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Abstract 
An efficient scheduling strategy for shared memory multiprocessors is described. The 

rapid dissemination of tasks to available procesors and ready queues is crucial to the per­
formance of any parallel system. Such overheads determine the attainable speedup and 
performance of the system. Poor techniques used to address this can lead to severe degrada­
tion in performance particulary with high processor counts. This work has been conducted 
in the context of a parallel functional language-CoF, where the parallelism is usually fine 
grained and the efficient assignment of tasks to processors even more important. In such 
systems, observing strict queue semantics (i.e., FIFO) is not essesntial. This allows for very 
efficient algorithms such a.s tha.t described here. On the BBN GP1000, our technique was 
superior in performance to the centralized queue and has the potential of performing well 
on a fully configured GPIOOO. 
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Abstract 

An efficient scheduling strategy for shared memory multiprocessors is described. The rapid 
dissemination of tasks to available processors and ready queues is crucial to the performance 
of any parallel system. Such overheads determine the attainable speedup and performance 
of the system. Poor techniques used to address this can lead to severe degradation in 
performance particularly with high processor counts. This work has been conducted in the 
context of a parallel functional language - CoF, where the parallelism is usually fine grained 
and the efficient assignment of tasks to processors even more important. In such systems, 
observing strict queue semantics (i.e., FIFO) is not essential. This allows for very efficient 
algorithms such as that described here. On the BBN GP1000, our technique was superior 
in performance to the centralized queue and has the potential of performing well on a fully 
configured GP1000. 

1 Introduction 

Efficiently allocating tasks to available processors is crucial to the performance of any multi­
processor system. The simpliest approach on a shared memory machine is to use a central­
ized queue structure. The queue can contain either tasks, indicating an excess of tasks over 
available processors or process ids - pids, indicating an excess of processors over tasks. The 
drawbacks with using a centralized queue are that it becomes a severe bottleneck for even 
a small number of processors and there is no concurrency in the basic operations. Figure 1 
shows statistics gathered from execution of the prime number sieve program (Section 3.1) 
varying the number of processors. When a processor is unable to acquire the lock associated 
with the centralized queue it backs offfor an exponentially increasing amount of time before 
it tries again. To optimize the execution, a failure to acquire the lock when attempting 
to migrate a task results in the task being executed locally. While there is no observable 
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Figure 1: Backoff Statistics for the Prime Number Sieve 

degradation in overall performance, the maximum number of backoffs with 15 processors 
was as high as 2300 and rapidly increasing! 

The work reported in this paper has been done in context of a parallel functional lan­
guage CoF[5] , being developed at the University of Utah. With high processor counts the 
degradation in performance, lack of concurrency and the limitations of the centralized queue 
were found to be unacceptable. We describe a technique which: 

1. Is superior to the centralized queue for large processor counts, 

2. Admits concurrency within the basic queue operations, 

3. Drastically reduces the hot spot contention for a centralized lock and 

4. Requires little bookeeping and is therefore quite efficient. 

1.1 Previous Work 

There has been considerable work related to scheduling tasks on a shared memory multipro­
cessor. The BBN Butterfly I and Butterfly Plus supported in hardware the idea of a dual 
queue , which found extensive use in programming systems[8 ,9,ll] . The queue could contain 
either process-ids or data and hence the name. The dual queue forms the basis of our im­
plementation, however , we use a spin-waiting implementation and enqueue the address of a 
location that a processor is spin-waiting on rather than its process-id. Notification involves 
writing a non-zero value on this location. With large processor counts a single dual queue 
becomes a severe bottleneck . 

Anderson[4,3] discusses the effects of varying data structure and thread management 
techniques on the performance of shared memory multiprocessors. While there are some 
broad similarities, we feel our technique is more suitable to the Butterfly than the schemes 
they considered . 

Rao and Kumar[7], and Jones[6] discuss techniques to implement priority queues where 
they adhere to strict queue semantics. Such a requirement is not essential in our context 
and would impose too high an overhead; such as that of reheapification on every dequeue[7]. 
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1.2 BBN GP1000 

The features of the BBN GPlOOO[2,lO] relevant to our discussion are: 

1. A maximum configuration of 256 nodes each employing a Motorola MC68020 micro­
processor. 

2. Each node contains 4 megabytes of memory providing a total of 4 gigabytes of shared 
memory on a fully configured machine. 

3. A remote to local access time ratio of 5:1. 

4. Node interconnection via a delta connected switch. 

5. Process and virtual memory management via the MACH operating system. 

Concurrent execution under MACH is obtained by forking child processes onto other 
processors. Forking a UNIX process is equivalent to creating a task with a single thread[l]. 
The GPIOOO implementation of MACH does not permit more than one thread per task as 
this would permit a thread to execute in a task created on another processor, and thus 
incur severe performance penalties, e.g. in code access over the switch. Consequently, 
none of the thread management primitives such as thread.,ioin, thread..suspend, etc, are 
supported. The usual mode of usage on the GPIOOO is to have one process per processor 
communicating via shared memory. Hence, we may frequently use the words process and 
processor synonymously. 

A spin-waiting implementation has been used in all experiments described in this paper 
where a processor waiting for a task periodically reads the value of a local variable. A 
non-zero value indicates the presence of a task. 

2 Distributed Dual Queues (DDQs) 

The main data structure used in our technique is a binary tree with dual queues at the 
leaves of the tree. The initial state of the DDQ is shown in Figure 2. Each internal node 
contains two fields Ii and D. The D-field1 is a static constant that represents the capacity 
of the queues below that node in the tree assuming no processors presents in the system. 
Thus node d has its D-field set to 3 as the queue directly below it has a capacity of 3, while 
the internal node b has its D-field set to the sum of the D-fields of its immediate children. 
The Ii-field is dynamic (modifiable) and is equal to the D-field at startup. Informally, if 
the value of the Ii-field at a node x is n, then at least n data items may be buffered at the 
queues rooted at node x. During startup each processor is assigned to a specific leaf of the 
tree which we shall refer to as the HOME..LEAF of the processor. The labels pl-p8 represent 
processor ids and are positioned below their assigned HOME..LEAF. 

2.1 DDQ Operations 

The basic queue operations are (i) spawning of parallel work, corresponding to an insert op­
eration, and (ii) obtaining work from other processors corresponding to a remove operation. 
These involve a traversal of the tree structure. 

1 We only make use of this field in Section 2.2 
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Figure 2: Distributed Dual Queue Structure 

Insert 

An insert operation involves descending the tree structure from the root until an empty 
slot at one of the queues is found . A processor performing an insert, reads the value of the 
N-field at the root. From our initial condition, if this is greater than 0, then there must be an 
available slot below it in the tree structure. Thus, if it can atomically decrement the root to 
a value greater than or equal to zero, it is has effectively reserved a slot space. Practically all 
machines, both single and multiprocessor, provide some sort of test and set operation where 
the old value of the operand is returned, hence this is not a special hardware requirement. 
The process of visiting a node is split into two phases: 1) reading the value at the node, 
and 2) conditionally decrementing the value by 1. We could alternatively omit the reading 
phase and just perform the atomic decrement immediately. However, atomic operations are 
expensive and an incorrect atomic decrement resulting from decrementing a value less than 
or equal to zero must be compensated for by an atomic increment. If the value at the root 
is zero (or transiently less than zero) then there is no free space below it in the tree and the 
insert fails . 

If the root decrement operation succeeds in the manner described above, then the insert 
operation continues by finding a child node with a value greater than zero and repeating 
the decrement until a queue with an empty slot attached to a leaf is found , at which point 
the insertion can take place. From the initial condition, once the processor has crossed the 
root there is guaranteed to be an empty slot2 at one of the queues (Section 2.1). 

C language pseudo code for insert is shown below. The function notify_reserved_processor 

2Since the queues are really dual queues, the inserting process may find a process-id instead of an empty 
slot . We defer an explanation of the action taken until after we have described how process-ids are entered 
into the dual queue. 
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is not shown but is discussed in Section 2.2. 

boolean insert (task, tree) Task .I/< task; DDQ .I/< tree; 
{ 

} 

if (tree-+N >= 0) { 
if (reserve_processor(tree)) 

notifyJeserved_processor(tree ); 
else return FALSE; 

} else return FALSE; 

boolean reserve..processor (tree) DDQ .I/< tree; 
{ 

} 

if (atomadd(tree-+N, -1) > 0) return TRUE; 
else { atomadd(tree-+N, 1); 

return FALSE;} 

Remove 

If there is data or tasks in the queue at the HOME-LEAF of a processor, the item is dequeued 
and the X-field of each internal node on the path to the root unconditionally incremented. 
This indicates that there is one more empty slot in the queue corresponding to the one from 
which data was just dequeued. If there is no data in the queue, then the process id or its 
spin waiting location is inserted into the queue and as before, the X-field of each internal 
node on the path to the root unconditionally incremented. The insert operation described 
above must be modified so that if the queue contains process ids, the spin-waiting processor 
is notified. It is permissible for a processor to be notified while it is ascending the tree as 
it will discover the task as soon as it enters its spin waiting loop. The C pseudo code for 
insert is: 

remove() 
{ 

} 

lock (HomeQueue); 
if (HomeQueue-+status == DATA) dequeue_data(); 
else inserLpid(); 
unlock (HomeQueue); 
for (n= HOME-LEAF; n >0; n = n» 1) 

atomadd(n-+N, 1); 
spin_wait(); 

Correctness 

In order to guarantee correct operation we must maintain the invariant that the X-field at 
a node be less than or equal to the number of data items that can be inserted into the 
queues below it. From the initial condition (when X = D), this invariant is trivially satisfied 
at startup. We show that the insert and remove operations do not violate this invariant. If 
a remove operation dequeues a data item then there is one more slot available for data and 
the unconditional increment to the root maintains the invariant. If the remove enqueues it 
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process-id, then that same slot can hold two data items; one that can be absorbed by the 
processor and the other that can be enqueued into the slot itself. A processor descending at 
a node after successfully decrementing its N-field indicates that there is one less slot available 
below that node and hence maintaining the invariant. 

From the above, it follows that if the processor descends the root node it is guaranteed 
to find a queue in which to enqueue data. 

2.2 Implementation 

The implementation distributes the tree and queues across the machine as much as possible. 
Thus a queue is allocated on one of the processors that will be ascending from it. Further­
more, each internal node is allocated on a processor that can potentially spin-wait in a queue 
below that node. Thus node b and the left most queue in Figure 2 may be allocated on one 
of processors p1-p4. There is now a greater chance that an atomic operation is performed 
on a processor that is idle. 

The binary tree is implemented as an array which is copied on every node of the ma­
chine and is read-only. This is possible as the tree is balanced and does not change shape 
dynamically at runtime. Each element of the array contains the static D-field and a pointer 
to the location of the dynamic N-field which is distributed across the machine. Figure 3, 
depicts a fragment of the table for the root node and its children. Movement up and down 
the tree are implemented using shift operations on the node number. 

To avoid processors always picking the same branch to descend at a node the bit patterns 
on the data being enqueued are decoded as preferred directions for each level. Thus if the 
data has a bit pattern of 101001. .. , then this is decoded as LRLRRL ... and consequently 
the left direction is preferred at level 0, the right direction at levell, ... etc. This yields 
a rudimentary form of pseudo randomness. Furthermore, it is desirable that the insert 
operation homes in on queues with idle processors. Since the D-fields contains the number 
of empty slots assuming no processors (Section 2) the following given without proof is true. 
If at a node: 

N=O Then there is no space below the node to buffer any more data and all queues are 
full. 
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Figure 4: Starvation while Descending a Node 

N < D Indicates that there are N slots below this node to buffer the data item but no 
available processors to immediately take up the work. 

N>D Indicates that there are D slots to buffer data and in addition there are N - D idle 
processors below this node as well. 

This criteria is first used to select the preferred path. 
In what has been described so far, there is the possibility of starvation while trying to 

descend a node. Figure 4 shows the possible N values at the root of a DDQ . 
In (a) the process P finds that the value of a node is greater than 0, successfully decre­

ments the count to zero and moves down the right branch first. In (b) seeing that the 
count on the current node is 0 the process moves over to the left branch. Meanwhile, an­
other process Q doing a remove operation ascends the right branch incrementing the count, 
leaving the tree in the state shown in (d). While P is sitting at the left branch another 
process R doing an insert operations sees that the value of the top node is greater than 0 
and decrements the tree going down the left branch while P is still blocked for some reason. 
The solution to this is that P should go back and try the right branch. The chances of this 
actually happening in practice are likely to be very low. 

2.3 Lazy Ascends 

Having to ascend the tree each time a data item is pulled out of the queue is wasteful and 
inefficient. When there is more than one data item in the queue we need not ascend the tree 
but rather note the number of lazy deferred ascends in a field associated with the queue. 
So the processor merely dequeues the data item and increments the lazy ascends count. At 
some point a processor must ascend the tree with this accumulated sum of lazy ascends. 
There are two possibilities we considered for when the ascend may occur: 

1. When the queue changes from empty to containing processors, the first processor to 
insert itself into the queue may ascend the tree. 
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2. When the queue changes from having data to being empty, the processor taking out 
the last data item may in the interest of the other working processors perform the 
ascend. 

We have arbitrarily chosen the second alternative, believing that the best choice would be 
application dependent. 

Likewise in the interest of locality, an insert operation may first check to see if there is 
space on the local queue before descending from the root. If successful in this endeavor it 
decrements the lazy ascends count. 

2.4 Variations 

The advantage with this structure is that it admits of a lot of concurrency: Many processors 
may be simultaneously performing a mixture of insert and remove operations. Furthermore, 
no locking is required traversing the tree other than that transiently in effect during atomic 
increment or decrement. The contention on the queue is reduced to those processors that 
have access to the queue and the entire structure is well distributed across the machine. 

However, the concurrency comes at a price. For a machine with N processors and a 
queue size of q the height of the tree H is pog2(N / q)l An insert or remove will involve 
H atomic operations at best and probably much more for an insert due to starvation and 
picking the wrong branch. This can be offset by increasing q at the cost of introducing 
contention among processors sharing a queue. Also the root of the tree becomes a hot spot. 
This can be offset by having more than one tree. An insert operation now reads (or polls) 
the value of the roots in a round robin fashion until it can find one where it can descend. 

3 Performance 

The scheduling structure was tested on both artificial loads and programs compiled by 
our CoF compiler for typical application programs. In the first case, half the processors 
behaved as producers performing insert operations and the other half behaved as consumers 
performing remove operations until a termination message was received. The last producer 
to terminate sends out the termination messages. The relevant code is shown below: 

#define ITERATIONS 20000 
producer () 
{ int i, j; 

for (i = 0; i < ITERATIONS; i++) { 
j = 0; 
while (insert (i) == FALSE) backofJ(j++}; 

} 
} 
consumer () 
{ int i, data; 

while (TRUE) if (remove() == -1) return; 
} 

In Figure 5 we show the effect of multiple clusters with a queue size of 1. Varying other 
parameters yielded similar results. 
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3.1 Typical Programs 

Artificial loads are sometimes a poor indication of typical programs so we tried our technique 
on code generated from our compiler for the prime number sieve program shown below. 

fun from n m ;:;;: if n < m then nil else n :: from (n+l) m 
fun filter p x ;:;;: 

if null x then nil 
else if x mod p ;:;;: 0 then filter p (tl x) 

else (hd x) :: filter p (tl x) 
fun sieve I ;:;;: 

if null I then nil 
else (hd I) :: sieve (filter (hd 1) (tll)) 

Figure 6 summaries our results for: (i) the centralized queue; (ii) tree of height 1 (or 2 
queues)and (iii) tree with queue size of 4. We draw the following observations: 

• The parallelism in the problem peaks out between 16-24 processors. 

• With high processor counts the DDQ does not degrad as badly as the centralized 
queue. This is due to the reduced contention for the root node and added concurrency 
in the basic operations. 

• As with Figure 5, the contention for the root node may be reduced by having more 
than one tree. 

4 Related Issues 

4.1 Barrier Synchronization 

The idea of using a distributed tree very similar to that described here has been employed 
in performing barrier synchronization by Yew, et.al.[12]. In their work, the data stored at 
each internal node is the number of processors that have yet to enter the barrier. Beyond 
this broad similarity the overall problem they have to tackle is quite different from the one 
we have addressed here. 

Other Architectures 

The DDQ is particularly suitable for clustered machines like the Evans and Sutherland ES-l 
machine or the CMU Cm· machine. A DDQ may be used to effectively utilize the processors 
on a single cluster and the communication mechanism built into the machine may be used 
to communicate between trees. 

Bus Architectures 

Even though bus connected multiprocessors are radically different we conjecture that the 
same idea may be useful in minimizing the contention for a specific memory module in the 
system. The presence of a cache can have subtle effects on performance of a centralized 
queue. 
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Distributed Machines 

These ideas may not be entirely appropriate for local area networks or machines like the 
Intel Hypercube since the amount of communication involved in traversing the tree is likely 
to be an overriding factor. 

5 Conclusions 

A scheduling technique for shared memory multiprocessors has been described. The tech­
nique requires little bookeeping, admits of concurrency within the basic operations and is 
superior to the centralized queue. The scheduling technique is currently employed in the 
runtime system for a parallel functional language. . 
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