
Visual Threads: The Benefits of Multithreading in
Visual Programming Languages

Christian Mueller-Planitz and Robert R. Kessler

UUCS-97-012

Department of Computer Science
University of Utah

Salt Lake City, UT 84112 USA

August 13, 1997

Abstract

After working with the CWave visual programming language, we discovered that many of
our target domains required the ability to define parallel computations within a program.
CWave has a strongly hierarchical model of computation, so it seemed like adding the ability
to take a part of the hierarchy and execute it in parallel would provide a good way of solving
the problem. This led us to the concept of the Visual Thread and its associated components.
Effectively. the Visual Thread allows the programmer to specify a part of the hierarchy and
execute that part in parallel with the rest of program. We have used this implementation in
several domains and demonstrated that it allows easy mapping of real world problems into
our language. It eliminates most of the complexities often associated with programming
parallel applications. We have also used a first prototype of our code generation system to
translate CWave into Promela which allows us to verify correctness properties of the pro
grams.

Visual Threads: The Benefits of Multithreading in Visual Programming
Languages

Christian Mueller-Planitz Robert R. Kessler
cmp@cs.utah.edu kessler@cs.utah.edu

Department of Computer Science
3190M.E.B.

University of Utah
Salt Lake City, UT 84112

U.S.A.

Abstract

After working with the CWave visual programming
language, we discovered that many of our target domains
required the ability to define parallel computations within
a program. CWave has a strongly hierarchical model of
computation, so it seemed like adding the ability to take a
part of the hierarchy and execute it in parallel would
provide a good way of solving the problem. This led us
to the concept of the Visual Thread and its associated
components. Effectively, the Visual Thread allows the
programmer to specifY a part of the hierarchy and execute
that part in parallel with the rest of program. We have
used this implementation in several domains and
demonstrated that it allows easy mapping of real world
problems into our language. It eliminates most of the
complexities often associated with programming parallel
applications. We have also used a first prototype of our
code generation system to translate CWave into Promela
which allows us to verifY correctness properties of the
programs.

1. Introduction

CWave is a dynamically typed, multithreaded visual
programming language that nms on Microsoft Windows-
95™ and Windows NTTM platfonns. It makes use of
state-of-the-art OLE™/ ActiveX™ technology and
provides seamless integration to other Win32
applications. It has been developed by the ~omponent
~oftware ~~iect (CSP) research group in the Department
of Computer Science at the University of Utah in
cooperation with the CSP group at Hewlett Packard
Research Labs in Palo Alto, California.

CWave has been designed as a general framework
[EPHRAIM 90], [KOELMA 92] to handle several very
different domains. The general goal is that the CWave

user in a domain should be technically experienced in that
domain, but not necessarily a computer programmer. In
particular, CWave has been used in the following areas:

• Mearmrement devices - it has been used to directly
provide the operations of individual low-level
sensors and actuators;

• Measurement systems - with its ability to interact
with numerous measurement devices and also
interface to the enterprise, CWave has been used to
generate combined measurement systems;

• Hardware simulation - a package of components has
been developed that provides a simple, gate-level
simulator;

• Wizard - it has been used as a vilmal wizard for
constructing systems in a large component -based
software engineering system;

• Web programming - CWave offers support for a
Webserver that can be used to dynamically create
Web pages and to visually construct CGI equivalent
code;

• Software design and verification - We have used
CWave to design parallel programs that were
automatically translated and verified with the 'Spin'
protocol verifier.

Due to the open architecture and easy extensibility of
CWave we continue to seek new domains including some
newly started woIk in robotics and robot sensor
calibration. Thus, our primary goal is to develop an easy
to use, customizable and extensible tool that can be used
by non-computer scientists to develop solutions for their
::;pecific needs.

We start with a description of CWave, designed to
provide sufficient detail to provide context for the
description of 'Visual Threads.' We follow with a
discussion of additional features associated with the

threads that provide a powerful, yet easy to use method of
parallel progrdDlllling. Then we have a description of our
techniques for program correctness verification and with
an implementation of the Dining Philosopher's problem
using Visual Threads.

2. General overview of CWave

The basic CWave metaphor [MEYER 93],
[GLINERT 90] is to present the programmer with a
palette of both predefined and user-created components as
well as a drawing surface. The programmer chooses a
component, drags it from the palette to the surface, sets
properties of the component and then 'wires' component
connections together to create an executable program. The
execution model is similar to static data now with a
hierarchical stmcture for handling complexity. Program
development proceeds by 'watching' the execution of the
program and observing values that are produced along the
way.

Figure I shows a sample program and the fealure-rich
CWave design environment which is used to develop, nm,
and visualize CWave programs. It's a multiple document,
multiple view Windows NT application with support for
zooming, a built-in debugger, and component
management. The window on the left-hand side is a
hierarchical tree view of currently loaded components. In

I : ~. \ IPC Send

! ~ht S'~ep
I ;-. SH Thread component

· l: ~ Watt fl)r .. aloe
·f SW>lch
;t ·' TYIl9 con erslon

... , . USElr definlld

.... VB ProlY servel

2

the middle is the drawing area with a CWave program,
which consists of four components
(CONNECT_TO_MOTOR, TURN_ON, WAIT,
TURN_OFF) wired to perfOIDl their actions in sequence.
The browser is an HTML browser that points to the
HTML documentation of the selected component.

In the example program in
Figure I, each of the components control physical

devices of a Lego model. We also have currently defined
around 50 components that range in complexity from
simple logic and arithmetic functions (AND, OR, PLUS,
MINUS, ...) to more complex functions like
CREATE_THREAD or mvoke an OLE server to even
more advanced components like SERVE_ WEB_PAGE.

Components are grouped together in libraries which
can be loaded at mntime. CWave comes with a well
defined component progl'luruning interface which allows a
programmer to create hislher own component library. For
perfolDlance reasons component libraries (as well as the
CWave framework) are written in C++. Additionally,
CWave provides wrapper libl'lu1es to call Visual Basic TM,

Visual J++™ (Microsoft's implementation of Java TM)

and any other language that produces OLE capable code.
Components can be nested arbitrarily deep by using

an EMPTY component as a container for other
components which corresponds to a function ill
conventional programming languages.

Figure 1: Sample program that shows the CWave environment.

Similar to components, CWave supports a set of
predefined data types which can be extended by loading
libraries at runtime. Currently, INVALID, INTEGER,
FLOAT, STRING and POINTER are the primitive data
types. In addition, CWave supports a bounded buffer
(QUEUE), a single dimension array of any data type and
DISPATCH which is used to pass OLE objects through
wrres.

Figure 2 shows P3.1t of a more involved program that
depending on a pushed button will make a two-motor,
mobile device tum a 12 inch circle or run in a square.
This pmgraIll demonstrates a for loop, multiple threads,
and IPC communication. Finally, Figure 3 below shows
one of the more complicated prograIlls that we have
written, which is a simulation of an automated system for
doing automobile inspection and emissions 'testing.

Figure 2: Program to teU a mobile Lego robot to move in a circle or square shape.

3

Figure 3: Automobile inspection and emission simuJation program.

3. Parallel programming in CWave

With CWave being used for a broad class of domains,
many of which have aspects of the "real world"
[KESSLER 92], [GRlSS 96], it became clear that we
needed support for parallel processing within a program.
We had already created components that supported
broadcast and point-to-point distributed computing using
"Inter Process Communication" (IPC) with pipes and
mailboxes. Thus, our effort focused on developing
extensions to CWave that supported parallel execution
within a program. The most important of these
extensions are visual threads and queues. However,
before going into threads, we must first discuss the
execution model.

3.1. Execution model

The execution model is similar to static data flow
with a hierarchical structure for handling complexity.
Similar to PROMELA [HOLZMAN 91] input ports to
components act like a guard: if an input is not available,
the component can't execute and won't produce a value
which will most likely prevent execution of the next
component.

CWave allows the user to specify optional default
values (constants in other programming languages) on
every input port. If a source of an input chooses not to
generate a value, then the component will still execute
using the default value as an input (provided that the
default value is not of the special type INVALID which
dynamically can prevent the component from executing).

CWave uses static data flow analysis to determine
execution order at design time. Following this
predeteIIDined order, each component is executed if its
input values are present. As mentioned earlier, the
EMPTY component introduces hierarchy and is a
container for other components. When it is the empty
component's tum to execute, the component tries to
execute all of its subcomponents before the execution
continues with the next sibling. Thus an EMPTY
component acts like a <begin end> statement
in Pascal and gives the programmer implicit control over
the execution order. If two output ports are connected to
one input port ("wired-OR") the execution order of both
sources is not detenninistic. The programmer can force
detennini;by having one of the sources produce the
special INV ALID data type which will not overwrite any
of the other data types.

3.2. Multithreading

Multithreading is accomplished primarily with the
visual THREAD component. At first glance, the thread
looks just like an EMPTY component. It has no
substructure and no predefined input or output ports, but
they can be added at design time in order' to pass values
asynchronously into and out of the thread (Figure 4).
Like the EMPTY component, the THREAD component
introduces hierarchy, allowing the programmer to specify
components that will execute "inside" of the thread,

Figure 4: Asynchronous message passing

4

As with all other components, a thread component
waits for its chance to execute until it is hierarchically its
tum. Unlike the other components, when the outer thread
reaches the THREAD component. a thread fork is
perfonned allowing the THREAD component to execute
independently of the outer thread. The outer thread
proceeds to execute the next sibling of the THREAD
component, while the THREAD component proceeds to
execute its nested components using the same exact
execution model. Graphically, when a component is
executing, its title bar is highlighted so the programmer
can see where execution is occurring. With the THREAD
component, multiple locations may in parallel indicate
that they are executing. Figure 5 shows an example of
two threads executing, one generating the natuml
numbers, while the other is generating 0 and 1 in
sequence.

Each thread object includes a number of capabilities
that the user can customize. One feature allows the
programmer to control how fast to execute the thread.
When watching a thread execute, the slower speed allows
the programmer to more easily track which component
inside of the thread is currently executing. It is also very
useful when writing producer/consumer types of
applications and you want to throttle one or the other.

~

Figure 5: Demonstrates two independent threads.

The next important feature is the "Run only once"
control When enabled, the thread will be forked its
contents will be executed following the standard
execution model and then the thread will be terminated.
Often when executing a thread only once, you want the
ability to synchronize an outer thread to wait for the
thread to terminate. This can be accomplished with the
WAlT JOR _VALUE component which is used to "join"
an outer thread with the results of the thread component.
The WAIT_FOR_ VALUE component and CWave's
wired OR capability allows you to express situations
where several threads are forked and you wait for the first
one to produce a value, with the remaining values being
ignored.

Finally, the last feature is the "SingleStep mode"
capability. This is used for debugging purposes. When
enabled, the outer thread will NOT fork, but instead will
enter the thread and continue executing. This is handy
when you want to verify the execution of a particular
thread without other threads executing to distract you in
your effort to verify that a particular thread is performing
the correct operations.

Figure 6). We were able to verify the correctness of
CWave programs by passing CWave generated Promela
code directly to the 'Spin' verifier which checks for
properties such as deadlock, livelock, and starvation. See
HTTP://EASY.CS.UTAH.EDU/CWaveiCodeGeoJindex.htm for
further details.

5

3.3. Queues

As we previously mentioned, CWave offers support
for passing values in and out of threads asynchronously as
well as joining the results of two threads. Our first
version only had threads and joins and no other features.
Lab assignments of students using CWave in the Fall
Quarter '96 showed that although asynchronous passing
of values is powerfuL it created many problems because of
the student's lack of experience in parallel programming
resulted in their being surprised when their program
worked only some of the time.

Therefore, we decided to implement visual
synchroni7...ation primitives that are easy to understand and
remove the complexity of asynchronous values. We
considered creating handles to native WinJ2 semaphores
and passing these handles through wires to semaphore
request- and release objects. We abandoned this model
because it was too difficult to use. Instead we
implemented a bounded buffer data type called QUEUE
that meets the needs for simple synchronization. The
model we use is that if an element is in the queue then the
thread that references the value can proceed otherwise it
blocks. In programs that are 'producer-consumer,' the
producer places values into the queue and the consumers
take values out of the queue. These can occur at
completely arbitrary speeds, allowing fast consumers to
block when processing data from slow producers or slow
consumers to execute at full speed when processing data
from fast producers. Note - since our Visual Queue data
type is protected by semaphores, one can implement
simple semaphore type control with a single element
queue. Our experience has shown that the QUEUE
primitive covers most of the needs of the users of the
system.

3.4. Correctness veritication

Promela is a validation modeling language used by
Spin, [HOLZMAN 91] a software verification tool for
concurrent systems. Each Promela program consists of
processes, channels and variables. The execution of every
statement is conditional on its executability, much like our
components must have values on all their input ports to
execute. During Fall '96 we did experiments with
translating CWave programs into Promela (see

Experiments have shown that a CWave programmer
can easily generate Promela programs with more than 40
processes. The infinite nesting capabilities of CWave
makes it possible to duplicate these existing processes
again and again until the limits of Promela are
approached.

Figure 6: CWave to pseudo code which is expanded by macros into Promela

Naturally the generated code is not as efficient as if it
would have been handcoded by an experienced Spin
programmer but it offers a novice user an intuitive way to
use a model checker and to verifY hislher programs.

4. Example - 'Dining Philosophers

CWave with its threads and queues are penect for
implementing and visualizing standard synchronization
problems like "Dining Philosophers" or "Bounded
Bl(fJers." These are standard problems that are taught in
every operating systems class. Often students do not get
practical experience implementing these due to the lack
and/or difficulty of using threads in existing operating
systems. Even if threads are available they have problems
to debug the programs because existing debuggers for
languages like C/C ++ provide no visual clues about
acquired locks, which thread is executing and why a
program deadlocks.

6

We have used CWave to implement some of these
problems. 'Producer/Consumer' is trivial because of the
visual queue primitive .. 'Dining Philosophers' is more
interesting and was programmed within minutes and is
shown in Figure 7.

5. Related Work

There are many 'Visual Programming Languages'
currently in use. Some of them are "despite their names"
not visual but rather textual languages I and provide only a
graphical GUI builder to make programming easier.

The systems that are most closely related to CWave
are the graphically-based programming environments lIP
VEE (Visual Engineering Environment) [HENSEL 93]
and Nationallnstmments LABView that are both oriented
towards test and measurements. Although CWave has
grown to handle additional domains, it is useful to see
how it compares with the other systems.

Figure 7: Dining Philosophers - note Thread2 is currently in the critical section while Threadl is blocked

6. Conclusions

CWave has been used to simulate hardware (logic
functions, gates, ...) as well as to design, debug and
visualize software. The range of possible applications for
CWave is broad:

• CWave can be used as a tool in a class teaching
concurrency problems. With the appropriate code
generators a concurrent CWave program can be
converted into Promela and can be checked for
correctness properties (e.g. deadlock and starvation).

• CWave can be used as a glue language for hooking
together existing OLE applications. The fact that
changes do not require recompilation gives
opportunity for experiments like 'what happens if 1
doXYZ'

• CWave can also be used as a teaching tool in
hardware design classes. The standard release comes
with components that do logic functions.

7

Our primary development goal was to make design of
software as easy as connecting 'boxes' (components)
together and to avoid cryptic C/C++ syntax.

Our addition of parallel primitives has enabled in
process parallel programming that is as easy as dragging a
Visual thread component onto the drawing surface. The
programmer does not have to struggle with huge programs
that do various complex system calls like:

HANDLE CreateThread(
LPSECURITY _ATTRIBUTES IpThreadAttributes,
DWORD dwStackSize,
LPTHREAD _ START_ROUTINE IpStartAddress,
LPVOID IpParameter,
DWORD dwCreationFlags,
LPDWORD IpThreadld);

While talking to non-computer scientists we came up
with the conclusion that there is a real need for making
parallel programming more intuitive and easier. What is

most important is the overall design. the ability to
maintain code and how much detail and knowledge of the
language and of the system is required to come up with a
working parallel solution.

Making use of CWave provides benefits even for
experienced parallel programmers. Once a parallel CWave
program has been developed it can be called from other
languages. In other words CWave can be used for what it
is good for: rapid application development of parallel
programs. We believe that the open architecture of
CWave provides a good basis for further extensions and
research into adding parallelism to visual programs.
CWave is available for free on our Website.

7. Acknowledgements

We thank the contributions of the Utah CSP group, in
particular Nathan Dykman and Michelle Miller and our
HP colleagues M3.1tin Griss and Lorna ZOffilan. We
hearby acknowledge Lorna for contributing the table
comparing CWave with VEE and Labview.

8. References

[GLINERT 90] Glinert, E.P., Ed., "Visual Programming
Environments: Paradigms and Systems and Visual
Programming Environments: Applications and Issues",
IEEE Computer Society Press, Los Alamitos, 1990.
[CHANG 90] Chang, Shi-Kuo "Principles of Visual
Programming Systems," Prentice Hall, Englewood Cliffs,
NJ. 1990
[EPHRAIM 90] Ephraim, P, "Visual Programming
Environments"., Computer Society Press, 1990.
[KOELMA 92] Koelma, D., R. van Balen, and A.
Smeulders, "SCIL-VP: a multi-purpose visual
programming environment," Proceedings of the
1992ACMlSIGAPP Symposimn on Applied Computing,
1188-1198, 1992.
[MEYER 93] Meyer, Bernd, Deklarative
"Spezifikation visueller Sprachen durch graphische
Beispiele oder: Ein Bild sagt mehr als tausend FOffileln,"
23. GI Jahrestagung, (Horst Reichel, ed.), Dresden,
Geffilany, Springer Verlag, Berlin. 316-321, October
1993.
[BURNETT 95] Burnett, M., M. Baker, C. Bohus, P.
Carlson, S. Yang, and P. van Zee, "Scaling Up Visual
Programming Languages, Computer," 45-54, March 1995.
[KESSLER 92] Kessler and Evans, "DPOS: A
Metalanguage and Programming Environment for Parallel
Processors," International Journal on Lisp and Symbolic
Computation, Vol5:l!2, January 1992

8

[HOLZMAN 91] Holzmann, Gerard "Design and
Validation of Computer Protocols," Prentice Hall, 1991.
[HENSEL 93] Hensel, R, "Cutting your Test
Development Time with HP-VEE - An Iconic
Programming Language," Hewlett-Packard Professional
Books, Prentice-Hall, 1993.
[GRISS 96] Griss, M. and Kessler, R. "Building
Object-Oriented Instrument Kits," Object Magazine, April
1996

9. Appendix - CWave Architecture

Figure 8 shows the architecture of the CWave frame
work. On the left hand side is the CWave development
environment which makes use of the Microsoft
Foundation class (MFC). Linked into the development
environment is the CWave runtime library which is shared
with the component libraries. All calls from the
development environment go through the runtime library.
Although it is not recommended it is possible to run
CWave programs without the graphical user interface by
loading the runtime library which in tum loads the
component libraries from any other Windows application.

Figure 8: CWave architecture

