicable to large synchronous circuits. Parametric forms have also been used in [2, 7] for 

the verification of finite state machines.

Our verification approach can be applied for efficient modular verification of large designs. Para

metric Boolean expressions can be used to encode the input and state constraints of the sub-modules 

o f the design. Each sub-module is individually verified. When verifying a sub-module, it is assumed 

that its context operates correctly, and so the inputs expected by the sub-module are derived directly 

from the input constraints of the sub-module. (The input constraints o f each sub-module are typi

cally known to the designer (e.g. a certain internal bus carries only unary values), and can be proved 

to be a consequence o f the design, during high level verification.) The outputs of the sub-module 

being verified are not isolated from its context, and so the sub-module being verified is subject to 

the true electrical loadings.

Since regular arrays are part of many large designs, we have developed an approach for the verifi

cation of regular arrays which combines formal verification at the high level and symbolic simulation 

at the low level(e.g., switch-level). The verification approach is based on a simple hardware speci

fication formalism called HOP, a parallel composition algorithm for regular arrays called PC A , and 

a switch-level symbolic simulator(COSMOS). We illustrate our verification approach on the Least 

Recently Used(LRU) page replacement policy implemented as a two-dimensional array o f LRU cells 

in VLSI.
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Figure 1: Constraints and Parametric Boolean Expressions

1.1 O u tlin e o f  th e P a p e r

In the following section, we present the basic idea o f parametric Boolean expressions and the 

encoding of the state and input constraints as parametric Boolean expressions. In Section 3, 4, and 5 

we present our symbolic simulation based verification approach and the use of parametric Boolean 

expressions through examples. In Section 3, we show the verification of a circuit called Minmax. In 

Section 4, we show the verification of a pipelined cache memory system. In Section 5, we present our 

verification approach for regular arrays with the LRU array verification as an example. In Section 6, 

we summarize the results, report the ongoing effort, and outline the future work.

2 Parametric Boolean Expressions

Every circuit relies on some state and input constraints for its correct operation. The circuit 

is expected to operate correctly when operated under the constraints it is designed for, and may 

malfunction if  its constraints are violated. Thus, a circuit needs to be verified only for the states and 

inputs satisfying the state and input constraints (unless it is required to know the circuit behavior 

under anomalous inputs). For example, a circuit may have an input constraint that exactly one of 

the inputs be 1 or the state constraint (or the state invariant in some cases) that the value in the 

register R\ must be less than or equal to the value in the register R 2, for its correct operation.

The validity of the use of parametric Boolean expressions, encoding the required constraints on 

the state and input variables of the circuit, for symbolic simulation relies on the following property 

o f the symbolic simulator (roughly analogous to the monotonicity property assumed in [3]): suppose 

the circuit in question is simulated with a scalar value i (ground value) that satisfies the required 

constraints, and the simulation results (next-states and outputs) be (s i ,o i ) .  Suppose the same 

circuit is now simulated with the parametric Boolean expressions e on the variables involved in the 

constraints, and the simulation results thus obtained be (52, 02). Then, for the instantiations a such 

that eo =  i, we have (s2<J, o2(?) =  (s i,0 i).
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03 =  Xab ' Vab +  P3

&2 —  %ab ' Vab P2 

d\ =  Xlb • Vab + Pi 

<2(3 —  %ab ' Vab "I-  PO

h  =  ( x a  +  y^b) ■ P3

&2 =  X ab ■ Vab ■ q2 +  X^b ■ P2 '

*̂1 —  ®ab ' Ql "I" •Eab ' Vab ' Pi 

bo -  (Xab +  Vab) ■ qo

Figure 2: Parametric Boolean Expressions for A : [ct3, 02, ai, fflo] >  B  :

2 .1  C onstra in ts  on  the S ta te and Inpu t Variab les

To illustrate the technique of generating parametric Boolean expressions for a given constraint on 

the state and input variables, consider a circuit with four inputs in i ,  in2, in3 and in4 and the 

input constraint that exactly one input be 1 at any time for its correct operation. The four valid 

combinations o f values o f the inputs in i ,  in 2 , in3, and in4 are shown in Figure 1. This input 

constraint can be encoded using the two parameter Boolean variables, say, b l and b2 , such that

(in i A ->in2 A ->in3 A iin 4 ) V {^ in l  A in2 A -im3 A - 1inA) V 

A ->in2 A m3 A -im4) V (-u n i A ->in2 A -i«n3 A in4)

=  361 62 .

( ( in i  =  61 A 62) A (ira2 =  61 A ->62) A 

(in3 =  —>61 A 62) A (in4 --- ->61 A -i62))

where T  =  Q means that T  and Q are logically equivalent.

Now, a parametric Boolean expression can be obtained for each of the inputs as shown in Figure 1. 

These parametric Boolean expressions capture the input constraint of the circuit. In general, given 

n variables ii, *2, . . . ,  in, and a constraint on these variables which results in m  valid combinations 

o f values of these variables, the number of parametric Boolean variables required to encode this 

constraint is [log2 m\.

2.2 Constra in ts on  the S ta te  and Inpu t V ectors

In many situations, it is convenient to express the constraints of a circuit as a Boolean expression on 

the state and/or input bit-vectors. For example, a set-associative cache would require all the tags (bit- 

vectors) in a set to be different ( 7̂ ) for its correct operation. Here we consider the constraints which
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may involve relational operators (< ,  < , > , > , = )  and logical connectives (A, V). These constraints 

on the bit-vectors can also be expressed as Boolean expressions containing individual bit-variables 

of the bit-vectors, and parametric Boolean expressions can be obtained for these individual bit- 

variables. However, the direct generation of parametric Boolean expressions for bit-vectors, taking 

advantage of the recursive nature of the relations on the bit-vectors (e.g. / o n a n  N  bit vector can 

be expressed using the xor function and ^  on an N  — 1 bit vector) would be computationally more 

efficient.

To illustrate the generation of parametric Boolean expressions for the constraints involving bit- 

vectors, consider two 4-bit vectors A : [03, a2, ai, ao] and B  : [£>3, &o] and the constraint A > B. 

The parametric Boolean expressions for the bit-variables of these two vectors are shown in Figure 2. 

We call x ab and yab control parametric variables. The instantiations o f these variables result in 

minimally instantiated symbolic A  and B  vectors which satisfy the constraint A  >  B. For example, 

with x ab =  0 and yab =  1, we obtain A  : \ps,p2, l,Po] and B  : \ps,pi, 0, g0]-

Boolean expressions on bit-vectors containing the logical connectives A and V can be first simplified 

into a disjunction of conjunctive-forms (or “cubes” ). Then, the parametric Boolean expressions for 

each conjunctive-forms can be obtained and combined to get the parametric Boolean expression for 

the given Boolean expression.

3 Verification of Minmax

In this section, we take a simple example that was also studied in [10]. M in m a x  [14] (Figure 3) has 

three registers, MAXI, MINI, and LASTIN. It implements five operations, I c l r . e n ,  I c l r _ d i s ,  Id is ,  

I re se t ,  and Ien. Here, we consider Ien operation which reads the current input, updates MAXI and 

MINI, with the (running) maximum value so far and the minimum value so far respectively. It also 

causes an output equal to the average of the max-so-far and min-so-far to be produced on the output 

port !0UT. A  formal verification of Minmax was carried out using algebraic/equational reasoning 

techniques [9].

3.1 V erifica tion  w ith  M in im a lly  In stan tia ted  Sym bolic  V ectors

Since every circuit requires some state and/or input constraints to be obeyed for its correct op

eration, one needs to instantiate the symbolic state and input vectors to the right degree so that 

the state and/or input constraints of the circuit are satisfied in the symbolic simulation based ver

ification o f that circuit. We refer to these vectors as minimally instantiated symbolic simulation 

vectors. In [10], we approached the verification of M in m a x  by enumerating minimally instantiated 

symbolic simulation vectors; we used Prolog to generate the minimally instantiated symbolic vectors 

for M in m a x . We generated symbolic simulation vectors for each condition o f a data dependent 

conditional branch, augmented with the circuit invariant MINI <  MAXI. Some of the sixteen vectors 

generated, for the case IN >  MAXI (also taking the circuit invariant MINI <  MAXI into account) are
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Figure 3: Schematic of M in m a x

now listed:

MINI.O = [0,0,MINI1,MINI0]  
MINI . l  =
MINI.2 =

[0,HINI2,0,MIHI0]  
[ 0 ,MINI2,MINI1,0]

IN_0 = [1 , IN 2 , IN 1 , IN 0 ] , MAXI.O 
IN_1 = [1 , IN 2 , IN 1 , IN 0 ] , MAXI.l 
IN_2 = [1 , IN 2 , IN 1 , IN 0 ] , MAXI.2

[ 0 , 1 ,MAXI1,MAXI0] 
[0 ,MINI2,1 ,MAXI0] 
[0,MINI2,MINI1,1]

MINI.15 = [IN 3 ,IN 2 ,IN 1 ,0 ], IH.15 = [IN 3 ,IN 2 ,IN 1 ,1 ], MAXI.15 = [IN 3 ,IN 2 ,IN 1 ,0 ]

Here, M INI_i represents the ith vector to be loaded into the register MINI, and so on for the other 

vectors. Verification time using this approach, for the cases (IN  >  MAXI) and (MINI <  IN <  MAXI), 

are listed in Figure 6 under the circuit name Minmax4 and the column “minimal instantiation” .

3.2 V erifica tion  w ith  P ara m etr ic  B oolean  Expressions

Verification o f the M in m a x  circuit for the Ien  operation required the verification of three tran

sitions whose state and input constraints were: IN <  MINI <  MAXI, MINI <  IN <  MAXI, and
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Figure 4: The Pipelined Cache Memory System

MINI <  MAXI <  IN. We generated parametric Boolean expressions for the state and input vectors 

satisfying these three constraints to verify the three transitions for Ien  operation of the M in m a x  

circuit, using the technique outlined in Section 2.2. The use of parametric Boolean expressions for 

the verification of M in m a x  reduced the number of symbolic simulation vectors to 1 for each of the 

three constraints mentioned above and it also reduced the verification time significantly. The veri

fication time for M in m a x  using this approach is listed in Figure 6 under the column “ Parametric 

Expressions” .

4 Verification of A  Pipelined Cache Mem ory System

In this section we consider the verification of a pipelined cache memory system to illustrate our 

technique to verify large designs.

4.1 A  P ipelined Cache M em ory  System

The pipelined cache memory considered here has a 2-way set-associative cache with 4 sets in the 

cache. The size of a block in each set is one byte and the tag associated with each block is 3 bits. A  

set is selected by the two higher-order bits of the Read/Write address.
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The least recently used(LRU) block replacement policy is used for the cache miss on a Read or 

Write operation. Since each set has only two blocks, the LRU policy is implemented by one flip-flop 

for each set; output o f the flip-flop indicates the least recently used block in the corresponding set. 

For higher set sizes, an LRU array would be used to implement the LRU block replacement policy. 

Verification of regular arrays, with LRU array as an example, is discussed in Section 5.1.

The main memory is updated using the write-through policy (i.e., for a Write operation, the data 

is written into the main memory and the cache at the same time). Since it takes more time to write 

the data into the main memory than into the cache for a Write operation, pipelining can be achieved 

by allowing more operations on the cache, while the data is being written into the main memory. 

In our pipelined cache system design, pipelining is achieved by allowing one or two Read operations 

(two Read operations, i f  the first Read operation following the Write operation results in a hit in the 

cache), while the data is being written into the main memory for a Write operation.

The block diagram of the pipelined cache memory system is shown in Figure 4. The pipelined 

cache system design consists o f four main modules, as shown in Figure 4. The CACHE module stores 

the data part of all the blocks in the cache. The LRU module contains the data storage and the logic 

necessary to implement the LRU block replacement policy. The CAM  module stores the tag part of 

the addresses currently in the cache. It also contains the logic necessary to implement set selection 

and parallel search for the tag part of the address of a Read/Write operation. The CO NTRO LLER  

module controls the operation of the pipelined cache memory system. This pipelined cache memory 

system was implemented on a Tiny Chip (about 5,700 transistors) and the simulation files necessary 

for switch-level symbolic simulation in COSMOS were derived from the N E T  description o f the 

design.

4.2 V erifica tion  U sing P a ra m etr ic  B oolean  Expressions

Symbolic simulation cannot be naively applied to verify the entire cache memory system. For 

example, if symbolic vectors are applied as the address inputs and the memory is asked to Read, all 

the locations covered by the symbolic address are “simultaneously read” ; this can cause conflicting 

drives o f values on the data output. Therefore, we resort to the technique o f separately verifying 

the sub-modules of the cache memory. Specifically, the following sub-modules have to be separately 

verified: (a ) the CACHE; (b ) the D RAM ; and (c ) all remaining units treated as the third submodule. 

Notice that the D R AM  and the CACHE modules of the pipelined cache memory system can be 

separately verified using the switch-level verification techniques outlined in [4],

To verify the pipelined cache memory system, we wrote the behavioral and structural description 

for the design in HOP. The inferred behavior of the design from the structural description by PAR 

COM P was used to determine the Read/Write operation sequences necessary to verify the pipelined 

cache memory system. Since our example cache memory system is pipelined, it is necessary to verify 

its operation over the sequences of Reads and Writes listed in the middle of Figure 6. Verification is 

separately carried out for each of these Read/Write sequences. For a particular sequence, the tags
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in the CAM  are initialized to symbolic expressions that satisfy the CAM  invariant (i.e., no two tags 

in a set have the same value). The Read/Write addresses are then set to symbolic expressions that 

cause the particular scenario (e.g. “Write Miss —► Read Hit —*• Read Miss” ) to manifest.

In our first attempt, we used Prolog to encode the constraint among the tags of the CAM  (captured 

by the CAM  invariant) and the constraints on Read/Write addresses required to make each scenario 

manifest, and ran the Prolog description to generate minimally instantiated symbolic values that 

satisfied the constraints. An impracticably large number of symbolic vectors were obtained (e.g., the 

operation sequence Write Miss —*■ Read Hit - »  Read Hit resulted in 191232 symbolic vectors).

We then explored the idea of using parametric Boolean expressions by generating the tags in the 

CAM  and the Read/Write addresses satisfying the constraints as described above. The constraints 

involved the ^  relation and the logical connective A. The use of parametric Boolean expressions 

reduced the number of symbolic vectors required for verification to one for all the Read/Write 

operation sequences beginning with a Write Hit operation and to eight for rest of the Read/Write 

operation sequences beginning with a Write Miss operation. The reason why eight symbolic vectors 

were required for each Read/Write operation sequence beginning with a Write Miss operation is the 

following: since a Write Miss operation would write the address tag in the CAM  and the data in 

the CACHE, the set part o f the Write address and the LRU value for the corresponding set were 

required to be instantiated to scalar values; there are four possible sets, and for each set, there are two 

possible LRU values. The symbolic simulation and verification times required for all the Read/Write 

operation sequences are shown in Figure 6.

We verified the pipelined cache memory system by supplying (using the fr e e z e  command in 

COSMOS symbolic simulator) the expected inputs from the D RAM  and the CACHE module during 

the symbolic simulation of the Read/Write operation sequences, assuming that the D RAM  and 

CACHE operate correctly.

4.3 V erifica tion  o f  La rge  Cache Sizes

We believe that the technique of using parametric Boolean expressions can be applied for the 

verification o f large cache sizes. I f  the number of symbolic variables which can be used in the 

COSMOS symbolic simulator is a limitation for the verification of large cache sizes, the technique 

of using parametric Boolean expressions can be applied in the following way. The set part of the 

Write operation’s address in an operation sequence can be instantiated to the scalar value and the 

tags o f CAM  for the sets in which addresses of the Read/Write operation sequence map to can be 

initialized to contain the parametric Boolean expressions satisfying the required constraints; the tags 

in all the other sets can be kept to the unknown value X. This would reduce the number of symbolic 

variables required in the verification of an operation sequence, but would increase the number of 

symbolic vectors required in the verification of the operation sequence. The number o f symbolic 

vectors required would be proportional to the number o f sets in the cache.
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(a) (b)
col@

row®
?w

Algorithm: Set row; reset col; find row with all zeros
(c)

Figure 5: LRU Cell and its HOP state diagram; LRU Array

5 Verification of Regular Arrays

Regular arrays form an important class of VLSI circuit designs, and with regular array designs 

being employed in numerous applications, the verification o f regular arrays becomes an important step 

in their design and implementation as VLSI circuits. Also, it is important to develop efficient ways 

to handle state and input constraints for the verification of regular arrays, because many regular 

arrays are designed to operate under input constraints (e.g., “ inputs must be unary” ). In this 

section, we show our verification approach for regular arrays and show the application o f parametric 

Boolean expressions in the verification of regular arrays. The hardware implementation o f LRU page 

replacement policy which we consider here maintains an array of n X n bits, initially all zeros, for a 

machine with n page frames. Whenever page k is referenced, the hardware sets all the bits of the
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row k to 1 and sets all the bits o f the column k to 0. A t any instant, the row with all bits set to 0 

indicates the least recently used row, hence the least recently used page frame.

5.1 T h e  L R U  A r ra y

The LRU array is realized as a two-dimensional regular array of LRU cells. Each LRU cell o f the 

regular array consists of a state bit which can be set to 1 by keeping the row® (read “feed-through 

connection row” ) input to 1 and col® input to 0; the state bit can be set to 0 by keeping the col® 

input to 1. On rising edge o f the clock— indicated by Ic k r is e  (read:“control input c lk r is e ” ) in the 

state diagram— the state bit o f the LRU cell is set to 0 or 1 depending upon row® and col® inputs. 

On falling edge o f the clock— indicated by Ic k f  a l l  in the state diagram— the output ! e is computed 

as logical OR of ?w input of the cell (which is ! e output of the previous cell) and the state bit o f the 

LRU cell. The output o f each row is logical OR of the state bits of the LRU cells in the row.

The functionality of an LRU cell is shown in Figure 5(a) and the corresponding state diagram is 

shown in Figure 5(b). A  4 X 4 LRU array is shown in Figure 5(c). The operation of the LRU array 

relies on the input constraint that only the ith (0 <  i <  3) row® bit and the ith col® bit are 1, when 

page i is referenced.

The LRU array implementation of the LRU policy is verified at two levels. A t the first level, the 

LRU regular array behavior determined by P C A  (a parallel composition algorithm for regular arrays) 

is verified against the abstract specification of the LRU array algorithm. The formal verification at 

this level is based on the homomorphism relation between states of the inferred behavior and the 

states of the abstract specification. We are skipping the details of this proof in this paper.

A t the second level, the transistor level implementation of the LRU array corresponding to the 

structural description in HOP is verified against the behavior inferred by PCA . However, the PCA- 

inferred behavior cannot directly be used as the reference specification because P C A  does not take 

into account the input constraints. Therefore, we first obtain the PCA-inferred behavior and then 

substitute into it the input and initial state values applied during the transistor level symbolic 

simulation; this forms the reference specification.

5.2 V erifica tion  w ith  P a ra m etr ic  B oolean  Expressions at th e Inputs

The LRU array was verified for all combinations of row and column input values, which satisfied 

the input constraint for the LRU array. Each cell in the LRU array was initialized to a distinct 

symbolic variable, to verify the LRU array for all possible state values, (this is possible as the LRU 

array does not have any non-trivial circuit invariants.) We illustrate our technique to handle the 

input constraint on the 4 x 4  LRU array, and report the results for higher sizes. We first used scalar 

values on the row and column inputs, satisfying the input constraint, and verified the resulting new 

state and output values against the expected values. It required four symbolic simulation vectors to 

verify the 4 x 4  LRU array.
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Circuit

Name

No. of 

Transistors

IN > MAXI MINI <  IN < MAXI

Minimal

Instantiation

Parametric

Expressions

Minimal

Instantiation

Parametric

Expressions

No. of 

Vectors

Total

time

No. of 

Vectors

Total

time

No. of 

Vectors

Total

time

No. of 

Vectors.

Total

time

Minmax4 1232 16 4.83 1 2.42 21 6.13 1 3.07

Operation Sequence No. of Vectors Total time

Write Hit —»■ Read Miss 1 12.40

Write Hit —► Read Hit 1 9.58

Write Hit —>■ Read Hit —► Read Hit 1 15.0

Write Hit —»• Read Hit —> Read Miss 1 17.90

Write Miss —► Read Miss 8 70.65

Write Miss —*■ Read Hit 8 70.0

Write Miss —► Read Hit —> Read Hit 8 185.75

Write Miss —► Read Hit —> Read Miss 8 222.03

No. of Scalar Input Parametric Expressions

Transistors Values as Inputs

Circuit Name No. of Total No. of Total

Vectors time Vectors time

LRU 4 x 4 448 4 0.63 1 0.27

LRU 8 x 8 1792 8 6.93 1 2.29

LRU 16 x 16 7168 16 134.63 1 34.68

Figure 6: Experimental Results1 for Minmax, LRU array, and Pipelined Cache Memory System

Then, we encoded the input constraint as parametric Boolean expressions on the row and column 

inputs, with two parameter Boolean variables b l and b2 as described in in Section 2.1(Figure 1). 

W ith the use of this technique, the number of symbolic simulation vectors reduced from four to one. 

In general, log2 n parametric Boolean variables are required to encode the input constraint of an 

n x n LRU array. In the LRU array verification, this technique reduces the number o f symbolic 

simulation vectors to one, independent of the size n o f the LRU array. Symbolic simulation 

and verification times for various sizes of the LRU array are shown in Figure 6 under “parametric 

expressions as inputs” . The improvement in the symbolic simulation and verification time, with the 

use of parametric Boolean expressions, is significant for the large LRU array sizes. We find that the

'T o ta l time is shown in seconds.
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use o f parametric Boolean expressions can lead to significant reduction in the number of symbolic 

vectors and the verification time in the symbolic simulation based verification o f regular arrays.

6 Conclusions and Future W ork

Symbolic simulation based verification is a powerful approach for the verification of hardware 

designs, which can complement formal verification using theorem provers. There is considerable 

incentive to make symbolic simulation based verification scale up to large circuits, as this would 

provide digital system designers with a familiar tool (a  simulator) to verify the designs almost 

automatically. Results reported in this paper indicate that the symbolic simulation based verification 

approach can scale up to large circuit sizes in many cases. The main motivation o f our work has been 

to discover techniques that would help expand the class of circuits, and the circuit sizes that can be 

verified by the symbolic simulation based verification approach. One o f the main observations is that 

the parametric Boolean expressions can be used in variety of ways for efficient symbolic simulation 

based verification o f large synchronous circuits. Even though the generation of the parametric 

Boolean expressions can involve some computational effort, the parametric Boolean expressions, once 

generated, can be re-used during the debugging of the circuit being verified. In all the circuits we have 

verified, the use of parametric Boolean expressions enhanced the speed o f the symbolic simulation 

process, mainly through a favorable tradeoff between the the number o f simulation vectors (which 

is very much reduced) and the average number o f symbolic variables per vector (which goes up only 

by a small amount). We are currently studying the automated generation of parametric Boolean 

expressions for the state and input constraints, given a constraint on these variables as a Boolean 

expression. By studying more examples, we hope to get further insight into the technique(s) that 

would work best for a given example.
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