
Prototyping Environment for Robot Manipulators

Mohamed Dekhil, Tarek M. Sobh, Thomas C. Henderson, and Robert Mecklenburg1

UUSC-94-011

Department o f Computer Science *
University of Utah

Salt Lake City, UT 84112 USA

March 30, 1994

Abstract

Developing an environment that enables optimal and flexible design of robot manipulators using
reconfigurable links, joints, actuators, and sensors is an essential step for efficient robot design and
prototyping. Such an environment should have the right “mix” of software and hardware components
for designing the physical parts and the controllers, and for the algorithmic control of the robot
modules (kinematics, inverse kinematics, dynamics, trajectory planning, analog control and digital
computer control). Specifying object-based communications and catalog mechanisms between the
software modules, controllers, physical parts, CAD designs, and actuator and sensor components
is a necessary step in the prototyping activities. In this paper, We propose a flexible prototyping
environment for robot manipulators with the required subsystems and interfaces between the different
components of this environment.

'This work was supported in part by DARPA grant N00014-91-J-4123, NSF grant CDA 9024721, and a University
of Utah Research Committee grant. All opinions, findings, conclusions or recommendations expressed in this document
are those of the author and do not necessarily reflect the views of the sponsoring agencies. This report has been also
submitted as a paper for the IE E E Transactions on Robotics and Automation

P r o t o t y p i n g E n v i r o n m e n t f o r R o b o t M a n i p u l a t o r s

M oham ed Dekhil, Tarek M. Sobh, Thom as C. Henderson, .
and Robert Mecklenburg

March 24, 1994 ,

Computer Science Department
University of Utah

Salt Lake City, Utah 84112, USA

A bstract

Developing an environment that enables optimal and flexible design of robot manipula­
tors using reconfigurable links, joints, actuators, and sensors is an essential step for efficient
robot design and prototyping. Such an environment should have the right “mix” of soft­
ware and hardware components for designing the physical parts and the controllers, and
for the algorithmic control of the robot modules (kinematics, inverse kinematics, dynamics,
trajectory planning, analog control and digital computer control). Specifying object-based
communications and catalog mechanisms between the software modules, controllers, phys­
ical parts, CAD designs, and actuator and sensor components is a necessary step in the
prototyping activities.

In this paper, We propose a flexible prototyping environment for robot manipulators
with the required subsystems and interfaces between the different components of this
environment.1

Keywords: robot design, prototyping, concurrent engineering

1 In tr o d u c tio n

Prototyping is an important activity in engineering. Prototype development is a good test
for checking the viability of a proposed system. Prototypes can also help in determining
system parameters, ranges, or in designing better systems. The interaction between several
modules (e.g., S /W , VLSI, CAD, CAM, Robotics, and Control) illustrates an interdisciplinary
prototyping environment that includes radically different types of information, combined in a
coordinated way.

1 This work was supported in part by DARPA grant N00014-91-J-4123, NSF grant CDA 9024721, and a
University of Utah Research Committee grant. All opinions, findings, conclusions or recommendations expressed
in this document are those of the author and do not necessarily reflect the views of the sponsoring agencies.

1

In designing and building a robot manipulator, many tasks are required, starting with
specifying the tasks and performance requirements, determining the robot configuration and
parameters that are most suitable for the required tasks, ordering the parts and assembling
the robot, developing the necessary software and hardware components (controller, simulator,
monitor), and finally, testing the robot and measuring its performance.

Our goal is to build a framework for optimal and flexible design of robot manipulators with
software and hardware systems and modules which are independent of the design parameters
and which can be used for different configurations and varying parameters. This environment
is composed o f several subsystems. Some of these subsystems are: .

• Design.

• Simulation.

• Control.

• Monitoring.

• Hardware selection.

• C A D /C A M modeling.

• Part Ordering.

• Physical assembly and testing.

Each subsystem has its own structure, data representation, and reasoning strategy. On
the other hand, much o f the information is shared among these subsystems. To maintain the
consistency of the whole system, an interface layer is proposed to facilitate the communication
between these subsystems, and set the protocols that enable the interaction between the sub­
systems to take place. Figure 1 shows a schematic view of the prototyping environment with
its subsystems and the interface.

A prototype 3-link robot manipulator was built to help determine the required sub-systems
and interfaces to build the prototyping environment, and to provide hands-on experience for the
real problems and difficulties that we would like to address and solve using this environment.

2 B a c k g ro u n d a n d R e v ie w

To integrate the work among different teams and sites working in such a large project, there
must be some kind of synchronization to facilitate the communication and cooperation between
them. A concurrent engineering infrastructure that encompasses multiple sites and subsystems,
called Pallo Alto Collaborative Testbed (PACT), was proposed in [2]. The issues discussed in
that work were:

2

Life cycle : Increase the concurrency of the various phases in the software life cycle.

In tegration : Combining concepts and tools to form an integrated software engineering task.

Sharing: Defining multiple levels of sharing is necessary.

A management system for the generation and control of documentation flow throughout a
whole manufacturing process is presented in [7]. The method of quality assurance is used to
develop this system that covers cooperative work between different departments for documen­
tation manipulation. ,

A computer-based architecture program called the Distributed and Integrated Environm ent
fo r Com puter-Aided Engineering (Dice), which addresses the coordination and communication
problems in engineering, was developed at the MIT Intelligent Engineering Systems Laboratory
[12]. The Dice project addresses several research issues such as, frameworks, representation,
organization, design methods, visualization techniques, interfaces, and communication proto­
cols.

Some important topics in software engineering, such as the lifetime of a software system,
analysis and design, module interfaces and implementation, and system testing and verifica-
tioncan, can be found in [8]. Also, a report about integrated tools for product, and process
design can be found in [13].

In the environment we are proposing, several subsystems are communicating through a
central interface layer (C l), and each subsystem has a subsystem interface (SSI) responsible
for data transformation between the subsystem and the CL The flexibility of this design arises
from the following points:

• Adding new subsystem can be achieved by writing an SSI for this new subsystem, adding
it to the list of the subsystems in the CI. There are no changes required to the other
SSIs.

• Removing a subsystem only requires removing its name from the subsystems list in the
CI.

• Any changes in one of the subsystems require changing the corresponding SSI to maintain
correct data transformation to and from this subsystem.

The analysis and design details and the initial work in this environment can be found
in [5, 3].

3 B u i l d i n g a T h r e e - l i n k R o b o t

To explore the basis of building a flexible environment for robot manipulators, A three-link
robot manipulator, “URK” (Utah Robot Kit), was designed. This enabled us determine the
required subsystems and interfaces for such an environment. This prototype robot will be used
as an educational tool in control and robotics classes.

4

Figure 2: The physical three-link robot manipulator.

This robot prototype can be easily connected to any workstation or PC through the stan­
dard serial port with an RS232 cable. Also, a controller for this robot was developed with an
interface that enables the study of the manipulator’s behavior for different design parameters
and configurations. The manipulator was designed in such a way that enables the change of
any of its sensors or actuators with minimal effort.

Figure 2 shows the physical three-link robot, and Figure 3 shows an overall view of the
different interfaces and platforms that can control the robot. More details about this design
can be found in [4, 11].

4 T h e P r o t o t y p i n g E n v i r o n m e n t

The proposed environment consists of several subsystems each of which carry out certain tasks
to build the prototype robot. These subsystems share many parameters and information. To
maintain the integrity and consistency of the whole system, a central interface (CI) is proposed
with the required rules and protocols for passing information. This interface will be the layer
between the robot prototype and the subsystems, and it will also serve as a communication
channel between the different subsystems.

The difficulty of building such an interface arises from the fact that it deals with different
systems, each with its own architecture, knowledge base, and reasoning mechanisms. In order
to make these systems cooperate to maintain the consistency of the whole system, we have
to understand the nature of the reasoning strategy for each subsystem, and the best way of
transforming the information to and from each of them.

In this environment the human role should be specified and a decision should be taken
about which systems can be fully automated and which should be interactive with the user.

5

D ig ita l Control

Analog Control

looo
PID Controller

A m p lifie r

o d

3-Link Robot

Figure 3: Controlling the robot using different schemes.

4.1 O ve ra ll D esign

The Prototyping Environment (PE) consists of a central interface (Cl) and subsystem interfaces

(SSI). The tasks of the central interface are to:

• Maintain a global database of all the information needed for the design process.

• Communicate with the subsystems to update any changes in the system. This requires
the central interface to know which subsystems need to know these changes and send
messages to these subsystems informing them of the required changes.

• Receive messages and reports from the subsystems when any changes are required, or
when any action has been taken (e.g., update complete).

• Transfer data between the subsystems upon request.

• Check constraints and apply some of the update rules.

• Maintain a design history containing the changes and actions that have been taken during
each design process with date and time stamps.

• Deliver reports to the user with the current status and any changes in the system.

The subsystem interfaces are the interface layers between the Cl and the subsystems. This
makes the design more flexible and enables us to change any of the subsystems without much
change in the Cl — only the corresponding SSI need to be changed. The role of the SSIs are:

• Report any changes to the Cl.

• Receive messages from the Cl with required updates.

• Perform the necessary updates in the actual files of the subsystem.

2. Request for data from one subsystem to another.

Figure 5 shows the protocol used for the first event represented by a finite state machine (FSM).
The states o f this FSM are:

1. Steady state: Do nothing.

2. Change has been reported: send lock message to all subsystems. Apply relations and
check constraints. If constraints are satisfied, go to state 3. If constraints are not satisfied,
report these to sender and go to steady state. •

3. Constraints are satisfied: Notify the subsystems with the changes and wait for acknowl­
edgments.

4. Acknowledgments received from all subsystems: Send the final acknowledgment to the
subsystems and go to steady state.

5. Acknowledgments not Ok: Send a “change-back” command to the subsystems and go to
steady state.

Figure 6 shows the protocol for the second event. The states in this FSM are:

1. Steady state: Do nothing.

2. Request for S2 received from Si. Send the request to S2.

3. Required data found at S2 . Send data to SI and go to steady state.

4. Required data not found at S2. Send report to S i and go to steady state.

The suggested protocol can be described in algorithmic notation as follows:

do while true

if change reported then

lock messages

apply relations

check constraints

if constraint satisfied then

report changes to subsystems

wait for subsystems acknowledgment

if all acknowledgments ok

update database

report the new status

else

8

Figure 5: Finite state machine representation for the change protocol.

Figure 6: Finite state machine representation for the data request protocol.

send a change-back message to subsystems

report failure to sender

else

report nonsatisfied constraints to sender

send final acknowledgment to subsystems

else if data-request reported then ,

send request to the appropriate subsystem

if data received then

send data to sender ■

else

send negative acknowledgment to sender.

Figure 7 shows a possible scenario when applying this protocol. In this algorithm we
assume that all system constraints are located in the Cl; however, any subsystem may reject
the proposed values by other subsystems due to some unmodeled constraints. This can happen
either because there are some “new” constraints that are not reported to the Cl, or because
some constraints are too hard to be easily represented in the constraint format in the Cl.

4.3 D esign Cycles and In f in ite Loops

One problem that arises in our PE is that in some cases infinite design loops might occur due
to some conflict between the constraints in different subsystems. For example, assume that
the design system changed the link length to some value, say from 3.0 to 2.0 inches, to satisfy
some performance requirements. This change would change the link mass as well, say from
1.5 to 1.0 lbs. According to the mass change the gear ratio has to change or the motor should
be replaced, but if there is a constraint on the sprocket radius such that it can be increased,
and there is no other motor with lower rpm, then the mass should be changed again to be 1.5
lbs, which requires the length to be 3.0 inches again. If we let the system continue, the design
system will change the link length again and the loop will continue.

There are several solutions to this problem. One way is to make the user part of this loop
so that some of the performance requirements can be changed, or a solution can be selected
even if it does not meet some required criteria. This requires the user to be a skilled person
who has the knowledge and experience in the design process, and also to have the authority
to change and select solutions irrespective of the original requirements. Another solution is
to put some limitations on the subsystem regarding its ability to change some of the design
parameters. These limitations should guarantee infinite loop prevention in the system. A third
solution is to put all the constraints in the Cl. This allows the Cl to check the solution and
detect any violation to any of the constraints; then it may ask the user to decide on another
solution or to change some of the performance requirements and run the design subsystem
again. The last solution has the user in the loop as well, but incorporating all the constraints

1 0

Figure 7: Possible scenario for the communication between the subsystems.

in the CI reduces the interprocess communication and speeds up the checking process. This
last solution was chosen in our design.

4.4 P ro to ty p in g E n v iro n m e n t Database

A database for the system components and the design parameters is necessary to enable the
CI to check the constraints, to apply the update rules, to identify the subsystems that should
be informed when any change happens in the system, and to maintain a design history and
supply the required reports.

This database contains the following:

• Robot configuration.

• Design parameters.

• Available platforms.

• Design constraints.

• Subsystems information.

• Update rules.

• General information about the system.

Now the problem is to maintain this database. One solution is to use a database manage­
ment system (DBMS) and integrate it in the prototyping environment. This requires writing
an interface to transform the data from and to this DBMS, and this interface might be quite
complicated. The other solution is to write our own DBMS. This sounds difficult, but we can
make it very simple since the amount of data we have is limited and does not need sophisti­
cated mechanisms to handle it. A relational database model is used in our design, and a user
interface has been implemented to maintain this database. For the current design, by making
a one-to-one correspondence between the classes and the files, reading and writing a file can
be accomplished by adding member functions to each class. In this case no need for a special
DBMS and all operations can be performed by simple functions.

4.5 D esign P aram ete rs

The design parameters are the most important data items in this environment. The main
purpose of this system is to keep track of these parameters and notify the subsystems of any
changes that occur to any of these parameters. For the system to perform this task, it needs
to know the following data:

• A complete list of the design parameters.

1 2

Table 1: Subsystem notification table according to parameter changes.

Design Parameter Cl Design Control Simulation Monitor HW-Select CAD/CAM Ordering Assembly

robot model O • o o o O O

link length o • o o o O O

link mass • o o O O

link density o • O O

link cross area o • O O

joint friction o • o o O O

joint gear-ralio • O O

update rate o • o o o O

comm, rate o o o o •

motor rpm o • o

motor range o • o o o o o

sensor range o • o o o O o o

PID parameters o • o o

display rate o •

plateform o o • o

• Which subsystems should be notified if a certain parameter is changed.

Table 1 shows a list o f the design parameters along with the subsystem that can change
them and the subsystems that should be notified by a change in any of these parameters.
Notice that some of these parameters are changed by the Cl, this change is accomplished using
the update rules. In this figure note that one of the design parameters can be removed from
this table, which is “display rate.” The removal of this parameter is valid because only one
subsystem needs to know about this parameter and it is the same subsystem that can change
it. However, we will keep it for possible future extensions or additions of other subsystems
that might be interested in this parameter.

4.6 D atabase D esign

A simple architecture for the database design is to make a one to one correspondence between
classes and files, i.e., each file represents a class in the object analysis. For example, the robot
file represents the robot class and each of the robot subclasses has a corresponding file. This
design facilitates data transfer between the files and the system (the memory). On the other
hand, this strong coupling between the database design and the system classes violates the
database design rule of trying to make the design independent of the application; however, if
the object analysis is done independently of the application intended, then this coupling is not
a problem.

Now, we need to determine the format to be used to represent the database contents and
the relations between the files in this database. Figure 8 shows the suggested data files that
constitute the database for the system, and the data items in each file. The figure also shows
the relations between the files. The single arrow arcs represent a one-to-one relation, and the
double arrow arcs represent a one-to-many relation.

4.7 C o n s tra in ts and U p d a te R ules C o m p ile r

A compiler is provided to generate C + + code for the constraints and the update rules. First,
the syntax o f the language that is used to describe the constraints and the update rules is
described. Second, the generated code is determined.

Using a compiler instead of generic on-line evaluator for the constraints and the update
rules has the following advantages:

• All constraints are saved in one text file (likewise the update rules). This makes the data
entry very easy. We can add, update, and delete any constraint or update rule using any
text editor.

• Complicated data structures are not required for evaluation.

• The database is very simple, which facilitates maintaining the design history.

14

general-info platforms

Figure 8: Database design for the system.

• Format changes, or changes in the generated code require only changes to the compiler,
and no changes in the system are required.

On the other hand, it has the following disadvantages:

• The generated code has to be included in the system and the whole system must be
recompiled. '

• A compiler needs to be implemented.

Notice that the changes in the constraints or the update rules are not frequent, so recom­
piling the system is not a big problem. Also, the syntax used is very simple; therefore the
compiler for such language is not difficult to implement.

4.8 Language S yn tax

By analyzing the design constraints and the update rules, we constructed a simple description
of the language to be input to the compiler. There are two options in this design, either to have
one compiler for both the constraints and the rules, or to build two compilers, one for each.
From the analysis of the constraints and the rules we found that there are many similarities
between them; thus building one compiler for both is the logical option in this case.

The following is the language definition in Backus Naur Form (BNF):

<program>

<constraint-prog>

<rule-prog>

<constraint-sequence>

<rule-sequence>

<constraint>

<rule>

<exp>

<term>

<factor>

<variable>

<constant>

<constraint-prog> I <rule-prog>

begin-constraints

<constraint-sequence>

end-constraints

begin-rules

<rule-sequence>

end-rules

<constraint> ; <constraint-sequence> I

<constraint> ;

<rule> ; <rule-sequence> | <rule> ;

<exp> <comparison-op> <exp>

<variable> = <exp>

<exp> * <term> | <exp> / <term> | <term>

<term> + <factor> I <term> - <factor> I

<factor>

<variable> | <constant> I (<exp>)

<alphabet> <alphanum> I <alphabet>

<int>.<int> I - <int>.<int> I

<int> | - <int>

16

9

<int>

<alphanum>

<alphabet>

<digit>

<comparison-op>

<digit> <int> I <digit>

<alphabet> <alphanum> I

<digit> <alphanum> I

<alphabet> I <digit>

a..z I A . .Z | _

0. .9

= I < I > I <= I >= I <>

The following is an example of some constraints described using this syntax:

begin-constraints

linkl_length > 1.2 ;

link2_length > 1 . 5 ;

link3_length > 0 . 8 ;

link2_length + link3_length < MAX_T0T_LEN ;

linkl_mass < 1 . 4 ;

link2_raass + link3_mass < 4 . 0 ;

jointl_gear_ratio < 5 . 0 ;

end-constraints

Another example showing some update rules using the same syntax:

begin-rules

linkl_raass = linkl_length * linkl_density * linkl_cross_area ;

link2_raass = link2_length * link2_density * link2_cross_area ;

link3_raass = link3_length * link3_density * link3_cross_area ;

jointl_gear_ratio = motorl_speed / linkl_max_speed ;

end-rules

From these examples it is clear that adding arrays to this language can reduce the length
of the programs, but given the fact that these constraints and rules will be entered once at
installation time, then adding or changing these rules and constraints will not be so frequent,
thus, we will not complicate the compiler, at least in the first design phase. Some error
detection and recovery modules for syntax error handling can be added to this compiler later.

4.9 T he G enera ted Code

As mentioned before, this compiler generates C + + code which is integrated with the Cl system
to check the constraint or apply the update rule. Each variable in the input to the compiler

17

corresponds to one design parameter. For example, “linklJength” corresponds to the variable
in the CI system that represents the length of link number one in the robot configuration. The
code generator uses a lookup table to find the corresponding variable name, and this table is
part of the CI database. A simple flat file is used to store this table since the number of the
design parameters is small.

The generated code for the constraints is the function “pe.check_constraints” that returns
true if all constraints are satisfied, else it returns false, and reports which constraints are not
satisfied. For the rules, the code generated is the function “pe.apply_rules” which calculates
all corresponding design variables according to the given rules. The following examples are the
code generated for the two examples shown in the previous section.

bool

ci::check_constraints()

bool status[no_of.constraints] ;

int i = 0 ;

status[i++] = robot.configuration.link[0] .length > 1.2 ;

status [i++] = robot.configuration.link[1].length > 1.5 ;

status[i++] = robot.configuration.link[2] .length > 0.8 ;

status[i++] = robot.configuration.link[1] .length +

robot.configuration.link[2].length < 3.0 ;

status[i++] = robot.configuration.link[0].mass < 1.4 ;

status[i++] = robot.configuration.link[1] .mass +

robot.configuration.link[2] .mass < 4 . 0 ;

status[i] = robot.configuration.joint[l].gear_ratio < 5.0 ;

constraints.generate_report(status) ; // report the result

return (and_all(status)) ;

>

void

ci::apply_rules()

robot.configuration.link[0] .mass =

robot.configuration.link[0] .length *

robot.configuration.1ink [0] .cross_area *

robot.configuration.1ink [0] .density ;

18

r o b o t . c o n f ig u r a t io n .l in k [1] .mass =
r o b o t . c o n fig u r a t io n . l in k [1] . length *
r o b o t . c o n fig u r a t io n . l in k [1] . cross_area *
r o b o t .c o n f ig u r a t io n .l in k [1] .d en sity ;

r o b o t .c o n f ig u r a t io n .l in k [2] .mass =
r o b o t . c o n f ig u r a t io n .l in k [2] . length * .
r o b o t .c o n f ig u r a t io n .l in k [2] .cross_a rea *
r o b o t .c o n f ig u r a t io n .l in k [2] .d en sity ;

r o b o t . c o n f ig u r a t io n . jo in t [0] ,g ea r_ra tio = ■
ro b o t .m o to r [0] .speed /
r o b o t . c o n f ig u r a t io n . jo in t [0] .max_speed ;

>

In the first example, the function generate.report reports the results of checking the con­
straints; if all constraints are satisfied it reports that, otherwise, it will generate a list of the
unsatisfied constraints. The function and-all is obvious. It returns the result of ANDing the
elements in the array status.

In the second example, some of the design parameters are calculated given the values of
some other parameters. The compiler should not allow the change of any parameter that
should not be changed by the Cl system. This can be detected using the alter-flag in the
design parameters table.

To update the constraints or the update rules the file containing the old definition will be
displayed and the user can add, delete, or update any of the old definitions. Then the new file
will be compiled and integrated with the system.

5 I m p l e m e n t a t i o n

In the following subsections some implementation issues are investigated, and the different
components in our design and how we implemented each of them are described.

5.1 T he C e n tra l In te rface

The central-interface (Cl) is the core program that handles the communication between the
subsystems, and maintains a global database for the current design and a history of previous
designs. There are several types of messages used in the communication. Table 2 shows the
different types of messages with a brief description and the direction of each.

The Cl is the implementation of the communication protocols described in Section 4.2.
There are some features and enhancement to the protocols has been added to the Cl. For
example, When the Cl receives a change message from an SSI, it directly sends lock messages

19

to the other subsystems so that no more changes can be sent from any SSI until they receive a
steady message. This solves the concurrency problem of more than one system send changes to
the Cl at the same time. The first message received by the Cl will be handled and the others
will be ignored. If an SSI receives a lock message after it sent a change message, that means
its message was ignored. Another feature added to the Cl is the ability to detected if an SSI
is working or not by tracing the SSLStart and SSI-Stop messages.

The Cl is managing a number of data files that contains information about the robot
configuration, platforms, reports, design history, subsystems, and some general information
about the project. The basic file operation was implemented by defining a file class, and by
adding some member functions to each class in the system that performs the required file
management operations. The file operations that are implemented in the system are:

op en : open a file in one o f three modes: input, output, or input-output mode.

close: close an open file.

top : go to the first record in the file.

end : go after the last record in the file.

next: go to next record.

p rev : go to previous record.

read: read the current record.

w rite : write a record to the end of the file.

find: find a record that contains a certain key.

file _size: returns the number of records in the file.

Some o f these operations are class-specific functions such as, read, write, and find, while the
rest are general operations that are implemented as member functions in the basic file class.

5.2 T he P E C o n tro l System

The Cl as described above has no user interface. To be able to control and manage the
coordination between the subsystems, the PE control system (PECS) was implemented with
some functionalities that enable the user to have some control over the Cl.

The PECS is on top of the simple DBMS and a simple compiler for the update rules and
the constraints. The user specifies the constraints and/or the update rules using a certain
format (a language), then the compiler transforms this to C code that will be integrated with
the system for constraint checking, and for applying the update rules. The compiler consists of
two parts, a parser and a code generator. In the first phase the complexity o f the compiler was

2 0

Queries

Robot Prototyping Environment

Actions

Irrf or nation |upd* Constrains

Configiration Upd. Rules

Prow. Config. Cwpile

Si±-*y*te»s Sava Config.

Platforms Data Entry

Reports

QUIT

r
. . . Msl ■ ■ moling for tutiert. .

Figure 9: The main window for the PE control system.

reduced by making the user language less sophisticated. Later on this can be easily replaced
by a more complicated compiler with an easier interface and more sophisticated error checking
and optimization capabilities. Figure 9 shows the user interface for the PECS.

The PECS functions include:

Q ueries: which are some simple reports about the current robot configuration, previous con­
figuration, general information about the system, the platforms, and the subsystems of
the prototyping environment. Figure 10 shows a query for the current robot configura­
tion.

A ction s : which are the actual operations that control the CI. these actions include updating
the constraints and the update rules, compiling the CI after including the new constraints
and update rules, activating, and terminating the CI.

R ep orts : which are operations to manage the reports in the system, and to send and receive
reports to and from the subsystems. The report can be text, graph, figure, postscript,
or data file. Each report is saved with its type, date, sender, and the file that contains
the report contents.

5.3 In i t ia l Im p le m e n ta tio n o f th e SSIs

In the first phase of implementation, the SSIs serve as a simple interface layer between the CI
and the user at each subsystem. They receive messages from the CI and display them to the
user who takes any necessary actions. They also report any changes to the CI, and this is done

2 1

Table 2: Message types used in the communication protocols.

Figure 10: The current robot configuration window.

O p t im a l D e s ig n S u b s y s te m In te r fa c e

R e q u e s ts C h a n g e s R e p o r ts

Send Changes Request Send

Accept Data Found Read

Reject | Not Found j QUIT

, Idle... Waiting for event...

VAU&AWWAWWA

Figure 11: The user interface for the SSI.

by sending a message to the Cl with the changes. Figure 11 shows that user interface for one
of the SSIs.

In the next implementation phase, some of the actions will be automated and the user at
each subsystem will be notified with any action taken. For example, updating a data file that
is used by the subsystem can be automatically done by the SSI, given that it has the necessary
information about the file format and the location of the changed data.

5.4 T he C e n tra l In te rfa ce M o n ito r

The central interface monitor (CIM) enables the user to monitor the actions and the messages
passing between the Cl and the SSIs with a graphical interface. This interface shows the Cl
in the middle and the SSIs as small boxes surrounding the CL The CIM also has a small text
window at near the bottom. This text window displays a text describing the current action
(See Figure 12). The messages are represented by an arrow from the sender to the receiver.
Some results of testing the Cl and the SSIs are represented in Section 6 with sequences of the
CIM window showing the activities that took place in each experiment.

6 R e s u l t s

In this section, we will show several test cases for the prototyping environment. In the first
test (Figure 13), the optimal design subsystem sent a data-change message to the Cl. The
Cl in turn sent lock messages to all other subsystems notifying them that no changes will be

23

Central Interface Monitor

Optmml-Dcsijt

.AsmAQr ci

.../Mr- wlattngfermtiait...

Figure 12: The graphical interface for the monitor system.

accepted until they receive a final acknowledgment message. Then, the CI applied the relations
and checked the design constraints. In this test case the constraints were satisfied, so the CI
sent these changes to the subsystems that needed to be notified. After that, the CI waited for
acknowledgments from the subsystems. In this case it received positive acknowledgments from
the specified subsystems. Finally, the CI updated the database and sent final acknowledgment
messages to all subsystems.

The second test case (Figure 14), was the same as the first case except that one of the
subsystems (the C A D /C A M subsystem) has rejected the changes by sending negative ac­
knowledgment message to the CI. Thus, the CI sent a change-back message to the specified
subsystems and then sent a final acknowledgment messages to all subsystems. No changes in
the database took place in this case.

In the last test case (Figure 15), the design constraints were not satisfied. Therefore, the CI
sent a report about the nonsatisfied constraints to the sender (the optimal design subsystem).
Then it sent final acknowledgment messages to all subsystems. Again, in this case, no changes
in the database took place.

7 C o n c l u s i o n a n d F u t u r e W o r k

The design basis for building a prototyping environment for robot manipulators were investi­
gated and the design options were explained. An initial implementation of a central interface

24

and some of the subsystem interfaces were done to demonstrate the functionality of the pro­
posed environment. This framework will facilitate and speed the design process of robots.

The following are some possible extensions and enhancements to the current design.

• Complete implementation for the central interface with more functionality and a user
friendly interface.

• Use a database query language to enable generating more sophisticated queries and to
enhance the report generating capabilities.

• Implement some o f the subsystems with their SSIs and increase the automation in these
interfaces.

• Extend this environment to deal with generic n-link robots by using automatic generation
of the kinematics and dynamics equations. Also this will require a robot description
language to specify the robot configuration and parameters.

R e f e r e n c e s

[1] B u k h r e s , O . A ., C h e n , J., D u , W . , a n d E l m a g a r m i d , A. K . Interbase: An execution
environment for heterogeneous software systems. IE E E Computer Magazine (Aug. 1993),
57-69.

[2] C u t k o s k y , M . R., E n g e l m o r e , R. S., F i k e s , R. E . , G e n e s e r e t h , M . R., G r u b e r ,

T . R., M a r k , W . S., T e n e n b a u m , J. M . , a n d W e b e r , J. C. PACT: An experiment
in integrating concurrent engineering systems. IE E E Com puter Magazine (Jan. 1993),
28-37.

[3] D e k h i l , M. Prototyping environment for robot manipulators. Master’s thesis, University
of Utah, Salt Lake City, UT 84112, Mar. 1994.

[4] D e k h i l , M ., S o b h , T. M ., a n d H e n d e r s o n , T. C. URK: Utah Robot Kit - a 3-link
robot manipulator prototype. In IE E E Int. Conf. Robotics and Automation (May 1994).

[5] D e k h i l , M . , S o b h , T. M . , H e n d e r s o n , T . C ., a n d M e c k l e n b u r g , R. Concurrent
engineering and robot prototyping. Tech. Rep. UUCS-93-023, University of Utah, Sept.
1993.

[6] DEWAN, P ., AND R ied l, J. Toward computer-supported concurrent software engineering.
IE E E Com puter Magazine (Jan. 1993), 17-27.

[7] D uhovnik , J., T a v ca r , J., AND K o p o re c , J. Project manager with quality assurance.
Com puter-Aided Design 25, 5 (May 1993), 311-319.

[8] L a m b , D . A . Software Engineering; Planning fo r Change. Prentice Hall, 1988.

28

[9] M a r e fa t , M ., M a lh o r ta , S., and Kashyap, R. L. Object-oriented intelligent
computer-integrated design, process planning, and inspection. IE E E Com puter Maga­

zine (Mar. 1993), 54-65.

[10] N ic o l , J. R ., W ilk e s , C. T ., and M a n o la , F. A . Object orientation in heterogeneous
distributed computing systems. IE E E Computer Magazine (June 1993), 57-67.

[11] Sobh , T . M ., D ekhil, M ., and Henderson , T . C. Prototyping a robot manipulator
and controller. Tech. Rep. UUCS-93-013, Univ. of Utah, June 1993.

[12] Sriram , D ., and L o g ch e r , R. The MIT dice project. IE E E Com puter Magazine (Jan.
1993), 64-71.

[13] W ill , P . Information technology and manufacturing. CSTB/NRC Preliminary Report 1,
National Academy Press, Nov. 1993.

