
U s i n g A n n o t a t e d I n t e r f a c e D e f i n i t i o n s t o O p t i m i z e R P C

Bryan Ford Mike Hibler Jay Lepreau

Department o f Computer Science, University o f Utah
{baford,mike,lepreau}@cs.Ut a h .edu

Technical Report UUCS-95-014
March, 1995 '

Abstract
In RPC-based communication, it is useful to distinguish the RPC interface, which is the “network contract” be

tween the client and the server, from the presentation, which is the “programmer’s contract” between the RPC stubs
and the code that calls or is called by them. Presentation is usually a fixed function of the RPC interface, but some
RPC systems, such as DCE and Concert, support the notion of a flexible presentation or endpoint modifier, allowing
controlled modification of the behavior of the stubs on each side without affecting the contract between the client and
the server.

Up until now, the primary motivation for flexible presentation has been for programmer convenience and improved
interoperability. However, we have found flexible presentation also to be useful for optimization of RPC, and in many
cases necessary to achieving maximal performance without throwing out the RPC system and resorting to hand-coded
stubs. In this paper we provide examples demonstrating this point for a number of different operating systems and IPC
transport mechanisms, with RPC performance improvements ranging from 5% to an order of magnitude. In general,
we observe that the more efficient the underlying IPC transport mechanism is, the more important it is for the RPC
system to support flexible presentation, in order to avoid unnecessary user-space overhead.1

1 Introduction
In a typical remote procedure call (RPC) system, interfaces between clients and servers are defined ex

plicitly in an interface definition language (IDL), and the IDL file is processed by a stub generator to produce
client and server stubs[4]. The primary purpose of the IDL file is to define the “network contract” between
the client and the server: what operations can be invoked and what information must be passed across the
network on an invocation. However, in most RPC systems, the IDL file also indirectly defines the “pro
grammer’s contract” between the stubs and the programmer: how parameters are passed to the stub, who
allocates storage for the parameters, etc. For example, consider the following CORBA[19] IDL fragment:

interface SysLog {
void write_msg(in string msg);

} ;
Given this interface definition, a CORBA-compliant stub compiler for C will always produce a stub with

the following C function prototype, with the msg parameter assumed to be null-terminated:
void SysLog_write_msg(SysLog object, CORBA_Exception *ex, char *msg) ;

However, the stub could just as easily conform to the following function prototype instead, taking the length
o f the string explicitly through the length parameter:

void SysLog_write_msg(SysLog object, CORBA_Exception *ex, char *msg, int length)

'This research was supported in part by the Advanced Research Projects Agency under grant number DABT63-94-C-0058
and by the Hewlett-Packard Research Grants Program.

This difference should not affect the protocol between the client and the server: a client stub using the for
mer prototype should still be able to invoke a server stub using the latter, because the C calling convention
is merely a local language issue. In our terminology (adopted from the OSI networking model[13]), these
function prototypes represent alternate presentations of the same interface. The former is the standard pre
sentation, but by no means the only possible one.2

While the example was drawn from CORBA, this restriction occurs in most existing RPC systems, be
cause they support only a single fixed presentation for any given interface definition. However, a few allow
the presentation to be varied independently for a given client or server. In DCE[21], a few presentation at
tributes can be specified explicitly, separately from the IDL file defining the interface, in a supplemental file
known as an application control file (ACF). Thus, while all clients and servers using a particular RPC in
terface generally share the same IDL file, each can have its own ACF and thus specify its own presentation
annotations for its stubs.

In existing systems that support a notion o f flexible presentation, this feature is primarily used to make
RPC more convenient to the programmer and to increase interoperability. However, we have found that flex
ible presentation is also extremely important in optimizing RPC performance. In this paper we demonstrate
this principle with seven examples. To demonstrate the broad applicability of this concept, we implemented
the examples in a variety of environments and transport protocols.

Our results show that flexible presentation benefits RPC performance for two reasons:

1. Flexible presentation support is necessary to create optimal stubs: any fixed presentation is the wrong
one some o f the time, causing unnecessary data copying in either the user code, the stubs, or both. For
example, if a client wants to read data through RPC into a particular buffer, but the RPC stub insists
on allocating a new buffer for the returned data, the client will have to perform an extra copy— often
uselessly, because the stub could just as easily have unmarshaled the data into the client’s buffer in
the first place.

2. If the transport mechanism can itself be specialized, it can leverage relaxed semantic constraints at
the endpoints. Flexible presentation support provides a principled way to specify these constraints.
For example, if data sent in an RPC is uninterpreted by the server (e.g., I/O buffers), the client can
be allowed to retain access to the data while the server processes it, saving overhead, as in volatile
fbufs[6].

In the rest of this paper we describe related work (Section 2), briefly describe the design o f our IDL
compiler (Section 3), present specific examples in which flexible presentation enhances RPC performance
and quantify the improvements (Section 4), propose future work, and conclude.

2 Related W ork

The term “presentation” comes from the OSI networking mode | [13] which defines a presentation layer
responsible for providing applications with data in the locally-preferred representation. The primary presen
tation emphasis in the OSI model is on data representation at the “format” level (e.g., ASCII or EBCDIC,
big- or little-endian).

We know of two IDLs for RPC in which the notion o f separate presentation exists to some degree.
DCE[21], with its “Application Configuration File” (ACF), was, to our knowledge, the first RPC system
to support separately specified presentation. The ACF is distinct from the IDL file, and allows specification
of a few local attributes such as method o f binding, error condition treatment, and data type equivalence.

2In CORBA terminology, the standard presentation is known as the language mapping.

2

However, presentation is not fully separated out— the DCE IDL still contains many presentation attributes
that belong in the ACF. Also, the ACF’s primary purpose is for programmer convenience, not optimization.

The Concert/C distributed programming system[2,1] much more fully develops the concept o f flexible
presentation. In their system, as in ours, presentation includes storage allocation attributes, such as which
entity (application, stub, transport) is responsible for the allocation and deallocation o f storage for each pa
rameter. Concert terms the programmer’s contract the “endpoint modifier” and the network contract the
“contract,” striving for a “minimal contract” in order to achieve maximal interoperability between target
languages. Since Concert does not have an IDL separate from the target application language, both the end
point modifier and the contract are automatically generated by the Concert/C pre-processor. In Concert,
the primary purpose o f this separation is to handle the vagaries o f RPC mapping to different languages; for
example, whether a returned value maps to an o u t parameter or to a function return value.

Subcontract[ll], a general method for extending and specializing object communication mechanisms
and semantics3, is largely complementary to our work, addressing a level higher than the stub level. The
Spring system has separate stub, subcontract, and kernel layers, with the language-level stubs and kernel IPC
mechanism remaining entirely generic, and all specialization restricted to the subcontract layer. Therefore,
in the general case, the exact details o f interaction with the application code (“presentation”), performed by
the stubs, cannot be specified, varied, controlled, or optimized. However, when an object is a parameter to a
call, that object’s subcontract can specialize the object’s marshaling and a few other aspects o f presentation.
Thus, subcontract supports specialization based on target object type, whereas flexible presentation supports
specialization based on local requirements.

In contrast to Subcontract, which addresses a higher level (object communication) than do we, USC—
the Universal Stub Compiler[20]— is targeted at a lower level. It is aimed at optimizing the generation of
generally fixed-format stubs which marshal network protocol headers, efficiently performing byte swapping,
alignment mapping, etc. USC is designed to be used by a higher level stub generator.

In the traditional networking domain, Clark and Tennenhouse[5] emphasize the importance of optimiz
ing the presentation layer, showing that it often dominates processing time. They also emphasize that for
performance reasons, the necessity o f non-contiguous data location in the recipient is a critical architectural
constraint. This can occur not only in RPC, where each parameter is scattered in memory, but in integrated-
layer processing o f stream-based protocols, due to dropped packets. Their emphasis is on the latter, ours the
former, but similar issues and performance effects obtain.

We bring to RPC the focus on presentation optimization that has been elucidated in the traditional net
working arena[5, 20]. Our contributions are two fold: (i) demonstrating that, in many situations, flexible
presentation is necessary to achieve maximum performance, and (ii) showing how to support flexible pre
sentation in a practical RPC system.

3 Design

We have designed and implemented a new RPC stub compiler that supports flexible presentation while
retaining compatibility with existing RPC systems. The stub compiler is cleanly separated into front-ends
and back-ends so that it can both read multiple existing IDLs as its input and generate stubs for various op
erating systems and transport protocols as its output. Currently we have Sun and CORBA IDL front-ends
working and a MIG front-end under construction; we have back-ends for Sun RPC/XDR in a Unix environ
ment and several Mach-based protocols (transport mechanisms). Although the stub compiler currently only
generates stubs for C, support for other languages could be added easily.

Flexible presentation is supported in our system by adding a third compiler stage between the front-end

3CORBA “object adaptors” provide a subset of the functionality o f Subcontract.

3

and back-end, in which the presentation o f an RPC interface is modified declaratively through the use o f a
presentation definition language (PDL). Nothing declared in the PDL file can affect the contract between
client and server; thus, while all clients and servers using a particular RPC interface will generally share the
same IDL file defining that interface, each can have its own PDL file.

The IDL compiler front-end always provides a default presentation computed from the interface defi
nition by fixed, standardized rules. A PDL file only has to be written if the user wants a presentation that
deviates from that default, and even then the PDL file only needs to contain declarations for stubs and types
for which non-default presentations are needed; it is not necessary to “re-declare” everything in the interface.

The syntax o f our PDL is similar to that of DCE’s Attribute Control File (ACF) format, and also to Con
cert/C’s annotated C language syntax, both of which serve a similar function. For example, given the exam
ple CORBA SysLog interface presented in the introduction, the following PDL file will cause the second
presentation shown (the “alternate” presentation) to be used instead of the default CORBA presentation. The
keyword ' ' length.is' ' is reserved only when it occurs in a presentation specification (insidebrackets).

SysLog_write_msg (, , char * [length.is (length)] msg, int length);

4 Experimental Results

In this section we present the results of a number of experiments demonstrating the usefulness of flex
ible presentation in optimizing RPC. Sections 4.1-4.4 illustrate the first main point made in the introduca-
tion, showing how flexible presentation can be used create more optimal stubs. These sections are arranged
in order, starting with RPC on heavyweight transport mechanisms on monolithic systems, and progressing
to extremely lightweight transports in highly decomposed object-based environments. Section 4.5 demon
strates the second point, that presentation attributes can be leveraged by specializable transport mechanisms,
to further optimize RPC.

Except for the Linux example, all tests were performed on an HP730 (66 MHz PA-RISC architecture)
running Mach 3.0 and the Lites[12] Unix single server. The times presented below include all RPC costs,
including both user-level stub code and kernel processing.

4.1 Linux NFS Client
In several traditional Unix-compatible monolithic operating systems, such as 4.3/4.4BSD[16] and

Linux[14]4, the NFS file system support built into the kernel uses manually-written Sun RPC stubs, even
though an automatic stub generator (rp cg en) is available. In the case o f Linux one reason this is done is
so that the stubs can marshal read or written data directly to or from the appropriate user address space us
ing the kernel’s special “copy-in” and “copy-out” routines. This optimization would not be possible with
rpcgen-generated stubs, because in its standard presentation, arguments are always marshaled to/from the
local address space (i.e., kernel space).

Flexible presentation provides an alternative to hand-coding these stubs. Our stub generator provides
a presentation attribute, [s p e c i a l] , that can be attached to any data type, and indicates that argu
ments or variables o f that type will be marshaled/unmarshaled by special routines provided by the pro
grammer. In our experiment, we simply provided routines to use the kernel’s copy-in/copy-out routines
(memcpy_f rom f s () and m em cpy_tof s ()) instead of the normal memcpy routine. The automatically
generated stubs call these routines at the appropriate times, but still marshal all other arguments and all han
dle other aspects o f the RPC as before.

Figure 2 shows the performance of reading an 8MB across an ordinary Ethernet from an HP 700 file
server running BSD to a 486DX2/66 PC running Linux. The left part of each bar represents network and

4 Linux is a Unix-compatible operating system with a traditional monolithic design.

4

[coiran_status] int nfsproc_read(, nfs_fh *file,
unsigned offset, unsigned count, unsigned totalcount,
[special] user_data *data, fattr *attributes, nfsstat *status);

Figure 1: PDL Declaration for Linux NFS client stub with special data presentation

h a n d -cod ed stubs,
conventional presentation

autom atically-generated stubs,
conventional presentation

h a n d -cod ed stubs,
u ser-sp a ce presentation

autom atically-generated stubs,
u ser-sp a ce presentation

secon d s

Figure 2: Performance Effect o f User-space Buffer Presentation

server processing time; Since we did not change the server or network, this part is the same in each case. The
right part represents the client processing time, including all marshaling/unmarshaling and protocol stack
processing. The topmost two bars show the performance using stubs that conform to a conventional pre
sentation in which the stubs unmarshal the read data into an intermediate kernel buffer before it is copied to
user space. The bottom two bars show the performance of stubs using a special user-space buffer presen
tation: the third bar for the original hand-coded client stubs, and the fourth for the automatically-generated
stubs produced by our flexible-presentation stub compiler. There is essentially no performance difference
between hand-coded stubs and automatically-generated stubs supporting the same presentation; however,
the user-space presentation optimization, whether implemented manually or automatically, provides about
a 13% performance improvement in client-side processing time (about 3% overall). With a faster network
and better-optimized protocol stacks in the client and server, we would expect the effect o f this optimization
to be correspondingly greater.

The PDL declaration used to specify the special handling o f the received file data is shown in Figure 1;
the parameter o f interest is the ‘d a ta ’ parameter. (The other parameters in the declaration in fact also mod
ify the presentation from the default, but for convenience reasons, not performance: they cause the generated
stub to have a function prototype more like that o f the original hand-coded stub being replaced.)

5

To demonstrate how presentation can be used to optimize RPC in a decomposed, microkernel-based sys
tem, we will examine a simple pipe server that provides Unix pipe semantics (buffering, flow control, etc.)
on top o f ordinary synchronous RPC. This server is representative o f a common model o f communication:
an intermediate entity that performs a data transformation between two parties. Thus, the results presented
here should generalize to other components in a decomposed system.

Our implementation runs on the Mach microkernel, in a Lites[12] environment (a Unix server based on
BSD 4.4 Lite). The standard Lites server is mostly monolithic in nature, with the same overall design as the
original CMU UX single server[9]. However, in our version o f Lites we have implemented the pipe server
as a separate Mach task outside o f the main Unix server. Processes that have open file handles to a particular
pipe communicate directly with the pipe server to read and write data.

Communication with the pipe server is done using a new, streamlined low-level Mach IPC mechanism
similar to those implemented in other recent microkernels [10, 17, 8], The new IPC path allows messages
to be transferred through processor registers and/or a simple message buffer copied by the kernel directly
from the source address space to the target address space. Unlike traditional Mach IPC, the new IPC path
does not directly support copy-on-write data transfer; this can still be done either by falling back on the old
IPC primitives, or by using the kernel’s VM copying primitives directly from user space. However, for the
purposes o f this paper, we only need the simple optimized IPC path.

4.2.1 Example: Allocation Semantics for Reads from a Pipe
The pipe server provides a typical Unix file interface; clients make r e a d and wr i t e RPCs to the server

to read and write data to or from the pipe. The pipe to which reads and writes are directed is not a parameter
to these calls, but is implied by the RPC connection or “pipe object reference” through which the RPC is
invoked. Part of the relevant interface definition is shown in Figure 3, in CORBA IDL.

Figure 4 shows the standard CORBA server presentation for this interface: basically, the
s e q u e n c e < o c te t> type (a variable-length array o f bytes) becomes a C s t r u c t type; the server
work function F ile IO _ re a d must return an instance o f this structure, containing a pointer to the data to
return and its length. (The -maximum element is irrelevant to our purposes here.) In the default CORBA
presentation, the data buffer returned has move semantics: after the server stub finishes marshaling the data
into the reply message, it deallocates the buffer provided by the server.

Unfortunately, this default presentation requires the pipe server to perform an extra copy o f all data it
returns. Incoming data written to the pipe gets stored into a permanently-allocated, fixed-length circular
buffer in the pipe server’s address space. The server work function F ile IO _ re a d can’t simply return a
pointer into the pipe buffer because the server stubs will try to deallocate it; this would not work too well
because the pointer returned is probably not to the beginning o f the buffer, and in any case the buffer is likely
to have more data than is requested by the re a d operation, and that data must be retained for future reads.

Our flexible presentation RPC system provides a fairly simple and obvious fix for this problem: you can
specify that the server stubs should not deallocate the buffer on return, instead leaving the pipe server to man
age its own buffer space.5 Figure 5 shows a PDL file that modifies the server-side presentation appropriately;
basically, it is just a re-declaration of the relevant C types, with the [d e a l l o c (n e v e r)] presentation at
tribute added to the data buffer pointer declaration. This modification eliminates the need for the server to
make an extra copy o f the data before returning it, except when the data to be read wraps around from the
end of the circular buffer to the beginning. (This case as well could be optimized with flexible presentation,
but we did not implement this.)

Figure 6 shows the throughput o f the Unix-compatible pipes provided by our pipe server, for a 4K pipe

5There are synchronization issues with this solution which we don’t describe here; however, they can be solved fairly easily.

4.2 Pipe Server

6

interface FilelO {
sequence<octet> read(in unsigned long count);
void write{in sequence<octet> data);

} ;

Figure 3: Pipe Server Interface

typedef struct {
unsigned long _maximum;
unsigned long _length;
char *_buffer;

} CORBA_SEQUENCE_char;

CORBA_SEQUENCE_char FileIO_read{FilelO object, CORBA_Exception *ex,
unsigned long count);

Figure 4: Pipe Server Default Presentation

typedef struct {
unsigned long _maximum;
unsigned long _length;
char * [dealloc(never)] _buffer;

} nodealloc_buffer;

nodealloc_buffer FileIO_read(FilelO object, CORBA_Exception *ex,
unsigned long count);

Figure 5: PDL Example: Modifying Presentation of the read Call

7

4K pipe, standard presentation

4K pipe, nodealloc presentation

8K pipe, standard presentation

8K pipe, nodealloc presentation

5 10 15
Throughput (MB/s)

Figure 6: Performance o f the Basic Pipe Server

buffer (top) and an 8K buffer (bottom). In each group, the top bar shows the total run time o f the program
with the pipe server using an unmodified presentation; the bottom bar shows the run time with the modified
presentation. The overall difference is 21% and 24%, for 4K and 8K pipes, respectively.

Note that we have only demonstrated one o f the possible presentation-based optimizations to this RPC
path; others are certainly possible. For example, an additional copy could be eliminated from the w r i t e
path with a similar presentation modification and a slight enhancement to the underlying IPC mechanism.

4.3 Integrating fbufs and RPC

Flexible presentation is useful for more than avoiding unnecessary copying in RPC over conventional
IPC mechanisms; it can also be used to be used to integrate highly specialized or constrained transfer mech
anisms cleanly into the RPC model, and take advantage o f their unique performance features. In this sec
tion we examine the fbufs data transfer mechanism[6], a shared memory-based protocol that allows large
amounts o f data to be passed through many protection domains along semi-fixed “data paths” without in
curring any expensive copying or virtual memory remapping operations along the way. Complex messages
can be composed and split apart along the path by logically splicing together pieces o f individual buffers.

The main potential drawback o f fbufs is that imposes serious constraints on the way data is produced
and consumed along the path: senders must be able to generate data in special buffers managed by the fbuf
system (i.e. they can’t simply provide a pointer to m a l lo c ’d memory), and receivers must follow special
rules when accessing these buffers. These constraints are not directly compatible with conventional Unix
and C programming practices; programs must inevitably be modified in order to take full advantage o f fbufs.
Further, because conventional RPC systems rely on presentations that match conventional C programming
practices, conventional RPC is not well matched to fbufs.

To demonstrate how flexible presentation can be applied to this problem, we first consider an RPC sys
tem that uses fbufs as its underlying transport mechanism completely transparently, so that users o f the RPC
system are oblivious to the fact that fbufs are in use as opposed to, say, Unix sockets. In such a system,
user code generally does not directly accesses fbufs, because the semantics it expects is incompatible with
fbufs; instead, the RPC system marshals RPC parameters into and out o f fbufs, passing the resulting fbufs as
fully-marshaled messages. Only pairwise shared memory channels are taken advantage of, and the resulting
system has the same basic performance characteristics as LRPC[3].

Given this basic mechanism, flexible presentation attributes can be used selectively to allow specific

clients and servers to take advantage the underlying fbufs mechanism, without bypassing the RPC system
completely, and without making the modified components incompatible with other, unmodified clients and
servers that use only a standard presentation. For example, in a typical decomposed Unix-compatible sys
tem, a large number o f clients and servers are likely to use one basic file I/O interface such as the one de
scribed in the previous section. Any client may potentially talk to any server in arbitrary combinations, but
only a small subset of those components and combinations are likely to require extremely high-bandwidth
data transfer (e.g., disk and network drivers and file systems, but probably not console I/O, tape, or timers).
It is probably feasible to modify a few performance-critical components to use a special fbuf-compatible
presentation, but it is very undesirable to be required to modify all the components in the system just to get
everything working together properly.

To demonstrate this principle, we created a simplified version o f fbufs based on Druschel’s original im
plementation; the primary difference is that it uses our new streamlined Mach IPC path for control transfer,
and implements all o f the fbuf creation and manipulation facilities in user space instead of in the kernel.
The details o f the implementation aren’t relevant here; the basic performance characteristics are essentially
the same as those previously reported. On top o f that we again use our stub compiler to provide an RPC
abstraction, and the pipe server described in the previous section.

Figure 7 shows the performance o f the same Unix applications as in Figure 6, this time using fbufs as
the transport. The top bar in each pair again represents a system in which all components (reader, writer, and
pipe server) use a standard presentation, and thus fbufs is being used merely as a pairwise LRPC-like shared
memory transport mechanism. The bottom bar shows the performance after modifying the pipe server to
use a [s p e c i a l] presentation for incoming read and write calls, as was done in the Linux NFS client
examples. This change allows the pipe server to keep all data in fbufs along the entire path through the
server instead of copying the data into and out o f a circular buffer in the middle. (The reader and writer
clients still use standard presentations, so one extra copy is still done in each o f them to get the data into and
out o f the fbufs at the endpoints; these clients could similarly be adapted to use fbufs directly and achieve
additional performance improvement, but they don’t have to be changed just to get things to work.)

This presentation modification improves the pipe throughput by 92% for 4K pipes and by 160% for 8K
pipes. (We have not yet determined why 8K pipes are slower than 4K with the standard presentation). For
reference, the graph also shows the throughput o f normal Unix pipes in a monolithic 4.3 BSD system on the
same hardware. In that implementation pipe buffers are always 4K in size.

4.4 Same-Domain Communication
One well-known way to reduce the overall performance overhead in decomposed systems is to “de

couple modularity from protection” [7]: make all “ inter-module” communication go through well-defined
RPC-like interfaces that can cross process and machine boundaries, but allow the resulting system to be
configured so that several modules share the same protection domain and RPC between them is optimized
to simple procedure calls. Thus, in theory, the system remains highly decomposed and modular in structure,
but can retain good performance in practical use.

However, short-circuiting same-domain RPCs into procedure calls does not automatically achieve the
overall efficiency o f normal intra-module procedure calls. In the following two sub-sections we will show
through two examples how RPC systems typically still impose constraints on invocation semantics which
the client and server code must work around. These constraints incur extra conversion and copying overhead
in the client or server code. Similarly, the semantics defined by the RPC system may require the RPC stubs
themselves to perform data conversion and copying even when the client and server are in the same domain.

Flexible presentation support in the RPC system can provide a convenient, powerful, and principled
solution to this problem. Although all aspects invocation semantics can’t be considered “presentation at
tributes,” because they often involve a contract between the caller and callee, they can often be derived from

9

4K pipe, standard presentation

4K pipe, special presentation

8K pipe, standard presentation

8K pipe, special presentation

4K pipe, 4 .3 BSD

5 10 15 20
Throughput (MB/s)

Figure 7: Performance o f the Basic Pipe Server

presentation attributes. The RPC system can make use o f the presentation attributes specified independently
on each side in order to determine the optimal method o f transferring the data while retaining semantic cor
rectness.

In our current implementation o f same-domain invocation, the RPC stubs perform all computation of
invocation semantics at run time, once for each RPC invocation. More optimal implementations are cer
tainly possible; however, even with the current “dumb” implementation, we found the additional overhead
o f this computation to be negligible.

We will now walk through two specific examples exhibiting the same-domain invocation semantics
problem, and show how flexible presentation can be used to optimize it; these examples can easily be gen
eralized to other aspects o f invocation semantics.

4.4.1 Example: copy vs. borrow semantics for in parameters
When a server receives a data buffer or other complex argument as an in parameter during a normal

RPC, it can usually assume that it is allowed to trash the contents o f that buffer during processing, because the
buffer generally has been copied into the server’s private address space from another domain, and therefore
modifications to that buffer won’t affect the client’s original data. In other words, RPC servers can generally
assume pass-by-value (copy) semantics because o f the “remoteness” o f RPC. However, under these rules,
if the client and server happen to be located in the same domain, the RPC stubs must still make a new copy
of the buffer to pass to the server, even though in the common case the server probably won’t modify the
buffer.

The rules o f the RPC system might instead forbid servers from ever modifying the contents o f in param
eters (i.e. “borrow” semantics); that would eliminate the additional copy in the RPC stubs for same-domain
communication. However, this solution is akin to swatting flies with a sledgehammer: it always forces the
server to make its own copy o f incoming parameters if it wants to modify them, even though in many cases
this isn’ t necessary, either because the invocation came from another process, or because the client doesn’t
care if its buffer is trashed.

Although the overall issue o f copy versus borrow semantics cannot be considered a presentation at
tribute, it can be derived from two presentation attributes, one on each side. The client specifies, as part
o f its local presentation o f the in parameter, whether or not it is OK for its buffer to be trashed during the

10

Figure 8: Example client PDL file: indicates that the data buffer may be trashed

void FileIO_write(char * [preserved] _buffer, unsigned long _length);

Figure 9: Example server PDL file: server promises not to modify the buffer

call: we call this the t r a s h a b le attribute. Similarly, the server specifies whether or not it wants to trash
the contents of the buffer it receives, using the p r e s e r v e d attribute. During remote invocation, these at
tributes can generally be ignored by the RPC system; for same-domain invocation, the RPC stubs only need
to make a separate copy o f the parameter if neither the t r a s h a b le nor the p r e s e r v e d attribute was
specified (by the client and server, respectively). Figures 8 and 9 show example PDL declarations indicat
ing these attributes for the client and server, respectively.

Performance: Figure 10 shows the performance of a same-domain RPC that takes a single 1KB in pa
rameter, but otherwise does nothing. The leftmost bar in each group is for an RPC system that always pro
vides copy semantics: the stubs must always make a new copy of the parameter for the server, so perfor
mance is always the same (bad). The middle bars are for an RPC system that only provides borrow semantics
(i.e. requires that the server never modify incoming parameters): in this case, the stubs are always optimal,
but if the server wants to modify its parameters in-place (rightmost two bar groups), it must always make its
own copy even if the client doesn’t care if its buffer is trashed or if the invocation is from another protection
domain. The rightmost bar in each group is for flexible presentation, which copies only when necessary,
and never requires the programmer to make a copy manually.

4.4.2 Example: allocation/deallocation o f o u t parameters

Many systems, including COM[18] and CORBA, specify “move” semantics for o u t parameters, mean
ing the server allocates storage for the parameter and “donates” that storage to the client upon returning; the
client must then free the buffer later. This allows arbitrary-size parameters to be returned without requiring
the client to know in advance how big the o u t parameter will be. However, in normal intra-domain C or
C++ programming practice, the client often does know how big the result will be, e.g., because it requested a
certain number of bytes/elements. In this case, it is usually more convenient for the caller to provide a buffer
which the callee simply fills in during the procedure invocation. If a communicating client and server would
prefer the latter semantics due to their internal implementations, but are forced by the RPC system to use
the former semantics, then extra overhead will be introduced on both sides even if the client and server are
in the same domain: a buffer must be unnecessarily allocated by the server and deallocated by the client,
and the client must copy its contents to wherever it wanted them in the first place.

Again, flexible presentation can be used to resolve this problem, achieving maximum performance when
the client and the server agree on what they want, while retaining automatic interoperability between all
clients and servers. The client and the server each specify, independently, whether they expect to allocate
the buffer for the o u t parameter, or they expect the “other side” to do so. The RPC stubs automatically
adapt to the requirements of each side, performing a copy only if both sides insist on allocating their own
buffer for the parameter.

void FileIO_write(char *[trashable] _buffer, unsigned long _ l e n g t h) ;

11

in

Fixed presentation: copy sem antics
Fixed presentation: borrow sem antics
Flexible presentation
Extra copying done in server

15.716‘2 15.9

trashable, preserved
preserved

trashable not trashable,
not preserved

Figure 10: Performance o f Varying Mutability Semantics

Performance: Figure 11 shows the performance o f a same-domain RPC with a single 1KB o u t param
eter, in various situations. Each bar group represents a particular combination o f semantic requirements as
seen by the endpoints: i.e. which semantics are most appropriate or convenient for the user code on each
side. For example, the first group represents the situation where both sides prefer to let the “other side” (or
the RPC system) allocate the buffer for the o u t parameter (i.e. neither side has any constraints); whereas in
the second group, the server wants to provide the data buffer for the parameter (e.g. it is sending back data
that had already been allocated before the call). The leftmost bar in each group is for a fixed-presentation
RPC system that only supports “server allocates, client consumes” semantics (e.g. COM or CORBA). The
middle bar is for a fixed-presentation system that only supports “client allocates, client consumes” seman
tics (e.g. MIG, for non-copy-on-write parameters). The rightmost bar in each group shows the performance
with flexible presentation, where the RPC system adapts to the requirements o f each side. In each case, the
base (solid) bar shows the time spent in the RPC stubs, whereas the lined bars show time spent in the extra
manually-written client or server “glue” code the programmer must write to adapt the requirements o f the
endpoints to the constraints imposed by the RPC system.

As one can see, flexible presentation always minimizes the amount o f copying and memory manage
ment done, in addition to making life more convenient to the programmer by eliminating the need to write
additional glue. The two middle groups represent the common case in which the client and server agree on
allocation semantics. With flexible presentation, the minimum amount o f work is done in either case; with
fixed presentation, the performance is optimal if the RPC system’s requirements match those of the end
points, and terrible if they don’t. The first and last bar groups represent “mismatches,” in which the client
and server disagree on who should allocate the buffer. Flexible presentation makes essentially no differ
ence in these cases: someone must do the necessary matching and (in the case o f the last group) copying; it

12

rann

Fixed presentation: server must allocate
Fixed presentation: client must allocate
Flexible presentation
Extra work done by client
Extra work done by server

20

w
T3
Cooa)wo

15 —

10

Figure 11: Performance Effects o f Allocation Semantics

makes no performance difference whether the client, the server, or the stubs do it. (Of course, the program
mer would probably prefer that the stubs do it.)

4.5 Leveraging Flexible Presentation with Specialized Transport Mechanisms

Our final two examples illustrate the second reason that flexible presentation can improve RPC perfor
mance: if the transport mechanism can itself be specialized on a per-connection basis, it can leverage relaxed
semantic constraints at the client and server endpoints, optimally matching their requirements. Flexible pre
sentation support provides a principled way to specify these semantic constraints, as well as an implemen
tation framework to incorporate them into the RPC system.

We have implemented a prototype transport mechanism, that at RPC bind time specializes the code path
between each client-server pair. This mechanism can leverage a variety o f endpoint presentation attributes.
We implemented two classes o f presentation-specific transport optimizations, described below, and achieved
significant performance gains over the default presentation. Both o f these presentations are realistic ones,
that can occur in common practice.

We give a brief summary o f the transport mechanism here, but its details are not important for this paper:
before a Mach port can be used for communication, as part o f binding the client and server each registers
with the kernel their respective “type signatures,” generated by the IDL compiler. Once both the client and
server type signatures are available, the kernel checks them against each other, verifies that the interfaces
are compatible and searches for optimizations made possible by the specified presentations. It then builds
a combination signature based on both input signatures. The combination signature includes a block which
threads[15] together small blocks o f code which perform key parts o f the RPC, such as register saving and
restoring. The binding time work needn’t be done by the kernel; a privileged user process could equally

neither
allocate

server
allocates

client
allocates

both
allocate

13

well do it. In this implementation, the Mach kernel does most o f the work of marshaling and unmarshaling
data as well as transferring it across protection boundaries.

Relaxing Mach’s unique-name requirement: In our first example o f relaxed semantic constraints, we
addressed constraints on object names in Mach. The standard Mach IPC system always enforces the se
mantic requirement that all references to a particular port from a particular task have only a single name
within that task. This requirement is required in some situations, such as authentication, but is unnecessary
for simple object invocation. It substantially slows down transfer o f object references (Mach port rights—
capabilities) from one task to another, since it commonly requires a number o f operations, including looking
the name up in a hash table, adding the name if not present, or incrementing the reference count. These op
erations invoke many layers o f function calls and are surprisingly expensive. The single-name requirement
is clearly a presentation feature, since it only affects the appearance o f a port locally within a task. Simply
leveraging the relaxed presentation semantics o f not needing unique port names [n on u n iq u e] resulted
in a significant performance improvement when passing a single port between two tasks: a reduction from
32.4 /isecs to 24.7 fisecs, or 24%.

Varying Trust Parameters: In our second example o f relaxed semantic constraints, we addressed the
varying degress to which programs may trust each other. The trust relationships between clients and servers
count as “presentation” for our purposes, because they are useful in optimizing RPC but do not affect the
“network contract.” Therefore, in our RPC system, we allow each “ side” o f a connection to specify the
degree to which it trusts the other side. Three levels o f trust are provided: (i) no trust (the default), (ii) trust of
confidentiality (allows leakage o f information to the other side) but not integrity (protects against corruption
by the other side) [le a k y] and (iii) full trust o f both integrity and confidentiality (allows both information
leakage and corruption) [le a k y , u n p r o te c te d] The middle level would typically be used between
processes owned by the same user, which want to maintain protection boundaries for robustness, but have
no information to hide from each other. The full trust level could be used by clients communicating with
privileged servers, such as a Unix personality server.

We implemented relaxed trust levels by requiring less register saving, restoring, and clearing on the RPC
path. Figure 12 shows the performance o f null RPC for all trust combinations; the overall improvement from
slowest (no trust, back comer) to fastest (full trust, front comer) is about 30%.6

5 Future W ork

Having demonstrated the value o f flexible presentation, we plan to use it aggressively to improve perfor
mance in a real system: the Mach kernel, the Lites Unix server, and applications. We will exploit its ability
to hide the difference between different transport mechanisms as we experiment with new IPC mechanisms.

An interesting area for research is to extend the varieties o f semantic attributes on interfaces to cover
issues like resource consumption and resource locking behavior and requirements. Our framework could
be used to explore the flexible composition o f interfaces and modules, while maintaining correctness.

Flexible presentation offers the opportunity to narrow interfaces, by combining presentation variants o f
logically identical procedures. At the same time, it offers wider functionality, by allowing a wide variety o f
presentation variants to be applied to most RPC parameters, by any client o f that interface. Evolving existing
interfaces in this way should be a useful direction.

6The right-most columns (leaky, unprotected) are the same becauseour mechanism does nothing additional when a serverclaims
to trust a client’s correctness (unprotected).

14

w
■O
c
o o<D
W
O_
o
£

5.0

2.5

Figure 12: Performance effect o f varying trust parameters

6 Conclusion

In this paper we presented a variety o f ways in which flexible presentation can be used to improve RPC
performance; these are only examples, and many others are possible. Understandably, the performance im
provements are more noticeable for RPC over faster, lighter-weight underlying transport protocols: ranging
from only 3% for Sun RPC over Unix sockets to an order o f magnitude for lightweight same-domain commu
nication. This leads us to believe that flexible presentation support will be most important in two domains:
highly decomposed and microkernel-based operating systems that support extremely fast IPC mechanisms,
and in very high speed networking.

Acknowledgements
Thanks to John Carter for reviewing this paper, to Jeffrey Law for his careful timings, to Nathan Dykman

for his careful survey o f interfaces, and to Gary Lindstrom for exploration o f the language issues.

References

[1] J. S. Auerbach et al. Concert/C: A language for distributed programming. In Proc. o f the Winter 1994
USEN1X Conference, pages 79-96, Jan. 1994.

[2] J. S. Auerbach and J. R. Russell. The Concert signature representation: IDL as an intermediate lan
guage. In Proc. o f the Workshop on Interface Definition Languages, pages 1-12, Jan. 1994.

[3] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy. Lightweight remote procedure call.
ACM Trans. Comput. Syst., 8(l):37-55, Feb. 1990.

[4] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Transactions on Computer
Systems, 2(1), Feb. 1984.

[5] D. D. Clark and D. L. Tennenhouse. Architectural considerations for a new generation o f protocols.
In Proceedings o f the SIGCOMM ’90 Symposium, pages 200-208,1990.

[6] P. Druschel and L. L. Peterson. Fbufs: A high-bandwidth cross-domain transfer facility. In Proc. o f
the 14th ACM Symposium on Operating Systems Principles, pages 189-202, 1993.

no leaky unprot
trust

O^
S e r v e r T ru st o f C lien t

15

[7] P. Druschel, L. L. Peterson, and N. C. Hutchinson. Beyond micro-kernel design: Decoupling modu
larity and protection in Lipto. In Proc. o f the 12th International Conference on Distributed Computing
Systems, pages 512-520, Yokohama, Japan, June 1992.

[8] B. Ford and J. Lepreau. Evolving Mach 3.0 to a migrating thread model. In Proc. o f the Winter 1994
USEN1X Conference, pages 97-114, Jan. 1994.

[9] D. Golub, R. Dean, A. Form, and R. Rashid. Unix as an application program. In Proc. o f the Summer
1990 USENIX Conference, pages 87-96, Anaheim, CA, June 1990. .

[10] G. Hamilton and P. Kougiouris. The Spring nucleus: a microkernel for objects. In Proc. o f the Summer
1993 USENIX Conference, pages 147-159, Cincinnati, OH, June 1993.

[11] G. Hamilton, M. L. Powell, and J. J. Mitchell. Subcontract: A flexible base for distributed program
ming. In Proc. o f the 14th ACM Symposium on Operating Systems Principles, pages 69-79, 1993.

[12] J. Helander. Unix under Mach: The Lites server. Master’s thesis, Helsinki University o f Technology,
1994. 64 pp. Also http://www.cs.hut.fi/~jvh/lites.MASTERS.ps.

[13] ISO. Information Procesing Systems — Open Systems Interconnetion — Basic Reference Model. ISO-
7498, 194.

[14] M. K. Johnson. LINUX Kernel Hackers’ Guide. ftp://tsx-ll.mit.edu:/pub/linux/docs/linux-doc/-
project/khg-0.6.ps.gz, 1993. 119 pp.

[15] P. Klint. Interpretation techniques. Software — Practice and Experience, ll(9):963-973, Sept. 1981.

[16] S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman. The Design and Implementation o f
the 4.3BSD Unix Operating System. Addison-Wesley, Reading, MA, 1989.

[17] J. Liedtke. Improving IPC by kernel design. In Proc. o f the 14th ACM Symposium on Operating
Systems Principles, Asheville, NC, Dec. 1993.

[18] Microsoft Corporation and Digital Equipment Corporation. Common Object Model Specification, July
1994. 62 pp.

[19] Object Management Group. The Common Object Request Broker: Architecture and specification.
Draft 10 Rev 1.1 Doc # 91.12.1, OMG, Dec. 1991.

[20] S. O ’Malley, T. Proebsting, and A. B. Montz. USC: A universal stub compiler. In Proc. o f the SIG-
COMM ’94 Symposium, Aug. 1994.

[21] Open Software Foundation. OSF DCE Application Development Guide. Prentice Hall, 1993.

16

9

http://www.cs.hut.fi/~jvh/lites.MASTERS.ps
ftp://tsx-ll.mit.edu:/pub/linux/docs/linux-doc/-

