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Abstract 

In RPC-based communication, we term the interface 
the set of remote procedures and the types of their ar­
guments; the presentation is the way these procedures 
and types are mapped to the target language environment 
in a particular client or server, including semantic re­
quirements. For example, presentation includes the local 
names assigned to RPC stubs, the physical representation 
of a logical block of data (e.g., in-line, out-of-line, linked 
blocks), and trust requirements (e.g., integrity, security). 
In existing systems, the presentation of a given RPC con­
struct is largely fixed. 

Separating presentation from inteiface, both in the in­
teiface definition language (IDL) itself and in the RPC im­
plementation, is the key to interoperability, with many 
benefits in the area of elegance, as well. This separation 
and resulting cleanliness makes it manageable to gener­
ate specialized kernel code paths for each type of client­
server pair. This is a key element of end-to-end optimiza­
tion. The separation should also allow the integration of 
disparate RPC optimization techniques, such as those ap­
plied in LRPC[2} andfbufs[6}, into a single system, in a 
uniform and fully interoperable way. In initial work we 
demonstrate a variant of threaded code generation and 
two presentation-based optimizations, transparentlyacti­
vated by the RPC system. Each of these optimizations 
speeds up local RPC by approximately 25%.1 

1 Introduction 

Remote procedure call (RPC) and interface definition 
language (IDL)[lO] compilers were first introduced pri­
marily as programming shortcuts: tools to help automate 
the production of networking code. However, with 
the growth of client-server computing and large object­
oriented distributed systems, RPC interfaces have changed 
from a programming convenience to abstractions useful in 
themselves to promote software modularity and interop­
erability. Entire software systems, such as Spring[9], are 
designed and built in terms of the RPC interfaces between 
their components. IDLs have been elevated from a short­
hand language for networking code to a formalization of 
interfaces between modules. 

1 Contact author: Jay Lepreau, lepreau@cs. utah. edu 

However, the fundamental design of the IDLs and RPC 
implementations we use today, even the IDLs and object 
invocation used in modern object-oriented systems, still 
reflect the original purpose of RPC. Our solution to this 
mismatch revolves around a basic concept: a notion of 
presentation defined separately from RPC interface. 

1.1 Presentation 

In a typical RPC implementation, client and server 
stubs, written automatically by an IDL compiler, cooper­
ate with an underlying data transport mechanism to en­
capsulate communication across protection and network 
boundaries. 2 The stubs "present" interprocess communi­
cation (IPC) in a convenient, high-level form, easily acces­
sible from the client or server's general-purpose language. 
The exact linguistic rules by which the stubs interact with 
application code, and the RPC-related semantic require­
ments of the application, are what we call the presentation. 

In conventional RPC systems, the presentation of an 
RPC interface for a particular target language is largely 
fixed, defined either explicitly in the RPC system speci­
fication, or implicitly by the stubs produced by the IDL 
compiler. For example, if an RPC involves transmitting 
a block of data, the RPC stubs expect the data to be pro­
vided in a certain way, such as in a continuous buffer with 
its length specified as an additional argument to the stub. 

1.2 Flexible Presentation 

We believe that much greater presentation flexibility 
can be provided by the IDL, and that it can be efficiently 
supported in an optimized microkernel RPC implemen­
tation. A flexible presentation enhances interoperability 
and should bring a number of benefits: (i) it makes IDLs 
simpler by separating out presentation constructs; (ii) it 
makes RPC interfaces "narrower" by eliminating the need 
for multiple variants of operations that differ only in pre­
sentation; (iii) it makes the programmer's job easier by of­
£loading more of the work of using RPC from the general­
purpose language to the RPC system; (iv) it gives the RPC 
system as a whole (both the IDL compiler and the under­
lying IPC mechanism) more opportunity for IPC special-

2 While RPC is usually synchronous, the concepts described here ap­
ply to any flavor of IPC that allows a language layer above it. including 
asynchronous communication and even multicast 



ization and optimization by providing additional semantic 
infonnation in declarative fonn. 

In the rest of this paper we first discuss examples of pre­
sentation and related work, in Section 3 we examine the 
IDL aspects of separating presentation, and in Section 4 
we do the same for RPC and our implementation. 

2 Related Work and Examples 
The tenn "presentation" comes from the OSI network­

ing model, of course, which defines a presentation layer 
responsible for providing applications with data in the 
locally-preferred representation. The primary presenta­
tion emphasis in the OSI model is on data format and ex­
clude semantic attributes, whereas we are concerned with 
both types. 

We know of two IDLs in which the notion of separate 
presentation exists to some degree. DCE IDL's "Appli­
cation Configuration File" allows specification, separate 
from the interface definition file, of a few attributes such as 
binding protocol, error condition treatment, and data type 
equivalence. The Concert system's[l] "endpoint modi­
fier" supports more presentation attributes. Since Con­
cert does not have a separate IDL, the endpoint modifier is 
automatically generated by each language's compiler and 
only handles the vagaries of the language mapping. 

of a research effort in its own right. 

Clark et al[5] emphasize the importance of optimiz­
ing the presentation layer in traditional networking, show­
ing that it can dominate processing time. They also em­
phasize that for perfonnance reasons, the necessity of 
non-contiguous data location in the recipient is a criti­
cal architectural constraint. This can occur not only in 
RPC, where each parameter is scattered in memory, but 
in integrated-layer processing of stream-based protocols, 
due to dropped packets. Their emphasis is on the latter, 
ours the former. Our optimization effort applies the end­
to-end argument[14], which emphasizes the importance, 
in a multitude of domains, of considering the total path in 
design and implementation. 

Operating system interfaces are replete with special 
calls whose only purpose is to accommodate slight vari­
ance in presentation. For example, for perfonnance 
reasons OSF added a number of system calls to the 
Mach kernel, differing from other calls only in pre­
sentation. Device_read_overwri te, rnachJIlsg­
_overwri te, vn_read_overwri te, and vrn_rernap 
only modify memory allocation semantics of parameters. 
OSF has also added new IDL attributes which by their na­
ture affect only presentation, but since the concepts are not 
separated, affect the entire interface: PhysicalCopy, 
Overwri te, and SarneCount. That these were found 
necessary shows the importance of presentation in real­
world situations, but all of these calls and options can be 
subsumed by our design. 

The Subcontract work[9], an elegant and general 
method for extending and specializing object com­
munication mechanisms and semantics, is largely 
complementary to our work. Their Spring system has 
separate stub, subcontract, and kernel levels, with the 3 
language-level stubs and kernel IPC mechanism remain-

Presentation in IDLs 

ing entirely generic, and all specialization restricted to 
the subcontract layer. Therefore, in the general case, 
the exact details of presentation to the application code 
cannot be specified, varied, or controlled. However, when 
an object is a parameter to a call, that object's subcontract 
can specialize the object's marshalling and a few other 
aspects of presentation. However, it apparently cannot 
specialize these based on which method of the target 
object is being invoked, losing much of its potential 
power. Also, end-end optimization is not possible since 
the kernel IPC mechanism is not specialized. 

Our language model for presentation specification is 
based on the general concept of subtyping, found in object­
oriented languages as inheritance. We introduce the con­
cept of "presentation subtypes," which are types relevant 
only to the local scope of a particular software module; the 
boundary between interface and presentation types is the 
boundary at which type mismatches no longer affect inter­
operability. Also, in some sense we are separating "imple­
mentation from interface," where the "implementation" is 
our "presentation" of the interface. However, our initial 
exploration of the deeper language issues shows that the 
issue is complex, as Cardelli[3] discusses, and is worthy 
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In theory, there is exactly one interface definition file 
per defined interface, and all clients and servers support­
ing that interface use that one file. However, in practice it 
is often necessary to effect minor changes to the standard 
interface, in order to support particular clients and servers. 
For example, in the MachIMIG/OSF-l environment such 
changes are made for a number of reasons. Some of them 
are to avoid naming conflicts by renaming the generated 
stub routines, to specify user-defined marshaling and un­
marshaling functions to be invoked by the stubs on certain 
data types, to modify the IDL compiler's behavior based 
on whether the generated stubs will be used inside or out­
side of the kernel, and to provide the server with message 
sequencing information. 

These local deviations do not affect the information 
transferred across the RPC interface, only the way in 
which the RPC stubs interact with the local client or server 
implementation: in other words, the presentation. 

What is needed is a way to specify presentation sepa­
rately from interface so that the former can be varied while 
the latter remains stable. Since existing IDLs have no di­
rect support for this separation, ad hoc solutions are used 
instead. Typically, modifying the interface's presentation 



is accomplished either by maintaining a variant copy of the 
IDL file, or by embedding special conditional constructs 
(#ifdef's) in the global interface definition file and using 
externally-specified actions (makefile rules) to select the 
behavior of a particular run of the IDL compiler. These 
often extensive rules and conditions (over 400 lines in the 
standard Mach system) are essentially presentation defini­
tions. However, because the presentation is provided in a 
completely ad hoc way, its use and maintenance is infa­
mously difficult. These awkward mechanisms are never­
theless used extensively, demonstrating the inherent need 
to control presentation separately from interface. 

3.1 Adding Presentation Support to an IDL 
To demonstrate the benefits offully supporting separate 

specification of presentation and interface, we are creating 
a new Mach RPC system, based on the CORBA IDL[13] , 
Sun's freely-available IDL compiler, our own IDL com­
piler back-end, and an extension of our migrating threads 
RPC mechanism[7] . 

An interface specification is generally intended to be in­
dependent of the languages used to write its client pro­
grams. However, presentation specification is fundamen­
tally language-specific, because it defines the interaction 
between client or server code and the IPC system (RPC 
stubs). For example, an attribute specifying data buffer 
dealloc;ltion semantics would make sense in C, but not in 
Lisp, which has automatic storage reclamation. Therefore, 
it is important to cleanly separate interface and presenta­
tion support, both in the IDL syntax and in its compiler im­
plementation. 

In the CORBA IDL, the basic unit of interface defini­
tion is the type. Both concrete data types such as integers 
and structures, and entire interfaces (sets of RPC decla­
rations), are considered types. In our extended version 
of the CORBA IDL, defining presentation for already­
defined types involves creating presentation subtypes of 
the "pure" interface types. A presentation subtype is in­
visible to all external (remote) software components, ap­
pearing identical to the pure base type it was derived from. 
However, it is distinct in the view of the local program for 
which the presentation is defined. For example, in Fig­
ure 1, two local presentation subtypes, SirnpleDa ta and 
FbufData, specify two different presentations for the 
pure interface type DataBlock. All three types are dis­
tinct and possibly incompatible within the client or server 
using them, but programs on the "other end" of an RPC in­
terface only see the base type, DataBlock (or their own 
independent presentations of that base type) . 

4 Presentation and Interface in RPC Imple­
mentation 

Many powerful techniques for optimizing IPC have 
been demonstrated, such as data transfer with page 
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Figure 1: Presentation Subtypes 

remapping[4, 15], copy-on-write, pairwise shared mem­
ory buffers[2], and memory buffers group-wise shared 
across full data paths, leveraging weakened semantics 
when possible[6]. These techniques impose various 
restrictions on the situations in which they can be used 
and on the way the client and server code must be written. 
They give up generality in return for better performance 
in specific common cases. 

None of these techniques, used alone, will result in an 
IPC system that is both fast in the common cases and gen­
eral enough to work throughout a diverse distributed sys­
tem. Only by integrating a variety of these techniques 
together in one RPC system, taking advantage of the 
strengths of each in their applicable areas, can a truly 
general-purpose, high-performance RPC system be built. 
Finding ways to make optimizations work together has be­
come a more important challenge than simply finding op­
timizations. It is not necessary for every possible combi­
nation to be fast (only the common cases have to be fast), 
but every possible combination must work. 

4.1 How Presentation Helps 
One of the primary reasons integrating optimized RPC 

mechanisms is difficult is because each has different ex­
pectations and requirements in terms of presentation. For 
example, fbufs can provide extremely low-overhead data 
transfer across an unlimited number of protection bound­
aries, but for optimal performance it requires all partici­
pating clients and servers to handle data blocks scattered 
through multiple disjoint buffers, as well as knowledge of 
weakened semantics when they exist (e.g. mutable data) . 
Because this presentation does not match the "default" 
presentation assumed by typical RPC systems (i.e. con­
tinuous data buffers, completely restricted access), and the 
IDL does not provide any way to select between the two 
presentations locally, the fbufs optimizations can only be 
supported by adding a more-or-Iess separate, noninterop-



erable "subsystem" to the basic RPC facility. The lack of 
presentation support means that a software component's 
interface, and not just its presentation, must be modified in 
order to allow the optimization to be applied, thereby mak­
ing the program incompatible with other programs that do 
not use fbufs. 

By allowing presentation to be explicitly declared in an 
IDL separately from the interface, the RPC system can 
enable individual IPC optimizations such as LRPC and 
fbufs on a connection-by-connection basis, depending on 
the presentations of the two endpoints. Since the presen­
tations of the endpoints are independent from the point of 
view of the programs using the RPC system, only the ba­
sic interfaces must match in order to guarantee interoper­
ability. IPC will be faster if the presentations match more 
closely, but it will always work. In summary, we believe 
that the separation of presentation from interface, and the 
addition of more declarative presentation flexibility, will 
aid IPC optimization by providing a generalized frame­
work for combining a variety of optimization techniques 
in a fully interoperable way. 

Implementation Complexity 

If I is the number of "interface variants" supported (pro­
cedures, data types, etc.), and any interface variant can ap­
pear on each of two endpoints with P "presentation vari­
ants," the implementation complexity could be as large 
as I p2. However, in practice, presentation variants are 
largely orthogonal to interface variants: for example, the 
way a block of memory is transferred is largely indepen­
dent of what type of data the block holds. This reduces the 
complexity to the order of 1+ p2. Finally, it is always pos­
sible to define some kind of canonical format for IPC data 
transfer, depending only on interface and not on presenta­
tion. The two "sides" of the RPC interface then become 
independent, each converting data to the common format, 
resulting in a basic complexity of only I + P. 

Supporting sophisticated presentation-based optimiza­
tions of course requires deviating from the canonical for­
mat, but only the few common-case "cells" of the P x P 
matrix need to be optimized. The canonical format pro­
vides interoperability, while the common-case optimiza­
tions provide performance. Therefore, this kind of RPC 
system should be feasible, although still not "easy." 

Basic Implementation Requirements 

There are two main aspects to an RPC implementation 
with full presentation support. First, the IDL compiler 
must generate type signatures in addition to the normal 
stub routines. A type signature contains both interface and 
presentation information for a particular software compo­
nent. Second, when a communication channel is initial­
ized (bound) at run time, the type signatures of each end­
point must be available to the RPC mechanism. The RPC 
mechanism can then enable any IPC optimizations whose 
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constraints are satisfied by the type signatures. 

4.2 Prototype Implementation 
We have implemented a prototype that embodies all 

of the basic characteristics of a flexible-presentation 
RPC system using binding-time path specialization. We 
demonstrate the value of such a system by measuring base 
performance and two classes of presentation-based opti­
mizations, which yield additional improvement. In our 
implementation, the Mach kernel does most of the work of 
marshaling and unmarshaling data as well as transferring 
it across protection boundaries. 

Before a Mach port can be used for communication, 
as part of binding the client and server must each regis­
ter their respective type signatures with the kernel. The 
client's signature is attached to the send right, or object 
reference, while the server's signature is attached to the 
port, which is the kernel's representation of the object it­
self. Multiple clients that have references to a single server 
object can each register a different client presentation. 

Once both the client and server type signatures are 
available, the kernel checks them against each other, ver­
ifying that the interfaces are compatible and searching 
for optimizations made possible by the specified presen­
tations. It then builds a combination signature, a special 
type signature based on both input signatures. The combi­
nation signature is completely kernel-private and acts as a 
cache which keeps track of previously implemented RPC 
paths. Thus, the kernel only has to compare registered type 
signatures once; successive uses of a particular RPC path 
require no expensive computation. In fact, the combina­
tion signature include a block which threads[ll] together 
small blocks of code which perform key parts of the RPC, 
such as register saving and restoring. It is important to re­
alize that the binding time work needn't be done by the 
kernel; a privileged user process could equally well do it. 

4.3 Results 
Tests were done on a 66MHz HP 730 (PA-RIse). The 

times include all RPC costs, including both user-level stub 
code and kernel processing. 

Basic threaded code performance: Null local RPC 
now takes 4.6 JLsecs, and passing one 32-byte in param­
eter takes 5.9 JLsecs. This null RPC is now nine times as 
fast as traditional Mach RPC and more than twice as fast as 
our migrating threads implementation[7] which relied on 
the traditional Mach message format, RPC is now twice as 
fast as system calls on native monolithic operating systems 
(BSD, HP-UX). This is because the latter are not, in gen­
eral, specialized, but must set up exception handlers and 
other rarely used functions. 

This excellent base performance was achieved through 
a range of optimization techniques (passing parameters in 



registers, migrating threads, avoiding register state saving 
and restoring) [12, 8, 7], as well as specialized code. With 
full knowledge of both client and server presentation, up 
into user code, more optimizations are possible on non­
null RPCs. 

Relaxing Mach's unique-name requirement: The 
standard Mach IPC system always enforces the semantic 
requirement that all references to a particular port from 
a particular protection domain (task) have only a single 
name within that task. This requirement is required in 
some situations, such as authentication, but is unnecessary 
for simple object invocation and slows down transfer of 
object references from one task to another. The single­
name requirement is clearly a presentation feature, since 
it only affects the appearance of a port locally within a 
task. Leveraging the presentation semantic constraint of 
not needing unique port names resulted in a performance 
improvement of 24% when passing a single port (32.4 
J.lsecs reduced to 24.7 J.lsecs). 

Varying Trust Parameters: The trust relationships be­
tween clients and servers also count as "presentation" for 
our purposes, because they are useful in optimizing RPC 
but should not affect interoperability or the basic RPC in­
terface. Therefore, in our RPC system, we allow each 
"side" of a connection to specify the degree to which it 
trusts the other side. Three levels of trust are provided: 
no trust, trust of confidentiality but not integrity, and full 
trust of both integrity and confidentiality. The middle level 
would typically apply between processes owned by the 
same user, which want to maintain protection boundaries 
but have no information to hide from each other. The full 
trust level could be used by clients communicating with 
privileged servers, such as a Unix single-server. We im­
plemented relaxed trust levels by requiring less register 
saving, restoring, and clearing on the RPC path. Overall, 
we achieved 30% speedup with full trust, with intermedi­
ate trust gaining 8%. 

5 Summary 
Keeping presentation separate from interface is an im­

portant design element for both IDLs and communication 
systems. When done right, it provides enhanced cleanli­
ness and interoperability, while offering the potential for 
end-to-end optimization of the entire communication path. 
This potential is due to the extension into user space of the 
kernel-known path, as well as the applicability of disparate 
IPe optimizations. 
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