
Verification of MPI Programs Using Spin 

Steven Barrus, Ganesh Gopalakrishnan, 
Robert M. Kirby, Robert Palmer 

U UCS-04-008 

School of Computing 
University of Utah 

Salt Lake City, Utah 84112 

Abstract 

Verification of distributed systems is a complex yet important pro
cess. Concurrent systems are vulnerable to problems such as deadlock, 
starvation, and race conditions. Parallel programs written using the MPI 
(Message Passing Interface) Standard are no exception. Spin can be used 
to formally verify a parallel program if it is given an accurate model writ
ten is Spin's process meta language (Promela). In this paper, we describe 
a generalized framework for verification of MPI-based parallel programs 
using the Spin model checker. Only select MPI calls are covered, but this 
framework could potentially be extended to include all of the MPI Stan
dard. Our reduced MPI implementation (written in Promela) is designed 
to follow the MPI Standard as well as allow for the flexibility provided 
in certain aspects (like buffering). We also present a few examples to 
illustrate the use of our MPI implementation in Promela. 

1 



Verification of MPI Programs Using Spin 

Steven Barrus, Ganesh Gopalakrishnan, 
Robert M. Kirby, Robert Palmer 

18th May 2004 

School of Computing 
University of Utah 

Salt Lake City, Utah 84112 

Abstract 

Verification of distributed systems is a complex yet important pro
cess. Concurrent systems are vulnerable to problems such as deadlock, 
starvation, and race conditions. Parallel programs written using the MPI 
(Message Passing Interface) Standard are no exception. Spin can be used 
to formally verify a parallel program if it is given an accurate model writ
ten is Spin's process meta language (Promela). In this paper, we describe 
a generalized framework for verification of MPI-based parallel programs 
using the Spin model checker. Only select MPI calls are covered, but this 
framework could potentially be extended to include all of the MPI Stan
dard. Our reduced MPI implementation (written in Promela) is designed 
to follow the MPI Standard as well as allow for the flexibility provided 
in certain aspects (like buffering). We also present a few examples to 
illustrate the use of our MPI implementation in Promela. 

1 Introduction 

The MPI Standard[3] has been popular for years and has provided develop
ers with a powerful way to create portable parallel programs. MPI is used on 
supercomputers and clusters around the world. Given an efficient way to par
allelize a program, designers can get complex programs to run is a fraction of 
the time. However, MPI programs are susceptible to synchronization bugs just 
like other such systems. There is currently no standard mechanism for finding 
these bugs (like deadlock, starvation, etc.), but other projects, such as Spin, 
could potentially address this very issue. There are a number of tools available 
for verification of parallel programs and Spin is arguably the most powerful and 
the most popular[4]. Spin is ideal for modeling distributed systems, such as 
message passing protocols, which makes it well suited for modeling MPI-based 
programs[l]. 

2 



1.1 Message passing 

Message passing is a common way to share data between processes in a concur
rent system. This method has been around for a long time and it has seen many 
different interfaces. The MPI Standard is an attempt to standardize the way the 
message passing is done and has been widely successful. The standard outlines 
and efficient and robust interface for implementing parallel programs that rely 
on message passing. It also provides MPI-based programs with portability. An 
MPI program can easily be made to work with any MPI library and any system 
that has that library. For ten years, the MPI Standard has addressed many 
of concerns about message passing. However, there is one issue with message 
passing that has not been resolved. 

Sending and receiving provide a conceptional basis for all more extensive 
message passing commands expressed within the MPI Standard. A message is 
passed when one process does a send and another does a receive. But what 
happens when all processes are sending and none are receiving or vice-versa? 
Deadlock and other synchronization problems can creep into any system that 
employs message passing. MPI-based programs are susceptible to these bugs 
just like other such systems. The MPI Standard may be powerful, but that 
does not mean that it takes care of these bugs for you. Luckily, there are tools 
available that help eliminate synchronization bugs using formal verification. 

1.2 Spin 

Spin is a software model checker. Models are created in Spin's own process 
meta-language, Promela and then Spin can be used to validate correctness of 
those models. It is used for formal verification of concurrent systems. If it finds 
that a requirement is not satisfied, it can produce an execution path that leads 
to the violation[4]. 

Since Spin is a useful tool for verifying concurrent systems, putting MPI and 
Spin together makes sense and in many ways they are a good match. Unlike 
many languages, Promela has built-in channels for communication between pro
cesses. These channels allow for data to be passed between processes similarly 
to the way MPI passes messages. A model of MPI calls can be built around 
these channels. In this paper we will walk through the modeling of 12 MPI calls 
and show examples of how this model can be used in MPI programs. 

2 Spin Models of MPI Calls 

Every implementation of the MPI Standard has a rich set of details that make 
it unique. Our Promela MPI model is no exceptions. The MPI Standard is 
not entirely strict guidelines. It allows for some implementation freedom that 
can make programs behave differently on under different MPI implementations. 
This can make bugs difficult to detect and also makes it difficult to model. In our 
model, we try to account for the areas of flexibility in the standard and in some 
cases, this means sacrificing simplicity. This section introduces the technical 

3 



details of our Promela MPI implementation. It first covers the framework for 
the overall system and then lays out the details of the individual MPI calls. 

Most of the MPI calls require a mechanism for communication with other 
processes. MPI uses what are called communicators to accomplish this task. 
Promela provides channels which are well suited to model MPI communica
tors. The data that gets sent over a communicator is critical to calculations 
preformed by an MPI program. A generalized model of an MPI program is not 
so demanding because it is not actually doing any kind of scientific calculation. 
These models are more focused on the communication patterns rather than the 
flow of the computationally intensive portions of the application. Modeling the 
actual calculation with Spin would be difficult since Promela does not provide 
floating-point numbers (or floating-point arithmetic). 

\Ve model communicators with an array of channels that has the length equal 
to the number of processes in that group. The array is indexed by a process's 
rank and therefore each process has its own channel. If a message is to be sent 
it is put in the channel correspond to the destination process. If a message is 
to be received, the receiving processes checks the channel corresponding to its 
rank. The size of these channels is set to a constant before the model is simu
lated or verified. Channels of zero size (Le. rendezvous channels) are currently 
unsupported because the channel poll operator does not work on such chan
nels. Also, our model currently only provided the the global communicator, 
MPI COMM WORLD. 

[CHAN_SIZE] of { byte, byte, byte }; 

2.1 MPI Send 

MPI_Send is one of the most straight-forward MPI calls to model in Promela. 
It can simply pass a message on a channel (chan) using Promela's send operator. 
The data gets sent on a channel of the communicator that corresponds to the 
rank of the destination process. The send operation will block if the channel 
has no buffer space available (Le. the channel is full). This directly correspond 
to the MPI Standard which states that the routine may block until the message 
is received. The data is sent along with the tag and the rank of the sending 
process. The information sent, aside from the data, can be used by the receiving 
process to determine whether or not to accept that message or wait for another 
one. 

inline MPI_Send(buf, dest, tag, comm) 
{ 

comm[dest] !buf,tag,PROC_RANK 
} 

4 



2.2 MPI Recv 

The MPI _ Recv routine is a little more complicated. It is modeled with Promela's 
chan receive operator. However, it requires additional checks to see if a mes
sage in the channel (indexed by rank) matches the source and tag provided. If a 
match is found, the call returns and if not, the call will block until a message does 
match. Since MPI supports source and tag wild-cards (MPI_ANY _SOURCE 
and MPI_ANY _ TAG), fields of the message may be ignored and discarded. 
This also means that a constant process rank and a tag identifier must be re
served for the wild-cards. This limits the maximum number of processes, as 
well as tags, to 254. 

inline MPI_Recv(buf, source, tag, comm) 
{ 

if 

fi 
} 

(tag == MPI_ANY_TAG) -> 
if 

(source == MPI_ANY_SOURCE) -> 
comm[PROC_RANK]??buf,_,_ 

else -> 
comm[PROC_RANK]??buf,_,eval(source) 

fi 
else -> 
if 

fi 

(source == MPI_ANY_SOURCE) -> 
comm[PROC_RANK]??buf,eval(tag),_ 

else -> 
comm[PROC_RANK]??buf,eval(tag),eval(source) 

2.3 MPI Sendrecv 

The MPI_Sendrecv call does a send and receive. It can be modeled by di
rectly calling the MPI_Send and MPI_Recv. The order of the the sending 
and receiving is not specified in the standard, so we have to use Promela's non
determinism to get an accurate model[l]. This way both possible paths will be 
verified. 

inline MPI_Sendrecv(sendbuf, dest, sendtag, recvbuf, source, recvtag, comm) 
{ 

if 
MPI_Send(sendbuf, dest, sendtag, comm) -> 

MPI_Recv(recvbuf, source, recvtag, comm); 
MPI_Recv(recvbuf, source, recvtag, comm) -> 

5 



MPI_Send(sendbuf, dest, sendtag, comm); 
fi 

} 

2.4 MPI Beast 

The MPI _ Bcast routine broadcasts a message from a specified root process to 
all other processes. Our model for the broadcast routine is simple. It has the 
root process iterate over all other processes, sending the data to each. All of 
the other process merely call MPI _ Recv which will block waiting for a message 
with the special broadcast tag. 

inline MPI_Bcast(buf, root, comm) 
{ 

} 

if 
(root == PROC_RANK) -> 
byte _mpLi; 
_mpLi = 0; 
do 

(_mpi_i < PROC_SIZE) -> 
if 

fi; 

(_mpi_i != PROC_RANK) -> 
MPI_Send(buf, _mpi_i, _MPI_BCAST_TAG, comm); 

else 

_mpLi++ 
else -> break 

od 
else -> 

MPI_Recv(buf, root, _MPI_BCAST_TAG, comm); 
fi; 
MPLBarrierO; 

2.5 MPI Gather 

MPI _ Gather gathers data from all processes. It can be modeled essentially by 
doing the reverse of our broadcast model. The root process iterates over all 
other process and waits to receive data from each. The other processes simply 
have to do an MPI Send to the root. 

inline MPI_Gather(sendbuf, recvbuf, root, comm) 
{ 

if 
(root == PROC_RANK) -> 
byte _mpLi; 

6 



} 

(_mpi_i < PROC_SIZE) -> 
if 

fi; 

(_mpi_i != PROC_RANK) -> 
MPI_Recv(recvbuf, _mpi_i, _MPI_BCAST_TAG, comm) 

else 

_mpLi++ 
else -> break 

od 
else -> 

MPI_Send(sendbuf, root, _MPI_BCAST_TAG, comm); 
fi; 
MPLBarrierO; 

2.6 MPI Reduce 

MPI _ Reduce combines the values from all processes to a single value. The 
model for this call is similar to MPI Gather. The difference is that the root 
process has to preform a reduction operation to the received data. 

inline MPI_Reduce(sendbuf, recvbuf, op, root, comm) 
{ 

if 
(root == PROC_RANK) -> 
byte _mpi_temp, _mpi_i; 
_mpi_i = 0; 
recvbuf = sendbuf; 
do 

(_mpi_i < PROC_SIZE) -> 
if 

(_mpi_i != PROC_RANK) -> 
MPI_Recv(_mpi_temp, _mpi_i, _MPI_BCAST_TAG, comm); 
if 

(op == MPI_MAX) -> 
recvbuf = ((recvbuf > _mpi_temp) -> recvbuf 

(op == MPI_MIN) -> 
recvbuf = ((recvbuf < _mpi_temp) -> recvbuf 

(op == MPI_SUM) -> 
recvbuf = (recvbuf + _mpi_temp); 

(op == MPI_PROD) -> 
recvbuf = (recvbuf * _mpi_temp); 

(op == MPI_LAND) -> 
recvbuf = (recvbuf && _mpi_temp); 

7 

_mpLtemp) ; 



} 

fi; 

fi 
else 

(op == MPI_BAND) -> 
recvbuf = (recvbuf & _mpi_temp); 

(op == MPI_LOR) -> 
recvbuf = (recvbuf I I _mpi_temp); 

(op == MPI_BOR) -> 
recvbuf = (recvbuf _mpi_temp); 

(op == MPI_BXOR) -> 
recvbuf = (recvbuf ~ _mpi_temp); 

else 

_mpi_i++ 
else -> break 

od 
else -> 

MPI_Send(sendbuf, root, _MPI_BCAST_TAG, comm); 
fi; 
MPLBarrierO; 

2.7 MPI Scatter 

MPI_Scatter sends data from one process to all other processes. It can be 
modeled as a MPI _ Gather to the root process and then a MPI _ Broadcast to 
all processes. 

inline MPI_Scatter(sendbuf, recvbuf, root, comm) 
{ 

} 

MPI_Gather(sendbuf, recvbuf, root, comm); 
MPI_Bcast(recvbuf, root, comm); 

2.8 MPI Allgather 

The MPI _ Allgather call collects data from all processes and distributes the 
collected data back to each process. The model for the call can just make a call 
to MPI Gather to make the collection and then call MPI Bcast to distribute 
the collected data. 

inline MPI_Allgather(sendbuf, recvbuf, comm) 
{ 

} 

MPI_Gather(sendbuf, recvbuf, _MPI_COMM_ROOT, comm); 
MPI_Bcast(recvbuf, _MPI_COMM_ROOT, comm); 

8 



2.9 MPI Allreduce 

The MPI _ Allreduce call combines data from all processes and distributes the 
results back to all of the processes. The model for this call makes a call to 
MPI Reduce to collect and combine the data and then it makes a call to 
MPI Bcast to distribute the results. 

inline MPI_Allreduce(sendbuf, recvbuf, op, comm) 
{ 

} 

MPI_Reduce(sendbuf, recvbuf, op, _MPI_COMM_ROOT, comm); 
MPI_Bcast(recvbuf, _MPI_COMM_ROOT, comm); 

2.10 MPI Barrier 

MPI _ Barrier is a procedure that blocks until all other processes in the com
municator have reached an MPI Barrier call. The model for the MPI Barrier 
routine is a little less straight-forward than some of the others. It could poten
tially be modeled in a number of different ways, but none are trivial. This call 
has to be able to be called multiple times is succession. In our model we elect 
one process to be the master of the lock. 'Vhen it enters, it waits for the all 
of the other processes to enter as well. The other process enter the barrier if 
the barrier lock is not set and then waits for that lock to be activated before 
leaving. Once each process enters, the master then sets the lock allowing all of 
the other processes to leave the barrier. The master must then wait for each 
process to actually leave before reseting the lock making it safe for a subsequent 
call. 

byte _mpi_barrier = 0; 
byte _mpi_barrier_lock = 0; 
inline MPI_Barrier() 
{ 

} 

(!_mpi_barrier_lock); 
if 

fi; 

(PROC_RANK == _MPI_COMM_ROOT) -> 
(_mpi_barrier == (PROC_SIZE - 1)); 
_mpi_barrier_lock = 1; 
(_mpi_barrier == 0); 
_mpi_barrier_lock = 0; 

else -> 
_mpL barrier++; 
(_mpi_barrier_lock); 
_mpi_barrier--; 

9 



2.11 MPI Probe 

MPI_Probe is a blocking call that tests for a message. The message is required 
to match the specified source and tag (which can be wild-cards). MPI_Probe 
makes use of Promela's ability to poll channels. It can checks for messages that 
match certain conditions. In this case, it check the source and the tag (both 
optionally) for a match and ignores the message data. 

inline MPI_Probe(source, tag, comm) 
{ 

if 

fi 
} 

(tag == MPI_ANY_TAG) -> 
if 

(source == MPI_ANY_SOURCE) -> 
comm[PROC_RANK]??[_,_,_]; 

else -> 
comm[PROC_RANK]??[_,_,eval(source)]; 

fi 
else -> 
if 

fi 

(source == MPI_ANY_SOURCE) -> 
comm[PROC_RANK]??[_,eval(tag),_] ; 

else -> 
comm[PROC_RANK]??[_,eval(tag),eval(source)] ; 

2.12 MPI Iprobe 

MPI _ Iprobe is a non-blocking call for message testing. The model for MPI _ Iprobe 
uses MPI _ Probe directly. Since the call to MPI _ Probe is placed in a condi
tional part of the if statement, it will not block. The flag is then set to 1 if the 
a message matches and 0 otherwise. 

inline MPI_Iprobe(source, tag, comm, flag) 
{ 

if 

fi 
} 

MPI_Probe(source, tag, comm) -> 
flag = 1; 

else -> 
flag = 0; 

The Promela models of these various MPI routines show many of the qualities 
of MPI and Spin. They are both powerful tools and seem to fit well together. 

10 



Promela provides a fairly straight-forward way for modeling MPI routines. It 
is almost as if they are a natural match. Another import lesson learned here 
is that Promela could potentially be used to model the entire MPI Standard. 
Since we were able to model many of the basic calls that make up the foundation 
of MPI, it does not take much imagination to see that this path can take us 
deeper into to the standard and may even provide a way completely through. 

3 Examples 

Having models of the MPI calls makes it easier to model entire MPI programs. 
This section illustrates the usefulness of an MPI implementation in Promela 
using three examples. 

3.1 Greetings 

We will start out with a simple example[5]. Below is a MPI program that does 
one of two things. If its rank is not 0 then it sends a message to the process with 
rank 0 that consists of one integer (MPI _ INT) that is the rank of the sending 
process. If its rank is 0 then it calls MPI_Recv p-l times, where p is the total 
number of processes. After process 0 receives a message, it prints out a greeting 
from the sending process. 

#include <stdio.h> 
#include "mpi.h" 
int main(int argc, char *argv[]) 
{ 

int rank, p, i; 
int message; 
MPI_Status status; 
MPI_Init(&argc, &argv); 
MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
MPI_Comm_size(MPI_COMM_WORLD, &p); 

if (rank != 0) { 
message = rank; 
MPI_Send(&message, 1, MPI_INT, 0, 0, MPI_COMM_WORLD); 

} else { 

} 

for (i = 1; i < p; i++) { 
MPI_Recv(&message, 1, MPI_INT, MPI_ANY_SOURCE, 

MPI_ANY_TAG, MPI_COMM_WORLD, &status); 
printf (IIGreeted by %d\ 

} 

} 

MPLFinalize 0 ; 
return 0; 

11 

nil, message); 



This example only uses two MPI calls (MPI _ Send and MPI _ Recv). This makes 
it very easy to model in Promela and it is make even easier to model with our 
collection of pre-modeled MPI routines. 

#include "mpi.prom" 
MPI_Proctype maine) 
{ 

byte rank, p, i; 
byte message; 
MPI_Comm_size(p); 
MPI_Comm_rank(rank); 
if 

(rank != 0) -> 
message = rank; 
MPI_Send(message, 0, 0, MPI_COMM_WORLD) 

else -> 

fi 
} 

i = 1; 
do 

od 

(i < p) -> 
MPI_Recv(message, MPI_ANY_SOURCE, MPI_ANY_TAG, 

MPI_COMM_WORLD); 
printf ("Greeted by %d\n", message); 
i++ 

else -> break 

As you can see, the Promela code looks very similar to the MPI code that is 
being modeled. One of the goals of our Promela-based MPI implementation 
is to look and fell much like MPI in C or Fortran. However, you may have 
noticed that the models of MPI _ Send and MPI _ Recv are missing two of the 
arguments, the count (or size) and the data type. This is because the models 
do not need this information be be correct and Spin do not support all of the 
data types that MPI requires (like floats). 

3.2 Trapazoidal Rule 

Here is an example of a model of a more practical MPI program[5]. This program 
shows a simple illustration of the trapezoidal rule used for integral approxima
tion. Each of the processes involved calculates an equal sized portion of the 
integral and then sends its results to the root process where the final integral is 
summed up. 

#include <stdio.h> 
#include "mpi.h" 
int main(int argc, char *argv[]) 

12 



{ 

} 

int my_rank, p; 
float a = 0.0, b = 1.0; 
int n = 1024; 
float h, local_a, local_b; 
int local_n; 
float integral, total; 
MPI_Init(&argc, &argv); 
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); 
MPI_Comm_size(MPI_COMM_WORLD, &p); 
h = (b-a)/(float) n; 
local_n = nip; 
local_a = a + (float) my_rank * (float) local_n * h; 
local_b = local_a + (float) local_n * h; 
integral = Trapezoidal(local_a, local_b, local_n, h); 
MPI_Reduce(&integral, &total, 1, MPI_FLOAT, MPI_SUM, 

0, MPI_COMM_WORLD); 
if (my_rank == 0) 

printf (" Integral = %f\n", total); 
MPLFinalize 0 ; 
return 0; 

This example is limited to one MPI function, MPI _ Recude. However, it is 
more complicated around the MPI calls and does floating-point computations 
that have to be abstracted away in our Promela model. 

#include "mpi.prom" 
MPI_Proctype maine) 
{ 

} 

byte my_rank; 
byte integral, total; 
MPI_Comm_rank(my_rank); 
1* Computed local integral *1 
integral = 1; 
MPI_Reduce(integral, total, MPI_SUM, 0, MPI_COMM_WORLD); 
if 

fi 

(my_rank == 0) -> 
printf (" Integral = %d\n", total); 

else 

3.3 Jacobi's Method 

The final example that we present is more complicated than the others[5]. It 
involves Jacobi's method for solving linear systems which is an iterative method 

13 



that can be parallelized. The details of the method itself are outside the scope 
of this document. We will focus on the modeling of the MPI code. 

1* Return 1 if iteration converged, 0 otherwise *1 
int Jacobi(MATRIX_T A_local, float x_Iocal[], float b_Iocal[], int n, 

float tol, int max_iter, int p, int my_rank) 
{ 

} 

int i_local, i_global, j; 
int n_bar, iter_num; 
float x_temp1[MAX_DIM]; 
float x_temp2[MAX_DIM]; 
float *x_old, *x_new; 
n_bar = nip; 
MPI_Allgather(b_Iocal, n_bar, MPI_FLOAT, x_temp1, n_bar, 

MPI_FLOAT, MPI_COMM_WORLD); 
x_new = x_temp1; 
x_old = x_temp2; 
iter_num = 0; 
do { 

iter_num++; 
Swap(x_old, x_new); 
for (i_local = 0; i_local < n_bar; i_Iocal++) { 

i_global = i_local + my_rank*n_bar; 
x_Iocal[i_local] = b_Iocal[i_local]; 

} 

for (j = 0; j < i_global; j++) 
x_Iocal[i_local] -= A_local [i_local] [j]*x_old[j]; 

for (j = i_global+1; j < n; j++) 
x_Iocal[i_local] -= A_local [i_local] [j]*x_old[j]; 

x_Iocal[i_local] = x_local [i_local] lA_local [i_local] [i_global]; 

MPI_Allgather (x_local , n_bar, MPI_FLOAT, x_new, n_bar, 
MPI_FLOAT, MPI_COMM_WORLD); 

} while ((iter_num < max_iter) && (Distance (x_new, x_old, n) > tol)); 
MPI_Gather(x_Iocal, n_bar, MPI_FLOAT, x_local, n_bar, 

MPI_FLOAT, 0, MPI_COMM_WORLD); 
if (Distance (x_new, x_old, n) <= tol) 

return 1; 
else 

return 0; 

Creating a model for this code is much more complicated because the result of a 
foalting-point calculation (Distance) controls the flow of the program. In order 
to abstract this calculation, we have to again rely on Promela's non-determinism. 

#include "mpi.prom" 
bit dist; 

14 



inline Distance(rank) 
{ 

} 

if 
(rank == 0) -> 
if 
:: (true) -> dist 
:: (true) -> dist 
fi; 

else -> skip; 
fi; 
MPLBarrierO; 

0; 
1; 

MPI_Proctype maine) 
{ 

} 

byte p, rank; 
byte iter_num; 
byte b_Iocal = 1; 
byte x_local, x_new; 
byte max_iter = 2; 
MPI_Comm_size(p); 
MPI_Comm_rank(rank); 
MPI_AIIgather(b_Iocal, x_new, MPI_COMM_WORLD); 
iter_num = 0; 
do 

od; 

iter_num++; 
x_local = 1; 
MPI_AIIgather (x_local , x_new, MPI_COMM_WORLD); 
Distance(rank); 
if 
:: ((iter_num >= max_iter) I I (dist)) -> break; 
:: else -> skip; 
fi; 

MPI_Gather(x_Iocal, x_local, 0, MPI_COMM_WORLD); 
if 

fi 

rank == 0 -> 
if 

(dist) -> 
printf(IConverged\n"); 

else -> 
printf(IIDid not converged\n"); 

fi 
else -> 

15 



This example shows that the modeling process is not always straight-forward. 
This may be a problem if we ever wanted to automate the conversion from C 
to Promela. 

4 Conclusion 

Every concurrent system has certain requirements that it must meet. One re
quirement common to almost all such systems is the absence of synchronization 
problems. MPI-based programs are no exception. Programmers do not want 
and in many cases, can not afford to have these bugs in their systems. Formal 
verification tools, like Spin, provide a means of detecting flaws of this nature. 
Since the MPI Standard does not outline a means for verification, Spin can fill 
in with its strength in validation. 

The MPI community could benefit greatly from formal verification. The 
framework outlined in the paper could help MPI programmers find bugs before 
they submit their jobs to be run on a supercomputer after a week of waiting. 
Finding a bug in their job after it crashes would waste a considerable amount 
of time. Also, after that bug has been eliminated, how can they be certain 
that different bug will not cause another failure? Using Spin for verification 
can reduce the overall effort in creating a reliable MPI program by finding bugs 
before they can cause a problem. 

'Vhat the future may bring is always uncertain. However, looking at the ex
isting MPI routines that we have modeled in Promela, one could foresee models 
of all of the MPI calls. This mayor may not be possible, but a complete model 
the MPI Standard is certainly desirable. Also, automation is missing from what 
we have shown. Currently, each MPI program has to be modeled by hand 
which can be complicated and lead to incorrect models. In the future, perhaps 
a method can be devised that will model and verify existing MPI programs with 
minimal work by the user. This is a tantalizing prospect that, if coupled with a 
complete model of the MPI Standard, could address the matter of verification 
MPI programs and help ensure that they are free from concurrency bugs. 

References 

[1] Siegel, S. F., Avrunin, G. S.: Verification of MPI-Based Software for Sci
entific Computation. Department of Computer Science, University of Com
puter Science, University of Massachusetts, 2004. 

[2] Message Passing Interface Standard 2.0. http://www.mpi-forum.org/docs/. 
1997. 

[3] Message Passing Interface Standard 1.1. http://www.mpi-forum.org/docs/. 
1995. 

[4] Holzmann, G. J.: The Spin Model Checker. Addison-Wesley, Boston, 2004. 

16 



[5] Pacheco, P. S.: Parallel Programming with MP!. Morgan Kaufmann Pub
lishers, San Francisco, 1997. 

17 


