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Abstract. For use in the context of a linearly scalable arithmetic architecture supporting 
high/variable precision arithmetic operations (integer or fractional), a two-stage algorithm 
for fixed point, radix-16 signed-digit division is presented. The algorithm uses two limited 
precision radix-4 quotient digit selection stages to produce the full radix-16 quotient digit. 
The algorithm requires a two digit estimate of the (initial) partial remainder and a three digit 
estimate of the divisor to correctly select each successive quotient digit.

The normalization of redundant signed-digit numbers requires accommodation of some 
fuzziness at one end of the range of numeric values that are considered normalized. A set of 
general equations for determining the ranges of normalized signed-digit numbers is derived. 
Another set of general equations for determining the precisions of estimates of the divisor 
and dividend required in a limited precision SRT model signed-digit division are derived. 
These two sets of equations permit design tradeoff analyses to be made with respect to the 
complexity of the model division.

The specific case of a two-stage radix-16 signed-digit division is presented. The staged 
division algorithm used can be extended to other radices as long as the signed-digit number 
representation used has certain properties.

1  I n t r o d u c t i o n

There are several significant mathematical problems for which solutions cur
rently involve algorithms that rely on variable precision arithmetic [15]. Two 
of these are the combination of three-dimensional surfaces represented using 
b-splines [26] and Grobner bases solutions to complex systems of equations
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[19]. The maximum precisions required may vary from a few tens of decimal 
digits to a thousand or more. These two algorithms currently rely upon Lisp 
bignums [29] implemented in software. Given machines with fixed (and not 
easily extended) word-widths for numeric operands, arithmetic operations on 
high/variable precision numbers (integers or fractions) are necessarily serial 
in nature. In general, the serial nature of arithmetic calculations on numbers 
whose precision exceeds the precision of the machine word is unavoidable.

It is in the context of developing a specialized computer architecture [3] 
to support arithmetic operations on high/variable precision numeric operands 
that this division algorithm arises. This specialized computer architecture 
will permit significant acceleration of algorithms that currently depend on 
high/variable precision arithmetic implemented in software. It will also pro
vide flexibility in space as well as in time. The other commonly practiced 
techniques for implementing arithmetic units in hardware (with the exception 
of carry save) do not support linear expansion in space with no additional cost 
in time. In other words, one has the option of taking additional time with no 
space cost to compute with high precision but not to use additional hardware 
with no time cost. In general, flexibility is readily available in time, but not in 
space.

The structure of the architecture as shown in figure 1 is based on an arith
metic digit-slice derived from one presented by Chow [8], [7], [23], [6]. The 
digit-slice directly supports addition, subtraction and multiplication. It uses a 
redundant, radix-16 signed-digit number representation for reasons described 
in [8], which are summarized as follows:

• to simplify normalization (the use of maximally redundant digit sets is 
necessarily prohibited which eliminates the use of binary techniques such 
as carry save), and

• to accommodate variable precision multiplication that produces the most 
significant digit first (in which case the already produced product digits 
must not be affected by carry propagation from subsequent additions —  
this requires that the radix be at least 7).

• to simplify quotient digit selection which can be done in two limited 
precision radix-4 steps.

The use of such a number representation has some significant advantages as 
described in [2],[27],[28] over many other methods. Among these is the ability 
to design a constant-time, linear area-cost adder that permits free tradeoffs 
of time versus space. In general, SRT divisions are implemented as a low- 
predsion model of the real division. Both the real division and the model 
division should be as simple as possible, but tradeoffs involving space and time
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axe necessary. In the scalable architecture shown in figure 1, there is a single 
control module that contains the hardware for the model division and a linearly 
scalable arithmetic unit consisting of one or more arithmetic modules. There 
are several important architectural and circuit design considerations that are 
impacted directly by the division algorithm:

1. tradeoffs in time and pin count for transmitting estimates of the (initial) 
partial remainder from the arithmetic modules to the control module,

2. the area and time complexities of normalization hardware,

3. the area in the control module consumed by the model division,

4. the complexity of the circuit designs and the arithmetic algorithms (which 
significantly impact design time), and

5. the architectural flexibility provided by the circuits.

One of the significant design considerations in implementing a higher radix 
SRT division algorithm is the required precisions of the (initial) partial remain
der and the divisor in the model divisionfl]. In a scalable architecture such as 
the one shown in figure 1, a new estimate of the current partial remainder must 
be provided from the arithmetic modules to the control module during every 
cycle of the division algorithm (that is, for every quotient digit produced). 
In general, the use of more precise estimates of the partial remainder to the 
control module will require either more pins (a premium VLSI commodity) or 
more time.

The impact of different normalization and estimation (of the divisor and 
partial remainders) strategies on the model division and the architecture as a 
whole can, as shown in section 2.3, be assessed. In general, a lower radix of 
normalization implies the use of smaller estimates of the divisor and the partial 
remainder and therefore a simpler quotient digit selector in the model division. 
Normalization also carries costs in both area and time that must be considered 
in the design process.

The following discussions treat the aspects of division that are critical to 
the development of a chip set to be used in implementing a scalable, variable 
precision arithmetic processor. In these discussions we refer to digit sets. A 
digit set is a set of consecutive integers (that includes 0) from which a digit 
in a number may take its value. A digit-set is classified by its diminished 
cardinality (<5) and its offset (w) (notation from [21] and [22]). The dimin
ished cardinality is the number of distinct values that can be represented by 
a digit, minus one, and the offset is the distance from the smallest value to 
zero. We use the notation <  6m  >  to represent a digit-set. As noted be
fore, Chow’s dissertation [8] details the reasons (most having to do with di
vision) for selecting a radix of 16 and a twenty-one valued symmetric digit
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set, <  20.10 >  (i.e., {TU,5,S,?,B,S J , 3 ,5 ,1 ,0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,1 0 }  where TT 
means —n). Of particular significance is that the <  20.10 >  symmetric digit 
set can also be represented as the sum of two identical radix 4 digits (i.e.,
<  20.10 > =  4 <  4.2 >  +  <  4.2 >  where <  4.2 > =  {2 ,1 ,0 ,1 ,2 } )  which 
suggests and is critical to the two-stage division algorithm presented in this 
paper. The only other redundant radix-4 digit set, <  6.3 > , is eliminated from 
consideration since it is maximally redundant.

Let us first examine some general theory on the division of signed digit 
numbers.

2 D i v i s io n  o f  S y m m e t r ic  S i g n e d -D i g i t  N u m b e r s

Division is frequently implemented as an iterative process that produces one 
quotient digit per cycle according to the following recurrence equation

Pj+i =  rpj -  qj+id (1)

where pj is the current partial remainder, pj+i is the next partial remainder, r is 
the radix, qj+i is the next quotient digit, and d is the divisor. The dividend (or 
initial partial remainder) is po■ For division resulting in a redundant quotient, 
estimates of the divisor (d) and the partial remainder (pj) may be used rather 
than their full-precision values in quotient digit selection [1].

Division involves two principal constraints that are enforced prior to evalu
ation of recurrence equation 1:

1. The quotient digit selector is simplified by restricting the range of possible 
divisor values through normalization of the divisor.

2. A stable algorithm is achieved by ensuring that the divisor value is no 
smaller than approximately 1 /r times the dividend. Thus, an upper 
bound on the value of the dividend and each successive value of the 
partial remainder is imposed. This is assured for the dividend by pre
scaling it if necessary (the same hardware used for normalizing the divisor 
can be used for this pre-scaling operation). During division, the bound 
is enforced by proper selection of quotient digits and the evaluation of 
equation 1.

In the following discussions fractional numbers are assumed to be of the form
m .

X  =  ^  r~*Xi 
«=o

where the digits are selected from the symmetric digit set

{W, n -  1, • • • ,0 , • • ■, n — l ,n } .



RADIX-16 SIGNED-DIGIT DIVISION 5

It  should be noted that the m aximum value for such a number is
m m

|Xmax| =  n Y ' f " '  <  n lim  ] T V - ' =  ------- r  =  --------- .
i - 1 - i  r - 1

2.1 N o rm a liz a t io n  o f  S y m m e tr ic  S ig n e d -D ig it  N u m b e rs

In S R T  division algorithms for floating point numbers, the divisor and the 
dividend are maintained in normalized (o r pre-scaled) form. Th a t is, the lead
ing non-zero digits of fractions or the mantissas of floating-point numbers are 
aligned so that the shift and subtract operation of division will result in

i» + i i  £  ( r r r ) ‘i =  kd (2)

where the constant k  =  ( t t t )  ’ s called the coefficient of redundancy. If k  =  1
I t Ithe number is maxim ally redundant and if k =  the number is m inim ally 

redundant. If k  =  i  the number is non-redundant, but this can occur only for 
odd radices.

In S R T  division of variable precision integers, the divisor is normalized but it 
is not necessary to pre-scale the dividend (using the normalization hardware); 
however in higher radix division the cost for not doing so will be a more expen
sive division. Given the number of digits in the divisor and dividend and the 
number of shifts required to “normalize” each one, the number of significant 
digits in the quotient can be precomputed. In essence, leading zeroes in the 
quotient are computed and discarded during the normalization/ pre-scaling 
process which involves only a controlled shift rather than in the considerably 
more expensive quotient digit selection process and evaluation of equation 1. In 
integer S R T  division, the remainder will need to be denormalized following the 
division in any case; this represents no extra cost for the proposed algorithm.

In non-redundant systems, a number X  is considered normalized if <  
X  <  1. In redundant systems, there is some fuzziness introduced at either the 
upper or lower bound so that the range of normalized numbers is extended 
somewhat due to multiple representations of a single arithmetic value, some 
of which are normalized and some of which are not. Th is  is understood by 
noting that in a redundant system the value range of the part not examined 
for determining normalization is greater than in a non-redundant system. In 
short, normalization of symmetric signed-digit numbers for a given radix r may 
be achieved in two ways [20], [5]:

• Guarantee a lower bound of 1, allowing an upper bound in excess of 1.

• Guarantee an upper bound of 1, allowing a lower bound of less than i .
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We choose the first method since it will result in a larger m inim um  value for a 
normalized divisor, potentially simplifying quotient digit selection.

In  general, a fractional radix -r number X ,  composed of symmetric signed 
digits, is normalized (ignoring the special case where X  =  0, i.e. xj =  0 (i G 
{ 0 , 1 , . . . , M } ) )  if

xo =  0 and \r~xx\-\-r~2X2\ >  r_1 (3 )

or

|xo| =  1 and |xo +  r - 1 xi| <  1. (4 )

Equation 3 requires the r~2x2 term since the sum of all other remaining digits 
can be either positive or negative. If, for example, zo =  0, =  1> =  0 and 
x3 = T  and if X2 is not examined, the value of the number would be less than 
r _1 and the number would not be normalized. Since

m
r~2 >  r~*

i= 3

the contribution of X2 =  1 to the value of the number cannot be fully eliminated 
even if the contributions of the remaining digits are of opposite sign. Similarly, 
the x\ term is necessary in equation 4 in that a negative value for Xi will 
reduce the value of the number below 1 and the positive contributions of all 
the remaining digits cannot make it greater than 1. Equation 4 means that 
the sign of xo must not be equal to the sign of Xi.

W hen redundant number representations axe used for the divisor and/or 
dividend of an S R T  division [24, 14], normalization becomes a problem when 
maximal redundancy is used. For example, consider the maximally redundant 
radix-10 number 1.599 (where 9 means -9). Under the definitions of normalized 
numbers (see equations 3 and 4), 1.999 is considered normalized, but its true 
value 0.001 is definitely not normalized.

It is essential [8] that < n < r — 2 since if n =  r — 1 the normalization
procedure must incorporate recoding of small values. Equation 4 dictates that 
n is less than r — 1. In this equation, when xo =  1 and all other X{ =  H, the 
minimum value for a normalized, infinitely long number will be 1 — ( ^ -  — n). 
Ifn  =  r - 1  this value approaches zero as the word width approaches infinity. 
For all finite word widths, this value is given by a 1 in the least significant digit 
which is the smallest representable number. If maximal redundancy is allowed, 
normalization would require the use of a recoding procedure to eliminate such 
representations. If we limit, as Chow suggests in [8], n < r — 2 the value of
the smallest normalized number is 1 — ( ~ (r ~~ 2 ))  =  ;rrT >  r an<  ̂ no 
recoding is necessary. Therefore, no maximally redundant technique, including 
carry save, can be used.
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W hether or not shifts are required for normalization is easily determined by 
examining only the three most significant digits of a number as dictated by 
equations 3 and 4. Right shifts are required when

|x0| >  1 or  (|x0| =  1 and  |x0 +  r - 1 xi| >  1) 

and left shifts are required when

Xo =  0 and  |r-1 x i +  r —2cc2 1 <  r~l .

We must demonstrate that the normalization process is stable and we must 
determine bounds on the values of normalized numbers to compute the pre
cisions of estimates required in the model division. T h e  following analysis 
gives both of these by determining the ranges of numbers that absolutely need 
normalization, may need normalization, or which are certainly normalized.

Equation 3 tells us that if a number is less than £ then it will require left 
shifts to become normalized. Th e  m aximum unnormalized value for X  occurs 
when xq =  0, x\ =  l , x 2 =  0 and all the remaining x,- =  n. For values greater 
than this, no left shift is required. For values less than this, left shifts m ay or  
may not be required. Th is  value is given by the equation:

- i  v ' '  - i  _ i / r  „ 1 1 . 1 n .. .
T + n J 2 r <  r + » ( --------7 - 1 ------------a) =  -  +  --------77 =  Simax- (5)r — 1 r r2 r r l (r  — 1)

Furthermore, the m inim um  value that may be normalized occurs when xo =: 
0, x\  = 1, X2 =  1 and all the remaining x, = n .  For values greater than this a 
left shift may or may not be required and for values less than this left shift(s) 
are required for normalization. Th is  value is given by the equation:

r  — 1
r a+ r  2+n  r ' < r x+ r  2- n ( ...- - - l - - - - ^ - )  =  - + 4

r — 1 r r* r r2

(6)
Equation 4 gives us the upper bounds on normalized numbers. First, if 

xo =  1 and x\ =  0 and all other x, =  n , the upper bound on normalized 
numbers is given by:

m i
l +  7 l ^ r _ * <  1 +  n ( — -  1 -  - )  =  1 +  —  ■■■" =  Srmax (7 )

r -  1 r ' r(r -  1)

=  Slr,

«'=2

and right shift(s) will be required to avoid overflow for all numbers above this 
value.
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Furthermore, the lower bound on numbers requiring a right shift occurs when 
xq =  l , * i  =  1 and all other x, =  n. Th is  value is given by

1 +
1 Tn 1 t 1 1 fi

< ! + - - » ( - — T - l - r )  =  n  =  (8)t  ' «• r  — I  r r r ( r  —  l  Ji= 2

In general,

if (  |X| <  Simin ) left shift(s) are required
if (  ^Iroin <  |X| <  Simax ) a left shift may or may not be required
if ( Simax < l-X] < Srmin ) X  is certainly normalized
if ( Srmin < |X| < STmax ) a right shift may or may not be required
if (  STmax <  |^| ) right shift(s) are required.

Given this method of determining whether or not a shift is to be made, 
the values of Simin and STmax represent the bounds of numbers which may be 
normalized (although some numbers within those bounds may not be). Th e y  
axe im portant in  determining the precisions required in the model division. It 
is im portant to note that

ax — Srmax

~ Srmin =  Simin i T
indicating that a left (or right) shift of a number within the range of normalized 
numbers but which is not considered normalized will not result in  the number 
being outside the range of normalized numbers. Th is  demonstrates that the 
normalization process is indeed stable.

2.2 Q u o tie n t  D ig it  S e lectio n

Once the divisor and dividend (initial partial remainder) are normalized, 
equation 1 can be evaluated until the desired number of quotient digits gt have 
been generated. In general, quotient digit selection is a process of comparing 
the magnitude of the divisor with that of the partial remainder and deciding 
which value(s) of the quotient digit will result in the next partial remainder 
adhering to equation 2.

Consider the P -D  plot in figure 2. Th is  plot indicates the various regions in 
which certain values for the quotient digit must or may be selected. Note that 
there are uncertainty regions in which one of two quotient digit values m ay be 
selected. In the process of quotient digit selection, we must concern ourselves 
prim arily w ith the behavior of quotient digit selection in these uncertainty 
regions. T h e  lines bounding these regions are given by a set of equations

rpj =  ( < p ± k)d , (v?G { n , n -  1, - - • ,0, l , n } )
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It should be noted that the lines

rPj =  (< P ± \ )d

run exactly down the middle of each uncertainty region. If k  =  5 , there are 
no uncertainty regions since there is no redundancy. If  k  =  1, there are only 
uncertainty regions (except for the regions outside rpj = ± n d )  since there is 
maximal redundancy.

Although we could use stairstep solutions or compare partial remainder val
ues to any set of lines within the uncertainty regions, we prefer to compare 
rpj with (if ±  \ )d to determine the quotient digit since this is simple, gives a 
relatively even distribution of quotient digits and simplifies the formation of 
the divisor multiples in the model division relative to other possible values.

In selecting a quotient digit, we can (except in the case of non-redundant 
numbers) use estimates of the divisor ( d )  and the partial remainder (p j ). Th e  
precisions required of these estimates is governed by the angular w idth (a )  
of the uncertainty regions. As the angular width of the uncertainty regions 
decreases, the required precisions of the divisor and partial remainder estimates 
increase. As the redundancy coefficient increases, the required precision of 
these estimates decreases because the uncertainty regions become wider. It  is 
obvious from this discussion and figure 2 that the worst case for precision of 
the estimates is in selecting between n and n — 1 (or between — n and — n +  1) 
as a quotient digit since the angular width of this uncertainty region is at a 
m inim um .

T h e  equations for the lines bounding the uncertainty region for selection 
between quotient digit values n and n — 1 are

rpj =  (n _  -^ — )d 
r — 1

and
rPj =  ( n -  1 +  — j-)d .

Figure 3 shows these lines and the comparison line

rPj = (n ~ \ ) d

that will be used in making the comparison for quotient digit selection. Also 
shown is a rectangle centered about a specific value of d  and its intersection 
w ith the comparison line. Th is  box represents the area of this uncertainty 
region that is covered by estimates of d and rpj. Obviously, it has its smallest 
dimensions (and therefore its largest precision requirement) when d  =  d,„,n.
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There are three principal contributors in determining the precision needed 
for the estimates d and pj: divisor normalization, the technique used to form 
the estimates, and the comparison value ( ct) used to select between quotient 
digit values. Th e  smallest value of a normalized divisor, c£m,n =  S;mtn, is also 
used in determining the precision required of the estimates.

2.3 P re c is io n  o f  E s tim a te s  fo r D iv is o rs  a n d  P a rt ia l  R e m a in d e rs

T h e  estimates (d  for d  and pj for p j)  are assumed to be made by truncation 
such that

\d -  d | < kp~c 

\Pj ~PA<kg~n

In these equations, e and r? respectively indicate the required precisions of the 
divisor and partial remainder, p  and g indicate the way in which the divisor 
and partial remainder are normalized. As seen before, normalization also has 
an effect on the value of dm{n .

If  we consider the rectangle in figure 3, we note that the left and right edges 
of the rectangle are set by the value of e and the top and bottom  edges are set 
by the value of rj. T h e  following two equations place a bound on the length 
of the left and right edges respectively (they can be read: the y  coordinate 
of the top left corner minus the height of the rectangle must be on or above 
the comparison line, and the y coordinate of the bottom  right corner plus the 
height of the rectangle must be on or below the comparison line). In these 
equations, v — (n — 1 -f  t t j )  w — (n — Note that e, rj >  1 indicating
that (at whatever radix) at least one digit to the right of the radix point is 
required in the model division.

_ _ k  _ _
^(̂ mtn — kp ) — kg  ̂ > odm{n -V dmin > (vp -|- Q **) (9)

V — o  

k  _ _
W^dmin "I" kp  ) -(- kg   ̂ 5: &dmin V dm{n ^  (wp -)■ g ^ ) (10)

w — a

For any given signed-digit number system, we can compute the values of k , 
dmin, v, and w , choose a value for <7, pick values for p  and g based on the 
normalization technique used, and then iteratively compute a set of acceptable 
minim um  values for e and r). In  general, it is best to pick a  =  n — \ since \d 
can be simply formed.

3 R a d i x -1 6  S ig n e d  D i g i t  D i v i s io n

Having examined some of the general theory for signed digit division, let us 
turn our attention to the specific case of ra d ix -16 division for the <  2 0 .10  >  =
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4 < 4.2 > +  < 4.2 > digit set.

3.1 Radix-16 Normalization

For radix 16 division, we will perform radix 16 normalization on both the 
dividend and the divisor. For this, r =  16, n =  10, and from the equations 
for Simin and Srmax we are assured that, after radix-16 normalization, || > 

X  > From equations 3 and 4 and without respect to how the numbers are 

represented, right shifts are performed for radix-16 normalization when (the xt- 
axe radix-16 digits)

((xo > 1) or (xo < _  1) or (xo = 1 o,nd Xi > 0) or (xo = — 1 and x\ < 0)) 

and left shifts are performed when

((xo =  0) and ((xi =  0) or (xi =  1 and X2 < 0) or (xj = —1 and X2 > 0))).

3.2 Radix-4 Normalization

When each digit in a radix-16 number is represented by the sum 4 < 4.2 > 

+ < 4.2 >, we can easily perform radix-4 normalization by shifting. This 
will further restrict the range of divisor values and thereby simplify quotient 

digit selection and the model division. We have two options: either perform 

radix 16 normalization before radix 4 normalization or perform only radix 4 

normalization. In either case, if both the initial partial remainder and the 

divisor are normalized to radix 4 there can be a mismatch in the number of 
shifts required for normalization. This could cause either the initial partial 

remainder or the divisor to be multiplied by an extra factor of four, requiring 

either that the other one be multiplied by four prior to normalization and 

division or that the quotient and remainder be suitably adjusted after division. 

When using the 4 < 4.2 > -f < 4.2 > di^t set, it is obvious that multiplication 
by 4 is easily accomplished by a single half-digit left shift.

We suggest that a radix-16 normalization step precede radix-4 normalization. 

Since || < , n° right shifts of a number will ever be required for radix-4 

normalization after radix-16 normalization has taken place. In addition, at 
most two left shifts will be required.

We also suggest that radix-4 normalization be carried out only on the divisor. 
If left half-digit shifts are required for radix-4 normalization of the divisor, then 

the as yet unnormalized dividend should also shifted left correspondingly. If 

this is done, no post-processing of the quotient will be required and the only 

denormalization of the remainder is required.

For radix-4 normalization, r = 4, n =  2, and from the equations for Simin 
and Srmax we are assured that, after radix-4 normalization, g > X  > ^|. From
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equations 3 and 4 and without respect to how the numbers are represented, 

left shifts are performed for radix 4 normalization when (the x,- are radix 4

< 4.2 > digits)

((z0 = 0) and ((xi =  0) or (x* = 1 and x2 < 0) or (xi =  — 1 and X2 > 0))).

3.3 Radix-2 Normalization

It is also conceivable to further restrict range of the divisor by performing a 

radix-2 normalization step. The number representation 4 < 4.2 > +  < 4.2 > 

does not lend itself as readily to radix-2 normalization, but conditional doubling 

of a number is easily accomplished by adding it to itself.

As with radix-4 normalization, if radix-2 normalization requires that the 
divisor be multiplied by two, then the unnormalized dividend should also be 

pre-scaled by a factor of two to eliminate any unnecessary post-processing of the 

quotient and remainder. Also, it is assumed that radix-2 normalization would 

only be done after radix-4 normalization so that only a single multiplication 

by two would be required.

Before radix-2 normalization, a number X  would already be in the range

< X  < g .  Numbers require doubling for radix-2 normalization if

^ > |zo +  4-1xi +  4_ 2x2| > ^  (n )

Thus, doubling is required for radix 2 normalization when (the Xj are < 4.2 > 
digits)

((xo =  0 and ((xi = 2 and X2 < 0) or (xi =  1 and X2 > 0) or

(xi = — 1 and X2 < 0) or (xj = —2 and X2 > 0))) or 

(xo =  1 and x\ - —2 and xi < 0) or 

(ar0 = — 1 and xj = 2 and X2 > 0)).

(12)

The minimum positive value of X  after radix 2 normalization occurs when 

xo =  0, xi = 5, X2 =  1 or when || > X  > ||. Thus, after radix-2 normalization,

I > X  > || will hold.

4 Radix-16 Quotient Digit Selection

The quotient digit selector for radix-16 division is based on estimates d of 

the divisor and pj of the partial remainder. It involves a limited precision 
model division rather than a full precision division. This is essential when
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multi-word numeric arguments are used. Given that the radix 16 digit-set is 
represented as < 20.10 > = 4 < 4.2 > +  < 4.2 >, the following two methods 
of quotient digit selection come to mind. The first is straightforward and 

complex to implement while the second is somewhat less straightforward and 
much simpler to implement.

Algorithm 16

1. Present d to the model division to the precision for radix 16 division and 
set j =  0.

2. Present pj to the model division to the precision for radix-16 division.

3. Select qJ+\ using d and p3 to the precision for radix-16 division.

4. Perform a full precision evaluation of equation 1.

5. Until enough quotient digits have been generated, increment j and go to 
step 2.

Algorithm 16 generates a radix-16 quotient digit in a single step. It has the 

advantage of not requiring any intermediate sequential steps. It has a distinct 

disadvantage in that rfj must be compared with twenty different numbers 

(a +  irf, a G {—10, • • • ,0, • • • ,9}). This represents a prohibitively large amount 

of parallel hardware required for fast quotient digit selection. Additionally, the 

larger multiples of the divisor are relatively difficult to compute.

Algorithm 16.4

1. Present d to the model division to the precision for radix-16 division and 
set j =  0.

2. Present pj to the model division to the precision for radix-16 division.

3. Select <̂ +1 using d and pj to the precisions for radix-4 division.

4. Evaluate p'j+1 = rpj — <̂ +1d to the precision for radix-16 division.

5. Select qj+1 using d and p '+1 to the precisions for radix-4 division.

6. Form qj+1 =  4gJ+1 +  ^ +1.

7. Perform a full precision evaluation of equation 1 using qj+i as determined 
in step 6.
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8. Until enough quotient digits have been generated, increment j and go to 

step 2.

Algorithm 16.4 involves a two-stage quotient digit selector. It generates a 
radix-16 quotient digit in two sequential, limited precision, radix-4 steps. It 

has the advantage of comparing rpj to only four different numbers (a +  a € 

{—2, —1,0,1}). In reality, when the signs of the divisor and partial remainder 
are known (as when both are normalized), only two comparisons need be made. 
In this case where the divisor is normalized to a smaller radix than the dividend, 

intermediate partial remainders with many leading zeros are not a problem 

since when the magnitude of the partial remainder is less than that of the 

divisor the quotient digit selector will generate a zero. Only when a non-zero 

digit has been shifted into xi (for which the sign is easily known) will rpj 
be sufficiently large to require generation of a non-zero quotient digit. Two 

comparisons represent a reasonable amount of parallel comparison hardware 

for quotient digit selection.

Algorithm 16.4 has been extensively simulated using a functional model of 

the hardware required to implement it. The model uses radix-16 normalization, 

followed by radix-4 and radix-2 normalizations as described in sections 3.1, 3.2 
and 3.3. Quotient digit selection is performed using 2 radix-16-digit estimates 

of the partial remainder and 3 radix-16-digit estimates of the divisor. The 
model is written in Common Lisp and the results of the functional model 

applied to inputs of random length and value were compared with results from 

the standard bignum package in Common Lisp. In fact, during the simulations 

an error in the bignum package was discovered.

In forming \d (by doubling d and then shifting one half-digit to the right) 

for use in the comparison circuitry of the quotient digit selector, only a few 

of the divisor’s most significant digits need be used. The formation of \d is 

performed only once at the beginning of the division algorithm.

As was noted before, the methods used for normalization and estimation of 

both d and pj are significant in determining the complexity of the quotient 

digit selector. They are also important in determining any extra pre-division 

operations that must be done on the initial partial remainder. Tables 1 and 2 

illustrate some of the vast number of possibilities available. Table 1 contains 

required precisions and annotations of required pre-division operations for the 
generation of quotient digits by Algorithm 16. Table 2 contains required preci

sions and annotations of required pre-division operations for the generation of 

quotient digits by Algorithm 16.4. In these tables, the following column labels 

and notations are used:

• The Nam e columns refers to the total number of radix-16 digits in the 

model division.
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• The rnorm columns give the normalization radices for the divisor and the 

dividend.

• The reat columns give the radix at which the estimates of d and pj are 

taken.

• The r =  16 columns give the best solutions to equations 9 and 10 for 

radix-16 division. These values represent the number of digits at the 

estimation radix for, respectively, d and pj.

• The r =  4 columns give the best solutions to equations 9 and 10 for radix-

4 division. These values represent the number of digits at the estimation 

radix for, respectively, d and pj.

• The D modei columns indicate the number of radix-16 digits of d and pj 
required in the model division.

• The Dcompare columns indicate the number of radix-16 digits of the d 
andpj required in the radix-4 comparisons for Algorithm 16.4.

• The Preprocessing column contains three possible entries:

- none: no dividend preprocessing other than radix-16 normalization 
is required:

- 4R: the dividend may need to be multiplied by 4 or 16 before 

normalization if the divisor required shifts for radix-4 normalization.

- 2R : the dividend may need to be doubled before normalization if 

the divisor was doubled to provide radix-2 normalization.

In these algorithms, only the divisor is directly subjected to radix-4 or radix-

2 normalization. It may be that multiplications by 4 and/or 2 are required to 

normalize the divisor. If this is the case, then we similarly preprocess the 

dividend by multiplying by 4 and/or 2 to avoid any complex post-division 

processing of the quotient or remainder. Radix-16 normalization is performed 
on the dividend only after these pre-multiplications so that the initial partial 

remainder is within the normalized number range. Of course, the remainder 

can be denormalized simply by shifting right by the number of radix-16 left- 

shifts performed in normalizing the dividend.

In building tables 1 and 2 many clearly unacceptable alternatives were noted. 

These are not included. For Algorithm 16, there are 141 possible implementa
tions, of which only the fifteen best are shown. For Algorithm 16.4, there are 

276 possible implementations. This is reduced to 132 after eliminating those 

that require more digits of either the divisor or the partial remainder in the 

comparison hardware than in the model. Of these 132, only the 28 best are 

shown in the table. The “best” ones were selected because they required the 

fewest radix-4 or radix-2 normalization steps.



RADIX-16 SIGNED-DIGIT DIVISION 16

4.1 Length of the Radix 16 Signed-Digit Quotient

In division with a fixed word width, one simply generates that number of 

quotient digits (or perhaps one more as a “guard” digit). For division of vari

able precision numbers, we must be able to compute the required number of 
quotient digits prior to the division operation. Assuming we know the number 

of digits (excluding leading zeros) in an integer, the number of quotient digits 

can be easily estimated for non-redundant systems from N q = 1 +  — Nd) 
(N  represents the number of digits in a number). This is unfortunately not 

adequate for redundant systems. Consider the ra<lix-16 number 18i6 which can 
also be represented as 08i6- This demonstrates that if the leading two non

zero digits of a number can be represented with fewer digits then the number 
of quotient digits will need to be adjusted. Furthermore, since we use normal

ization methods for aligning the divisor and dividend, it is possible to get an 

extra shift in either (when one results in a non-zero leading digit and the other 
results in a zero valued leading digit), thereby requiring a further adjustment 
in the number of quotient digits.

4.2 Restoration in Radix-16 Signed-Digit Division

It is required that the sign of any remainder from a division be equivalent to 

the sign of the initial partial remainder. Thus, at the end of the division oper

ation the sign of the remainder must be compared with the sign of the initial 
partial remainder. If there is a sign change, the quotient must be incremented 

or decremented by one (depending on the direction of the sign change and the 
sign of the divisor) and the divisor must be appropriately added to or sub

tracted from the remainder. Finally, in integer division the remainder must be 
returned to integer form through a denormalization process. This can be done 

by keeping track of the number of left shifts applied to the partial remainder 

both for normalization and quotient digit generation. At the conclusion of the 

division operation, a right shift is performed for each left shift to return the 

number to integer form.

5 Conclusions

This radix-16 division algorithm, although apparently complex when com

pared to most binary or radix-4 techniques, was developed in the very specific 
context of a variable precision processor and is subject to some rather stringent 
constraints:

• All variable precision operations may produce results most significant 

digit first. This requires a radix of no less than seven. To achieve sim

plicity in the implementation, a symmetric signed-digit number represen
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tation is required.

• All operands are redundant. While all SRT division algorithms result 

in a redundant quotient and may use the redundant carry-save form of 

partial remainders, none that we know of use a redundant divisor.

Given these constraints, the division algorithms recently proposed by Magen- 
heimer for the HP Precision Architecture [17, 18], by Ercegovac [10] in which 

redundant radix-2 quotient digits are converted on the fly to the non-redundant 

two’s complement form, by Fandrianto [12] in which a radix-4 SRT divider is 
combined with a radix-4 square-root extractor (although beyond the scope of 

this paper, the division hardware required for our division algorithm can be 
easily modified to support radix-16 square-root extraction), by Ercegovac and 

Lang [9] in which a radix-4 divider is based on a different recurrence equation

[11], pj+1 =  r(pj — qj+id), in which both the partial remainder and the divisor 

axe shifted simultaneously and by Kuninobu [16] in which an array divider is 
based on a redundant radix-2 number representation are not applicable to the 

problem of division in a variable precision processor. Each of these has its ini
tial operands in non-redundant, two’s complement form and requires removal 

of redundancy from the quotient and remainder for storage. Furthermore, all 

assume fixed precision arithmetic units and none appear to be applicable to 

higher radix (radix-16) division.

It might be argued that operands and results could be stored in carry save 

form, however as shown in section 2.1 and in [8], maximally redundant number 
presentations (which binary carry save is) are very difficult to normalize for 

SRT type divisions.

Taylor describes the only other radix-16 division algorithm in the literature

[25]. One of his techniques is based on overlapping two successive stages of 

radix-4 quotient digit selection with the formation of the divisor multiple and 

the next partial remainder. Using this technique, the time involved in a frac

tional division can be potentially reduced to the time required for quotient 
digit selection. Although the implementation discussed by Taylor for division 

and quotient digit selection in particular cannot be used in the variable preci

sion processor, the technique for overlapping the two successive radix-4 stages 

of quotient digit generation may be applicable in implementing the division 

algorithm described in this paper.

The equations relating to and techniques for normalization are applicable to 
signed-digit number representations of any radix, as are the equations which 

compute the required precisions of the divisor and dividend in a model SRT 

division. The multi-level normalization process (in this case radix-16, followed 

by radix-4, followed by radix-2) is also applicable to any radix. The signed

digit number representation chosen will, however, have a significant impact on 
the difficulty of performing the normalization operations.
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One-stage generation of higher radix quotient digits becomes prohibitively 

expensive since far too many comparisons must be made. When they are made 

sequentially the time cost is too high and when they are made in parallel the 

hardware cost is too high. When each digit of a number can be represented as 
a sum of equally weighted identical digit-sets with smaller diminished cardi

nality, then the staged division algorithm presented here is directly applicable. 

For example, radix-64 division could be implemented using three successive 

radix-4 quotient digit generation stages in the model division when the num
ber representation is

< 84.42 >=  16 < 4.2 > +4 < 4.2 > +  < 4.2 > .

Radix-36 division could be implemented using two successive radix-6 quotient 

digit generation stages in the model division when the number representation 
is

< 56.28 >= 6 < 8.4 > +  < 8.4 > .

Of course, higher-radix division does not make much sense unless hardware 

is available for computing the next partial remainder (as in equation 1) in a 
single multi ply/subtract operation.

Algorithm 16.4, developed specifically for use in a specialized arithmetic 
hardware [3, 4] for operating on high/variable precision numbers using a re

dundant signed-digit number representation, is well suited for implementation 

in VLSI since the hardware required to implement the recursion gives constant 
addition/subtraction time with a linear increase in area and a very simple in

terconnection strategy. All of the division recursion hardware is directly used 

for other supported arithmetic operations. It is being implemented as part of 

a two chip CMOS VLSI chip-set from which a variable precision arithmetic 
processor will be constructed.

Numbers are stored in radix-16 redundant form, eliminating the need for 

costly conversions to and from two’s complement while incurring only a 25% 

increase in storage requirements. The cycle time for the generation of each 

quotient digit will consist of the time to evaluate the full-precision radix-16 

recurrence equation (essentially a multiply-subtract operation which has a time 
complexity of 0(1) [3]), plus the time for shifting the partial remainder one 

digit to the left, plus twice the time to generate a radix-4 quotient half-digit, 

plus the time to evaluate a limited precision radix-4 recurrence equation.

Given the variable precision architecture in which this division algorithm 

operates, a number of optimizations in the control module are possible that 

make division less costly on average. First, it need never generate more quo

tient digits than are necessary. If two numbers of roughly similar size are the 

operands for division, very few quotient digits will be generated. In fact, if a 

divisor is more than one digit larger than the dividend the division algorithm
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will not be invoked and a constant zero will be returned. Second, the remain
der of a division need not be denormalized if it will not be subsequently used. 

Third, division by powers of four (or sixteen) can be optimized to shifts even 

though division by powers of two cannot. Fourth, optimization of division by 
two can be achieved by adding a number to itself and then shifting right by 
one half-digit.

When compared to the cost of the variable-precision arithmetic modules, 

the model division portion of the proposed division algorithm represents only 

a small portion of the cost of the control module and of the system as a whole. 
Using the proposed algorithm, special-purpose variable-precision hardware can 

be used to compute division of very-high precision integers several orders of 

magnitude more quickly than with available software packages [4].
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Table 1: Quotient Digit Selection by Algorithm 16

Nam e n̂orm Test r = 16 Dmodel D  compare Pre
d Pj d e *7 d Pj d Pj Processing

5.50 16 16 16 4 4 3 4.00 1.50 4.00 1.50 none

5.25 16 16 2 4 15 3 3.75 1.50 3.75 1.50 none

5.00 16 16 16 16 3 2 3.00 2.00 3.00 2.00 none

4.75 16 16 16 2 3 7 3.00 1.75 3.00 1.75 none

4.50 16 16 4 16 5 2 2.50 2.00 2.50 2.00 none

4.00a 4 16 16 16 2 2 2.00 2.00 2.00 2.00 4 R

4.00b 4 16 16 16 3 1 3.00 1.00 3.00 1.00 4 R

3.75a 2 16 2 16 7 2 1.75 2.00 1.75 2.00 4R,2R

3.756 4 16 2 16 11 1 2.75 1.00 2.75 1.00 4R,2R

3.75c 2 16 16 2 3 3 3.00 0.75 3.00 0.75 4R,2R

3.50a 4 16 16 4 2 3 2.00 1.50 2.00 1.50 4 R

3.506 2 16 2 2 11 3 2.75 0.75 2.75 0.75 4R,2R
3.25a 2 16 2 4 7 3 1.75 1.50 1.75 1.50 4R,2R

3.25t 2 16 2 2 7 5 1.75 1.25 1.75 1.25 4R,2R
3.00 2 16 16 16 2 1 2.00 1.00 2.00 1.00 4R,2R
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Table 2: Quotient Digit Selection by Algorithm 16.4

Nam e Tnorm Test r — 16 r == 4 Dmodel Dcompare Pre

d d e V € d Pj d Pj Processing

5.50a 16 16 16 4 4 3 4 3 4.00 1.50 4.00 1.50 none

5.50ft 16 16 4 4 8 3 7 3 4.00 1.50 3.50 1.50 none

5.25 16 16 2 4 15 3 13 3 3.75 1.50 3.25 1.50 none

5.00 16 16 16 16 3 2 2 2 3.00 2.00 2.00 2.00 none

4.75 16 16 16 2 3 7 2 7 3.00 1.75 2.00 1.75 none

4.50o 16 16 4 16 5 2 4 2 2.50 2.00 2.00 2.00 none

4.50;, 16 16 4 2 5 8 4 7 2.50 2.00 2.00 1.75 none

4.00a 4 16 16 16 2 2 2 2 2.00 2.00 2.00 2.00 4 R

4.00,, 4 16 4 16 4 2 3 2 2.00 2.00 1.50 2.00 4 R

4.00c 4 16 2 16 8 2 5 2 2.00 2.00 1.25 2.00 4 R

4.00d 4 16 16 16 3 1 3 1 3.00 1.00 3.00 1.00 4 R

4.00e 4 16 4 16 6 1 5 1 3.00 1.00 2.50 1.00 4 R

3.75 a 2 16 2 16 7 2 4 2 1.75 2.00 1.00 2.00 4R ,2R

3.75fe 2 16 2 16 7 2 5 1 1.75 2.00 1.25 1.00 4R ,2R

3.75c 4 16 2 16 11 1 9 1 2.75 1.00 2.25 1.00 4 R

3.75d 2 16 16 2 3 3 3 3 3.00 0.75 3.00 0.75 4R ,2R

3.75e 2 16 4 2 6 3 5 3 3.00 0.75 2.50 0.75 4R ,2R

3.50 2 16 2 2 11 3 9 3 2.75 0.75 2.25 0.75 4R ,2R

3.50a 4 16 16 4 2 3 2 3 2.00 1.50 2.00 1.50 4 R

3.50fc 4 16 16 2 2 6 2 5 2.00 1.50 2.00 1.25 4 R

3.50c 4 16 4 4 4 3 3 3 2.00 1.50 1.50 1.50 4 R

3.50d 4 16 2 4 8 3 5 3 2.00 1.50 1.25 1.50 4 R

3.50e 4 16 4 2 4 6 3 5 2.00 1.50 1.50 1.25 4 R

3.250 2 16 2 4 7 3 4 3 1.75 1.50 1.00 1.50 4R ,2R

3.25fc 2 16 2 4 7 3 5 2 1.75 1.50 1.25 1.00 4R ,2R

3.00o 2 16 16 16 2 1 2 1 2.00 1.00 2.00 1.00 4R ,2R

3.00b 2 16 4 16 4 1 3 1 2.00 1.00 1.50 1.00 4R ,2R

3.00c 2 16 2 16 8 1 5 1 2.00 1.00 1.25 1.00 4R ,2R


