
On the Decidability of Shared Memory Consistency Verification

Ali Sezgin

Department of Computer Engineering

Atılım University

Gölbaşı, 06836 Ankara

Turkey

asezgin@atilim.edu.tr

Ganesh Gopalakrishnan∗

School of Computing

University of Utah

Salt Lake City, UT 84108

USA

ganesh@cs.utah.edu

Abstract

We view shared memories as structures which define re-

lations over the set of programs and their executions. An im-

plementation is modeled by a transducer, where the relation

it realizes is its language. This approach allows us to cast

shared memory verification as language inclusion. We show

that a specification can be approximated by an infinite hier-

archy of finite-state transducers, called the memory model

machines. Also, checking whether an execution is generated

by a sequentially consistent memory is approached through

a constraint satisfaction formulation. It is proved that if

a memory implementation generates a non interleaved se-

quential and unambiguous execution, it necessarily gener-

ates one such execution of bounded size. Our paper sum-

marizes the key results from the first author’s dissertation,

and may help a practitioner understand with clarity what

“sequential consistency checking is undecidable” means.

1. Introduction

Shared memory consistency models (“consistency mod-

els”) are centrally important in the design of high perfor-

mance hardware based on shared memory multiprocessing

(e.g., [1]) as well as high performance software based on

shared memory multi-threading (e.g., [2]). To mitigate the

complexity of designing shared memory consistency pro-

tocols, either post-facto verification (e.g., [3]) or correct

by construction synthesis (e.g., [4]) are employed. Shared

memory multiprocessor machines are programmed accord-

ing to their consistency models, which define the possible

outcomes of running concurrent programs. The semantics

of shared memory are described by their consistency mod-

els which specify the set of values that loads are permit-

∗Supported in part by NSF grant ITR-0219805 and SRC Contract

1031.001

ted to return for any program. Typical programs consist

of loads, stores, and other special instructions such as

barriers, and fences. In this paper, we consider only

loads (synonymous with reads) and stores (synony-

mous with writes), as is customary in a study of basic

shared memory consistency issues.

For most practical purposes, weak shared memory mod-

els such as the Sparc TSO [5] or the Itanium memory model

[6] are of interest. However, most programmers understand

shared memory in terms of sequential consistency (SC) for

three reasons: (i) SC has, traditionally, been the memory

model of choice to support in hardware; (ii) excellent theo-

retical understanding exists with respect to SC; and (iii) pro-

grammers strive to obtain a semantics that matches SC for

particular programs of interest by inserting the least num-

ber of fences [7, 8]. Thus, it is important to have theoreti-

cal issues about sequential consistency well understood by

programmers in simple and intuitive terms, and in terms of

models that they can easily relate to. We believe that this

is not the case today: there are results which can be mis-

understood, practical issues that have not been considered

adequately, and in addition, new results that warrant dis-

semination at an intuitive level. The aim of this paper is to

offer such a perspective to practitioners as well as to those

in formal methods.

As an example of what we mean, consider [9] in

which the authors have shown that the problem of verify-

ing finite-state shared memory consistency protocols [10]

against the sequential consistency memory model is un-

decidable. Upon closer examination, [9] does not offer

a definite verdict on the practical aspect of shared mem-

ory consistency protocol verification. What [9] show is

that if a shared memory system is viewed in terms of

traces of executed instructions, then the problem of show-

ing that these traces are contained in the language of se-

quential consistency (formally defined in [9]) is unde-

cidable. In [11], we show that if we model a finite-

state consistency protocol in terms of triples of the form

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

〈program, execution, correspondence〉, where we not

only keep the executions (as in current approaches) but also

(i) model the programs that gave rise to the executions, and

(ii) model a correspondence relation between which pro-

gram instructions appear where in the execution, then the

question of decidability remains open. We argue that our

way of modeling memory systems avoids all the problems

pertaining to realizability that a trace based view invites.

Moreover, we believe that our model is much more faithful

to reality in that a shared memory system is a transducer

from programs to executions and not merely an autonomous

process that spews executed instructions.

As another example of a less known result, we recently

show [11] that for unambiguous executions (executions

where each address a is not written into with the same value

more than once), the question of verifying SC becomes de-

cidable. The manner in which this result was obtained is, in

itself, interesting. We show that given any unambiguous ex-

ecution, one can generate constraints that capture orderings

that must be disobeyed for the execution to be sequentially

consistent. We show that these constraints imply a bound on

the size of executions to be searched. This result has been

obtained without making any assumptions such as location

monotonicity or symmetry that are made in [12, 13]. It is

also the first time that we believe that the notion of decid-

ability and ambiguity have been related.

Views similar to ours exist in other work also: for exam-

ple, in [14], the authors point out that the class of protocols

considered by [9] possibly include instances that are irrel-

evant (unrealizable) in practice. They go on to provide a

characterization of decidable families of protocols, as well

as decision procedures. Others [15] have also pointed out

such decidable protocol classes. However, these decidable

SC characterizations leave out important classes of execu-

tions that our approach considers.

Roadmap. In Section 2, we define the notion of a mem-

ory model as a relation over programs and executions and

a shared memory system as a transducer. We address

many details that are not addressed in related works (e.g.,

[9, 14]) without which the connections between definitions

and physically realizable systems are unclear; these include

notions such as (i) establishing a relation between memory

requests and responses using a coloring relation, (ii) the no-

tions of immediate and tabular that allow a finite-state pro-

tocol to interact with a (potentially) out-of-order memory

system and collect responses corresponding to requests. In

Section 3, we describe what happens if we certify a mem-

ory system to be correct solely based on executions (without

considering programs). In Section 4, we describe a finite ap-

proximation to sequentially consistent shared memory sys-

tems. In Section 5, we present a constraint based approach

to verify finite executions, and state decidability results ap-

plicable to unambiguous executions. While we cannot do

justice to the level of detail it takes to explain these notions

adequately (which is what [11, 16] do), what we hope to

achieve is an intuitive dissemination of our results which

our former publications do not do.

2. Formalization of Shared Memory

Any work on shared memory formalization or verifica-

tion has to start with an understanding of what a memory

entails. After all, shared memory is but a type of memory.

It is common practice to immediately start with a mathe-

matical definition. Here, we will start with an intuitive ex-

planation, stating the obvious, and build our formalization

on top of that.

We will explain a memory system using two orthogonal

and complementary views: static and dynamic. Statically,

a memory system is an array whose dimension is known as

the address space. What each address can hold as datum

forms the data space of the memory. Dynamically, a mem-

ory system is an interacting component which generates re-

sponse to each instruction it receives. The instructions it

receives are broadly classified as those that query and those

that update. The instructions belonging to the former class

are usually called read instructions; those in the latter class

are called write instructions. The state of a memory system

can be uniquely defined as the combination of the contents

of its address space (static part) and the set of instructions it

is processing (dynamic part).

What distinguishes a shared memory from other types of

memory is the environment with which the memory system

interacts. In a shared memory, typically, there are several

users and each instruction is tagged with the identifier of

the user issuing the instruction. Hence, contrary to a sin-

gle user system, not only does the memory differentiate an

instruction according to its class or the address on which it

operates, but also according to its issuer.

A shared memory system has multiple users and as such

it forms a concurrent system. Removing this concurrency

at the memory side goes against the raison d’être of shared

memory systems, i.e. increased performance through paral-

lelism. Allowing arbitrary behavior by the memory system

would make programming infeasible. The middle ground is

to define a set of behaviors: each instruction sequence (pro-

gram) is expected to result in one of the possibly several al-

lowed response sequences (executions). A shared memory

model defines this relation. When a shared memory system

is claimed to conform to a certain shared memory model,

it is to be understood that a program can only result in an

execution defined by this shared memory model. Formal

verification, then, is to prove this claim.

We keep referring to two seemingly different notions: a

shared memory model and a shared memory system. This

is not arbitrary. A shared memory model should be the defi-

2

nition of a relation (what it contains) and not its description

(how it realizes). A shared memory system, on the other

hand, should be the formal model of a design. It should

describe how it is to behave for each program it receives.

In our framework, closely following intuition, a shared

memory model is a binary relation over programs and exe-

cutions, called a specification. A specification is parameter-

ized over the set of users, address space and data space. The

instructions or the responses that the memory might receive

or generate and which response can be generated for which

instruction forms a structure called interface and is also part

of the specification.

Definition 1 A memory interface, F, is a tuple 〈I,O, ρ〉,
where

1. I and O are two disjoint, nonempty sets, called input

(instruction) and output (response) alphabets, respec-

tively. Their union, denoted by Σ, is called the alpha-

bet.

2. ρ ⊆ O × I is the response relation.

Definition 2 The rw-interface is the memory interfaceRW
with (here N is the set of natural numbers):

1. IRW = {wi} × N
3 ∪ {ri} × N

2

2. ORW = {wo,ro} × N
3

3. For any σi ∈ IRW , σo ∈ ORW , we have (σo, σi) ∈
ρRW iff either the first component of σo is wo, the first

component of σi is wi and they agree on the remaining

three components, or the first component of σo is ro,

the first component of σi is ri and they agree on the

second and third components. Formally,

ρRW ={((wo, p, a, d), (wi, p, a, d)) | p, a, d ∈ N}∪

{((ro, p, a, d), (ri, p, a)) | p, a, d ∈ N}

Also, for ease of notation the following will be used:

1. A partition of Σ, {R,W}, where

R = {ro} × N
3 ∪ {ri} × N

2

W = {wi,wo} × N
3

2. Three functions, π, α, δ, where for any σ ∈ ΣRW ,

π(σ) is the value of σ’s second component, α(σ) that
of the third component, and δ(σ) that of the fourth

component if it exists, undefined (denoted by ⊥) oth-

erwise.

Definition 3 A memory specification, S, for a memory in-

terface F is the tuple 〈F, λ〉, where λ ⊆ ((IF)∗× (OF)∗)×
Perm, is the input-output relation.

Here, Perm is the set of all permutations. We later em-

ploy Permk for the set of all permutations over {1 . . . k}.

We shall let µS denote dom(λS) (a relation over (IS)∗ ×
(OS)∗). λ of a memory is expected to define the relation

between the input to a memory, a (finite) string over I which

might be called a program or an instruction stream, and the

output it generates for this input, a (finite) string over O
which might be called an execution or a response stream.1

For each such program/execution pair of the memory, λ also

defines, through permutation, the mapping between an in-

dividual instruction of the program and its corresponding

output symbol in the execution.2

For instance, consider an input-output relation for

RW which has the following element: ((((ri,1,1)
(ri,1,1)), ((ro,1,1,2) (ro,1,1,4))), (21)). In

the program, we have two reads issued by processor 1 to ad-

dress 1. The execution generates two different values read

for address 1; 2 and 4. By examining the permutation, we

see that the first instruction’s response is placed at the sec-

ond position of the output stream, whereby we conclude that

the returned value for the first read is 4. Similarly, the sec-

ond read’s value is 2. So, intuitively, if the permutation’s

ith value is j, the jth symbol of the output stream is the

response corresponding to the ith instruction of the input

stream.

Definition 4 A memory specification S is called proper if

1. µS is length preserving.

2. For any p ∈ (IS)∗, there exists q ∈ (OS)∗ such that

(p,q) ∈ µS.

3. σ = (p,q) ∈ µS implies ∅ 6= λS(σ) ⊆ Perm|p| and

for any η ∈ λS(σ), η(j) = k implies ρS(qk, pj).

If the first condition holds, the memory specification is

length-preserving. Then, a length-preserving memory spec-

ification is one which matches the length of its input to its

output. Note that, without the third requirement, it is not

of much use. Example: SND = 〈RW, λND〉, where σ =
((p,q),n) ∈ λND implies p ∈ (IRW)∗, q ∈ (ORW)∗,

|p| = |q|, ρRW(qj , pj) and η(j) = j, for j ∈ [|p|],
η ∼ n (η is the permutation represented by n). The shared

memory SND is length-preserving. If the second condi-

tion holds, a memory specification is complete (e.g., SND

is complete). Completeness is the requirement that a mem-

ory specification should not be able to reject any program

1Although we are using the words program and execution, we do not

claim that the input is required to be the unfolding of a program and the

output to be its associated execution. This might or might not be the case,

depending on where exactly the interface, user and memory are defined.

One choice might put the compiler at the user side, quite possibly resulting

in an input stream that is different from the actual ordering of instructions

in a program due to performance optimizations.
2By itself, ρ defines the type of response relations allowed.

3

as long as it is syntactically correct with respect to the in-

terface. This property, despite its simplicity, is one which

has been neglected by all previous work on shared memory

formalization, to the best of our knowledge ([17] considers

some of these issues). The third condition is saying that

any permutation used as a mapping from the instructions of

the input to the responses of the output should be respect-

ing the response relation of the interface. There are some

subtle points to note. First, it requires that the length of the

output stream, |q|, to be at least as much as the length of

the input stream, |p|; it could be greater (a problem which

is taken care of by the requirement of length-preserving).

Second, even for the same input/output pair, there can be

more than one permutation. Since we are trying to define a

correct specification without any assumptions, these seem-

ingly not tight enough requirements are favored for the sake

of generality. SND satisfies this third property.

Consistency models are viewed as sets of triples

〈program string, execution string, permutation〉

where the permutation describes the association be-

tween the individual instructions in the program string

and the corresponding “finished” (or executed) el-

ements in the execution string. For example, the triple

<Prog: write(p1,a,2); read(p2,a), Exec:

read(p2,a,0); write(p1,a,2), Perm: 21>

(where permutation 21 is an abbreviation for

{(1, 2), (2, 1)} – focussing only on the range elements),

could be one element in the set that defines sequential

consistency. Note that the standard notion of “program

order” can be extracted from the first element of the triple

(the program string) by projecting the string to individual

processors.

The execution strings, which represent the temporal or-

der, can be transformed, possibly into a different structure,

such as a poset, such that the predicate of the consistency

model is satisfied. For sequential consistency, however, a

poset structure is not needed; one can transform the execu-

tion strings to a serial logical order, which is a total order

as described earlier.

Consistency protocols are viewed as finite-state ma-

chines over finite strings. The alphabet of these

machines consists of instructions paired with colors.

The colors serve as a “marker dye”. We color

an instruction (e.g., <write_i(p,a,d),blue> or

<read_i(p,a),green>) when it enters the system

(also notice our use of the _i subscript to denote the is-

suing event corresponding to these instructions). When the

instruction emerges after having being executed, we can tell

by observing its color which program instruction gave rise

to it (and also we mark the completion event of these in-

structions by the _o subscript).

We state well-formedness conditions for specifications

and implementations. Some of these conditions are:

− The specification and implementation effect length-

preserving maps from programs to executions.

− The implementation cannot accumulate an arbitrary

number of instructions that it has ingested.

− The color sets are finite. This models the fact that in

any finite-state implementation of a consistency pro-

tocol, the number of outstanding (unfinished) memory

instructions is bounded.

− The implementation makes a “color association” be-

tween input symbols and output symbols that does not

change as more instructions are considered. This cap-

tures that the association is decided by a deterministic

process carried out by a finite-state protocol (we call

this property immediate).

− The color association is defined by pending instruc-

tions alone. In other words, “finished input instruction

/ output response” pairs have no effect in deciding the

nature of the color association for future instructions

(we call this property tabular).

There is one additional and important problem: the map-

ping between instructions and their associated responses.

The usual solution is to impose certain restrictions on the

memory system such as in-order completion. For instance,

if two read instructions of the same address by the same user

await responses, the first suitable generated response (same

address and user) belongs to the instruction that was issued

first. We feel that this is an unnatural restriction and cannot

be reasonably enforced on all memory systems.

Had we been dealing with infinite state machines, the so-

lution would have been trivial: mark each instruction with

a unique natural number and tag its response with the same

number. This is, in fact, employed in defining specifica-

tions as we saw above. For finite-state systems, an infi-

nite alphabet is not possible. Instead, we will let these ma-

chines have alphabets where each instruction and response

is paired with colors. These colors will serve as a “marker

dye”. We color an instruction (e.g., 〈?a2,blue〉) when it

enters the system. When a (colored) response emerges from

the memory system, we can tell from its color which in-

struction gave rise to it.

In the most general case, a function has to be supplied

to interpret pairs of strings over colors: given any pair of

strings of equal length, this function would generate a per-

mutation which would map instructions to responses. A

color set together with such a (conversion) function is called

a coloring scheme. it is not hard to see that this might result

in syntactically different, semantically equivalent strings,

something we are trying to avoid. Fortunately, we can do

better. In order to justify the use of a canonical coloring,

we allude to finitary arguments. When a user issues an in-

struction, it must have a certain mechanism to tell which

4

response it receives actually corresponds to that instruction,

especially when both the user and the memory system op-

erate in a setting where out of order execution and pend-

ing instructions, instructions that have not yet received a

response from the memory system, are allowed. Let us as-

sume that i is an instruction that the user issued and the

response r is the symbol that the memory system generated

for i. When the user receives r from the memory system, it

should be able to match it with i without waiting for other

responses. Furthermore, once i and r are paired by the user,

they should remain so; a future sequence of instructions and

responses should not alter the once committed matchings.

Since the user is a finite-state entity, it can retain only a fi-

nite amount of information about past input; most likely, it

will only keep track of the pending instructions. These ideas

are the basis for requiring implementations to be immediate

and tabular[11].

Once an implementation is assumed to be immediate and

tabular, and this assumption only depends on the finiteness

of the system and the users, we can do away with arbitrary

colorings and work with a canonical coloring. We have

proved the existence of an equivalent canonical coloring for

an arbitrary coloring in [11]. This means that any shared

memory system can be modeled by a transducer which uses

the canonical coloring.

3. Execution-based Formalism

An alternative, and widely adopted, way to formalize

memory systems is to view them as machines generating

responses. In this view, an execution of a memory system is

the collection of responses, also called events in this frame-

work, this memory system generates. A memory model is

described in terms of a model predicate over executions. A

memory system satisfies a memory model if all the execu-

tions the system generates satisfies the model predicate.

As usual, a memory system is parameterized over the set

of users, the set of addresses and the set of different data

values each address can hold, represented by P , A and D,

respectively. We will take all these sets as finite. A read

event is represented by r(p, a, d) where p ∈ P is the proces-

sor that issued the instruction, a ∈ A is the address queried

by the read instruction and d ∈ D is the data value returned

by the memory. Similarly, a write event is represented by

w(p, a, d) with p, a, and d having the same meanings. Σ
is the alphabet containing all read and write events. The

parameters of a read (write) event are extracted using the

functions π, α and δ. That is, for s = r(p, a, d), π(s) = p,

α(s) = a and δ(s) = d.

How an execution is represented results in different for-

malizations. There have been research that used partial or-

ders [18], graphs [19, 20] and traces [9, 14, 21, 22]. We will

consider the latter which has almost always been used in the

verification of sequential consistency.

In trace-theoretical representation, we use a partially

commutative monoid instead of the free monoid Σ∗. Let

σ1, σ2 be strings over Σ, let s, t be symbols in Σ and let

σ = σ1stσ2. Then the string σ1tsσ2 is 1-step equivalent to

σ if π(s) 6= π(t). An equivalence class is the transitive clo-

sure of 1-step equivalence. We can say that two strings not

necessarily syntactically equal but belonging to the same

equivalence class have the same semantic value.

A string σ = s1s2 · · · sn for si ∈ Σ is serial

(interleaved-sequential) if for any i ≤ n such that si =
r(p, a, d) is a read event, either there exists j < i with

α(sj) = a, δ(sj) = d, and there does not exist j < k < i

such that α(sk) = a and δ(sk) 6= d, or d is the initial value

of a. For simplicity, we will assume that the initial value

for each address is 0. This is the standard definition for se-

quential consistency; it requires that each execution allow a

(logical) reordering such that any read of an address returns

the value of the most recent write to the same address.

In this formalization, an execution is a string over Σ. The

model predicate for sequential consistency is as follows: An

execution is sequentially consistent if it is in the equivalence

class of a serial string. We say that a memory system is

sequentially consistent if all its executions are sequentially

consistent.

Based on this formalization, it has been claimed that [9]

a sequentially consistent finite-state memory system has a

sequentially consistent regular language. Consequently, in

[9], it is proved that it is undecidable to check for an arbi-

trary finite-state memory system whether it is sequentially

consistent or not. This result has been cited in almost all

of the subsequent work such as [21, 22, 20, 23]. Before ar-

guing the relevance of this result, however, it first behooves

us to talk about an assumption that has not been explicitly

stated.

3.1. Tracebased Formalization and Inorder Com
pletion

We have said that the definition of sequential consis-

tency, or any memory model for that matter, required in-

formation on the sequential order of instructions issued per

processor, also known as the program order. On the other

hand, we have not really talked about program order in the

context of trace-based formalization. The conciliation of

these two seemingly contradicting facts lies in a crucial as-

sumption: the memory system is expected to complete the

requests it receives in an order which respects per proces-

sor issuing order. That is, if the memory system receives

instruction i1 at time t1 from processor p, instruction i2
at t2 again from the same processor and t1 < t2, then it

is assumed that i1 completes3 before i2. That is precisely

3This notion might also be called “commitment”.

5

why the equivalence classes defined above do respect pro-

gram order; events belonging to the same processor are not

allowed to commute, hence at each 1-step equivalence the

program orders remain the same.

It is highly questionable whether this assumption can

stay valid, given the ever ambitious optimizations done for

memory systems. There are already memory systems which

process their requests out of issuing order.

Consider the following scenario. Processor p issues

r(p, a)4 and then issues r(p, b). If the second read com-

pletes before the first one, what we observe in the execution

will be of the form σ1r(p, b, d)σ2r(p, a, d′)σ3 for strings σi

over Σ. Any string in the equivalence class of this string

will always have r(p, b, d) before r(p, a, d′), contradicting

the initial program order.

One can say that an intermediate machine that would

convert what the memory system generates into a string for

which the assumption holds can be constructed. We could

then take the combination of the memory system and that

machine and work on the output of the intermediate ma-

chine without any problem. However, there are cases where

a finite-state machine simply cannot generate such an out-

put.

Consider now a slight variation of the above scenario.

Processor p issues r(p, a) and then issues an unbounded

number of r(p, b). That is, after reading address a, it polls

the address b for an unbounded number of times. Assume

further that the read of a does not return a value unless all

the reads of b complete. This will mean that the finite-state

intermediate machine must have the capability of storing an

unbounded amount of information, in this case all the read

events of address b. This is clearly and theoretically impos-

sible.

This assumption of in-order completion found in trace-

based formalization, therefore, restricts its use to a subset

of all possible memory systems, not all of which are pure

theoretical concoctions.

Unfortunately, not only all possible finite-state memory

systems cannot be formalized using trace theory, the finite-

ness of a memory system in this formalization cannot be

formulated either. We will argue this point next.

3.2. Finiteness and Tracebased Formalization

It has been argued in [9] that since a memory system is

basically a finite-state automaton whose language is a sub-

set of Σ∗, the memory system is finite-state if and only if

its language is regular. Furthermore, as we have previously

mentioned, this implies that a finite-state memory system is

sequentially consistent if and only if its language is regular

and sequentially consistent.

4This is the representation of the instruction whose response is the read

event r(p, a, d) for some d ∈ D.

However, we believe that this characterization of finite-

ness is inadequate. Consider the following set of execu-

tions, given as a regular expression:

w(1, a, 2)r(1, a, 1)∗r(2, a, 2)∗w(2, a, 1)

According to the definition of sequential consistency, the

memory system generating this language is sequentially

consistent. It is sequentially consistent because any string

belonging to this regular expression has a serial string in its

equivalence class. For instance, the execution

w(1, a, 2)r(1, a, 1)r(2, a, 2)w(2, a, 1)

is equivalent to the serial string

w(1, a, 2)r(2, a, 2)w(2, a, 1)r(1, a, 1)

Let us assume that N is the cardinality of the state space

of the finite-state memory system generating this regular

expression. Think of the execution where we have 2N

r(1, a, 1) events and 2N r(2, a, 2) events. By the execu-

tion string, we know that the first event is w(1, a, 2). This

is to be followed by the read event r(1, a, 1). Note that, by

the assumption discussed in the previous section, we know

that, without any information about the relative issuing or-

ders among read instructions belonging to different proces-

sors, at least 2N instructions must be issued by the second

processor before the write instruction which is the last to be

committed is issued by this same processor.

However, this cannot be done by a sequentially consis-

tent and finite-state machine. Noting that the cardinality of

the state space of the machine was N , there are two possi-

bilities:

1. The machine generates the read event r(1, a, 1) be-

fore the issuing of the instruction corresponding to the

event w(2, a, 1). If at the instant the machine gener-

ates this read event we stop feeding the finite-state ma-

chine with instructions, it will either terminate with an

execution that does not have a serial string in its equiv-

alence class or it will hang waiting for issuing of the

write instruction it guessed. The former case results

in a non-sequentially consistent execution. The latter

case where the memory system simply refuses to ter-

minate computation will be discussed below.

2. The machine generates the first read event after the is-

suing of the instruction corresponding to the w(2, a, 1)
event. This means that the machine has not generated

any event for at least 2N steps. This in turn implies

that, since there are N states, there exists at least one

state, s, which was visited more than once, such that on

one path from s to s, the machine inputs instructions

but does not generate any events. Let us assume that

6

the mentioned path from s to s was taken k times. Con-

sider a different computation where this path is taken

2k times; each time this path is taken in the original

computation, in the modified computation it is taken

twice. It is not difficult to see that this will change the

program, the number of instructions issued, but will

leave the execution the same; no output is generated

on the path from s to s. Hence, we obtain an execution

which does not match its program; the program’s size

becomes larger than the size of execution. Put in other

words, the finite-state memory ignores certain instruc-

tions and does not generate responses.

The basic fallacy here is the abstraction of input, or the pro-

gram. In the first case, where the memory system hangs

or does not terminate, the memory system cannot be con-

sidered correct in any reasonable sense. A memory system

should always generate an execution as long as the stream

of memory accesses, or instructions, are syntactically cor-

rect. In the second case, we have a memory system which

generates its output regardless of what it receives as input.

There should be a well-defined correspondence between the

instructions a memory system receives and the responses it

generates.

Remember that the initial motivation for shared memory

models was to capture some sort of correctness for shared

memory systems. The two rules we have mentioned above,

that the memory system does not deadlock and that the pro-

gram and its execution must be related, should be properties

that are satisfied by any memory system, not only sequen-

tially consistent systems. However, it is impossible to char-

acterize these requirements when only execution is present

in the formalization.

If the reader is not convinced about the necessity of rules,

we could propose an alternative argument. Going back to

the original definition, we note that a sequentially consis-

tent memory system is required to behave as if it is a single

user system. A single user memory system, on the other

hand, cannot exhibit any of the behaviors mentioned above

(deadlock or arbitrary execution) and be deemed correct.

It is therefore not correct to prove a property in trace-

based formalization and then claim that property to hold for

memory systems in general. The reverse direction holds

as well: certain properties of memory systems cannot be

expressed in trace-based formalization. Finiteness is one

such property. We have been so far unable to characterize

for the trace-based formalization the set of executions which

can be generated by finite-state memory systems.

Another property that has been proved to hold for mem-

ory systems in trace-based formalization is the undecidabil-

ity we mentioned above. As a corollary of the argument

we have given for the finiteness, the result of undecidabil-

ity is not applicable to finite memory systems in general.

We claim that the decidability of checking the sequential

consistency of a finite-state memory system is still an open

problem.

4. Finite Approximations to Sequential Consis-

tency

In this section, we will define for each shared memory

instance a set of machines whose language-union will cover

all possible interleaved-sequential program/execution pairs

of that instance at the initial state ι.

memory

... ...

Commit

Queues

Processor

Queues

Input instruction

stream

stream

responseOutput

size k
size j

array

Figure 1. The diagram of SCP,C(j, k)

Let P be a parameterized instance (P,A, D), C be a

color set and let j, k ∈ N. For simplicity, we will assume

that P = [|P |]5, A = [|A|], C = [|C|]. Then, the machine

SC(P,C)(j, k) is defined as follows:

There are |P | processor fifo queues each of size j such

that each queue is uniquely identified by a number in P , |C|
commit fifo queues each of size k, again each with a unique

identifier from C, and the memory array, mem, of size |A|.
Initially, the queues are empty, and the memory array agrees

with ι, that is, mem(i) = ι(i), for all i ∈ dom(ι). At

each step of computation, the machine can perform one of

the following operations: read an instruction, commit an

instruction or generate a response. The choice is done non-

deterministically among those operations whose guards are

satisfied.

Let σ = (p, c) be the first unread instruction. The guard

for reading such an instruction is that the π(p)th processor

queue and the cth commit queue are not full. If this opera-

tion is chosen by the machine, then one copy of σ is inserted

to the end of the π(p)th processor queue, another is inserted

to the end of the cth commit queue and a link is established

between the two entries.

The guard for committing an instruction is the existence

of at least one nonempty processor fifo queue. If this guard

5For a set A, |A| gives the cardinality of A. For a natural number n,

[n] gives the set {0, 1, . . . , n − 1}.

7

is satisfied and the commit operation is chosen, then the

head of one of the nonempty processor queues is removed

from its queue. Let us denote that entry by (q, c). If

q ∈ R, then the response ((ro, π(q), α(q),mem(α(q))), c)
replaces the entry linked to (q, c) in the cth commit queue.

If q ∈ W , then the response ((wo, π(q), α(q), δ(q)), c) re-

places the entry linked to (q, c) in the cth commit queue and

the α(q)th entry of the memory array is updated to the new

value δ(q), i.e., mem[α(q)] = δ(q).

The guard for outputting a response is the existence of

at least one nonempty commit queue which has a com-

pleted response at its head position. If indeed there are such

nonempty queues and the output operation is chosen, then

one of these commit queues is selected randomly, its head

entry is output by the machine and removed from the com-

mit queue.

Let the language of an SCP,C(j, k) machine,

L(SCP,C(j, k)), be the set of pairs of input accepted

by the machine and output generated in response

to that input. Let LP,C denote the (infinite) union⋃
j,k∈Nat L(SCP,C(j, k)). In [11], we prove that any pro-

gram/execution pair is interleaved-sequential only if it can

be generated by some SC machine. This implies that LP,C

contains all and only interleaved-sequential executions; that

is, it is equivalent to the set of all sequentially consistent

program/execution pairs.

The relation realized by a finite SCP,C(j, k) is also the

language of a 2-tape automaton, since it is finite-state and

length preserving (see [24]). The same can be said about

length-preserving shared memory implementations of a fi-

nite instance. Since the emptiness problem for regular lan-

guages is decidable, it follows that it is decidable to check

whether a finite instance implementation realizes a relation

that is included in the language of some SC machine. Fur-

thermore, completeness of an implementation of a finite

instance is also decidable; it suffices to construct a new

automaton with the same components whose transition la-

bels are projected to the first (input) alphabet and then to

check for its universality. These observations allow us to

claim that it is decidable to check whether a memory sys-

tem M is complete and has a language that is subset of

SCP,CM (j, k), for some j, k ∈ N. Note that SC machines

allow a semi-decision procedure for sequential consistency

conformance of a protocol to be obtained through language

containment (since we do not know how to bound j and k

yet, a decision procedure is not obtained).

As a case study for the above ideas, in [11], we prove

finite instances of lazy caching [25] sequentially consistent.

The method we used is based on (regular) language inclu-

sion and, thus, in principle, could be fully automated.

5. A Constraint Satisfaction Approach

We said that a concurrent execution is a combination of

sequential executions, one per processor and the concurrent

execution is interleaved-sequential if a certain interleaving

of the sequential executions appears as if executed by a sin-

gle processor. Let us call this the logical order of a con-

current execution. The logical order, then, is a fictitious or-

der that conforms to all the requirements enforced by each

processor. But what exactly do we mean by these require-

ments?

1

2

4

P1 P2 P3

w(2,a,1) w(3,a,2)

r(1,a,1)

r(1,a,2)

3

Figure 2. Sample concurrent execution, G1.

Look at the concurrent execution G1 of Fig. 2. We have

four instructions. The requirement of processor 2 is that a

write of value 1 to address a exists. Besides that, it imposes

no ordering with respect to any other instruction. Same with

processor 3. Processor 1, on the other hand, requires that the

read of value 1 precede the read of value 2 at address a. This

has an indirect effect on the write ordering: w(a,1)6 must

precede w(a,2). Hence, a logical order, in case it exists,

must satisfy all these requirements. For this instance, 3, 1,

4, 2 is the required logical order.

1

2

r(1,a,1)

r(1,b,1)

P1

Figure 3. Sample concurrent execution, G2.

Now, look at a snippet of a concurrent execution G2,

in Fig. 3. One requirement is that r(1,a,1) precede

r(1,b,1). It is also required that w(a,1) and w(b,1)

exist. However, it does not seem to relate these writes. We

might conclude that this is all the requirement enforced by

this pair of reads to different addresses and we would be

wrong!

The trick is in negation. Instead of expressing the re-

quirements as enforced orderings, we could express them

6This is a shorthand for w(p,a,1) for some p ∈ P . Since we are

dealing with unambiguous runs exclusively, there is at most one such write.

8

as forbidden orderings. For instance, in Fig. 2, we could

say that processor 1 forbids the ordering where w(a,2)

precedes w(a,1). In the case of binary orderings, the

difference is superfluous. However, for Fig. 3, if we say

that, for any other write to b, w(b,d) such that d 6= 1, we

cannot have w(b,1) precede w(b,d) when both precede

w(a,1), we introduce a new requirement.

It turns out that a formalization of the above ideas to

form a set of impossible orderings over the writes of a con-

current execution helps us form a new problem, equivalent

to interleaved-sequentiality checking. For a given concur-

rent execution, we define a set of constraints which basi-

cally combines all possible kinds of forbidden orderings for

the execution.

Theorem Let Gc be a legal (unambiguous) concurrent ex-

ecution and CSc be its constraint set. Then, Gc is

interleaved-sequential if and only if CSc is satisfiable.

Previous work on interleaved-sequentiality checking ei-

ther completely ignored the problem of finding the subset

of the execution that violated the property [26], or tried to

characterize it in terms of cycles [20]. With the constraint

sets, we can define what it means to have a minimal subset

of a non interleaved-sequential (i-s, for short) concurrent

execution such that the minimal subset still is a violating

execution, but any execution subset of it is not.

Let us examine the concurrent execution G3 that is not

i-s, given in Fig. 47 Assume that a logical order is be-

ing searched for this execution. Starting from the require-

ment of processor 2, we see that 8 (w(2,a,1)) must be

ordered before 9 (w(2,a,2)) since (8,9)∈ Ec. This

ordering implies that 2 (r(1,a,1)) is ordered before 9

(w(2,a,2)). Since (1,2)∈ Ec and (9,10)∈ Ec, we

have to order 1 before 10 which implies the ordering of 4

before 10 (hence the dashed line from 4 to 10). Contin-

uing in this manner, we eventually come to a point where

we have to order 5 before 12, which would violate a prop-

erty of interleaved-sequentiality. A similar analysis could

be performed for the dotted lines which is the result of or-

dering 12 before 6 due to the edge (5,6)∈ Ec.

Given the above example, it is not clear how, solely

based on cycles, we can pick a minimal set of vertices that

still is not i-s. Clearly, just picking, say, vertices 4 and 10

because there is a cycle between the two will not be cor-

rect. Actually, this concurrent execution is minimally non

i-s, that is, any removal of a vertex from the graph would

make the remaining subset i-s. This is precisely where we

can use the constraint set.

Definition: Let Gc be a non i-s concurrent execution and

CSc its constraint set. Then a minimal constraint set, subset

7We have added some edges - dotted and dashed lines - that are not part

of the concurrent execution for illustration purposes. These edges actually

would have been added by the algorithm given in [20] or [23].

1

2

3

4

5

6

7

8

9

10

11

12

w(1,b,1)

r(1,a,1)

w(1,c,1)

r(1,b,1)

r(1,a,4)

w(1,a,3)

r(1,c,1)

w(2,a,1)

w(2,a,2)

w(2,b,2)

w(2,c,2)

w(2,a,4)

Figure 4. Sample nonis concurrent execu
tionG3 illustrating cycles and theminimal set.
The dashed lines are the result of ordering
w(a,1) before w(a,2). The dotted lines are
the result of ordering w(a,4) before w(a,3).

of CSc, is a set which itself is unsatisfiable but any proper

subset of it is not.

Note that there can be more than one minimal set for a

given Gc. This definition allows us to define minimality

with respect to the constraint set.

For P, A,D all finite, we prove in [11] that the size of

any minimal instruction set of any non-i-s unambiguous

concurrent execution is bounded. An implementation has

a non i-s unambiguous concurrent execution if and only if

there exists a run that does not visit any state more than

4|A|2(|D| + 1)3 times, generating a non i-s concurrent ex-

ecution. This bound makes it possible to have a decision

procedure for detecting non i-s unambiguous concurrent ex-

ecutions in a memory system.

Even though, this result might seem intuitively trivial

since there are only finitely many different write events in

the (infinite) set of unambiguous executions for finite val-

ues of P , A and D, it was not possible to obtain it using the

previous methods based on cycle analysis. The most impor-

tant aspect is that we have not resorted to making assump-

tions about the concurrent executions, about certain rela-

tions between instructions and responses. There is also an

interesting open problem. When we talk about constraints,

we do not take into account the fact that the machine that

9

generates the execution is actually finite-state. Due to this

finiteness, the executions cannot be arbitrary but follow a

certain regular pattern, which so far we have not been able

to characterize. That might render the definition of a certain

equivalence relation, having only a finite number of equiv-

alence classes, possible.

6. Conclusion

This paper attempts to allay the notion that the issue of

decidability of sequential consistency is a closed chapter.

It offers a transducer based definition of sequential consis-

tency that addresses implementation constraints. In this set-

ting, decidability is still an open problem. However, by

adopting a constraint-based approach, one can, for unam-

biguous executions, obtain a decision procedure. The pro-

cedure for generating these constraints itself forms an al-

ternative to analyzing cycles (e.g., [27]), and may form the

basis for a more efficient SAT-based execution checking ap-

proach than reported in [28]. All these will form the subject

of our continued research.

References

[1] N.R. Adiga. An overview of the bluegene/l super-

computer. In Conference on High Performance Net-

working and Computing: SC2002, pages 60–60, 2002.

(with 30 co-authors).

[2] William Pugh. The java memory model is fatally

flawed. Concurrency: Practice and Experience,

12(1):1–11, 2000.

[3] Shared memory consistency models and protocols,

October 2004. Invited Tutorial by Ching-Tsun

Chou, Steven German, and Ganesh Gopalakrishnan.

http://www.cs.utah.edu/˜ganesh/presentations/

fmcad04_tutorial2/.

[4] Arvind. Bluespec: A language for hardware de-

sign, simulation, synthesis and verification. In MEM-

OCODE, 2003.

[5] David L. Weaver and Tom Germond. The SPARC Ar-

chitecture Manual – Version 9. P T R Prentice-Hall,

1994.

[6] A Formal Specification of Intel(R) Itanium(R)

Processor Family Memory Ordering, 2002.

http://www.intel.com/design/

itanium/downloads/251429.htm.

[7] Denis Shasha and Marc Snir. Efficient and correct ex-

ecution of parallel programs that share memory. ACM

Transactions on Programming Languages and Sys-

tems, 10(2):282–312, April 1988.

[8] S. P. Midkiff, J. Lee, and D.A. Padua. A compiler for

multiple memory models. Concurrency, Practice and

Experience, 16(2):197–220, February 2004.

[9] Rajeev Alur, Ken McMillan, and Doron Peled. Model-

checking of correctness conditions for concurrent ob-

jects. In Symposium on Logic in Computer Science,

pages 219–228. IEEE, 1996.

[10] Sarita V. Adve and Kourosh Gharachorloo. Shared

memory consistency models: A tutorial. Computer,

29(12):66–76, December 1996.

[11] Ali Sezgin. Formalizing and Verification of Shared

Memory. PhD thesis, The University of Utah, 2004.

http://www.cs.utah.edu/˜ganesh/

unpublished/sezgin_phd_04.pdf.

[12] Thomas Henzinger, Shaz Qadeer, and Sriram Raja-

mani. Verifying sequential consistency on shared-

memory multiprocessor systems. In Nicolas Halb-

wachs and Doron Peled, editors, Computer Aided Ver-

ification99, volume 1633 of Lecture Notes in Com-

puter Science, pages 301–315, Trento, Italy, July

1999. Springer-Verlag.

[13] Ratan Nalumasu. Formal design and verification

methods for shared memory systems. PhD thesis, Uni-

versity of Utah, Salt Lake City, UT, USA, December

1998.

[14] Jesse D. Bingham, Anne Condon, and Alan J. Hu. To-

ward a decidable notion of sequential consistency. In

Proceedings of the fifteenth annual ACM symposium

on Parallel algorithms and architectures, pages 304–

313. ACM Press, 2003.

[15] Shaz Qadeer. Verifying sequential consistency on

shared-memory multiprocessors by model checking.

IEEE Transactions on Parallel and Distributed Sys-

tems, 14(8), August 2003.

[16] Ali Sezgin and Ganesh Gopalakrishnan. On the defi-

nition of sequential consistency. Submitted for publi-

cation. Preliminary version at

http://www.cs.utah.edu/˜ganesh/

unpublished/sc_definition.pdf, 2004.

[17] M. Frigo. The weakest reasonable memory. Mas-

ter’s thesis, Department of Electrical Engineering and

Computer Science, MIT, 1998.

10

[18] Prince Kohli, Gil Neiger, and Mustaque Ahamad. A

characterization of scalable shared memories. Tech-

nical Report GIT-CC-93/04, College of Computing,

Georgia Institute of Technology, January 1993.

[19] Kourosh Gharachorloo. Memory Consistency Mod-

els for Shared-Memory Multiprocessors. PhD thesis,

Stanford University, December 1995.

[20] Ratan Nalumasu. Design and Verification Methods for

Shared Memory Systems. PhD thesis, Department of

Computer Science, University of Utah, 1999.

[21] Anne E. Condon and Alan J. Hu. Automatable veri-

fication of sequential consistency. In 13th Symposium

on Parallel Algorithms and Architectures, pages 113–

121. ACM, 2001.

[22] Thomas A. Henzinger, Shaz Qadeer, and Sriram K.

Rajamani. Verifying sequential consistency on shared-

memory multiprocessor systems. In Proceedings of

the 11th International Conference on Computer-aided

Verification (CAV), number 1633 in Lecture Notes in

Computer Science, pages 301–315. Springer-Verlag,

July 1999.

[23] Shaz Qadeer. Verifying sequential consistency on

shared-memory multiprocessors by model checking.

Technical Report 176, Compaq SRC, December 2001.

[24] Jean Berstel. Transductions and context-free lan-

guages. Teubner, 1979.

[25] Yehuda Afek, Geoffrey Brown, and Michael Mer-

ritt. Lazy caching. ACM Transactions on Program-

ming Languages and Systems, 15(1):182–205, Jan-

uary 1993.

[26] William W. Collier. Reasoning about Parallel Archi-

tectures. Prentice-Hall, Inc., 1992.

[27] W. W. Collier. Reasoning About Parallel Architec-

tures. Prentice-Hall, Englewood Cliffs, NJ, 1992.

[28] Ganesh Gopalakrishnan, Yue Yang, and Hemanthku-

mar Sivaraj. QB or not QB: An efficient execu-

tion verification tool for memory orderings. In CAV

(Computer Aided Verification), pages 401–413, 2004.

LNCS 3113.

11

