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. A b s t r a c t

Results from analyzing the curvature of a surface can be used to improve the implemen
tation, efficiency, and effectiveness of manufacturing and visualization of sculptured surfaces.

In this paper, we develop a robust method using hybrid symbolic and numeric operators 
to create trimmed surfaces each of which is solely convex, concave, or saddle and partitions 
the original surface. The same method is also used to identify regions whose curvature lies 
within prespecified bounds.
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1  I n t r o d u c t i o n

A  critical characteristic for many applications in computer graphics and in CAD is the 
shape of the model’s surface. Second order surface analysis can be used to understand 
curvature characteristics, and thus shape, and to improve the implementation, efficiency 
and effectiveness of manufacturing and analysis processes. Fundamental operations, such 
as adaptive subdivision and refinement, use shape information to decide where and how 
many knots to add. Algorithms for the creation of tool paths for NC (Numerically Con
trolled) code generation for freeform surfaces are usually based on ball end cutters with 
their spherical centers following an (approximate) offset surface of the original surface. 
Flat end cutters can remove material faster and have a better finish; however, flat end 
cutters can be used only with 5 axis milling in convex regions (see Figure 1).

D e fin it io n  1.1 A  surface trichotomy is a partition  o f  a surface in to three 

types o f  regions: convex, concave and saddle shapes (F igure 1).

The ability to trichotomize sculptured surfaces into convex, concave or saddle regions 
(Figure 1) is thus essential to the use of flat end cutters in milling freeform surfaces. 
Also, regions with small curvature can be accurately milled faster with larger ball end 
cutters. Since tool changes are time consuming operations they should be minimized. 
Such minimization can be achieved by subdividing the surface into regions with different 
curvature bounds, each of which can be milled using tools appropriate to that region.

*This work was supported in part by D A R P A  (N00014-88-K-0689). A ll opinions, findings, conclusions 
or recommendations expressed in this document are those of the authors and do not necessarily reflect 
the views of the sponsoring agencies.
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Figure 1: Mainly concave (left), convex (m iddle) and saddle (right) regions.

Methods in use do not support the separation of original surfaces into trimmed sur
faces each of which has only one of the three characteristics throughout. That is, either 
convex everywhere, concave everywhere, or saddle everywhere. Second order surface 
properties are usually estimated locally by numerically evaluating them at a grid of 
points or at a finite set of sampled points along the planned milling tool path, in man
ufacturing. Research into computing curvature has been done in the context of offset 
operator approximations with cubic B-spline curves [25] and bicubic patches [11].

There have been attempts [2, 3, 5, 1] to understand and compute second order surface 
properties as well as twist, by evaluation on a predefined grid. The methods use the Gaus
sian curvature K ( u , v )  — k^(u , v ) k^(u , v ) and mean curvature H ( u , v ) =  Kn{u’v)+Kniu<v) ; 
where k* ( u , v ) and k%(u , v ) are the principal curvatures at the parameter value (u ,v ) ,  in 
an attempt to provide a bound on the surface angularity. However, if the surface is a 
saddle at (u, v), then k 1 and /c2 have different signs so the magnitude of H  is not a useful 
measure of such a bound. In the extreme condition when the surface is minimal [6], 
H  =  0 regardless of the surface angularity. The magnitude of K  can also be ineffective. 
Even if /c* is large, K  may be small because K2n is small. Therefore, neither K  nor H  by 
itself can provide sufficient shape information for subdivision and/or efficient NC appli
cations. This problem has been recognized by some of the authors cited above. These 
curvature estimation techniques are local, since they make use of local surface information 
only. More surface information might improve an algorithm or change a decision. Local 
information is inferior to global information in complex settings. Symbolic techniques 
can be used to help make decisions based upon the entire aspect of a surface rather than 
a limited number of local samples.

In this paper a hybrid approach using both symbolic and numeric operations for 
computing curvature properties is developed. We use property surfaces whose definitions 
are derived from different attributes of the original surface, as auxiliary surfaces to help 
analyze the original surface. For example, |^ (u , v )  is a property surface of F ,  and so is 
n (u ,v ) ,  the surface of unit normals. The two surfaces of principal curvatures, k\(u , v ) 
and k^(u , v ) are also property surfaces.

D e fin it ion  1.2 Suppose S i and <?2 are vector spaces of surfaces. An operator 
V ( F )  — p £ c>2, f o r  all F  £ Si ,  is called a property operator i f  the image 
surface, p, is associated with a geometric property o f  F , the domain surface.



In that case p is called, a property surface.

Some property surfaces are of the same “type” as the original surface while others 
are not. I f  F  is a tensor product NURBs surface, then |^ (u , v )  is a property surface 
which is also a tensor product NURBs surface with the same knot vectors, but with 
lower order and continuity properties. |^(u,u ) x ^ ( u , v )  is also a property surface that 
is a tensor product NURBs surface, but with different knot vectors and order, and lower 
continuity. However, n (u ,v ) ,  k\(u , v ), and k^(u , v ) cannot be represented as piecewise 
rational parametric functions, as we shall later see, and hence, cannot 'be represented, in 
general, as NURBs surfaces.

Contouring techniques [3, 18, 23] developed for freeform surfaces can be applied im
mediately to property surfaces once they are represented as NURBs. Since both the 
original and the property surfaces share the same parametric domain, one can easily 
trim the regions in the original surface having certain property values. In other cases, 
the zero set of the property surfaces may be required. For example, let iiz(u ,v )  be the
2 component of h ( u , v ), where n (u , v ) =  aF̂ x is an orthogonal vector to the
parametric surface F ( u , v ) at (u ,v ) .  Let the orthographic view direction be +z.  Then 
the set of zeros of hz(u , v ) is simply the parameter values for the silhouettes of the orig
inal surface. In other words, the silhouette extraction problem can be mapped to a root 
finding problem (contouring), which is usually simpler. Trimmed surfaces [4, 19] are the 
natural way to represent the regions defined by the contouring operator. In fact, the 
parameter values of the contours of the property surfaces can serve as the parameter 
values of trimming curves for the original surface.

Throughout this paper examples and properties will be shown using the Bezier and 
NURBs surface representations. However, any other representation which has analogous 
subdivision, variation diminishing, and convex hull properties, and supports the operators 
in Section 3 can be used. A ll surfaces and images were created and rendered using the 
Alpha_l solid modeler developed at the University of Utah.

Section 2 briefly develops the differential geometry used in the analysis. In Section 3 
we develop the tools and operators that are required in this analysis while in Section 4 
we use these tools to compute second order properties, and use visualization to better 
understand the shape of a given surface.

2  D i f f e r e n t i a l  G e o m e t r y

Surface curvature is well understood mathematically and the theory behind it is developed 
in most introductory differential geometry books [6, 20, 22]. The set of analysis equations 
that are based on the second fundamental form are used extensively in locally evaluating 
surface curvature. Because these equations are crucial to our discussion, they are briefly 
stated here.

Let F ( u , v ) be a regular parametric surface. Let the unnormalized normal to a
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surface F ( u , v ), h (u ,v ) ,  be defined as

and define the surface unit normal, n (u ,v ) ,  to be

n (u , v ) =
dF 9F
du____dv
dF v  dF\ 
du dv I

Since F ( u , v )  is regular, ||n(u,u)|| /  0 and n (u ,v )  is well defined.
dC(t)

dt
ds

Let C ( t )  =  F ( u ( t ) , v ( t ) )  be a regular curve on F ,  that is 

change of the arc length of C  with respect to its parameter, t, is d 

arc length. Since =  (§^^7 +  f f  ̂ 7) ,  one can show [14, 20, 22] that

(1)

' (2 )

/  0. The rate of 

where s isd.C(t)
dt

du dv
G

du dv

dt dt dt dt

j du dv 

V dt ’ dt )

I  is known as the first fundamental form, with matrix G  equal to:

G  =  (9ij) =

/dF dF\ /dF dF\
\ du5 du / \ du5 dv /

Id F  dF\ ( dF dF\
_ \ dv 5 du / \ dv 5 dv / _

(3)

By considering all such curves, C ( t ) ,  through a point (u ,v ) and differentiating twice, 
one can extract second order properties of the surface F  at (u ,v ) .  The second order 
derivatives of C ( t ) contain terms with and as factors. However, the inner prod
uct of these terms with n is always zero since the partials are in the tangent plane of 
F ( u , v ) .  Therefore, (n (u ,  v ), d the component of d pointing in the direction
perpendicular to the surface is composed of second order derivatives only.

d *C ( t )\

=  ( n { u , v ) ,

Idu  dv\

=  \ d t ’ d t )  '

I I  is known as the second fundamental form, with matrix L  equal to:

du dv T du dv
T

dt dt
Jj

dt dt

(4)

d2F \
- r,.2 /

(5)
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The Gaussian curvature is a scalar value and is defined as the product of the two 
roots of (7), k\ and k2,

k  =  Ky „  =  j| j .  (8 )

The mean curvature is define as their arithmetic average,

T T  K n +  K n (*711 ̂ 22 +  ^11<722 ~

H  =  T -  = ----------------2\G\--------------' ( ’

3  T o o l s  a n d  O p e r a t o r s

In order to symbolically represent curvature properties as Bezier or NURBs property 
surfaces, one must be able to represent a surface which is the symbolic sum, difference, 
and product o f surfaces, or the derivative of a surface, as a single Bezier or NURBs 
surface. Methods to represent, as a single Bezier or NURBs surface, the results of the 
above operators on Bezier or NURBs surfaces, are presented below.

3.1 Symbolic computation
Given a Bezier or NURBs curve, the form of the derivative as a curve in vector space is 
well known [10],

= d i x ' K B U t ) = ( t  _  t )  g  w , (10)

and this result easily extends to tensor product surfaces.
The symbolic computation of sum and/or difference of two scalar Bezier or NURBs 

curves is achieved by computing the sum and/or difference of their respective control 
points [10, 12, 17], once the two curves are in the same space. This requirement can be 
met by representing them as curves with the same order (using degree raising [7, 8] on 
the lower order one, if necessary) and the same continuity (using refinement [9] of knot 
vectors for NURBs).

k k

i —0 i —0

=  E  { P i B f M  ±  Q i B l ( u ) )  
i = 0

=  ' £ , ( P i ± Q , ) B l ( u ) .  (11)
2 = 0

This result easily extends to tensor product surfaces as well [17].
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Representation of product of scalar curves and surfaces is the last symbolic tool 
required. For Bezier curves [12, 10],

=  T . P i B m ' E Q j B f t t )
i = 0 j = 0
m n

2=0j=0

m n M M

e=0 jzzO [  i+ j )
m+n

=  E * - e r +" ( ( ) ,
k= 0

(12)

where

R k =  E  p iQ.

(

m
*

h3 
i -f j  =  k

This result can also be extended to tensor product surfaces [17]. It is also necessary to 
represent scalar products as part of representing sums and differences of rational curves 
and surfaces, as well as for representing derivatives of rationals.

Finding a representation for the product of NURBs is far more difficult. One might 
consider subdividing the surfaces into Bezier patches at all the interior knots, computing 
the product, and merging the results back. However, the continuity information along 
the interior knots is lost. The NURBs representation can be computed in two different 
ways. One recently developed method [21] supports symbolic computation of the co
efficients of the product after finding the knot vector of the product curve. Since this 
is computationally expensive and complex to implement, one might choose the second 
method that exploit the B-spline representation uniqueness property and compute the 
coefficients of the product by solving an equivalent interpolation problem [17],

3.2 Contouring operator
It is frequently useful to know the zero set of a property surface or to have all regions in 
which the values of the property are larger then some threshold, either in itself or to use in 
further analysis. Contours in the parameter space of the property surface can be used as 
trimming curves for the original surface [19], so the trimmed surface will hold all regions 
of the original surface with property values larger (or smaller) than the contouring level.

Computing the contours is closely related to computing surface-surface intersections 
and ray-surface intersections, problems with inherent numerical complexities.

Let F (u ,  v) =  ( x(u,v) y(uyv) z(u,v) ) and P  =  A x  +  By  +  C z +  D  =  0 be a property' w (u,v) ’ w(lLyV) ’ w(UfV) '

surface and a contouring plane, respectively. By substituting the components of F (u ,  v )



Second Order Surface Analysis G. Elber and E. Cohen 8

into P , one can solve for all values of u and v in the parametric domain for which 
F ( u , v) H P  is not empty.

S („ , „ )  =  A ^  +  B ^  +  C ^  +  D
w (u ,v )  w{u,v )  w (u ,v )

A x ( u , v ) +  B y (u , v ) +  C z (u , v )  +  Dw(u, v)
— 7 \

iu(u, uj

A  single NURBs surface representation for (13) can be found using the operations 
defined in section 3.1, namely surface addition and surface multiplication. The zero set 
of the surface S(u, v ), in (13), is the set of parametric values for the required intersection. 
Since both F ( u , v )  and S (u , v )  share the same parametric domain, mapping the para
metric domain information back to F ( u , v ) is trivial. S ( u , v ) is a scalar surface, which 
leads to a simpler and faster computation. Assuming w (u ,v ) 7̂  0, the zero set of S (u ,v )  
can be computed using only the numerator of S(u, v). Thus, even if F (u ,  v ) is a rational 
surface, contouring computations can be performed on scalar polynomial surfaces.

In the following section, the tools discussed above are used. The basic operations for 
surfaces, addition, subtraction, and multiplication are combined with differentiation to 
define or approximate property surfaces, as necessary. Then, the contouring algorithm 
will be used to analyze and extract useful information from these surfaces.

4  T h e  a p p r o a c h

The tools defined in Section 3 are used symbolically to compute the second order prop
erties of a given surface as described in Section 2. NURBs property surfaces are derived 
whenever possible so that the method can take advantage of the computational charac
teristics of NURBs.

4.1 Surface Trichotomy
Use of the curvature trichotomy of a surface can result in a more optimal freeform surface 
milling process. Only convex regions (see Figure 1) are millable using flat end cutters 
and five axis milling. Flat end cutters, as oppose to ball end cutters, can mill faster and 
remove more material per time unit. Furthermore, the surface finish of flat end cutters 
is usually better. Using the trichotomy operator, convex regions within surfaces can be 
detected and milled in more efficient way and with a better finish. The Utah teapot in 
Figure 8 is mostly convex (red regions) and therefore this particular model may be milled 
mostly using a flat end cutter.

The determinant of L, \L\, in (7) is the key to this second order surface analysis. If 
\L\ =  0, one of the normal curvature extrema Kln must be zero. Assuming the surface is 
curvature continuous, adjacent regions for which Kln has a different sign must be separated 
by a curve, C s, for which \L\ — 0, that is, one of the K%n =  0. Furthermore, if \L\ >  0



at some point p on the surface F ,  the surface is either convex or concave at p, while if 
\L\ <  0 the surface locally is a saddle. In order to compute a property surface representing 
\L\ using (5), it is necessary to find a square root to compute n ( u , v ) ,  which cannot be 
represented, in general, as a polynomial or as a piecewise rational. However, by reordering 
the operations to use the unnormalized surface normal h(u, v)  and noting n(u, v ) appears 
twice as a factor in each term of |L|, \L\ can be represented exactly as a rational function 
and with no square roots,

|I| =  . (14)

This equation is representable as a NURBs using only operations from Section 3. ii is 
a cross product of two surface partials ^  and |^. The components of L , are inner 
products of n with second order partials of F .  Since only the zero set is of interest, 
and F  is assumed to be a regular surface, it is necessary to examine only the numerator 
of (14). Once the zero set of \L\ has been computed, trimmed surfaces are created, each 
of which is completely convex, concave or saddle. The sign of \L\ at a single point on 
each trimmed surface is then used to classify the saddle regions while convex and concave 
regions are distinguished from each other by simply evaluating the sign of /n, for example, 
at that single point. W hile the saddle region is an intrinsic surface characteristic, the 
convex/concave classification is parameterization dependent. Flipping the u or v (but 
not both) surface parameterization direction will flip the normal direction n (u ,v )  and 
therefore the sign of /n .

Figures 3 through 7 show some examples. Figure 3 is a biquadratic B-spline surface 
with three internal knots in each direction (patches of a B-spline surface are counted 
as how many Bezier patches would result from subdividing the NURBs surface at each 
interior knot, so this surface yields 16 polynomial patches), while Figure 4 is a single 
biquadratic patch. The bicubic surfaces in Figures 5 and 6 have two internal knots in 
each direction, yielding 9 polynomial patches. Figure 7 top is a bicubic NURBs surface 
with a single internal knot in each direction, yielding four Bezier patches. A ll Figures 
have been colored consistently, with yellow marking the saddle regions, red representing 
a convex region and green representing a concave region.

The biquadratic surface of Figure 3 is not C 2 along each internal knot, and the surface 
trichotomy is isoparametric along the internal knots lines.

However, in general, this behavior should not be expected, or even anticipated, for 
biquadratic surfaces, since even a single biquadratic patch may contain both convex and 
saddle regions simultaneously as shown in Figure 4.

The surface in Figure 5 uses the same control mesh as the one in Figure 3 but is 
bicubic. Both surfaces in Figure 3 and Figure 5 uses appropriate uniform open end 
condition knot vectors. A  comparison of these two Figures graphically demonstrates the 
influence of the order of the tensor product spline surface on the shape, as shown by 
comparing the shapes and locations of the convex and concave regions. This phenomena 
is somewhat counterintuitive to the common belief that two NURBs surfaces with the 
same mesh but different order are very similar, except that the one with higher order is a
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Figure 3: Biquadratic surface trichotomy with 16 polynomial patches.

smoother version. The curvature characteristics have actually been changed. Figure 3 has 
one concave region, one convex region and two flat regions, all of which have isoparametric 
boundaries. Figure 5, however, has only one concave region and one convex region. The 
union of the two regions have a figure eight boundary, where convex and concave change 
at a single point. The curved boundaries of those regions are different than the straight 
line boundaries in Figure 3.

Figure 6 shows that the combination of symbolic computation (o f \L\ as a property sur
face) with numeric analysis (contouring the property surface) can detect widely separated 
and isolated regions. In addition, it demonstrates the robustness of this methodology by 
accurately detecting two very shallow concave regions in the middle of the surface. In 
Figures 5 and 7, another ill conditioned case is shown in which several convex and concave 
regions meet at a single point. Since trimmed surfaces are formed, it was necessary that 
the boundaries be completely and correctly defined. The points where the three regions 
meet are correctly detected and determined and the topology of the regions is correctly 
maintained, which also demonstrates another type of robustness.

To provide a better sense of the process, the bottom of Figure 7 also shows the scalar 
property surface of the determinant of the second fundamental form, \L\, with its zero 
set, as a function of u and v.

Finally, Figure 8 demonstrates this method on a more realistic object. The Utah 
teapot trichotomy degenerated into a dichotomy since no concave regions exist in the 
teapot model.

4.2 Bounding the Curvature
The extrema of the surface curvature are important for analyzing the curvature of a given 
surface. Normal curvature extrema occur in the principal directions [14, 20, 22], but the 
direct application of quadratic equation solution for (7) would require finding a square



G. Elber and E. CohenSecond Order Surface Analysis

Figure 4: Biquadratic polynomial trichotomy.
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Figure 7: Bicubic surface with convex and concave regions meet at a single point (top). 
The surface second fundamental form property surface and its zero set (bottom).

the input surface F ( u , v ) according to its curvature and provide visual feedback on which 
regions are highly curved. In other words, make the color of F ( u , v ) at the parameter 
value (u , v ) depend on the value of ^/>(u,u) in convex and concave regions, and on the 
value of 4>(u,v) in saddle regions. Using this technique, one can enhance the display 
of regions with high curvature, low curvature, or within certain bands of curvatures. 
Figures 9 through 11 demonstrate this. In Figure 9, the surface has been first subdivided 
into a saddle region (yellow) and a convex region (red). ij>(u,v) has been used as the 
pseudo color in the convex region of the surface while (f>{u, u) has been used for the same 
purpose in the saddle region, to render the image in Figure 11. Figure 10 shows ip(u,v) 
and </>(u,v). Not surprisingly, ij)(u,v) is wider in the highly curved convex region since 
the two principal curvatures cancel each other in
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Figure 12: Utah teapot curvature estimation
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Figure 13: The surface is subdivided into regions with different curvature bounds.

regions. The curvature bound surface, £(u,w), (Figure 14) of the surface in Figure 13 is 
being contoured and regions with different curvature bounds are formed. It is clear from 
Figure 13 that the blue regions can be milled using a very large ball end cutter, the green 
regions with a medium size cutter and only the yellow and red regions, which are less 
than 5%  of the whole surface area, should be milled with a small size tool.

5 Conclusions
A method to partition a surface into three disjoint trimmed surfaces (convex, concave, 
and saddle) and to determine global bounds on surface curvatures, has been presented 
which combines symbolic and numeric methods. The hybrid method was found to be 
robust and fast. The computation involved in the creation of a property surface, that is



Figure 14: Curvature surface bound, of the surface in figure 13.

exact to machine accuracy, usually takes less than a second for a Bezier surface on an SGI 
2 4 0 /G T X  (25MHz R3000). This symbolic computation has closed forms with complexity 
directly bound by the surface orders and continuity (knot vectors). Contouring usually 
takes an order of magnitude longer than that. This numeric process involves high order 
property surfaces which make subdivision more expensive.

Since milling is several magnitudes slower than even the contouring process, and 
since the same toolpath may be used thousands of times, time is not a major factor in 
optimizing the milling process. The ability to isolate regions in a surface with specific 
curvature bounds makes it possible to mill the surface more optimally by using the largest 
tool possible for each region.

The orders of the resulting property surfaces are high. A second fundamental form 
determinant property surface for a bicubic B-spline surface has degree 14. The degree 
of the property surfaces ip(u,v), <j>(u,v) and £(u ,u) is even higher, degree 30. However 
because the evaluation of Bezier and B-spline representations is robust, the high order 
does not introduce any numerical problems [13].

The analysis demonstrated in this paper exercises a combination of a symbolic compu
tation in which a property surface is computed, and numerically analyzed by evaluation 
or contouring. Computation of the property surfaces is extremely robust for Bezier sur
faces since closed form formulations exist for all operators. The use of interpolation to 
compute products of NURBs was found to be unstable for higher orders (>  10) and 
therefore surfaces in such cases were split into Bezier patches. Since contouring methods 
for freeform surfaces are well known and are, in general, robust, the whole analysis was
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found to be very stable.
If desired, the property surface technique can be used for other applications, and other 

second order surface properties can be similarly computed, such as geodesic, Gaussian, 
or mean curvatures. Furthermore, this methodology has been successfully used to solve 
other problems as well. The silhouette extraction algorithm presented in [15] has been 
enhanced to use the zero set (contour) of the z component of the normal property surface, 
nz(u, v), with much more reliable, faster results. The error introduced by an offset 
approximation to a curve or a surface can be globally bounded and represented as an 
error curve or an error surface. Similarly it has been used to reduced the error of a curve 
or a surface offset approximation to a required tolerance [16].

The work presented here makes it practical to use second order surface analysis as a 
tool to support the development of robust, accurate, optimal algorithms for NC toolpath 
generation and to support alternative criteria for surface subdivision based on the second 
order properties of the shape. Consideration of Figures 3 and 5 shows another area of use. 
Users of NURBs are frequently unaware of the implications on the shape of the surface 
from using different orders. Manipulating the same control mesh can give difFerent, 
unexpected, shapes depending on the order. The ability to accurately visualize second 
order properties in a reasonable time will enable better inspection and understanding 
of the effect of order, and potentially knot vector, changes. Furthermore, while NC 
verifications frequently simulate the tool path moving over the surface geometry, they do 
not check that a tool path for a convex region is actually cutting a convex region. The 
work presented here can be used in implementing that larger visual process validation. 
The viewer can use the understanding gained from exhibiting second order properties to 
take effective action.
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