
SWITCHBOX ROUTING BY
PATTERN MATCHING1

M. STARKEY
T.M. CARTER

UUCS-91-004

Department of Computcr Scicnce
University of Utah

Salt Lake City, UT 84112, USA

March 7, 1991

Abstract
Many good algorithms have been designed that provide good solutions to the wire routing problem in

VLSI. Unfortunately, many of these algoritllms only consider a small subset of different parameters such
as number of layers, routability of layers and technology. We believe that these algorithms can be applied
generally to any set of parameters by implementing the algorithms as a decscription that allows tllem to
take advantage of this flexibility. We propose that routing algorithms either use patterns directly or can be
converted to use patterns. We present a powerful formalism for describing these patterns.

IThis work supported in part by grant J-FBI-89-1D2.

Switchbox Routing by Pattern Matching

M. Starkey
Department of Computer Science

University of Utah
Salt Lake City, UT 84112

Abstract

T. M. Carter
Department of Computer Science

University of Utah
Salt Lake City, UT 84112

Many good algorithms have been designed that provide good solutions to the wire routing problem in
VLSI. Unfortunately, many of these algorithms only consider a small subset of different parameters such
as number of layers, routability of layers and technology. We believe that these algorithms can be applied
generally to any set of parameters by implementing the algorithms as a description that allows them to
take advantage of this flexibility. We propose that routing algorithms either use patterns directly or can be
converted to use patterns. We present a powerful formalism for describing these patterns.

1 Introduction

The problem of wire routing has been present for many years in a number of different forms. Generally, this
problem describes how to find the best path from one place to another where some paths cost more to follow
than others. In computer science this problem is known as the Traveling Salesperson Problem. Routing wires
adds another twist to this problem. Instead of having just one tour of the nodes, there are a number of
tours which must use the same set of available paths. No path can be shared among tours and generally a
lower total cost of all tours is more important than the lowest cost of any individual tour. This problem is
NP-Complete. However, many good algorithms have been developed to provide good solutions in reasonable
amounts of computational time.

A typical method used to find solutions reasonably quickly is to use the constraints imposed by the environment
to reduce the size of the problem. For example, assumptions are often made about the number of available
layers and the directions routing occurs on these layers. Unfortunately, these assumptions make applying an
algorithm to a different set of parameters almost impossible. By providing a flexible description language,
these routing algorithms can easily be used in many different environments. This description must be powerful
enough to allow the algorithm to be implemented easily as well as not create a large amount of overhead which
greatly increases the execution time of the algorithm.

The method we have found to be the most flexible in this regard involves patterns. Patterns have been used in
a number of different algorithms. They are found in some of the best existing algorithms.

The most closely related work was presented by Soukup and Fournier[l]. They identified the regularity of circuit
design and described a pattern router to utilize this. They developed a simple pattern description language
and provided a number of results of routing printed circuit boards.

WEAVER[2] has provided some of the best results in switchbox routing. This Knowledge-based routing system
has a number of "experts" which implement different phases of wire routing. One of these experts is the pattern
router expert which attempts to find certain patterns and route them.

1

The BEAVER[3] router is also targeted towards routing switchboxes. It attempts to interconnect pins with
certain patterns. Some patterns are given priority over others. It provides good results on the classic examples.

In addition to these direct implementations of patterns, Burstein and Pelavin use small patterns. These patterns
describe all of the possible 2xN Steiner Trees which are possible in their Hierarchical Routing algorithm[4].

These approaches to using pattern matching to route wires prove that patterns have value in finding good
solutions in reasonable amounts of time. We expand on this assumption by proposing that many routing
algorithms can be implemented in terms of patterns. Also, these patterns increase the flexibility and power of
routing algorithms by allowing them to operate in many different environments. We present a formal pattern
grammar and some powerful properties of the chosen description method.

2 Environment Independence

A number of good routing algorithms exist which have been applied to problems in certain environments.
Usually, these environments have restrictions on the number of layers which can be used to route and which
directions can be used along these layers. There are many different permutations of these constraints. The goal is
to enable utilizing some of the good routing algorithms in any environment. Some of these environments include
different numbers of layers, different technologies such as Gallium Arsenide and angled routing directions.

Most algorithms are designed around a process which permits two layers of routing material. There are then
two ways to allocate the tracks and columns for routing. One is a strict definition of how the layers are to be
used. This method defines one layer to have horizontal wires and another vertical wires. The only method of
jogging around an obstacle is to change layers, jog around the obstacle, and change back. The extra vias which
are introduced are usually undesirable. This has led to an environment where the layers each have a preferred
direction but this can be violated to make small jogs or doglegs.

Introducing a routing algorithm designed for one of these environments to the other environment can be
detrimental to routing a circuit. If an algorithm expecting to make same-layer jogs is placed in an environment
where doing so is impossible, it could conceivably fail when it tried to avoid an obstacle. Similarly, if an
algorithm was introduced to an environment where the directions were only preferred then the result may not
be as compact as possible and may contain an unacceptable number of vias.

These differences require rewriting a routing algorithm to be flexible as far as the directions it can expect, the
layers these directions can be on and the number of layers available. It may also take into account the relative
cost of using certain layers over others. This is facilitated by using a powerful representation such as pattern
descriptions.

In addition to having a method of describing patterns, there must be a method of interacting with the underlying
system. Four functions are defined to provide this interface. The owner(Xt, Yt, Zt, X2, Y2, Z2) function returns
the net to which the straight segment between these points has been allocated or 0 if it is not allocated. In
traditional routing terminology, the x values represent the columns, the Y values are the tracks and the Z values
correspond to the layer number. Wire segments can be unavailable if they are eliminated due to wires or cells
already being placed there. These obstacles may be functional elements which must be routed around, owner
will return a non-zero, invalid net number in such cases.

Three additional functions are also required. The allocatee net, Xt, Yt, Zt, X2, Y2, Z2) function allocates the seg­
ment between (Xl,Yl,Zl) and (X2,Y2,Z2) to net, jree(xt,Yt,zt,X2,Y2,Z2) will deallocate the segment and
cost(xt, Yt, Zl, X2, Y2, Z2) returns the cost of the wire segment.

The cost function is very important for reducing the search space of the problem and also to ensure that a
lowest cost route is obtained. In wire routing, there are a number of costs which are associated with different

2

solutions to interconnecting an entire circuit. These costs are dependent on physical properties of the routing
media. Capacitance and resistance play a major role in circuits. Limiting the number of vias used is also
important as is minimizing the number of jogs in a connection.

3 Pattern Descriptions

Patterns offer a very powerful method with which to describe algorithms. Patterns can describe everything
from a single segment of a wire to a complex pattern shape.

3.1 Describing Patterns as Regular Expressions

A powerful method of describing patterns is as regular expressions. Regular expressions are a natural way to
think of describing patterns. For example,if a string of symbols is desired which starts with a 1 followed by
one or more os then any number of os or 1S finally terminated by a 1, then it can be simply described as
10+ (0 + 1)* 1. The pattern 10001 satisfies this regular expression but 110 does not. Although the acceptance
of strings for this regular expression can be analyzed by inspection, regular expressions can become complex
and acceptance can be difficult to verify.

Regular expressions utilize some operations that facilitate describing complex expressions. These operations
are the Kleene star (*) which permits zero or more replications of the symbol, the plus (+) which signifies one or
more replications of the symbol and the or symbol (+) which provides alternation among symbols. In addition,
parentheses identify sub-expressions.

In wire routing, these regular expressions are not only used to accept patterns but also define how the pattern
should be generated. Therefore, information must be encoded in the characters which are used for the above
operations. The meanings of the or symbol and the parentheses remain, the changes affect the Kleene star and
the plus. When running wires in certain directions, we usually wish to maximize or minimize the length of
the connection in that direction. For example, vias are usually desired to be minimized. Other directions may
be preferred and therefore maximized. This information is encoded in the symbols < and >. The < symbol
replaces the Kleene star and is defined to allow zero or more replications of the symbol, trying to minimize
its use. The> is similar to the plus, there must be one or more replications of the symbol and its use should
be maximized. Naturally, the * and + characters could be used but the new symbols clarify the goals of the
regular expression in terms of its function in routing.

Traditionally, only six directions are used for wires. These are horizontal tracks, vertical columns and vias.
Picturing this by looking down on the routing area and superimposing compass coordinates on the wires
available for routing, a set of symbols is developed. This set of symbols is enough for most routing environments,
however, other symbols can be easily added for any additional directions or any other distinctions between
directions. Regular expressions are said to have an alphabet, ~, in this case ~ = {N,S,E,W,U,D}. The first
four symbols represent the directions on the compass as described above. The last two symbols specify changing
layers.

An example of a regular expression is one which represents a step of the "Greedy" channel router[5]. As this
algorithm proceeds from left to right column by column, each point on the top and bottom of the channel
which is in the current column must be brought into the channel only as far as required to continue rightward
on a track. The description which can be converted to a regular expression is "minimize the wire segments in
the north or south direction (depending on whether the connection is on the bottom or top) where there is
an available track which allows the connection to extend to the right". As a regular expression this becomes
(N + S)< (U + D)< E. The (U + D)< is required since a layer change may be necessary to change from one

3

E tD
);;====.::==~' q 2,0,0

W

Figure 1: The Deterministic Finite Automaton corresponding to the bounds 0 ~ x ~ 2, 0 ~
y ~ 2,0 ~ z ~ 1 where only column wires are allowed on layer 1 and track wires on layer o.
The arrow indicates the start state for a string starting at qo,o,o and proceeding to ql,2,1.

direction to . another. This direction change will be minimized and will therefore not generate any symbols if
the direction can be changed without changing layers.

U sing regular expressions provides a very simple, concise and understandable method to describe patterns.
Regular expressions also have some other desirable properties which can be exploited. Regular expressions are
closed under certain operations. These operations include replicating expressions, extracting sub-expressions,
concatenating multiple expressions and combining expressions into more complex expressions. These closures
ensure that the resulting regular expression is also regular and therefore can be accepted by a Deterministic
Finite Automaton. These operation are extremely useful fOT regular expressions which represent wire routing
directions. Hopcroft and Ullman provide an excellent description of regular expressions and Deterministic
Finite Automata in [6].

3.2 Accepting Patterns With Deterministic Finite Automata

The acceptance of strings of symbols matching certain regular expressions is performed by a Deterministic
Finite Automaton (DFA). A DFA is defined by a 5-tuple, (Q,L-,b,qo,F). The state space, Q, is a set of all
states in the DFA. L- is the alphabet whose symbols form the string to be accepted. The b function describes
the transition from one state to another beginning with the start state, qo, until one of the final states in the
set F is reached.

For routing wires, the obvious method to build the DFA is to have the arcs represent wires in the circuit.
Therefore, if a transition is taken from one state to another, the arc used represents the wire which is allocated
to the net being routed. Figure 3.2 shows the DFA for a traditional routing environment. This environment has
wires running horizontally on one layer and vertically on a second layer. Layers can be connected by running
vias between them. To clarify the correspondence between position in the circuit and the wires being allocated,
a state is identified as qx,y,z where x is the column, y is the track and z represents the layer.

4

Figure 2: Search tree for the pattern E< (U + D)< N< starting at qo,o,o and terminating at
ql,2,1' Dashed boxes indicate pruned nodes, the shaded box is the node where the solution is
reached.

Each of the components of the DFA M = (Q,~, b, qo, F) can now be described. To increase the power of the
DFA, a bounding box of the area defined as [Xmin' xmax], [Ymin, Ymax], [Zmin' zmaxl must be provided. Also the
node where the route is to start must be specified. Initially, the DFA will be described for finding point to point
connections. This constraint will be relaxed to allow routed wires to stop when a segment of the same net is
reached. Also, the initial definition will only provide for a pattern using unallocated segments, this constraint
will also be relaxed.

The state space consists of all of the states which are nodes in the routing area. More formally, Q =
{qx,y,zIXmin ~ x ~ Xmax ' Ymin ~ Y ~ Ymax, Zmin ~ Z ~ zmax)}. The alphabet is the same alphabet as for
the regular expressions, ~ = {N,S,E,W,U,D}. The b function describes which arcs are present for routing the
current net. The owner function, described previously, is required to find the owner of an arc. The b function
then becomes,

b(qx,y,z,E) = qx+1,y,zlowner(x,y,z,x+ 1,y,z) = 0
b(qx,y,z,N) = qx,y+1,zlowner(x, y, z, x, y + 1, z) = 0
b(qx,y,z,U) = qx,y,z+1lowner(x,y,z,x,y,z+ 1) = 0

b(qx,y,z,W) = qx_l,y,zlowner(x, y, z, x - 1, y, z) = 0
b(qx,y,z,S) = qx,y_l,zlowner(x,y,z,x,y- 1,z) = 0
b(qx,y,z,D) = qx,y,z_1Iowner(x,y,z,x,y,z-1) = 0

The start state, qo, is qx,y,z where the node at (x, y, z) is where the route is to start. The final state at node
(xf,Yf,Zj) will be the only member of the set F = {qXj,Yj,Zj}'

The DFA defined above demonstrates a route which will only follow unused segments of wire. Usually, a
connection is made if the current net being routed, currenLnet, connects to a wire segment already allocated
to this net. Then the test in each b function can be relaxed to be owner(x, y, z, x', y', z') = 0 or currenLnet.
The set of acceptable final states becomes F = {qXj,Yj,Zj} U {qx,y,zlowner(x,y,z,x,y,z) = currenLnet}.

This Deterministic Finite Automaton is very powerful for accepting patterns in the current routing environment.
It is very general and can be applied to any physical constraints. The owner function provides the information
on the directions which can be used on certain layers. The use of the DFA aids in reducing the search space
required for pattern string generation from regular expressions. It also allows a string of symbols to be accepted
or not accepted for allocating or deallocating wire segments as well as calculating a total cost for all segments
allocated.

3.3 Pattern String Generation

Deterministic Finite Automata are useful primarily as accepters of strings of symbols (~*). Therefore, some
method is required to generate these strings. The string generation is performed by the traversal of a tree
corresponding to the regular expression. The DFA helps to limit the search of this tree by providing information
which prunes the tree. Figure 3.3 demonstrates the tree required for the search space defined in Figure 3.2 for

5

Figure 3: The DFA showing the path from Figure 3.3.

the pattern E< (U + D)< N< starting at qo,o,o and trying to reach ql,2,1' The result of the path on the DFA is
shown in Figure 3.3.

A pruning method is very helpful to limit the search space. The best pruning method is to define the regular
expression to be as descriptive as possible. However, sometimes this is not desired if a number of patterns or
variations on a pattern need to be compared for a best solution.

Another method of pruning is the branch and bound method[7]. Finding a method to calculate a reasonable
lower bound for each node of the current configuration is difficult, the actual cost can be easily calculated using
the cost function defined previously. The lower bound on the cost can be obtained by finding the smallest
distance possible along the available routing directions if none of the wire segments along that path were
allocated. This can provide a method of deciding which of a number of paths should be attempted.

In addition to these methods, the states in the Deterministic Finite Automaton are also used to prune the tree.
As the tree is traversed, each node visited will correspond to a state in the DFA. The tree can be pruned if the
DFA does not have an arc which will permit the corresponding traversal.

Finally, there is one additional method of pruning where a number of solutions exist and a global physical
constraint is known. As the traversal of the tree proceeds, the cost of the wires required to implement the
symbols is accumulated. If this cost exceeds some desired maximum along any branch, it can be pruned since
any further allocation along that path will only increase the cost.

As an example of this tree, assume that the first net must start at qo,o,o and reach ql,2,O with the pattern
specified by E< (U + D)< N<. There is only one solution to this pattern in this environment demonstrated by
Figure 3.3. This is allocated in the routing area (Figure 3.3) and forms an obstacle to the second net. The
obstacle is handled by the DFA described above. This obstacle essentially eliminates the arcs which have been
implemented as wires to make the first connection as well as arcs which are directed away from or towards any
nodes along the path of the first route.

The second net now starts at qO,O,l and tries to connect to q2,O,1 with the pattern N«U + D)<E«U + D)<S<.
If the first net had not already been allocated then the solution would be DEEU however, this is not possible

6

Figure 4: Routing another net from qO,O,l to Q2,O,l. Arcs which cannot be used by this net have
been removed.

Figure 5: Routing area containing two touted nets.

7

s

Figure 6: Transforming the desired routing area to the real area.

since the arc from qo,o,o to ql,O,O is not available. Therefore, the resulting pattern is N DEEU S shown in Figure
3.3.

4 Abstraction

There are many benefits to using patterns and regular expressions to describe them. One of these benefits
is the abstraction to patterns of what is actually occurring physically. Usually, routing algorithms have a
desired orientation of a routing area. This desired orientation may just require a simple rotation from the real
orientation. Using patterns, the algorithm can be written and any transformations which are required can take
place to map the symbols to the Deterministic Finite Automaton describing the routing area.

There are two ways of providing this transformation. One method essentially transforms the points which are
to be connected, transforming the DFA and the owner function, performing the route and then transforming
the wire segments to their proper position. This method is efficient unless obstacles exist in the routing area. If
there are obstacles, then the DFA is difficult to transform. This difficulty is caused by the owner function since
it must transform all of the obstacles. The exact dimensions of these obstacles in terms of the wire segments
which they void is unknown to the router, except by trying to allocate them. Therefore these obstacles cannot
be easily transformed.

A better method is to incorporate the transformation in the symbols. For example, if N is defined as a unit
vector in the direction (0,1,0) then a 90 degree rotation of this would produce a unit vector (-1,0,0). Figure
4 shows the transformation of the entire set of directions. Since this is only a two-dimensional rotation, the
symbols for changing layers are not transformed. The identical patterns and regular expressions using them
can then be used.

Another useful feature which the patterns abstract is the actual dimensions of the segment. Each symbol
represents a unit length wire segment. However, the units can be different for different layers along the same
direction or the same layer in different directions. For example, the N symbol on one layer may have a different
length then a N on another layer. In addition the E symbol may represent yet another unit length on each
layer in a different direction. There is also no requirement that the opposite direction on the same layer have
the same unit length.

5 Examples in Algorithms

Three algorithms are chosen here to illustrate how simply patterns can be used. These algorithms provide a
small cross-section of different types of algorithms.

8

5.1 "Greedy" Channel Router[5]

This algorithm is designed to route a channel - a routing area with all of the connections on the top and
bottom of the bounding area. The algorithm is not described with patterns explicitly, however it can be easily
converted.

Starting from the left for each column in turn until the rightmost column is reached, do the following:

1. Bring the connections on the top and the bottom of the channel into the routing area. The connection
should be brought to the closest track which ensures that the track which the new point is on can be
extended to the right. If an available track cannot be found then insert a track. The pattern used
here is simple. The directions up or down, depending on whether the connection is on the top or the
bottom, should be minimized. The pattern must check also that a segment can be placed in a track.
The pattern (N + S)< (U + D)< E provides this. This pattern can then be intersected with the pattern
(N + S)< (U + D)< to remove from the initial string, the symbol which verifies that the track is available.

2. Collapse any nets which may be occupying two different rows in the same column by connecting them if
possible. The two points which are to be collapsed will be provided to the pattern matcher as it tries to
maximize the number of symbols between these two points. The pattern used is (U + D)< (N + S» (U + D)<.
The layer changing symbols are required in case the two points are on different layers.

3. Shrink the number of rows between connections on the same net in the same column which could not be
collapsed. The idea is to take the connections as close to each other as possible since they could not be
connected. The pattern (N + Sf (U + D)< E with the correct bounding box will perform this.

4. Make preference jogs which attempt to get the wire to a row closer to the next point on the net. The
pattern required for preference jogs is the same as for shrinking nets since it requires essentially the same
functionality.

5. Extend each wire from this column into the next one to the right. This requires simply adding a single
segment. The pattern (U + D)< E will change layers if the one it is on does not permit wires in this
direction.

5.2 BEAVER[3]

The BEAVER router uses five patterns to interconnect points on the same net in a switchbox. Each connection
on the boundary of the switchbox is given some length of the row or column perpendicular to its side. This is
unusable by other patterns until a connection is made thereby freeing up some of this segment. The amount of
the row or column wire which is reserved for a connection starts at 50%. This number is decreased until the
entire route is complete. Figure 5.2 demonstrates this algorithm.

Start the factor at 50% and keep decreasing until finished. For each value of the factor, perform the following
steps for each net:

1. Allocate wire segments for all nets except for the one being routed. The bounding box used for pattern
generation is based on the current factor. The patterns are just single direction connections and therefore
can be described by (N) + s> + E> + W». Save these patterns to permit them to be freed later.

2. For the current net, try to connect with corner patterns as many points as possible to other points or
wire segments on the net. The description for any corner is
((N + S)«U + D)«E + W)<) + ((N + S)«U + D)«E + W)<).

9

2

!
!

3

2 ::::::::::::::=:rl::::::~:::··::::::::· 3

: i : :
3

a)

1 2 3

IW
............... .. .i :

3
21---~

3

c)

2 3

I
2

••••••••• u •••••••• l i
! r····r·········· 3

3

b)

1 2 3

l-W
.i

21--~
3

3

d)

Figure 7: BEAVER algorithm example. a) allocate half of each row or column which any
point not in net 1 is on. b) allocate a corner connections between two net 1 connections, net 3
precludes the other point being connected. c) allocate net 2 and net 3, first with a cbrner then
a stairstep. d) finally complete net 1 since net 3 has now been routed.

3. For the current net, try to connect any points not connected with corners using straight, dogleg, stairstep
or horseshoe patterns. These patterns can all be combined into one regular expression. This expression
is
«N +S)«U + D)«E + W)«U + D)«N + S)<) + «E + W)«U + D)«N + S)« U + D)«E + W)<).

4. Free all the wire segments which were used to reserve columns and tracks for unconnected points.

5.3 The Lee Algorithm[8]

This algorithm is one of the oldest and also one of the most widely used. It is usually incorporated inside
more complex algorithms to provide optimal point-to-point connections. The algorithm starts at a point and
propagates outward one unit in each direction if possible. A cost is associated with each of these new locations
and is the cost of the initial location plus the additional cost required to get to the new location. This is
continued until the destination point is reached. By backtracking along the path, always taking the lowest cost
direction, the optimal path is assured.

This algorithm is defined by the simple pattern (N< + s< + E< + w< + u< + D<)<. This demonstrates the
need for good pattern tree pruning, otherwise the search space is very large.

6 Conclusions

This powerful pattern description and matching system can be used for many existing algorithms. These
algorithms are not restricted to methods which already are described with patterns. The use of these patterns
will produce more flexible algorithms which can take advantage of the actual environment of the layout being
petformed.

In addition, once these algorithms are implemented with a common basis in patterns, some of the similarities
and differences will become apparent. These comparisons will enable algorithms to be analyzed to possibly
discover why some methods perform better than others in certain situations.

10

Apart from comparing different algorithms, the effects of using different patterns within the same algorithm
framework can be studied. By keeping the control and strategy mechanisms constant and changing the patterns,
perhaps better results in some situations can be achieved. The patterns can then be specified by the user for
a specific route while maintaining the goals and functionality of the original algorithm. This will permit
algorithms to be easily tuned to different examples or different environments.

References

[1] J. Soukup and S. Fournier, "Pattern router," in International Symposium on Circuits and Systems, pp. 486-
489, 1979.

[2] R. Joobbani and D. P. Siewiorek, "Weaver: A knowledge-based routing expert," IEEE Design and Test of
Computers, vol. 3, pp. 12-23, February 1986.

[3] J. P. Cohoon and P. 1. Heck, "Beaver: A computational-geometry-based tool for switchbox routing," IEEE
Transactions on Computer-Aided Design, vol. 7, pp. 684-697, June 1988.

[4] M. Burstein and R. Pelavin, "Hierarchical channel router," in 20th Design Automation Conference, pp. 591-
597, 1983.

[5] R. L. Rivest and C. M. Fiduccia, "A "greedy" channel router," III 19th Design Automation Conference,
pp. 418-424, 1982.

[6] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and Computation. Addison­
Wesley Publishing Company, 1979.

[7] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms. Computer Science Press, 1978.

[8] C. Y. Lee, "An algorithm for path connections and its applications," IRE Transactions on Electronic
Computers, vol. 10, pp. 346-365, September 1961.

11

