
SIMON II KERNEL

Reference Manual

A General Purpose Discrete Simulation Tool

Technical Report UUCS-86-001

21 May 1987

by
Steven M. Swope

and
Richard M. Fujimoto

University of Utah Computer Science Dept.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277427?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Simon II

I Basic Features 3
1. Simon Fundamentals 5

1.1. A Simon Simulation Program 5
1.2. Simulation Methodology 5

1.2.1. Objects: Partitioning the System 6
1.2.2. Ports and Connections 6
1.2.3. Messages 7
1.2.4. Support for Hierarchy 8

2. Simon Interface Tutorial 11
2.1. Simulation Overview 11
2.2. Global Variables, Data Types, and Sizes 11
2.3. Object Procedures 12

2.3.1. Object Procedure Initialization 12
2.3.2. Simulation of Object Behavior 14
2.3.3. Object Procedure Example 16

2.4. The Main Procedure 20
2.4.1. System Configuration 21
2.4.2. System Execution 23
2.4.3. Main Procedure Example 24

3. Basic Simon Interface 27
3.1. Support for Hierarchy 27

3.1.1. Shell Ports 27
3.2. Dynamic Reconfiguration 29

3.2.1. Port Disconnection 29
3.2.2. Port Deletion 29
3.2.3. Searching for Ports 30
3.2.4. Object Relocation 31
3.2.5. Object Deletion 32

3.3. Message Handling 32
3.3.1. Message Modification 33
3.3.2. Message Duplication 34
3.3.3. Message Creation and Transmission 34
3.3.4. Read-Only Input Ports 35

3.4. Input Port Tags 36
3.4.1. Setting Port Tags 36

3.5. Extended Simulation Time 37
3.6. Memory Management 37

3.6.1. Memory Allocation / Deallocation 38
3.6.2. Object Termination Clean-Up 39

3.7. Miscellaneous Procedures 40
3.7.1. Multiple Run Support 40
3.7.2. Copy Utility 41

Table of Contents

i

Simon II

II Advanced Features 43
4. Advanced Message Features 45

4.1. Input Servers 45
4.1.1. Input Server Definition 46

4.2. Attributes 46
4.2.1. Attribute Type Creation 47
4.2.2. Attribute Creation 47
4.2.3. Attribute Identification 48
4.2.4. Attribute Modification 49
4.2.5. Attribute Deletion 49
4.2.6. Attribute Duplication 49

4.3. Keys 50
4.3.1. Setting Port Keys 51
4.3.2. Keyed Message Transmission 51

4.4. General System Messages 53
4.4.1. GSM Type Creation 54
4.4.2. GSM Port Creation 54
4.4.3. GSM Port Deletion 55
4.4.4. GSM Transmission 55

4.5. Message [Event] Queue Editing 56
4.5.1. Delaying All Messages 57
4.5.2. Identifying Messages 57
4.5.3. Delaying, Modifying, and Deleting a Message 58

5. Extending Simon 61
5.1. Software Support Layers 61
5.2. Useful Global Variables and Procedures 62
5.3. Object Contexts and Support Layers 63

5.3.1. Object Context Creation 64
5.4. Support Layer Example 65

Appendix I. Simon Procedures Reference 71
Appendix II. Simulation Debugging 99

11.1. Execution Tracing 99
11.2. Error Reporting 100

Appendix III. Installation Notes 103
111.1. TSIZE Resolution Versus Address Resolution 103
111.2. Memory Management 103
111.3. Hash Table Sizes 104
111.4. Clock Limit 104
111.5. SimonDebug 104

Index 107

ii

Simon II

SIMON II KERNEL

The principal objective of Simon II is to provide a flexible and adaptable framework
for constructing simulators for a wide variety of parallel systems. A simulator consists of
a set of software building blocks. Each building block, i.e. object, simulates a specific
component of the parallel system. Objects may be defined in terms of other objects,
supporting a hierarchical view of the system.

This building block approach offers several advantages. Comparison of alternative
designs and approaches is simplified. Different aspects of the system can easily be
modeled with different degrees of detail (mixed mode simulation). The standardization of
interfaces between objects facilitates the partitioning of simulator development among
several individuals, each of which may be a specialist in a different aspect of the system,
allowing designers to concentrate on areas in which they are most knowledgeable.
Finally, the richness and capabilities of the simulation system grow with time as new
objects are developed and refined, in contrast to simulators which are developed to
examine one particular aspect of the system, and then discarded. Thus, costs to develop
simulators for new systems are reduced.

1

Simon II

2

Simon II Basic Features

I Basic Features

PART I

Simon II Basic Features

Part I of this manual describes basic features of Simon, including an introduction, a
tutorial, and a discussion of basic features.

* Chapter 1 describes what a simulation program consists of and the
methodology used in modeling the system. Simon abstractions (objects,
ports, connections, and messages) are briefly described along with Simon's
support for hierarchy.

* Chapter 2 is a tutorial of how to construct a Simon simulation program using
only a few basic features. An overview of simulation execution is given, along
with an explanation of global variables and data types used by Simon. Then
Simon procedures typically used by objects are discussed, along with an
example. And finally, Simon procedures generally used by the main program
are presented, followed by a main program example.

* Chapter 3 describes all of the basic features of Simon by topic, including:
features to support hierarchy, dynamic reconfiguration of the system,
additional message handling features, identifying the arrival port using input
port tags, Simon's double precision clock, memory management features, and
multiple-run support.

Part II of the manual discusses advanced features.

3

This chapter first describes the composition of a Simon simulation program. It then
discusses the methodology supported by Simon used to model a system.

1.1. A Simon Simulation Program

The Simon II kernel consists of a collection of subroutines which control the
execution of the simulation and provide monitoring and debugging tools. The Simon
kernel is linked together with other procedures to form a simulation program. A
simulation program consists of:

* A main procedure,

* Object procedures,

* The Simon kernel, and

* Support procedures (optional).
The main procedure is responsible for creating the initial configuration of objects for the
system being modeled and starting the simulation. Each object procedure is responsible
for simulating the behavior of the object. The main procedure is provided by the user,
while object procedures may be provided either by the user or obtained from object
libraries. The Simon kernel (which is the subject of this report) includes facilities for
creation and manipulation of objects, time-multiplexed execution of object procedures,
synchronization of communication between objects, and debugging and monitoring
facilities. Additional support procedures may also be used if necessary to provide
specialized services and to provide a customized interface between object procedures and
the Simon kernel.

1.2. Simulation Methodology

Simon is based on autonomous objects which communicate by exchanging
messages. Each object defines a number of ports through which all interactions with
other objects must pass. Connections between ports specify explicitly which objects
interact with which other objects.

Simon II Basic Features

1. Simon Fundamentals

5

Simon II Basic Features

1.2.1. Objects: Partitioning the System

The system being modeled is composed of some number of concurrent entities.
For example, a multi-computer system might be divided into a collection of micro
computers and an interconnection switch, such as a global bus. The most natural
partitioning of this system is to create one instance of a switch object to model the bus,
and multiple instances of a processor object, one for each micro-computer. This
partitioning:

1. allows models for different types of processors and interconnection switches
to be easily substituted, facilitating comparisons, and

2. allows the processors and interconnection switches to be simulated at
different levels of abstraction or granularity.

Thus one can envision physically dividing the system into some number of
components and defining an object to represent each one. An object is defined by an
object procedure. When an object is instantiated, the object procedure is passed
initialization parameters and begins execution. The procedure first performs initialization,
such as the creation of ports, and then begins simulating the behavior of the object.

1.2.2. Ports and Connections

All interactions between each object and its external environment are through time-
stamped messages. A message is sent to an object's output port where it propagates
through a connection to an input port of another object.

Distinct ports are used to transmit different types of information. No restrictions
are placed on the number or type of ports an object can create. Although communicating
objects must agree on the type and format of information transmitted through the ports,
objects do not in general know which or even how many other objects they are
communicating with. This is because each connection from an output port to a
neighboring object's input port is typically made by a procedure external to the object
(such as the main procedure). This increases the autonomy of each object and facilitates
arbitrary interconnections of objects.

Any output port may be connected to any accessible input port regardless of how

6

Simon II Basic Features

many other connections have already been established to either port, or on which object
the port resides. Messages from several output ports may be merged by connecting
them to a single input port. Messages from these ports will individually arrive at the
input port in time-stamped order. Conversely, an output port may fanout to several input
ports, implementing broadcast or multicast communications. In this case, Simon
generates as many copies of the message as are needed. This latter capability may be
used by a statistics gathering object to "eaves drop'' on communications between other
objects and monitor their interactions, transparent to the objects being observed.

It is also possible for an object to have one of its output ports connected to one of
its input ports so that it can send messages to itself. This would correspond to events
confined to the internal operation of the object which must be properly synchronized in
time. For example, an object may need to "wake itself up" periodically to perform some
action.
»

1.2.3. Messages

Messages typically carry requests, commands, or status information, and trigger
some activity in the receiving object. All messages have a time stamp and a data record.
Simon provides mechanisms to create, delete, send, and wait for messages. While some
messages will be created in one object and consumed immediately after being sent to
another object, other messages may persist for relatively long periods of time as they are
forwarded from one object to another. An example of the latter situation arises when
Simon messages model data packets transmitted through a store-and-forward
communication network.

Each message carries a time stamp which corresponds to the time at which the
event modeled by the message occurs in the real system. These events are simulated by
Simon in correct time sequence in order to ensure that the behavior of the simulation
faithfully models the real system.

The length of the data portion of each message is defined when the message is
created. Objects exchanging messages must agree on the contents and format of this
data.

7

Simon II Basic Features

1.2.4. Support for Hierarchy

An object may be defined in terms of other objects to provide a hierarchical
description of the system. Such an object is called a "structured" object. Objects which
are not structured are referred to as "atomic" objects. For example, in figure 1-1, objects
X and Y are "structured" objects. X is composed of objects A and B, plus a "shell" (which
takes on the same name as the structured object, i.e. X). Y is composed of C, D, and E,
and its shell Y. Objects A, B, C, D, and E may be either atomic or structured objects.
Thus, a structured object consists of a collection of encapsulated objects and a shell.

X1 Y1 +—>

+~>

Figure 1-1: Example of Structured Objects

Connections from encapsulated objects cannot cross shell object boundaries.
However, a shell object may define one or more "shell ports", so that internal objects may
be connected to them. A shell port provides a tie point between internal and external
connections. In figure 1, X1 and Y1 are shell ports. Thus connections can be made
between objects X and Y without knowing about the inner objects A, B, C, D, or E,
allowing details of the simulation model for X and Y to be hidden.

Instantiation of object X requires the instantiation and interconnection of objects A

3

Simon II Basic Features

and B. Also, parameters passed to X must be converted to parameters required by A and
B. Simon provides such a mechanism for creating "structured" objects. Instantiation of
any object causes the object procedure to begin execution. In a structured object, the
shell object procedure instantiates the component objects and the internal connections
between them. In this way any number of levels of object hierarchy can be created.

When a structured object is instantiated, mechanisms are required to:

1. Establish connections between the shell port and ports of objects INTERNAL to
the shell.

2. Establish connections between the shell port and ports of other objects
EXTERNAL to the shell.

These functions are performed using the same mechanism that is used to make
connections between ports of atomic objects. The only difference is that connections to
shell ports can be made to the "inside" as well as to the "outside" of the object. External
to the structured object, a shell port appears to function like any other port, thus hiding
internal connections from the external environment. In figure 1 for example, shell output
port XI of object X, can be connected to shell input port Y1 of object Y, independent of
any connections internal to X or Y.

Even though shell ports are indistinguishable from regular ports to the external
environment messages are handled differently by shell ports than by regular ports. When
a message arrives at a regular port, the object receives the message and performs some
action. However, when a message arrives at a shell port, Simon automatically passes it
through the shell and on to subsequent ports to which the shell port is connected.

9

Simon II Basic Features

10

Simon II Basic Features

This chapter is a tutorial on the construction of simple simulation programs using
Simon. For the sake of simplicity, only a few basic Simon features are discussed.
Nevertheless, significant simulation programs can be constructed from these few features.

Simon II uses the programming language Modula 2. Unlike C, the language used for
Simon I, Modula 2 provides support for data abstraction and coroutines, both of which are
used extensively in the simulator.

2.1. Simulation Overview

When a simulation begins, the main procedure configures the structure of the
system by calling Simon routines to instantiate and interconnect objects. For each
instantiated object, a process (a Modula 2 co-routine) is created to execute the
associated object procedure. After the system has been configured, the main procedure
starts the simulation by calling a Simon procedure called "Simulate". Simon then
manages the overall execution of the simulator, updating the global clock, deciding which
objects execute when, and synchronizes message passing between objects. At the
conclusion of the simulation, Simon returns to the main procedure at which time the
program usually terminates.

To create a simulation program, one must understand how main procedures and
object procedures are constructed. But before describing these features, it is necessary
to understand some of the global variables and data types exported by Simon.

2.2. Global Variables, Data Types, and Sizes

Simon exports a number of global variables and several data types for access by
user procedures. However, only a few are typically needed. One global variable of
particular interest is CurTime (type CARDINAL), which is the global clock. This variable is
automatically set to the current simulation time by Simon, and may be read by user
procedures. There are three Simon-defined data types and three corresponding pointer
types of interest to the user. However, the pointer types will be used most often. These
data structure types and their corresponding pointer types are:

1. Object, for representing an object, and pObject for a pointer to an object;

2. Simon Interface Tutorial

11

Simon II Basic Features

2. Port, for representing a port, and pPort for a pointer to a port; and

3. Msg, for representing a message, and pMsg for a pointer to a message.
A user will typically use all three pointer types (i.e.: pObject, pPort, pMsg). However, of
the three data structure types, only Msg is usually needed.

Several Simon procedures require sizes to be specified (such as the size of a
message which is to be created). The units of size is not specified by Simon. Rather,
Simon expects sizes in the same units that are used by TSIZE. The only exception is
"wkspcsiz" in the call to MakObject, where the units are WORDs.

2.3. Object Procedures

The user must supply an object procedure for each kind of object he wishes to
instantiate. An object procedure must conform to the following definition.

Object Definition
PROCEDURE <object procedure> (

param: ADDRESS);

param is the address of the parameter record.

The procedure creating this object can pass a parameter record (i.e. a block of
contiguous memory) to the object procedure. This record can contain various
parameterization values which are intended to customize the behavior of the object.
Simon makes a copy of the parameter record, and passes the address of this copy to the
object procedure. It is generally NOT a good idea to use pointers in the parameter
record, since the values pointed to could be changed by other objects and/or the main
procedure at unpredictable times. However, Simon will not generate an error if this is
done. The procedure then begins execution as a process.

2.3.1. Object Procedure Initialization

The primary task which the object procedure must perform as it begins execution is
to establish its interface to the external environment. This is done by creating various
input and output ports as needed by the object. Procedures for creating these ports are
described below.

12

Simon il Basic Features

Port Creation
PROCEDURE MakOPort (name: ARRAY OF CHAR) : pPort;

name is the external (string) name of the port, which
should be unique with respect to other port names of
the same local object.

MakOPort returns a pointer to the created output port.

PROCEDURE MaklPort (name:
server:
contxt:

ARRAY of CHAR;
SrvrPrc;
ADDRESS) : pPort;

name is the external (string) name of the port, which
should be unique with respect to other port names of
the same local object.

server is an input server procedure (see Advanced
Features section).

contxt is the address of a context record for the input
server (see the Advanced Features section).

MaklPort returns a pointer to the created input port.

MakOPort creates an output port. The argument is the name used by the external
environment to uniquely identify this port from other ports residing on this same object.
It therefore must be different from the names used for other ports on this object.
MakOPort returns a pointer to the newly created output port which will be needed later
by the object procedure for sending messages out of this port. MaklPort creates an input
port. The first argument is identical to the argument of MakOPort. The second and third
arguments however, are unique to input ports. They specify an input server procedure
and its corresponding context. For simple simulations, IMilSrvr (exported by Simon) and
IMil should be specified, respectively. MaklPort returns a pointer to the newly created
input port which is usually not needed by the object procedure. Although if desired, it
could later be used to determine if a received message arrived at this particular port or
not.

After the object procedure has created the necessary ports and completed its
initialization, it is then ready to start simulating the behavior of the object.

13

Simon II Basic Features

2.3.2. Simulation of Object Behavior

The behavior of the object is simulated explicitly by the object procedure code.
This code should accurately simulate the object's behavior to the level of detail required
by this simulation, or any future simulation that might use this object. When the object's
behavior requires interaction with the external environment, the relevant data is
transmitted or received using messages. To send a message, the message must first be
created using MakMsg.

Message Creation
PROCEDURE MakMsg (datasize: CARDINAL) : pMsg;

datasize is the size (in TSIZE units) of the data portion of
the message.

MakMsg returns a pointer to the message.

The size of the data record to be sent is passed to MakMsg in datasize. MakMsg
then creates a message large enough to contain the message header information (which
Simon automatically initializes), as well as the data record. A pointer to the message is
then returned to the object procedure. The format of the data record is defined by the
user. The data is then placed into the data record of the message by the object
procedure. The data type "Msg", and the type for the data record can be useful in doing
this. For example, suppose that an integer (I) and a real (X) are to be sent in a message.
The following type and variables could be defined.

TYPE DataRecord = RECORD
IValue: INTEGER;
XValue: REAL;

END;

DataRec: POINTER TO DataRecord;
mesg: pMsg;

To create a message and place the values of I and X in it:

14

Simon II Basic Features

DataRec:=ADR(mesg~.Data);
WITH DataRec^ DO

IValue:=1;
XValue:=X;

END;

mesg:=MakMsg(TSIZE(DataRecord));

After the message has been created and the data placed in it, it can be sent to the
external environment. This can be done using Send.

Message Transmission
PROCEDURE Send (

mesg

prt

timeincr

mesg: pMsg;
prt: pPort;
timeincr: CARDINAL);

is a pointer to the message to be sent.

is a pointer to an output port to which the message
is to be sent.

is the time interval (from now, i.e. CurTime)
at which the message is to arrive.

Send has three arguments. The first is mesg, which is a pointer to the message to
be sent (returned by MakMsg). The second is prt, which is a pointer to the output port
that the message is to be sent out of (returned by MakOPort). The third argument is the
time increment. This specifies how may clock ticks from now (CurTime) that the message
is to be received. This must be a positive value or zero. Simon then takes the message
and places it in an internal queue where it waits to be delivered at the specified time.
After a message is sent, it should not be accessed or sent again by the sender.
(Exceptions are described in the Advanced Features section of this manual.)

To receive a message, the object procedure must wait (allow CurTime to advance)
until a message destined for the object is scheduled to arrive. The procedure Wait
accomplishes this.

15

Simon II Basic Features

Waiting to Receive a Message
PROCEDURE Wait (VAR mesg:

VAR dat:
pMsg;
ADDRESS);

mesg is a pointer to the newly arrived message.

dat is a pointer to the data record of the message.

Wait suspends execution of the object procedure until a message (any message) is
delivered to the object. When a message does arrive, execution of the object procedure
resumes at the next executable statement following the Wait. The object procedure can
access the message by moving "dat" into an appropriate pointer variable (in accordance
with Modula 2 record access rules), in a manner similar to the above example where
values were placed into a message. At this point the object procedure does not know
where the message came from. The input port at which the message arrived is not
explicitly passed to the object procedure. If this is needed, the object procedure can
access this information in the header of the message (mesg ~ .DstPrt), and can compare it
with pointers to its own input ports (see MaklPort, above). (See also: Input Port Tags.)
When the object procedure has finished processing the message, it must dispose of the
message either by forwarding it or by deleting it. Messages are forwarded by simply
using Send. (Since the message has already been created once, MakMsg is not needed
again.) Messages are deleted with DelMsg.

Message Deletion
PROCEDURE DelMsg (mesg: pMsg);

DelMsg has only one argument, a pointer to the message to be deleted. DelMsg
simply frees the memory space used by the message.

2.3.3. Object Procedure Example

With the above procedures, object procedures for simple simulations can be written.
As an example, the object procedures for a simple statistics experiment will be presented.
Consider an experiment where a ball is dropped through a maze of pegs, to ultimately
land in a slot (see figure 2-1, below).

mesg is a pointer to the message to be deleted.

16

Simon II Basic Features

(J

o

o o

0 0 0

0 0 0 0

0 0 0 0 0

1 2 3 4 5 6

Figure 2-1: Simple Statistics Experiment

The ball is dropped over the top center peg. The ball lands on the peg and rolls off
either to the right or to the left. In either case the ball will land on a peg at the next
level and again either roll to the right or to the left. This process continues until the ball
falls through the maze and lands in a slot. This system can be modeled using a message
to represent each ball, and three kinds of objects. First, an object is needed to release
balls into the system. Secondly, an object is needed to represent each of the pegs,
receiving a message (ball) and randomly sending it to the right or to the left (output port).
And thirdly, an object is needed to represent each of the slots, reporting whenever it
receives a message (ball).

The first object procedure, Dispenser, is designed to accept two values in the
parameter record, the number of balls to be released and the time interval between the
releasings.

17

Simon II Basic Features

PROCEDURE Dispenser (param: ADDRESS);
(*
TYPE

DropParam = RECORD
Total: CARDINAL;
Interval: CARDINAL;

END;
pDropParam = POINTER TO DropParam;

(* Format of parameter record *)
(* Number of balls to be dropped *)
(* Time between dropping each ball *)

*)
VAR

params:
ball:
drop:

pDropParam;
PMsg;
pPort;

droptime: CARDINAL;

(* For accessing parameter values *)
(* Pointer to the ball *)
(* The ball drop port *)
(# The drop time of the ball #)

BEGIN
drop:=MakOPort("Ball Drop"); (* Create the ball drop port *)
params:=param; (# Access parameter values *)
WITH params^ DO

droptime:=0;
FOR I : = 1 TO Total DO

ball:=MakMsg(0);
Send(ball, drop, droptime);
droptime:=droptime+Interval;

END;
END;
RETURN; (* Nothing else to do, so quit *)

END Dispenser;

(* Count the balls dropped *)
(* Create the ball *)
(* Dispense it *)
(* Get next drop time

Dispenser uses the parameter values to calculate when each ball is to land on the
top peg. It dispenses all of the balls at once, scheduling each one to arrive at the
appropriate time. An alternative approach could have been to dispense the balls one at a
time. In this case. Dispenser would require an additional output port and an input port
connected together (i.e. a connection to itself). After dispensing a ball. Dispenser would
then send a message out of this output port using Interval as the "timeincr". Dispenser
would then wait for this "delay" message to arrive before dispensing the next ball.
Obviously, there are a variety of approaches that can be used for any given system. The
best approach to use is the one that best meets the needs of the simulation application.

The second object procedure, Peg, has only one parameter value, the time it takes
for a ball to roll off of the peg and land on the next peg or slot. To determine which way

18

Simon II Basic Features

the ball is to roll (right or left), Peg uses a simple random number generating procedure,
RandCard, which selects a random cardinal value from a uniform distribution each time it
is called.

PROCEDURE Peg (param: ADDRESS);

VAR
right, left: pPort;
ball: pMsg;
dat: ADDRESS;

(* Right and left output ports *)
(* Pointer to the ball *)
(* Dummy parameter *)

BEGIN (* Create ports *)
right:=MakIPort("Peg Top”, NilSrvr, Nil); (* Entrance *)
right:=MakOPort("Peg Right"); (* Exit right *)
left:=MakOPort("Peg Left"); (* Exit left *)
LOOP

Wait(ball, dat); (* Wait for next ball to arrive *)
IF ODD(RandCard) THEN (* If the random number is odd *)

Send(ball, left, CARDINAL(paranT)); (* send ball left *)
ELSE (* otherwise *)

Send(ball, right, CARDINAL(paranT)); (* send ball right *)
END;

END;
END Peg; '

PROCEDURE RandCardO: CARDINAL;

BEGIN
NextRand:=NextRand DIV 2;
IF NextRand = 0 THEN

NextRand:=Seed;
END;
RETURN NextRand;

END RandCard;

Notice that the pointer to the input port was not needed, so it was discarded
(overwritten by MakOPort in the next statement). The main body of the procedure is a
loop which waits for a message (ball) to arrive. When one does arrive, the random
number generator is used to determine whether to send it out of the left port or the right
port. In either case the ball is sent to arrive at the next peg or slot a certain amount of
time in the future as specified by the parameter record.

19

Simon II Basic Features

The third object, Slot, has one parameter value, a slot number. When a ball arrives,
Slot announces the arrival along with its slot number.

PROCEDURE Slot (param: ADDRESS);

VAR
pt: pPort;
slotno: CARDINAL;
ball: pMsg;
dat: ADDRESS;

BEGIN
pt:=MakIPort("Ball Slot", NilSrvr, NIL); (* Create the slot port *)
slotno:=CARDINAL(param~);
LOOP

Wait(ball, dat); (* Wait for next ball to arrive *)
WriteF(Output, "A ball landed in slot #£d at time $d.\n",

slotno, CurTime); (* Announce arrival of the ball *)
DelMsg(ball); (* Dispose of the message *)

END;
END Slot;

The main body of the procedure is similar to Peg. It is a simple loop which waits
for a message (ball) to arrive, then reports this fact and disposes of the message. Note
that the statement reporting the arrival is dependent on the Modula 2 I/O implementation.
(For this very reason, I/O was purposely excluded from the Simon module.)

The above three object procedures provide all the needed building blocks for
constructing a simulation program. The only thing missing is the main procedure.

2.4. The Main Procedure

The main procedure is responsible for configuring the structure of the system and
starting the simulation. It accomplishes these tasks by calling the appropriate Simon
procedures. This section first discusses the Simon procedures which are used to
configure the system, and then how the simulation is started.

(* Needed only to create the input port *)
(* Slot number *)
(* Pointer to the ball *)
(* Dummy parameter *)

20

Simon II Basic Features

2.4.1. System Configuration

Configuring the system consists of instantiating objects and then interconnecting
them. To instantiate an object a Simon procedure called MakObject is used.

Object Creation
PROCEDURE MakObject (name:

proc:

name

proc

wkspcsiz

param

paramsize

objectowner

MakObject

wkspcsiz:
param:
paramsize:
objectowner:

ARRAY of CHAR;
ObjPrc;
CARDINAL;
ADDRESS;
CARDINAL;
pObject) : pObject;

is the external (string) name of the object, which
does not have to be unique.

is the object procedure.

is the size (in WORDs) of the work space to be
allocated for this object's process.

is the address of the parameter record to be
passed to the object.

is the size (in TSIZE units) of the parameter record.
A copy of the parameter record will be passed to
the object.

is a pointer to the shell object which immediately
encapsulates this object. If it is to be placed at the
outermost level then objectowner is System (Nil).

returns a pointer to the created object.

MakObject creates a process (a Modula 2 co-routine) to execute the object
procedure. MakObject allows the object procedure to execute immediately so that the
object will be able to create its ports and to initialize its variables. After the object
relinquishes control (by calling Wait or returning), MakObject returns to its caller.
MakObject has six arguments. The first argument, name, is the external name used by
error reporting and debugging facilities for referring to this object. For this reason, it is a
good idea to make "name" unique to avoid confusion, even though Simon does not
require uniqueness. The second argument proc, is the object procedure which simulates
the behavior of the object. Note that any number of objects can be created using the

21

Simon II Basic Features

same object procedure. Each object will have its own process and work space in
memory, even though the object procedure code may be shared. The third argument,
wkspcsiz, specifies how many WORDs should be provided for the work space. A work
space will contain variables local to the object procedure as well as the run-time stack
for the process, though the exact details are implementation dependent. (Typically, a
work space requires a few hundred to a few thousand WORDs.) The fourth and fifth
arguments, param and paramsize, are a pointer to a parameter record and its size,
respectively. A parameter record, as defined by the respective object procedure, allows
the main procedure to supply parameterization values to customize the particular object
being instantiated. The sixth argument, objectowner, is a pointer to the immediately
encapsulating object of the object being created. Its purpose is for hierarchal support.
For simple simulations not using hierarchy, this should be specified as "System'' (which is
a constant equated to Nil). MakObject returns a pointer to the newly created object,
which will be needed later for interconnection.

To interconnect the ports of objects the procedure, Connect, is used. .

Port Connection
PROCEDURE Connect (srcprt: pPort;

dstprt: pPort);

srcprt: is a pointer to the port sending messages.

dstprt: is a pointer to the port receiving messages.

Connect links two ports together so that messages flowing out of srcprt will be
transmitted to dstprt. Any number of connections can be made to or from a port.
Connect simply has two arguments, a pointer to the source port, srcprt, and a pointer to
the destination port, dstprt. The only restrictions on connections are that they do not
cross through object boundaries (such as object shells in hierarchical configurations), and
that messages flow from the srcprt to the dstprt.

Typically, object procedures create ports while the main procedure interconnects
them. Therefore, the main procedure will not usually have pointers to the ports it is to
connect, since it did not create them. To obtain these pointers, the FindPort procedure is
provided.

2 2

Simon II Basic Features

Port Identification
PROCEDURE FindPort (owner: pObject;

ARRAY of CHAR) : pPort;name:

owner: is a pointer to the object on which the port resides.

name: is the external (string) name of the port being sought.

FindPort returns a pointer to the port, or Nil if not found.

FindPort provides a facility to obtain a pointer to a port if provided with the external
name of the port and the object on which the port resides. The first argument, owner, is
a pointer to the desired object. (MakObject returns a pointer to the object it creates.)
The second argument is the external name of the port being sought. If the port is found,
FindPort will return a pointer to the port, otherwise FindPort outputs an error message
and returns Nil.

Using the above procedures, the system can be completely configured. Once this is
done, simulation execution can begin.

2.4.2. System Execution

Simon provides a procedure called Simulate, which manages the execution of the
simulation.

Starting Simulation Execution
PROCEDURE Simulate;

The main procedure calls Simulate to start the execution of the simulation.
Simulate then controls the entire execution until the simulation is concluded. During the
simulation, Simulate schedules each object for execution whenever a message is to be
delivered to that object. When the object receives the message it then continues
executing until it is ready to receive a subsequent message. To wait for a message it
calls Wait, which returns control to Simulate. In this manner the simulation proceeds
until there are no more messages to be delivered. This marks the end of the simulation
and subsequently. Simulate returns to the main procedure. At this point the main
procedure usually terminates.

23

Simon II Basic Features

Typically, Simulate continues the simulation execution until the event queue is
empty (no messages to be delivered). However, the simulation may be stopped at any
point in simulation time by setting a "stop time". This may be done by the main
procedure and/or object procedures calling StopAt.

Stopping Simulation Execution
PROCEDURE StopAt (era: CARDINAL

time: CARDINAL);

era is the "era" (CurEra - see Extended Simulation Time)
at which to stop the simulation.

time is the "time" (CurTime) at which to stop the
simulation.

After the "stop time" has been set, Simulate will stop (return) whenever the next
message in the event queue has a time stamp greater than or equal to the "stop time".
After the simulation has been stopped, it can be resumed simply by setting the "stop
time" to a future time and calling Simulate. (Initially, Simon sets "stop time" to:
StopAt(TicLimit,TicLimit).)

2.4.3. Main Procedure Example

As an example, a main procedure will be presented which uses the object
procedures defined in the example of the previous section. As was previously mentioned,
the system to be simulated consists of a ball falling through a maze of pegs which finally
lands in one of several numbered slots. The main procedure could configure an arbitrarily
large system of pegs and slots. However, for the sake of simplicity, the following main
procedure example will create only three pegs and three slots. Although, this example
shows the object procedures in the main module (for the sake of simplicity), typically they
would be found in one or more other modules.

24

Simon II Basic Features

(# System Imports *)
FROM SYSTEM IMPORT ADR, ADDRESS, TSIZE;

(# I/O Imports *)
FROM 10 IMPORT Input, Output, ReadF, WriteF;^

(* Simon Imports *)
FROM Simon IMPORT pObject, pPort, pMsg, MakObject,

MakOPort, MaklPort, NilSrvr, FindPort, Connect,
MakMsg, Send, Wait, DelMsg, Simulate, CurTime;

CONST
System = Nil;

TYPE
DropParam = RECORD

Total: CARDINAL;
Interval: CARDINAL;

END;
pDropParam = POINTER TO DropParam;

VAR
Dispensr, Peg1, Peg2, Peg3, Slotl, Slot2, Slot3: pObject;
DropParams: DropParam;
Seed, NextRand: CARDINAL;
I, one, two, three, five: CARDINAL;

< Insert the object procedures here, for Dispenser, Peg, RandCard, and Slot. >

MODULE Example;

^These I/O procedures are provided with the DEC WRL implementation of Modula 2. They are similar to

Simon II Basic Features

BEGIN
NextRand:=0; (* Initialize RandCard variables *)
Seed:=31380;
one:=1; (* Initialize "constant" parameters *)
two:=2;
three:=3;
five:=5;

WITH DropParams DO
WriteF(Output, "\nEnter # of balls to be dropped and ");
WriteF(0utput, "time interval between dropping: ");
I:=ReadF(Input, "̂ d/Sd", Total, Interval);
WriteF(Output, "\n");

END;
Dispensr:=MakObject("Ball Dispenser", Dispenser, 200, ADR(DropParams),

TSIZE(DropParam), System);
Peg1:=MakObject("Top Peg", Peg, 200, ADR(five), TSIZE(CARDINAL),

System);
Peg2:=Mak0bject("Left Peg", Peg, 200, ADR(five), TSIZE(CARDINAL),

System);
Peg3:=Mak0bject("Right Peg", Peg, 200, ADR(five), TSIZE(CARDINAL),

System);
Slot1:=Mak0bject("First Slot", Slot, 500, ADR(one), TSIZE(CARDINAL),

System);
Slot2:=Mak0bject("Second Slot", Slot, 500, ADR(two), TSIZE(CARDINAL),

System);
Slot3:=Mak0bject("Third Slot", Slot, 500, ADR(three), TSIZE(CARDINAL),

System);
Connect(FindPort(Dispensr, "Ball Drop"), FindPort(Peg1, "Peg Top"));
Connect(FindPort(Peg1, "Peg Left"), FindPort(Peg2, "Peg Top"));
Connect(FindPort(Peg1, "Peg Right"), FindPort(Peg3, "Peg Top"));
Connect(FindPort(Peg2, "Peg Left"), FindPort(Slot1, "Ball Slot"));
Connect(FindPort(Peg2, "Peg Right"), FindPort(Slot2, "Ball Slot"));
Connect(FindPort(Peg3, "Peg Left"), FindPort(Slot2, "Ball Slot"));
Connect(FindPort(Peg3, "Peg Right"), FindPort(Slot3, "Ball Slot"));
WriteF(0utput, "Simulation beginning\n");
Simulate;
WriteF(0utput, "Simulation completed\n");

END Example.

2 6

Simon II Basic Features

In addition to the procedures described in the "Tutorial" chapter, the following
procedures complete the description of the basic Simon kernel interface. Advanced
features will be discussed in a later chapter.

3.1. Support for Hierarchy

As was briefly mentioned in the "Fundamentals" chapter, shell ports provide support
for hierarchy. MakSOPort and MakSIPort create shell output and input ports, respectively.
The only difference between shell output and shell input ports is the direction of message
flow. A shell output port passes messages from inside the shell to the outside, while a
shell input port passes messages from the outside of the shell to the inside.

3.1.1. Shell Ports

PROCEDURE MakSOPort (name: ARRAY OF CHAR) : pPort;

name is the external (string) name of the port, which
should be unique with respect to other port names of
the same local object.

MakSOPort returns a pointer to the created shell output port.

PROCEDURE MakSIPort (name: ARRAY of CHAR) : pPort;

name is the external (string) name of the port, which
should be unique with respect to other port names of
the same local object.

MakSIPort returns a pointer to the created shell input port.

Creating a hierarchical structure is straight-forward. Consider the following simple
example of a shell containing one object and having two connections.

3. Basic Simon Interface

27

Simon II Basic Features

1 X

1 1 1

1
1
1
11 1 1

1 1 1
1 I Ain |<----
1 1 I

I
1

-------1 x in
1I 1 I

I I A 1
1 1 1

i
1
i1 1 1

1 1 AOut 1-----
1 1 1
1 1 1

i
--->| XOut

1
1
1
1

Figure 3-1: A Simple Example of Hierarchy
Assume that the object procedure for "A" is called AProc and the object procedure for "X"
is called XProc. It is also assumed that no parameters need to be passed to "A" when it
is instantiated. XProc would simply consist of:

PROCEDURE XProc(param: ADDRESS);

VAR
in, out: pPort;
a: pObject;

BEGIN
a:=MakObject("A", AProc, 500, Nil, 0, CurObj); (* Create object "A" *)
in:=MakSIPort("XIn"); (* Make shell ports *)
out:=MakS0Port("XOut");
Connect(in, FindPort(a, "Ain")); (* Connect ports *)
Connect(FindPort(a, "AOut"), out);

END XProc;

XProc first creates the inner object "A" by calling MakObject. Note that the
"objectowner" parameter is CurObj, which points to the currently executing object,
X. (CurObj is a global variable exported by Simon. See Global Variables in the Advanced
Features section.) Then XProc creates its shell ports, "Xln" and "XOut". (Actually these
could be done in any order.) At this point, the two connections can be made, since all
ports have been created. Finally, XProc terminates. Even though the XProc process (co

28

Simon II Basic Features

routine) no longer exists after termination, the shell structure and shell ports remain
intact.

3.2. Dynamic Reconfiguration

Typically, the main procedure deals with the structure of the simulation model,
while object procedures deal with the behavior of each object. However, this need not be
the case. Simon allows an object procedure to change the simulator's structure after
execution has begun.

In addition to the procedures discussed in the tutorial, Simon provides procedures
for disconnecting, deleting, and searching for ports, and moving and deleting objects. In
using some of these procedures, special considerations need to be given to messages
which have sent but not yet received.

3.2.1. Port Disconnection

The call to the procedure to disconnect two ports is similar to Connect and has the
same arguments. For applications which will be dynamically disconnecting and
reconnecting ports, it is important to keep in mind that a message is not bound to a
destination until the time the message is to be delivered. Therefore, any pending
message is delivered to the ports which are connected at the time the message is to be
received.

PROCEDURE Disconnect (srcprt: pPort;
dstprt: pPort);

srcprt: is a pointer to the message source port (from).

dstprt: is a pointer to the message destination port (to).

3.2.2. Port Deletion

When a port is deleted, all connections to that port are also deleted. When an
output port is deleted, any pending messages from that port are lost.

29

Simon II Basic Features

PROCEDURE DelPort (prt: pPort);

prt is a pointer to the port to be deleted.

3.2.3. Searching for Ports

To supplement the FindPort procedure described earlier, Simon provides procedures
to specifically search for input (FindlPort) or output (FindOPort) ports. These procedures
function in a manner similar to FindPort.

PROCEDURE FindlPort (owner: pObject;
name: ARRAY of CHAR) : pPort;

owner: is a pointer to the object on which the port resides.

name: is the external (string) name of the port being sought.

FindlPort returns a pointer to the input port, or Nil if not found.

PROCEDURE FindOPort (owner: pObject;
name: ARRAY of CHAR) : pPort;

owner: is a pointer to the object on which the port resides.

name: is the external (string) name of the port being sought.

FindOPort returns a pointer to the output port, or Nil if not found.

Simon also provides "silent" versions of the three FindPort procedures. These are
identical to the original versions except that they never output an error message if a port
cannot be found. They can be useful in writing code which automatically adjusts to
configuration variations.

PROCEDURE FindPortS (owner: pObject;
name: ARRAY of CHAR) : pPort;

owner: is a pointer to the object on which the port resides.

name: is the external (string) name of the port being sought.

FindPortS returns a pointer to the port, or Nil if not found.

30

Simon II Basic Features

PROCEDURE FindlPortS (owner: pObject;
name: ARRAY of CHAR) : pPort;

owner: is a pointer to the object on which the port resides.

name: is the external (string) name of the port being sought.

FindlPortS returns a pointer to the input port, or Nil if not found.

PROCEDURE FindOPortS (owner: pObject;
name: ARRAY of CHAR) : pPort;

owner: is a pointer to the object on which the port resides.

name: is the external (string) name of the port being sought.

FindOPortS returns a pointer to the output port, or Nil if not found.

3.2.4. Object Relocation

Normally, when an object is moved, all connections to external objects are deleted,
while internal connections remain intact. The whole object, including any internal
structure, is moved intact into the "newowner" object. New connections need to be made
explicitly (using Connect). All pending messages will be delivered to the newly connected
destinations. Normal moves (as just described) are performed by MovObject.

PROCEDURE MovObject (objct: pObject;
newowner: pObject);

objct is a pointer to the object to be moved. If the
object is a structured object then the internal
structure is moved, too.

newowner is a pointer to the shell object in which the object
is to be placed. If it is to be placed at the outermost
level then the newowner is System (Nil).

MovObjectP is identical to MovObject except that all connections are preserved
(even across shell boundaries). The intent of MovObjectP is to provide a means of
moving several connected objects without having to reconnect them after the move.

31

Simon II Basic Features

PROCEDURE MovObjectP (objct: pObject;
newowner: pObject);

objct is a pointer to the object to be moved. If the
object is a structured object then the internal
structure is moved, too.

newowner is a pointer to the shell object in which the object
is to be placed. If it is to be placed at the outermost
level then the newowner is System (Nil).

3.2.5. Object Deletion

When an object is deleted, all external connections are also deleted. The whole
object, including any internal structure, is deleted. All pending messages are lost. It is an
error for an object to attempt to delete itself or any object in which it is encapsulated.

PROCEDURE DelObject (objct: pObject);

objct is a pointer to the object to be deleted. If the
object is a structured object then the internal structure
is deleted, too.

3.3. Message Handling

In addition to the procedures for creating, sending, receiving, and deleting messages
which were discussed in the tutorial, Simon provides several additional procedures for
manipulating messages. Before discussing these procedures, some important
considerations for sending and receiving messages will be explained.

When a message is sent, a time increment is specified, which represents a time at
which the message is to be received relative to the time at which it was sent. The time
increment must be a value from zero to TicLimit, inclusive. (TicLimit is an implementation
dependent constant which is set to the largest power of ten that can be represented by a
cardinal.) At the time when the message is to be received, the connections from the
output port are traversed to determine which input ports are to receive the message. It
is important to remember that the input ports which will receive the message are
determined by the connections from the sending object's output port AT THE TIME THE

32

S i m o n II B a s i c F e a t u r e s

When a message is received, the receiving object's procedure is activated and (if

the receiving port is not a read-only input port) the object procedure is provided an

individual copy of the message. The object procedure must eventually dispose of this

copy of the message by either deleting it, OR by sending it on (forwarding it) to another

object. Before forwarding a message, the fixed-size data record of the message can be

directly modified. If major modification of the data record is required (changing its size),

then ChgMsg should be used which replaces the data record with a new record of

specified size. This differs from using MakMsg to create an entirely new message in that

the latter would not preserve any of the attributes which were at tached to the original

message. (Attributes are discussed in the Advanced Features section of the manual.)

3.3.1. M e s s a g e M o d i f i c a t i o n

ChgMsg is used to change the data record of a message . ChgMsg should only be

used if the size of the data record must be changed. (Otherwise, the old data record can

simply be over-written.) ChgMsg creates a new message, copies the new data record to

it, and then transfers attributes from the old message to the new one. Lastly, the old

message is deleted and a pointer to the new message is returned. (Note: Since the old

message deletion is the final step, The new data record could be specified to contain data

from the old message.)

PROCEDURE ChgMsg (oldmsg: pMsg;

M E S SA G E IS TO BE RECEIVED.

newdata:
newsize:

ADDRESS;
CARDINAL) : pMsg;

oldmsg is a pointer to the message to be changed.

newdata is the address of the new data record.

newsize is the size (in TSIZE units) of the new data record.

ChgMsg returns a pointer to a new (changed) message.

33

S i m o n II B a s i c F e a t u r e s

3.3.2. M e s s a g e D u p l i c a t io n

If a duplicate copy of a message is needed, DupMsg can be used. DupMsg creates

a duplicate copy of a message and its attributes, and returns a pointer to the new copy.

The message being duplicated can be any message, including messages received on

read-only input ports.

PROCEDURE DupMsg (mesg: pMsg) : pMsg;

mesg is a pointer to the message to be duplicated.

DupMsg returns a pointer to a new duplicate copy
of the message.

3.3.3. M e s s a g e C r e a t i o n a n d T r a n s m i s s i o n

MakMsgD and SendMsg are provided as a convenience to the user. MakMsgD

creates a message as MakMsg does, but it also copies the data record (of length

datasize) into the message before returning with a pointer to the message.

PROCEDURE MakMsgD (dat: ADDRESS;
datasize: CARDINAL) : pMsg;

dat is a pointer to the data record to be sent.

datasize is the size (in TSIZE units) of the data portion of
the message.

MakMsgD returns a pointer to the message.

SendMsg combines the functions of MakMsgD and Send. It crea tes a message,

copies the "dat" record into the message, and then sends the message out of the

specified port.

34

S i m o n II B a s i c F e a t u r e s

PROCEDURE SendMsg (dat
len

ADDRESS;
CARDINAL;
pPort;prt:

timeincr: CARDINAL);

dat is a pointer to the data record to be sent.

len is the size (in TSIZE units) of the data record.

prt is a pointer to an output port to which the message
is to be sent.

timeincr is the time interval (from now) at which the
message is to arrive.

3.3.4. R e a d - O n l y I n p u t P o r t s

In addition to regular ports, Simon allows "read-only" input ports to be created.

When a message arrives at a regular input port (created by MaklPort), an individual copy

of the message is created and passed to the object procedure. The object procedure can

modify, forward, save (for later reference), or delete this copy of the message. However,

when a message arrives at a read-only port (created by MaklRPort), no copy is made of

the message. The object procedure must not modify, forward, save, nor delete the

message. It can only read the message. (Although using DupMsg is permitted.) Simon

will automatically dispose of the message the next time Wait is called. Read-only ports

can be used to increase simulation efficiency when there is a high degree of fan-out

present, since message copying is minimized.

35

S i m o n II B a s i c F e a t u r e s

PROCEDURE MaklRPort (name: ARRAY of CHAR;

name

server

contxt

MaklRPort

3.4. I n p u t P o r t T a g s

When a message arrives at an input port, the object procedure resumes execution.

Although the object procedure does not know which port the message arrived at, it could

determine this by comparing the DstPrt field of the m essage header to pointers to each

input port. This approach is not very efficient if there are many input ports. To simplify

identifying the destination port, Simon allows the user to associate a user defined tag

value (integer) with an input port. Simon provides a global variable ''CurTag" (integer),

which it sets from the tag value associated with the destination port. Whenever a

message arrives, Simon automatically sets CurTag so that the object procedure can

simply access CurTag to determine the destination port. Since the value in CurTag is an

integer, it can easily be used in CASE statemen ts or array subscripting.

3.4.1. S e t t i n g P o r t T a g s

When an input port is created (MaklPort or MaklRPort), the port tag field is initialized

to zero. The user can set or change an input port tag by calling SetPortTag. SetPortTag

will then set the tag field of the specified port to the integer value passed to it.

server: SrvrPrc;
contxt: ADDRESS) : pPort;

is the external (string) name of the port, which
should be unique with respect to other port names of
the same local object.

is an input server procedure (see Advanced
Features section).

is the address of a context record for the input
server (see the Advanced Features section).

returns a pointer to the created input (read-only) port.

36

S i m o n II B a s i c F e a t u r e s

PROCEDURE SetPortTag(prt:
tag:

pPort;
INTEGER);

prt is a pointer to the port whose tag field is to be set.

tag is the user defined value to which the tag field is to
be set.

3.5. E x t e n d e d S i m u l a t i o n T i m e

The global clock is a double precision cardinal value, consisting of the exported

variables CurEra and CurTime. Since double precision cardinals are not supported by

Modula 2, the global clock was designed to facilitate being output as a decimal:

where TicLimit is the largest power of ten that can be represented by a cardinal variable

and CurTime is always less than TicLimit. For example, on the VAX, TicLimit is 1 0 A 9.

However, for all but very long simulations, a single precision clock is adequate and CurEra

can be ignored.

3.6. M e m o r y M a n a g e m e n t

Before discussing memory allocation, some important issues related to memory use

should be discussed. First of all, the user should be aware of things which affect the

workspace size of objects. If an object procedure requires alot of workspace then the

number of objects which can be instantiated is reduced due to main memory limitations

of the host computer system. It is therefore advantageous to minimize the amount of

workspace required by an object procedure. An object's workspace contains local

variables as well as the run-time stack. An object procedure might use alot of memory

for local variables. If every instantiation of the object actually uses all of the local

variables, then there is no simple alternative. However, if each instantiation only uses a

few of the local variables, then it might be bet ter to have the object dynamically allocate

memory for the variables that it will actually use. Another source of difficulty may come

from procedures which the object procedure calls. These procedures may be recursive or

just produce calls several levels deep. Additionally, each procedure may allocate

temporary local variables on the stack. Any of these could cause the object to require

substantial amounts of workspace. If the procedures called by the object procedure

Global Time = CurEra * TicLimit + CurTime,

37

S i m o n II B a s i c F e a t u r e s

cannot be pruned to use less memory, then one alternative is to create a centralized

object which calls the procedures. Secondly, although Modula allows global variables to

be defined, the user should be wary of using them in object procedures. For each object

instantiation, a unique set of local variables is allocated. However there will be only one

universal copy of each global variable and each object instantiation will be accessing that

same variable. Although this might be the desired result in some cases, it can also be a

major source of problems if the user is not aware of the situation.

3.6.1. M e m o r y A l l o c a t io n / D e a l l o c a t i o n

In order to minimize the amount of memory required, Simon provides mechanisms

to allow the user to explicitly control memory use. To provide the basic allocation and

deallocation functions, Simon provides two procedures, GetMem and FreeMem. They are

similar to Allocate and DeAllocate, (provided by Modula) and have identical arguments.

(Note: GetMem and FreeMem round up size to the next whole number of "granules" (see

Installation Notes).) However typically, GetMem and FreeMem perform two to three t imes

faster than Allocate and DeAllocate. Although, it should be noted that GetMem and

FreeMem do not provide bounds checking capability, and if they are to be used, array

bounds checking and pointer checking should be disabled when compiling. Nevertheless,

GetMem and FreeMem do provide a substantial performance improvement, especially

when used for t ransient and relatively smaller allocations. In addition, GetMem and

FreeMem are compatible with Allocate and DeAllocate, allowing both to be used in the

same program.

PROCEDURE GetMem (VAR memory: ADDRESS;
size: CARDINAL);

memory is the address returned of the allocated memory block.

size is the length (in TSIZE units) of the requested memory
block.

PROCEDURE FreeMem (memory:
size:

ADDRESS;
CARDINAL);

memory is the address of the memory block to be deallocated.

size is the length (in TSIZE units) of the memory block.

38

S i m o n II B a s i c F e a t u r e s

GetMem and FreeMem are sufficient for an object procedure to manage its own

memory usage. However, if the object were to be deleted (by another object), then

Simon would have no way of knowing about any memory which had been dynamically

allocated by the object. Since the object itself would be most knowledgeable of its own

dynamic data structures, it should be the one to deallocate this memory. This capability

is provided by Simon by the "Clean-Up" mechanism. In order for the user to take

advantage of this capability, one (or more if desired) "Clean-Up" procedures must be

supplied by the user. When the object is to be deleted, Simon will automatically call each

of the Cleanup procedures defined by the user for that object. After all Cleanup

procedures have finished, Simon will delete the object. A Cleanup procedure is defined

as follows.

PROCEDURE <c lean -up procedure> (
param: ADDRESS);

param is the address of what is to be cleaned up.

The parameter, "param", is specified by the user, and typically is a pointer to the

head of the object 's dynamic data structure. In order for Simon to be able to call a

CleanUp procedure, Simon must be notified of its existence. This is done by calling

MakCleanUp. MakCleanUp allows the user to associate a Cleanup procedure (proc) and a

pointer to what is to be "cleaned up" (param), with the currently executing object. An

object may have any number of CleanUp procedures associated with it. In fact, the same

procedure may be used more than once by an object (although, the "param" pointer will

typically be different in each instance).

PROCEDURE MakCleanUp (
proc: ClnUpPrc;
param: ADDRESS);

proc is a "clean-up" procedure for the currently
executing object.

param is the address of what to clean-up.

A second procedure, MakCleanUpR, allow a CleanUp procedure to be associated

3 . 6 . 2 . O b j e c t T e r m i n a t i o n C l e a n - U p

39

S i m o n II B a s i c F e a t u r e s

with a remote object. It is equivalent to MakCleanUp except that the specified remote

object is used instead of the currently executing object (CurObj).

PROCEDURE MakCleanUpR (
proc: ClnUpPrc;
param: ADDRESS
ob: pObject);

proc is a "clean-up" procedure.

param is the address of what to clean-up.

ob is a pointer to the remote object.

3.7. M i s c e l l a n e o u s P r o c e d u r e s

Three miscellaneous procedures provided by Simon are ResetClock, Reset, and

Copy. ResetClock and Reset are provided to support multiple runs, and Copy is a general

purpose utility.

3.7.1. M u l t i p l e R un S u p p o r t

At the completion of a simulation run. Simulate returns to the main procedure with

the system configuration intact. If it is necessary to perform another simulation

ResetClock or Reset can be called to prepare for another run.

PROCEDURE ResetClock;

PROCEDURE Reset;

ResetClock simply zeroes the simulation clock and clears the m essage (event)

queue, while Reset completely deletes the current system configuration, as well. If the

same configuration is to be used for a subsequent run, ResetClock can be called, a "start

up" GSM can be sent (see General System Messages), and then Simulate can be called.

However, if a different configuration is needed, Reset can be called to delete the old

configuration, and a new configuration can then be constructed before calling Simulate.

(Note: Attribute types and GSM types (see Advanced Features section) are not deleted by

Reset and can be reused, if desired.)

4 0

S i m o n II B a s i c F e a t u r e s

3 . 7 . 2 . C o p y U t i l i t y

PROCEDURE Copy (source: ADDRESS;
ADDRESS;
CARDINAL

destination:
size:);

source is the address of the data to be copied from.

destination is the address of the area to be copied to.

size is the length (in TSIZE units) to be copied.

The Copy procedure simply copies a block of memory of specified size from a

source location to a destination. Note: The copy operation is performed a WORD at a

time (size is rounded up to the next whole WORD). Copy is only provided as a

convenience, since it would be a simple matter for the user to provide his own copy

routine.

41

S i m o n II B a s i c F e a t u r e s

42

II A d v a n c e d F e a t u r e s

S i m o n II A d v a n c e d F e a t u r e s

PART II

S i m o n II A d v a n c e d F e a t u r e s

Part II of this manual d iscusses advanced features of Simon concerning ports,

messages , and the capability of extending Simon.

* Chapter 4 discusses advanced message features, namely: message
preprocessing using input port server procedures, m essage attributes,
message transmission using keys, broadcast messages (GSMs), and editing of
m essages in the event queue.

* Chapter 5 explains how Simon can be extended using software support layers.
A discussion of support layers along with object contexts is presented,
followed by an example.

43

S i m o n II A d v a n c e d F e a t u r e s

44

S i m o n II A d v a n c e d F e a t u r e s

4. A d v a n c e d M e s s a g e F e a t u r e s

4.1. I n p u t S e r v e r s

An input server is a procedure associated with an input port which p re-processes

each message which arrives at that port. The same input server may be used to pre

process messages for more than one port, however each input port is assigned to exactly

one input server. Before a message arrives, an object procedure will have called Wait.

Wait causes Simon to suspend execution of the object's process until a message arrives,

at which time Wait resumes execution. Wait then calls the input server procedure of the

port at which the message arrived, passing a pointer to the message , its data record, and

the address of the port's context (discussed later) to the input server. When the input

server finishes, it returns a pointer to the message and its data record to Wait. (It can

instead return a pointer to a different message, or Nil, if desired.) If the pointer to the

data record is Nil, Wait will wait for another message to arrive. Otherwise, Wait will

return to the object procedure with the two pointers.

Input servers can be used for a variety of purposes. They are quite useful for

support layers (discussed later), allowing specialized input port behavior to be provided.

For example, queued input ports can be supported by an input server which enqueues

each message as it arrives. Input servers can also provide support for an "event based"

approach to simulation. Using this approach, messages are events and input servers

become event handlers. The object procedure is not needed for processing and can

simply return after initialization. All messages (events) are then handled completely by

the input servers (event handlers). In contrast, if a "process based" simulation

methodology is used, all m essages would be processed by the object procedure and the

input servers would do little more than queueing functions. The user can use either the

object procedure or input servers or both, to accomplish his objectives.

45

S i m o n II A d v a n c e d F e a t u r e s

4.1.1. I n p u t S e r v e r D e f in i t i o n

PROCEDURE c inpu t se rver> (
VAR mesg:
VAR data:
contxt:

pMsg;
ADDRESS;
ADDRESS);

mesg is a pointer to the message.

data is the address of the data portion of the message.

contxt is the address of the port context record.

As was mentioned above, the address of the port's context record is passed to the

input server. This context is a user defined record which essentially provides the input

server with the capability of having static local variables. These variables can provide the

state information necessary to process messages. For example, an application might

require an object with several input ports, where input to each port consisted of a

sequence of messages. Static variables would be needed for each port to keep tract of

its progression in the sequence. These variables would be defined as fields in a context

record. During initialization an individual record would be allocated and initialized for

each port. This record would then be assigned to the input port when the port was

created (see MaklPort and MaklRPort). Note that it is also possible for more than one

port to share a context record.

4.2. A t t r i b u t e s

As was mentioned earlier, messages may have an arbitrary number of attributes

associated with them. Attributes may be at tached to any accessible existing message.

Each attribute consists of a user defined data record and an identifying type so that it can

be distinguished from other attributes. An attribute can be thought of as a t ransparent

sub-message. This facility is useful for attaching additional information (such as

statistics gathering information) to a message without disturbing the format of the

message 's data record, which might cause incompatibilities with other existing objects.

In order to use attributes, the Modula 2 data type for the attribute data s tructure is

needed. Simon exports the type "Attrib", which represents an attribute, as well as the

type "pAttrib", which represents a pointer to an attribute. These are used in much the

4 6

S i m o n II A d v a n c e d F e a t u r e s

4.2.1. A t t r i b u t e T y p e C r e a t i o n

Before an attribute is created, a Simon attribute type must be defined. Even though

the Simon defined type, "Generic", can be used, a unique type is preferable. DefAttrTyp is

a Simon procedure which generates a unique attribute type each time it is called. When

the system is initialized, DefAttrTyp can be used to create unique attribute types, which

can then be distributed to objects as initialization parameters when the objects are

instantiated.

PROCEDURE DefAttrTyp (name: ARRAY of CHAR) : CARDINAL;

name is the external (string) name of the attribute type,
which does not have to be unique.

DefAttrTyp returns a cardinal attribute type.

4.2.2. A t t r i b u t e C r e a t i o n

When an attribute is created, a type, data record length, and a message are

specified. The attribute type identifies the user defined type and format of the

information in the data record. The data record length (which can be greater than or

equal to zero) determines the length of the data portion of the attribute. The format of

the data record is left to the user. Data can be placed in the data record using the same

method as was used for messages (see MakMsg in the tutorial). At the time the attribute

is created, it is at tached to the specified message. It remains with the m essage until the

attribute is changed or deleted, or the message is deleted. For this reason it is important

that ChgMsg is used to make major modifications to messages which are to be

forwarded, instead of deleting the message and creating a new one. Otherwise, any

at tached attributes would be lost.

s a m e w a y a s M s g a n d p M s g a r e u s e d f o r m e s s a g e s .

4 7

S i m o n II A d v a n c e d F e a t u r e s

PROCEDURE MakAttr (type:
datasize:
mesg:

CARDINAL-
CARDINAL;
pMsg) : pAttrib;

type is the attribute type (originally returned from
DefAttrTyp).

datasize is the size (in TSIZE units) of the data portion of
the attribute.

mesg is a pointer to the message to which the attribute
is to be attached.

MakAttr returns a pointer to the attribute.

4.2.3. A t t r i b u t e I d e n t i f i c a t i o n

After receiving a message, an object can examine any of the attributes at tached to

the message. To access a particular attribute, FindAttr is first called. In calling FindAttr

the user specifies the attribute type to be sought and the message to which the attribute

is attached. If FindAttr is able to locate the specified attribute, it will return a pointer to

the attribute, otherwise it will return Nil (no error message is generated). If more than

one at tached attribute is of the type specified, FindAttr will return a pointer to the

attribute which was last at tached (LIFO order). In this case FindAttr will not be able to

find any other attributes of the same type until the present attribute (last one at tached of

that type) has been deleted. The data record of the attribute can then be examined (or

modified) in the same way m essages are read (or modified).

PROCEDURE FindAttr (type: CARDINAL;
mesg: pMsg) : pAttrib;

type is the type of the attribute being sought.

mesg is a pointer to the message to which the
attribute is at tached.

FindAttr returns a pointer to the attribute, or Nil if not found.

48

S i m o n II A d v a n c e d F e a t u r e s

4 . 2 . 4 . A t t r i b u t e M o d i f i c a t i o n

The fixed-size data record of the attribute can be directly modified by the user.

However, if major modification of the data record is required (changing its size), then

ChgAttr should be used. ChgAttr replaces the old attribute with a newly created attribute

of specified size and content, and returns a pointer to the new attribute. (Note: Since

the old attribute is not deleted until the new attribute has been created, the new data

record could be specified to contain data from the old attribute.)

PROCEDURE ChgAttr (

oldattr

oldattr:
newdata:
newsize:

pAttrib;
ADDRESS;
CARDINAL) : pAttrib;

is a pointer to the attribute to be changed.

newdata is the address of the new data record.

newsize

ChgAttr

is the size (in TSIZE units) of the new data record,

returns a pointer to a new (changed) attribute.

4.2.5. A t t r i b u t e D e l e t i o n

Attributes remain at tached to a message until the attribute or the m essage is

deleted. DelAttr deletes the specified attribute by first removing it from the m essage and

then freeing the memory space used by the attribute.

PROCEDURE DelAttr (attr: pAttrib);

attr is a pointer to the attribute to be deleted.

4.2.6. A t t r i b u t e D u p l i c a t i o n

When a m essage is forwarded, the at tached attributes are automatically forwarded

with it. However, there may be instances where it would be desirable to forward a copy

of the at tributes with a different message (or possibly several messages). DupAttrs

provides this capability. It creates a duplicate copy of all attributes at tached to the

original m essage (srcms), and then at taches these duplicates to the specified destination

message (dstms), ahead of (LIFO order) any at tr ibutes previously attached.

49

S i m o n II A d v a n c e d F e a t u r e s

PROCEDURE DupAttrs (srcms: pMsg;
pMsgdstms:);

srcms is a pointer to a message from which attributes
will be copied.

dstms is a pointer to a message to which the duplicate
attributes will be appended.

4.3. K e y s

In addition to the normal message distribution mechanism, Simon also supports

keyed message transmission. Keyed messages and keyed input ports provide enhanced

efficiency for selective message distribution to input ports. This mechanism allows an

object procedure to specify a key along with the message being sent. When the message

is distributed to connected input ports, Simon first compares the message key with each

input port key. The port will receive the message, only if the key matches. Simon

implements the key as a pair of values: a key, and a mask. The mask is used to mask-

out portions of the other key during the comparison. Hence, the actual te st for a match

is:

This implementat ion provides the user with the flexibility to break the Key field into sub

fields. By appropriately setting the mask, only selected sub-fields would be tested in the

comparison. This approach can also provide limited range matching. For example, a

memory object may service requests (messages) arriving from a bus for a range of

memory addresses. The addresses comprising that range are typically within a power of

two interval, such that the high order portion of all addresses within that range is

identical. An input port key and mask can then be set up which would test only that high

order portion of the address (key) for each service request (message). In this way the

memory object would receive only the messages intended for that memory address

range.

Keyed and unkeyed m essages and ports can be used together. When a m essage or

port is unkeyed, it is equivalent to a wild card key (key = 0, mask = 0). This means that

each unkeyed message is delivered to every connected keyed and unkeyed port, and

conversely, each unkeyed port receives every keyed and unkeyed message sent.

[Message Key AND Port Mask] = [Port Key AND Message Mask].

50

4.3.1. S e t t i n g P o r t K e y s

SetKey allows an input port's key (and mask) to be set or changed. It can be

applied to shell input ports as well as regular and read-only input ports. All newly

created ports are unkeyed (key = 0, mask = 0). If after a port key has been s e t it is

desired to set the port to unkeyed, simply call SetKey with key = 0 and mask = 0.

PROCEDURE SetKey (prt: pPort;
key: WORD;
mask: WORD);

prt is a pointer to the input port whose key is being set.

key is the port key.

mask is the mask which is applied to the message key.

4.3.2. K e y e d M e s s a g e T r a n s m i s s i o n

KeyedSend and KeyedSendMsg allow keyed messages to be sent. They are identical

to Send and SendMsg except for the addition of the key and mask arguments.

PROCEDURE KeyedSend (mesg: pMsg;
prt: pPort;
timeincr: CARDINAL;
key: WORD;
mask: WORD);

is a pointer to the message to be sent.

is a pointer to an output port to which the message
is to be sent.

is the time interval (from now) at which the
message is to arrive.

is the message key.

S i m o n II A d v a n c e d F e a t u r e s

is t h e m a s k w h i c h is a p p l i e d t o t h e p o r t key.

mesg

prt

timeincr

key

m a s k

51

S i m o n II A d v a n c e d F e a t u r e s

PROCEDURE KeyedSendMsg {
dat: ADDRESS;
len: CARDINAL;
prt: pPort;
timeincr: CARDINAL;
key: WORD;
mask: WORD);

dat is a pointer to the data record to be sent.

len is the size (in TSIZE units) of the data record.

prt is a pointer to an output port to which the message
is to be sent.

timeincr is the time interval (from now) at which the
message is to arrive.

key is the message key.

mask is the mask which is applied to the port key.

52

S i m o n II A d v a n c e d F e a t u r e s

Simon supports a broadcast message mechanism called GSM (General System

Message). This mechanism allows messages to be sent and distributed without using

output ports or connections, in a way analogous to radio broadcasts. The sender simply

sends a GSM, and the receiver(s) (object(s) with a GSM port) will automatically receive

the GSM. GSM's are identical to regular messages, except that:

* GSM's cannot be keyed.

* GSM's cannot have at tributes at tached to them.

* GSM input ports are always read-only (see MaklRPort).

Simon makes no distinction between regular messages and GSM's in its internal message

(event) queue. The only way Simon can tell them apart is that regular messages have a

message type of "Generic" (Simon defined type), and GSM's have a user defined type

(other than "Generic"). However, distribution of a GSM to receiving ports is different from

the distribution of regular messages . Whenever an object creates a GSM port, it must

specify a GSM type. When a GSM is distributed, it is delivered to every GSM port in the

system which has the same type as the GSM, regardless of where the port is located in

the system configuration.

GSM's are useful in applications requiring a global broadcast of information. For

instance, GSM's could be used to broadcast the ticks of a master clock to an array of

processing elements. However, GSM's are typically used for system overhead functions,

such as s ta r t -up messages , shut-down messages , or statistics gathering. In particular,

the problem of starting up the system simulation is conveniently addressed by the GSM

mechanism.

After the main procedure has initialized the configuration and before the simulation

begins, at least one m essage will have to have been sent. Otherwise, when Simulate is

called it will return immediately, since the message (event) queue will be empty. An

initial message can be sent in one of two ways.

1. An object procedure can send a message during its initialization phase. This
is valid, even though its ports are probably not connected to anything,
because messages do not t raverse the connection graph until they are to be
received, which is after the system configuration has been completed.

4 . 4 . G e n e r a l S y s t e m M e s s a g e s

53

S i m o n II A d v a n c e d F e a t u r e s

2. The main procedure can send a "start-up" GSM before calling Simulate. All
"up-stream" objects which feed the system can have a GSM port to receive
the "start-up" GSM.

Although either method will work, the GSM mechanism provides greater flexibility. For

example, suppose that a simulation "run" is to be performed several times with the same

configuration, but with different input data (stored in separate files). The main procedure

could contain a loop containing calls to ResetClock, SendGSM, and Simulate. This would

successfully invoke each of the multiple runs, however a mechanism would be needed to

pass the name of the data file to be used (and any other necessary parameters) to the

"up-stream" objects. This could be done simply with the GSM. Since a GSM is a

message, the file name (and any other parameters) could be included in the data record

of the GSM. In this way new parameters may be easily passed to the appropriate objects,

at the start of each run in a multiple run simulation.

4.4.1. G S M T y p e C r e a t i o n

Unique GSM types can be obtained by calling DefGSMTyp. DefGSMTyp operates in

a manner similar to DefAttrTyp, in that it generates a unique GSM type each time it is

called. When the system is initialized, DefGSMTyp can be used to create unique GSM

types, which can then be distributed to objects as initialization parameters when the

objects are instantiated.

PROCEDURE DefGSMTyp (
name: ARRAY of CHAR) : CARDINAL;

name is the external (string) name of the General System
Message type, which does not have to be unique.

DefGSMTyp returns a cardinal GSM type.

4.4.2. G S M P o r t C r e a t i o n

In order for an object to receive GSM's of a particular type, a GSM port of that

same type must be created. An object may have any number of GSM ports of any type.

If an object has two GSM ports of the same type, then that object will receive any GSM

of that type, twice. To create a GSM port, MakGSMPort is called, specifying the GSM

type, an input server and context, and a port tag value. The input server and input server

54

S i m o n II A d v a n c e d F e a t u r e s

context function identically to input servers and input server contexts for regular input

ports (see the section on Input Servers). The tag value is used to set the tag field of the

GSM port. It functions similarly to regular input port tags (see the section on Input Port

Tags). It should be remembered that GSM ports are always read-only input ports (see

MaklRPort).

PROCEDURE MakGSMPort (
type: INTEGER;
server: SrvrPrc;
contxt: ADDRESS;
tag: INTEGER);

is the type of GSMs to be received by this port.

is an input server procedure.

is the address of a context record for the input
server.

is the user defined value of the GSM port tag field.

4.4.3. G S M P o r t D e l e t i o n

DelGSMPort will delete a GSM port of the specified type, on the currently executing

object. If no such port is found, an error message will be generated. If more than one

such port exists, then the last one created will be deleted.

PROCEDURE DelGSMPort(type: CARDINAL);

type is the type of GSM port to be deleted.

4.4.4. G S M T r a n s m i s s i o n

Sending a GSM differs slightly from sending a regular message. Simon

automatically creates GSM's when they are sent; they cannot be created separately.

Since GSM's are read-only, Simon also automatically deletes them, too. To create and

send a GSM, SendGSM is called. It is identical to SendMsg except that a GSM type is

specified instead of an output port.

type

server

contxt

tag

55

S i m o n II A d v a n c e d F e a t u r e s

PROCEDURE SendGSM (data: ADDRESS;
CARDINAL;
CARDINAL;
CARDINAL

datasize:
type:
timeincr:);

data is the address of the data record to be copied
to the GSM before sending.

datasize is the size (in TSIZE units) of the data record.

type is the GSM type.

timeincr is the time interval (from now) at which the
message is to arrive.

4.5. M e s s a g e [E v e n t] Q u e u e E d i t ing

When a message is sent, it is placed in Simon's internal message (event) queue. It

remains there until the time it is to be distributed to destination ports. While the

message is in the queue, it typically should not be accessed. However, there are

situations where it would be desirable to be able to change or delete messages in the

message (event) queue. For example, an object might model a device which must

process asynchronous, external interrupts. The behavior of the device is modeled by the

object as a sequence of "computations". The object execution consists of constantly

performing a "computation" and then sending a message to itself to appropriately

advance the simulation clock. The object has no idea of when an interrupt (represented

by an "interrupt" message) might occur (be received). If it occurs in the middle of a

"computation", the object will not realize it until: it has finished the "computation", sent

the message to itself, and then received the "interrupt" message instead of the message

to itself (the message to itself will still be in the message (event) queue). At this point,

the object may need to undo or modify part of its last "computation", including any

messages that it may have sent. To allow an object to modify or delete any outstanding

messages that it has sent, Simon provides several procedures.

56

S i m o n II A d v a n c e d F e a t u r e s

4.5.1. D e l a y i n g All M e s s a g e s

Sometimes the only thing that needs to be changed is the arrival t imes of the

messages that were sent {to account for the time delay imposed by the processing of the

interrupt). This is accomplished simply by calling DelayMsgsPrt or DelayMsgsObj.

DelayMsgsPrt searches for all messages in the queue that were sent from the specified

port, while DelayMsgsObj searches for all messages in the queue that were sent from any

port on the specified object. In either case, the procedure delays (reschedules) each

message that it found by the specified delay time (timeincr).

PROCEDURE DelayMsgsPrt (
prt: pPort;
timeincr: CARDINAL);

prt is a pointer to the source port of the
messages to be delayed.

timeincr is the amount of time the messages
are to be delayed.

PROCEDURE DelayMsgsObj (
obj: pObject;
timeincr: CARDINAL);

obj is a pointer to the source object of the
messages to be delayed.

timeincr is the amount of time the messages
are to be delayed.

4.5.2. I d e n t i f y i n g M e s s a g e s

If more substantial or varied changes are required, the object must change each

message, one at a time. Before the changes can be made, each of the targeted

messages must be found. To accomplish the search, Simon provides FindMsgsPrt and

FindMsgsObj. FindMsgsPrt searches for all messages in the queue that were sent from

the specified port, while FindMsgsObj searches for all messages in the queue that were

sent from any port on the specified object. In either case, the procedure crea tes a "list"

of all the messages that it found. Note: Any m essages found remain in the event queue,

unless explicitly deleted by the user. At this point the object can repeatedly call FindNext

57

S i m o n II A d v a n c e d F e a t u r e s

to obtain a pointer to the next message that it needs to change. FindlMext returns a

pointer to each subsequent message on the "list" until the "list" is empty, in which case it

returns Nil. It should be noted that the FindMsgsPrt and the FindMsgsObj will always

create a new "list"; any previous "list" is erased.

PROCEDURE FindMsgsPrt (
prt: pPort);

prt is a pointer to the source port of the
m essages to be sought.

PROCEDURE FindMsgsObj (
obj: pObject);

obj is a pointer to the source object of the
messages to be sought.

PROCEDURE FindNext ();

FindNext returns a pointer to the next message
sought, or Nil if no more.

4.5.3. D e la y i n g , M o d i f y i n g , a n d D e l e t i n g a M e s s a g e

If an individual message must be delayed (rescheduled), then Resched can be called.

The user simply specifies the message (which must be in the queue) and the time delay.

Note: No message can be rescheduled to be delivered at more than twice the "TicLimit"

from now. This restriction applies to all of Simon's rescheduling procedures. Since

TicLimit (an implementation dependent constant) is typically a large value (10^9 on the

VAX), this restriction usually poses no problems.

PROCEDURE Resched (mesg: pMsg;
timeincr: CARDINAL);

mesg is a pointer to the message to be delayed.

timeincr is the amount of time the message
is to be delayed.

Other changes can be made to individual messages in the queue. Essentially, all

changes which can normally be made to messages , can also be made to messages in the

58

S i m o n II A d v a n c e d F e a t u r e s

message (event) queue. The contents of a message (the fixed-length data record) can be

directly modified by the user. If major modification is required which would change the

size of the data record, ChgMsg can be used. (ChgMsg will place the new m essage

where the old message was in the queue.) If it is necessary to delete the message ,

DelMsg can be used. (DelMsg updates the queue after removing the message.)

With these capabilities, an object procedure should be able to undo or modify any

processing which it had done. Obviously, it won't be able to undo any m essages which

were sent and have already been received. But it must be remembered that any

messages which have been received before the interrupt occurred, were not affected by

the interrupt, anyway. The only messages which could possibly be affected by an

interrupt are m essages in the message (event) queue.

59

S i m o n II A d v a n c e d F e a t u r e s

60

S i m o n II A d v a n c e d F e a t u r e s

5.1. S o f t w a r e S u p p o r t L a y e r s

The Simon kernel provides a rich collection of primitives as an interface to the user.

However, a particular user may need a higher level interface, oriented closer to an

application. This can be provided by using a layer of software between the user and the

Simon kernel.

5 . E x t e n d i n g S i m o n

User

Suppor t Layers

I Simon
I Kernel

Figure 5-1: Extending Simon with Support Layers

The user can make calls to a support layer, requesting a "high level" service. The support

layer then breaks the request down to "low level" services which it can provide directly

and/or by calling the Simon kernel primitives. Each support layer is typically implemented

as a separate software module so that it can be linked into the simulation program when

needed. It is not necessary for a support layer to provide the entire user interface.

Different layers providing various services, can be combined to obtain the desired user

interface. Additionally, the user can always make direct calls to the Simon kernel for any

other services.

Suppose that a user needed a queued input port mechanism for an application.

This can be accomplished using a support layer. The support layer could provide a

procedure, "MakQIPort" for creating a queued input port. MakQIPort would simply create a

61

S i m o n II A d v a n c e d F e a t u r e s

regular input port using MaklPort (Simon kernel), but specify an input server provided by

the support layer. This input server would then be responsible for enqueuing each

message arriving at the port. The support layer would also have to provide procedures to

allow the user to extract messages from the queue, check the queue status, etc. This

support layer would thus provide the needed queued input port mechanism. Notice

however, that this support layer does not preclude the direct use of other types of ports

or services provided by the Simon kernel, nor services provided by other support layers.

5.2. U s e f u l G lo b a l V a r i a b l e s a n d P r o c e d u r e s

In addition to the information passed in the call to a support layer procedure, Simon

provides several global variables. CurObj is a pointer to the currently executing object

(the calling object). CurMsg is a pointer to the most recent message received by the

objec t and CurLen is the length of the data portion of the message. CurlnSrvr is the

input server for the most recent message, and CurSrvrCt is a pointer to the receiving

port's context. These variables can provide useful information to support layer

procedures, as well as object procedures. Additionally, MsgHdrSiz and AttrHdrSiz provide

the size (in TSIZE units) of the header portion of messages and attributes, respectively.

These sizes can sometimes be helpful in message or attribute manipulations.

Simon provides a name server which can be used by support layer procedures.

PROCEDURE EnterName (name: ARRAY OF CHAR): pXName;

name is the external (string) name to be defined.

EnterName returns a pointer to the name definition.

EnterName will search Simon's external name table for the specified name, and if

not found, creates a new entry. It then returns a pointer to the entry (of type pXName).

Pointers to Simon external names can be compared directly to determine if names are

identical. A name server can be useful for nameing new abstract entities used by a

support layer.

62

S i m o n II A d v a n c e d F e a t u r e s

As a support layer provides services to an object procedure, it is very likely that the

support layer will need some static local variables to maintain state information

concerning the object. However, the support layer may be providing services to

numerous objects, each with its own state information. To manage all of this s tate

information, Simon provides object contexts. Jus t as an input port context provides static

local variables concerning the port to an input server (see section on Input Servers), an

object context provides static local variables concerning the object to a support layer.

Although a port can have only one port context, an object may have any number of

object contexts associated with it at a time. This means that an object is not restricted

in the number of support layers it uses.

As with port contexts, the static local variables for an object context are accessed

as fields within a context record. The address of the port context record is explicitly

passed to an input server, but this approach cannot be used in the case of object context

records. Instead, the support layer provides a global2 pointer which points to the context

record. All of the support layer procedures must access the context record though this

global pointer. Obviously, this global pointer must be updated each time a different

object resumes execution. Simon will perform this updating automatically, if it has been

notified of the object context. The notification is performed by calling MakContext or

MakContextR. MakContextR is identical to MakContext except that it sets up a context for

a specified remote object.

5 . 3 . O b j e c t C o n t e x t s a n d S u p p o r t L a y e r s

2The pointer must be global within the support layer module, so that all support layer procedures can
access it. However, it does not have to be visible outside of the module.

S i m o n II A d v a n c e d F e a t u r e s

5.3.1. O b j e c t C o n t e x t C r e a t i o n

PROCEDURE MakContext (
refpntr: ADDRESS);

refpntr is the address of a pointer to the
context record.

PROCEDURE MakContextR
refpntr:
ob:

ADDRESS
pObject);

refpntr is the address of a pointer to the
context record.

ob is a pointer to the remote object.

To reiterate, an object context is created by following these steps:

1. A context record is created (allocated).

2. The address of the context record is placed in the support layer's global
pointer.

3. The a d d re s s of the global pointer is passed to MakContext. (The global
pointer must contain the context record address when the call is made.)

From this point on, Simon will maintain the global pointer as follows:

* When an object resumes execution, Simon will restore the address of the
context record to the pointer.

* When an object suspends execution, Simon will save the contents of the
pointer (in case it changed during execution).

* If an object resumes execution which does not have a context record
associated with it, Simon will set the pointer to Nil.

Typically, a support layer provides an initialization procedure to create an object

context and initialize it. From then on, whenever the object procedure calls a support

layer procedure, the proper object context record will be accessed. However, if the

initialization procedure has not been called, the support layer's global pointer will be Nil.

Each support layer procedure should first check to see if the global pointer is Mil, and if

6 4

S i m o n II A d v a n c e d F e a t u r e s

so, should call the initialization procedure before proceeding. In this way support layer

initialization can be made transparent to the object procedure.

5.4. S u p p o r t L a y e r E x a m p l e

Simon does not provide a "Send" procedure to schedule m essages more than

"TicLimit" units of time in the future. The following support layer provides this capability.

It exports SendFar(Message, Port, Era, Time), which sends messages far into the future.

SendFar has the same arguments as Send, except that the time increment is represented

by Era and Time (actual time increment = Era * TicLimit + Time).

IMPLEMENTATION MODULE F a rF u tu re ;

FROM SYSTEM IMPORT TSIZE, ADR, ADDRESS;
FROM Simon IMPORT p P o r t , pMsg, p A t t r i b , CurObj, T i c L im i t , G en e r ic ,

MakContext, MakCleanUp, MakOPort, MaklPort , Connect , Send,
DefAtt rTyp, MakAttr , F i n d A t t r , D e lA t t r , GetMem, FreeMem;

TYPE
DelayPor t = RECORD

DelayOut: p P o r t ;
END;

pDelayPort = POINTER TO D e layP or t ;

D e layA t t r = RECORD
p r t : p P o r t ;
e r a : CARDINAL;
t im: CARDINAL;

END;

pDelayAtt r = POINTER TO D e layA t t r ;

VAR
DPrt: pD elayPor t ;

The type, DelayPort, describes the object context record. The type, DelayAttr,

describes the data portion of the attribute which is at tached to messages to keep tract of

the time delay. DPrt is the global pointer to the object context for the support layer.

6 5

S i m o n II A d v a n c e d F e a t u r e s

PROCEDURE I n i t () ;

BEGIN
GetMem(DPrt, TSIZE(D elayPor t));
MakContext(ADR(D P r t)) ;
WITH DPrt~ DO

DelayOut: =MakOPort("DelayOut");
Connect (DelayOut, M akIPor t("Delayin '1, ReSend, NIL)) ;

END;
MakCleanUp(Dispose, DPr t) ;
RETURN;

END I n i t ;

Init allocates a context record, sets the global pointer, and then creates an object

context. Then, a time delay mechanism is created and a pointer to the output port is

saved in the object context. Finally, a clean-up procedure is set up for the object

context.

6 6

S i m o n II A d v a n c e d F e a t u r e s

PROCEDURE SendFar(ms: pMsg; p t : p P o r t ; e r a i n c r , t i m i n c r : CARDINAL);

VAR
a t : p A t t r i b ;
d a t : pD e layA t t r ;

BEGIN
IF DPrt = NIL THEN

I n i t ;
END; :
WITH DPrt~ DO

IF e r a i n c r = 0 THEN
Send(ms, p t , t i m i n c r) ;
RETURN;

END;
a t := M akA t t r (G ene r ic , TSIZE(D elayAtt r) , ms);
dat :=ADR(at~ .Data) ;
WITH da t~ DO

p r t : = p t ;
e r a : = e r a i n c r ;
t i m := t i m in c r ;

END;
Send(ms, DelayOut, T i c L im i t) ;
RETURN;

END;
END SendFar;

SendFar first checks if the support layer has been initialized. If not, it calls Init.

Then the global pointer is dereferenced to allow direct access to fields within the object

context record. If the time increment is less than TicLimit, the message is sent directly;

otherwise it must be delayed. To delay the message, an attribute (of type "Generic") is

attached, which holds the sending port and the remaining time delay (both high and low

order portions). The message is then sent out of the delay port (obtained from the object

context), to be received TicLimit units of time from now.

6 7

S i m o n II A d v a n c e d F e a t u r e s

PROCEDURE ReSend(VAR ms: pMsg; VAR d: ADDRESS; c t : ADDRESS);

VAR
a t : p A t t r i b ;
d a t : pDelayAtt r ;
p t : p P o r t ;
t : CARDINAL;

BEGIN
WITH DPrt~ DO

a t : = F i n d A t t r (G e n e r i c , ms);
d a t :=ADR(at/' . D a t a) ;
WITH da t^ DO

e r a : = e r a - 1;
IF e r a # 0 THEN

Send(ms, DelayOut, T i c L im i t) ;
ELSE

p t : = p r t ;
t : = t i m ;
D e l A t t r (a t) ;
Send(ms, p t , t) ;

END;
END;
ms:=NIL;
d:=NIL;
RETURN;

END;
END ReSend;

When the message arrives at the delay port, it is passed to the input server,

ReSend. Here again, the global pointer is dereferenced. ReSend then finds the at tached

attribute (of type "Generic"). Note: ReSend finds the correct attribute, even though a

previous "Generic" attribute may have been attached, since at tributes are found in LIFO

order (see FindAttr). The "era" portion of the remaining time is then decremented (since

TicLimit units of time have elapsed). If the "era" portion is not zero, the message is sent

out of the delay port, again scheduled at TicLimit from now. If the "era" portion is zero,

the message can be sent to its real destination. The sending port and remaining time

(low order portion) are obtained from the attribute before the attribute is deleted, and

then the message is sent to its intended destination. Before returning, ReSend must

return a data record pointer of Nil (to Wait). This is so that Wait will wait for another

message, and ReSend will then appear t ransparent to the object.

6 8

S i m o n II A d v a n c e d F e a t u r e s

PROCEDURE D is p o se (d re e : ADDRESS);

BEGIN
FreeMem(d r e e , TSIZE(DelayPor t)) ;
RETURN;

END Dispose ;

The clean-up procedure. Dispose (created by MakCleanUp, see Init), is called by

Simon if the object is deleted. Dispose then deallocates the object context. Note that

Dispose cannot use the global pointer, since the corresponding object is not currently

executing. Instead Simon passes the address of the object context to Dispose (Simon

obtained this address from the MakCleanUp call). Obviously, the object context in this

case is hardly worth the "clean-up" effort. However, this example serves to show how

"clean-up" is performed, in case it is needed.

BEGIN
DPrt:=NIL;

END F a r F u tu r e .

The above module initialization code is executed only once, before the main

procedure begins execution. Here the global pointer is initialized to Nil.

69

S i m o n II A d v a n c e d F e a t u r e s

70

S i m o n II A p p e n d i x e s

A p p e n d i x I

S i m o n P r o c e d u r e s R e f e r e n c e

The following is a listing of the Simon definition module. It provides a reference of

all the procedures, variables, constants, and data types exported by Simon. Although the

number of items exported is large, a typical user will need to import only a fraction of

them. The other items are exported for use by the more advance user and for integration

with other specialized software tools (such as an on-line debugger).

(**
* *

* Las t R ev is ion : 18 May 1987 *
* *
**)

DEFINITION MODULE Simon;

FROM SYSTEM IMPORT PROCESS, WORD, ADDRESS, MAXINT;

Simon S im u la t io n Kernel

Computer Sc ience Department, U n i v e r s i t y o f Utah.

(* Data S t r u c t u r e and P o i n t e r Types

EXPORT QUALIFIED Msg, A t t r i b , A t t rD e f , O b je c t , C o n te x t ,
Por tType, P o r t , Link , XName, GSMPort, pMsg, p A t t r i b , p A t t rD ef ,
pObjec t , pContex t , p P o r t , pLink, pXName, pGSMPort, pGSMDef;

(*
(*
(*

Note: The u s e r should d e f i n e th e c o n s t a n t :
System = N i l ;

The Owner o f a top l e v e l o b j e c t i s "System".

*)
*)
*)

(* Message Type Codes and M is ce l lan eo u s C o n s t a n t s and Types *)

EXPORT QUALIFIED SHshSiz, GHshSiz, G en e r ic , T i c L im i t ,
ObjPrc, S r v r P r c , ClnUpPrc;

71

S i m o n II A p p e n d i x e s

EXPORT QUALIFIED MakObject, DelO bjec t , MovObject, MovObjectP,
MakContext, MakContextR, MakCleanUp, MakCleanUpR;

(* P r o c e d u r e s t o M a n i p u l a t e O b j e c t s *)

(* P rocedures to Manipula te P o r t s *)

EXPORT QUALIFIED MakSOPort, MakOPort, MakSIPort, MaklPort , MaklRPort ,
D e lP or t , F in d P o r t , F indP or tS , F i n d l P o r t , F i n d lP o r t S , F indOPort ,
FindOPortS, Connect , D isconnec t , SetKey, Se tPo r tT ag , MakGSMPort,
DelGSMPort;

(* P rocedures to Manipulate Messages *)

EXPORT QUALIFIED MakMsg, MakMsgD, ChgMsg, DelMsg, DupMsg, F indM sgsPr t ,
FindMsgsObj, FindNext, DelayMsgsPrt , DelayMsgsObj, Resched, Send,
SendMsg, KeyedSend, KeyedSendMsg, DefGSMTyp, SendGSM, N i l S r v r ;

(* P rocedures to M anipula te A t t r i b u t e s *)

EXPORT QUALIFIED DefAttrTyp, MakAttr, ChgAtt r , D e lA t t r , D upAttr s ,
F i n d A t t r ;

(* M isce l laneous P rocedures *)

EXPORT QUALIFIED StopAt, S im u la te , Rese tC lock , R ese t ,
GetMem, FreeMem, Copy, EnterName, Wait;

(* Globa l V a r i a b l e s 4

EXPORT QUALIFIED CurTime, CurEra, StopTime, S topEra , CurMsg, CurObj,
C u r ln S rv r , CurSrvrCt, CurTag, CurLen, CurPrs , R e tP r s , STrace ,
MTrace, O b je c t s , GSMPorts, L a s tA t t rT y p , LastGSMTyp, A t t r D e f s ,
GSMDefs, XNames, Q, XeqLst, MsgHdrSiz, A t t rH drS iz ;

72

S i m o n II A p p e n d i x e s

CONST

SHshSiz = 100; (*
GHshSiz = 100; (*
Generic = 0; (*
TicLimit = 1000000000; (*
TicLimitX2 = 2 * T icL im i t ;

S iz e o f Hash Tab le f o r Ext Symbols *)
S iz e o f Hash Tab le f o r GSM P o r t s *)
General Purpose Message Type *)
Clock Low Order Overflow Limi t *)

TYPE

pMsg = POINTER TO Msg;
p A t t r i b = POINTER TO A t t r i b ;
pObject = POINTER TO O b je c t ;
pContext = POINTER TO C on tex t ;
pCleanUp = POINTER TO CleanUp;
pPor t = POINTER TO P o r t ;
pLink = POINTER TO Link;
pXName = POINTER TO XName;
pGSMPort = POINTER TO GSMPort;
pAtt rD ef = POINTER TO A t t rD ef ;
pMsgDef = POINTER TO MsgDef;
pGSMDef = POINTER TO GSMDef;

ObjPrc = PROCEDURE(ADDRESS);
S rv rP rc = PROCEDURE(VAR pMsg, VAR ADDRESS, ADDRESS);
ClnUpPrc = PROCEDURE(ADDRESS);

7 3

S i m o n II A p p e n d i x e s

(**
*
*
*
*
»

The f i e l d s o f message (Msg) and a t t r i b u t e (A t t r i b) a r e u s e r
a c c e s s i b l e . However, f i e l d s where the d e s c r i p t i o n s t a r t s
with " ! " , s i g n i f y t h a t th e f i e l d i s t y p i c a l l y f o r Simon use.

*
»
*
*
*

**)

Msg = RECORD
Prev: PMsg; (* ! Event Queue Linkage *)
NextL: PMsg; (* ! Event Queue Linkage *)
NextR: pMsg; (* ! Event Queue Linkage *)
QLevel: CARDINAL; (* ! Queue Leve l (0 i f n o t Queued) *)
Owner: pObjec t ; (* ! Owner o f t h i s Message Copy *)
A t t r : p A t t r i b ; (* ! A t t r i b u t e L i s t Linkage *)
L i s t : pMsg; (* ! Message E d i t L i s t (FindMsgsX) *)
Time: CARDINAL; (* Time Stamp o f Message A r r i v a l *)
Typ: CARDINAL; (* Message o r GSM Type *)
D s tP r t : p P o r t ; (* P o i n t e r to D e s t i n a t i o n P o r t *)
S r c P r t : p P o r t ; (* P o i n t e r to O r i g i n a t i n g (Out) P o r t *)
S rcO b j : pObjec t ; (* P o i n t e r to O r i g i n a t i n g O b jec t *)
Key: WORD; (* Key / Mask f o r KeyedSend *)
Mask: WORD; (* Key / Mask f o r KeyedSend *)
Len: CARDINAL; (* Length o f Message (Data Record) *)
Data: ARRAY [0. .MAXINT DIV 16] OF WORD;

(* Message (Data) *)
END;

A t t r i b = RECORD
Prev: p A t t r i b ; (* ! A t t r i b u t e L i s t Linkage *)
Next: p A t t r i b ; (* ! A t t r i b u t e L i s t Linkage *)
Mes: PMsg; (* ! P o i n t e r to Message *)
Typ: CARDINAL; (* A t t r i b u t e Type *)
Len: CARDINAL; (* Length o f A t t r i b u t e (Data Record) *)
Data: ARRAY [0 . .MAXINT DIV 16] OF WORD;

(* A t t r i b u t e (Data) *)

7 4

S i m o n II A p p e n d i x e s

(a**##*###**###***####*##
•
* The fo l low ing s t r u c t u r e s a r e t y p i c a l l y n o t a c c e s se d by th e
* u s e r , but a r e f o r Simon u s e .

**)

O b jec t = RECORD
Name: pXName;
Owner: pObject
Prev: pObject
Next: pObject
SubObj: pObject
BkUp: pObjec t
P o r t s : pPo r t ;
GSMPrts:CARDINAL;
P r s : PROCESS;
WSpc: ADDRESS;
HSiz: CARDINAL;
Parm: ADDRESS;
ParmSiz:CARDINAL;
C n tx t : pContext ;
ClnUp: pCleanUp;

END;

*
*
*
*
*
*
#
*
#
*
#
*
*
*
*

P o i n t e r to Symbol Tab le
P o i n t e r to Sur rounding O b jec t
S i b l i n g O bjec t Linkage
S i b l i n g O bjec t Linkage
Sub-Objec t Linkage
Used i n S t r u c t u r e T r a v e r s a l
P o r t L i s t Linkage
Count o f O b j e c t ' s GSM P o r t s
P ro c e s s o f O b jec t
P ro c e s s Work Space
P ro ces s Work Space S iz e (i n b y t e s)
Address o f O b j e c t ' s P a ram e te r s
Length o f P a ram e te rs (i n b y t e s)
Linked L i s t o f C o n te x ts
Con tex t Clean Up P rocedure

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

Context = RECORD
Next: pContext;
ObjCntxt:

ADDRESS;
R e f P n t r :

ADDRESS;

END;

(* Con tex t L i s t Linkage

(# Address o f O b j e c t ' s C on tex t Record

(* Address o f th e Con tex t R efe rence
P o i n t e r V a r i a b l e

*)

*)

*)

CleanUp = RECORD
Next: pCleanUp;
ClnUp: ClnUpPrc;
Param: ADDRESS;

END;

(* Clean Up L i s t Linkage
(* Clean Up Procedure
(* P a ram ete r f o r Clean Up P rocedure

*)
*)
*)

75

S i m o n II A p p e n d i x e s

PortType = (SOut, S in , Out, Inp , InRO);
(* S = S h e l l , RO = Read-Only *)

P o r t = RECORD
Name: pXName; (* P o i n t e r to Symbol Table *)
O bjc t : pO bjec t ; (* P o i n t e r t o Objec t *)
Next: p P o r t ; (* P o r t L i s t Linkage *)
Typ: Por tType; (* P o r t Type *)
QdMsgs: CARDINAL; (* Count o f P o r t ' s Queued Messages *)
DLink: pLink; (* P o i n t e r to a L i s t o f

D e s t i n a t i o n P o i n t e r s *)
SLink: pLink; (* P o i n t e r to a L i s t o f Source P o i n t e r s *)
Tag: INTEGER; (* User d e f in e d P o r t i d e n t i f i e r *)
Key: WORD; (* Key / Mask f o r SetKey *)
Mask: WORD; (* Key / Mask f o r SetKey *)
L i s t : p P o r t ; (* D e s t i n a t i o n P o r t L i s t which i s to

Rece ive C u r r e n t Message *)
Cnt: CARDINAL; (* Number to be Received (See " L i s t ") *)
I n S r v r : S rv rP rc ; (* Inpu t S e rv e r P rocedure f o r P o r t *)
S rvrCt: ADDRESS; (* Conte x t f o r InSrvr *)

END;

Link = RECORD
Next: pLink; (* "Link" L i s t Linkage *)
P r t : p P o r t ; (* P o i n t e r to D e s t i n a t i o n / Source *)
BkUp: pLink; (* P o i n t e r Used i n S t r u c t u r e T r a v e r s a l *)

END;

XName = RECORD
Next: pXName; (* Symbol Table Linkage *)
Hash: INTEGER; (* Sum o f C h a r a c t e r s i n Name *)
Len: CARDINAL; (* Length o f Name (n o t i n c l u d i n g Nul) *)
Name: ARRAY [0 . . MAXINT DIV 16] OF CHAR;

(* E x te rn a l (Symbolic) Name S t r i n g *)
END;

GSMPort = RECORD
O bjc t : pO b jec t ; (* P o i n t e r to Owner O b jec t *)
Next: pGSMPort; (* GSM P o r t Linkage *)
Typ: CARDINAL; (* GSM Type Received by Th is P o r t *)
Tag: INTEGER; (* User d e f in e d P o r t i d e n t i f i e r *)
InS rv r : S rv rP rc ; (* Inpu t S e rv e r P rocedure f o r P o r t *)
S rv rC t : ADDRESS; (* Conte x t f o r InS rv r *)

END;

76

S i m o n II A p p e n d i x e s

A tt rD ef = RECORD
Name: pXName;
Typ: CARDINAL;
Next: pAtt rDef ;

GSMDef = RECORD
Name: pXName;
Typ: CARDINAL;
Next: pGSMDef;

END;

(# P o i n t e r to Symbol Table #)
(* A t t r i b u t e Type *)
(* A t t r i b u t e Type D e f i n i t i o n

L i s t Linkage *)

(* P o i n t e r to Symbol Table *)
(* GSM Type *)
(# GSM Type D e f i n i t i o n L i s t Linkage #)

77

S i m o n II A p p e n d i x e s

VAR

(************#*####*######*#####*########*##*##########*######*####****#*
* *
* Global V a r i a b l e s *
* *
**)

S T race : BOOLEAN; (* S t r u c t u r e T rac ing F lag *)
MTrace: BOOLEAN; (* Message T rac in g F lag *)
StopEra : CARDINAL; (* Era to Stop S im u la t i o n *)
StopTime: CARDINAL; (* Time to Stop S im u la t i o n *)
CurTime: CARDINAL; (* S im u la t io n Clock - Low Order *)
CurEra: CARDINAL; (* S im u la t io n Clock - High Order *)
CurMsg: PMsg; (* C urren t Message f o r P ro ces s *)
CurLen: CARDINAL; (* Length o f Data Record o f C u r r e n t Msg *)
CurTag: INTEGER; (* C ur ren t User d e f in e d P o r t i d e n t i f i e r *)
C u r l n S r v r : S rv rP rc ; (* Input s e r v e r f o r c u r r e n t msg *)
CurSrvrCt: ADDRESS; (* Context f o r i n p u t s e r v e r *)
C u rP r s : PROCESS; (* Curren t O b j e c t ' s P ro ces s *)
R e tPrs : PROCESS; (* Simon P ro c e s s to Re turn to *)
O b je c t s : pObjec t ; (* P o i n t e r to O b jec t S t r u c t u r e *)
GSMPorts: ARRAY [0 . .GHshSiz- '] OF pGSMPort;

(* Hash Table o f P o i n t e r s to GSM P o r t s *)
L a s t A t t r T y p :CARDINAL; (* Value o f L a s t A t t r i b u t e Type

Assigned *)
A t t rD e fs : p A t t r D e f ; (* P o i n t e r to A t t r i b u t e Type

D e f i n i t i o n s L i s t *)
LastGSMTyp: CARDINAL; (* Value o f L a s t GSM Type Assigned *)
GSMDefs: pGSMDef; (* P o i n t e r to GSM Type D e f i n i t i o n s L i s t *)
XNames: ARRAY [0 . .SHshSiz-1] OF pXName;

(* Hash Tab le o f P o i n t e r s to E x t e r n a l
Name Symbol Table L i s t s *)

Q: PMsg; (* P o i n t e r to th e Event Queue *)
XeqLst: p P o r t ; (* P o i n t e r to a D i s t r i b u t i o n L i s t f o r

t h e C u r r e n t Message *)
MsgHdrSiz: CARDINAL; (* S ize o f Msg Header (TSIZE u n i t s) *)
A t t rH drS iz : CARDINAL; (* S ize o f A t t r Header (TSIZE u n i t s) *)
CurObj: pObjec t ; (* P o i n t e r to th e C u r r e n t l y Execu t ing

O bjec t *)

7 8

S i m o n II A p p e n d i x e s

*
* P rocedu res to Manipulate O b jec t s

*
* *

*)

(**
* *

MakObject - C re a t e s an o b j e c t i n s i d e o f th e owner (o u t s i d e *
i f ObjOwner = System) and names i t nam. The p rc p r o c e s s i s *
c r e a t e d and then c a l l e d w i th p a r a m e te r s (param) to *
i n i t i a l i z e th e new o b j e c t . *

*
**)

PROCEDURE MakObject(nam: ARRAY OF CHAR; p r c : ObjPrc ; wkspcs iz : CARDINAL;
param: ADDRESS; param siz : CARDINAL; ObjOwner: p O b je c t) : pO b jec t ;

* *

(**
* *

< o b j e c t p rocedure> - I n i t i a l i z a t i o n / P ro ces s p rocedu re o f *
an o b j e c t . F i r s t t ime s l i c e i s f o r i n i t i a l i z a t i o n . Then *
e i t h e r a r e t u r n i s execu ted (i f no p ro c e s s i s d e s i r e d) , o r *
e m u la t io n o f o b j e c t b ehav io r b e g i n s . *

#
**

PROCEDURE < o b j e c t procedure>(param: ADDRESS); *)

79

(a###****######*#*###**####*#####**#*##*#*##**###*#**####'
*

* DelObjec t - D e le te th e o b j e c t , ob, a long w i th i t s
* s u b - s t r u c t u r e .
*
a###**####************#***##***#########################

PROCEDURE D elO bjec t (ob : p O b jec t) ;

S i m o n II A p p e n d i x e s

(a###***###*****#*######*####**###*#**#*##*#####*##***###*####*###*##*#**
* *

* MovObject - Remove th e o b j e c t , ob, a lo n g with i t s s u b - s t r u c t u r e *
* From t h e i r c u r r e n t l o c a t i o n and p u t them i n s i d e o f NewOwner *
* (o u t s i d e i f NewOwner = Sys tem) . *
* *
a*****#************************************##**#######################**)

PROCEDURE MovObject(ob, NewOwner: p O b je c t) ;

(**
* *
* MovObjectP - Same a s MovObject e x c e p t do n o t d e l e t e c o n n e c t io n s *
* between o b j e c t be ing moved and o t h e r o b j e c t s . *
* *
#####****************************##*#****#**********###############***)

PROCEDURE MovObjectP(ob, NewOwner: p O b je c t) ;

80

S i m o n ii A p p e n d i x e s

(**
* *
* MakContext - A s s o c ia te the r e f e r e n c e p o i n t e r (r e f p t r) w ith *
* the C ur ren t O b je c t (CurObj) . Before c a l l i n g MakContext, *
* r e f p t r ^ must be i n i t i a l i z e d . A c l e a n up p rocedu re shou ld *
* be p rovided f o r d e l e t i n g th e c o n t e x t when th e a s s o c i a t e d *
* o b j e c t i s d e l e t e d . During s i m u l a t i o n , th e c o n t e n t s o f th e *
* r e f e r e n c e p o i n t e r a r e r e s t o r e d each t ime th e o b j e c t e x e c u t e s . *
* *
a*****#**#*********************#****##**********#**#*****#**************)

PROCEDURE M ak C o n te x t (r e fp t r : ADDRESS);

(**
* *
* MakContextR - A s s o c i a t e th e r e f e r e n c e p o i n t e r (r e f p t r) w i th *
* t h e s p e c i f i e d o b j e c t (o b) . Before c a l l i n g MakContext, *
* r e f p t r ^ must be i n i t i a l i z e d . A c l e a n up p rocedu re shou ld *
* be prov ided f o r d e l e t i n g the c o n t e x t when th e a s s o c i a t e d *
* o b j e c t i s d e l e t e d . During s i m u l a t i o n , t h e c o n t e n t s o f t h e *
* r e f e r e n c e p o i n t e r a r e r e s t o r e d each t ime the o b j e c t e x e c u t e s . *
* *
**)

PROCEDURE M a k C o n te x tR (re fp t r : ADDRESS; ob: p O b je c t) ;

(**
* *
* MakCleanUp - A s s o c i a t e a p rocedu re and i t s pa ram ete r w i th *
* t h e C u r re n t O b je c t (CurObj) , so t h a t i t w i l l be c a l l e d i f *
* t h e o b j e c t i s t o be d e l e t e d . Th is p r o v id e s a mechanism f o r *
* c l e a n i n g up c o n t e x t s and o t h e r h ouse -keep ing problems . *
* *
a***###########**###########################*#**#*##*#####*##**###**####)

PROCEDURE M a k C l e a n U p (p r c : C l n U p P r c ; p a r m : ADDRESS);

81

S i m o n II A p p e n d i x e s

(**
* *
* MakCleanUpR - A ss o c ia te a p rocedu re and i t s param ete r w i th *
* th e s p e c i f i e d o b j e c t (ob) , so t h a t i t w i l l be c a l l e d i f *
* the o b j e c t i s to be d e l e t e d . Th is p ro v id e s a mechanism f o r *
* c l e a n in g up c o n t e x t s and o t h e r house -keep ing problems. *
* *
**)

PROCEDURE MakCleanUpR(prc: ClnUpPrc; parm: ADDRESS; ob: p O b je c t) ;

(*

* *
*

* P rocedures to Manipulate P o r t s
*

* *

*)

(a*###**********######**######*##*##**######***#*#####*###*#**#*****###**
* *

* MakSOPort - C re a t e a s h e l l o u t p u t p o r t f o r the c u r r e n t o b j e c t *
* and name i t nam. *
* *
**)

PROCEDURE MakSOPort(nam: ARRAY OF CHAR): p P o r t ;

(****#**##################**#*#####*########**####*****###**#*#*#***####*
* «
* MakSIPort - C re a t e a s h e l l i n p u t p o r t f o r th e c u r r e n t o b j e c t *
* and name i t nam. *
* *
**)

PROCEDURE M a k S I P o r t (n a m : ARRAY OF CHAR) : p P o r t ;

8 2

S i m o n II A p p e n d i x e s

(nit**
* *
* MakOPort - C re a t e an o u tp u t p o r t f o r the c u r r e n t o b j e c t *
* and name i t nam. *
* *
ft***)

PROCEDURE MakOPort(nam: ARRAY OF CHAR): pP o r t ;

(**tttt***tt*tt****tttt***tt**tt*tt**tt****tt********tt****tttttttt***«**tt*tttt*tt*tt**tt*tt**tt
• *
* MaklPort - C re a t e an i n p u t p o r t f o r th e c u r r e n t o b j e c t *
* w i th an i n p u t s e r v e r (S e r v e r) , s e r v e r c o n t e x t (c t) , and *
* name i t nam. *
* *
*tttt*tttt**tt*tt*tttt********«*tt****tt************tt***********tt*tt***tt****tt****tt*)

PROCEDURE MaklPort(nam: ARRAY OF CHAR; S e rv e r : S rv rP rc ;
c t : ADDRESS): p P o r t ;

(ft***
* *
* MaklRPort - C re a t e a r e a d - o n l y i n p u t p o r t f o r t h e c u r r e n t *
* o b j e c t w i th an i n p u t s e r v e r (S e r v e r) , s e r v e r c o n t e x t (c t) , *
* and name i t nam. *
* *
ft***)

PROCEDURE MakIRPort(nam: ARRAY OF CHAR; S e rv e r : S r v r P r c ;
c t : ADDRESS): p P o r t ;

83

S i m o n II A p p e n d i x e s

(ft***
* *
* N i lS rv r - A do n o th in g i n p u t p o r t s e r v e r . *
* *
ft***)

PROCEDURE NilSrvr(VAR ms: pMsg; VAR d a t a : ADDRESS; c t : ADDRESS);

(**
* *
* D e lP or t - D e le te th e p o r t (p t) . *
* »
**)

PROCEDURE D e l P o r t (p t : p P o r t) ;

(**
* *
* F in d P o r t - Search th e o b j e c t , Owner, f o r a p o r t by th e name *
* o f nam, and r e t u r n a p o i n t e r to i t . *
* *
ft***)

PROCEDURE FindPor t(Owner: pO b jec t ; nam: ARRAY OF CHAR): p P o r t ;

(**
* *
* F indPor tS - S i l e n t v e r s i o n o f F i n d P o r t . Same a s F in d P o r t *
* e x ce p t i f the p o r t i s n o t found, no e r r o r message i s p r i n t e d *
* (s im ply r e t u r n NIL). *
* *
ft***)

PROCEDURE F i n d P o r t S (O w n e r : p O b j e c t ; n a m : ARRAY OF CHAR) : p P o r t ;

84

S i m o n II A p p e n d i x e s

* *
* F i n d l P o r t - Search th e o b j e c t , Owner, f o r a p o r t by th e name *
* o f nam, and r e t u r n a p o i n t e r to i t . Only look f o r i n p u t p o r t s . *
* *
a*###*##*##**########*#####*#####*##*#*###*###*#######**#*####*****####*)

PROCEDURE FindIPor t(Owner : pO bjec t ; nam: ARRAY OF CHAR): p P o r t ;

(a****#**#*###*##**##***####**##*##*#*#*######**##*##*####*##***##*#*####
* *
* FindOPort - Search th e o b j e c t , Owner, f o r a p o r t by t h e name *
* o f nam, and r e t u r n a p o i n t e r to i t . Only look f o r o u tp u t *
* p o r t s . *
* *
a####*####*###*#*###*#**##*#*#**#**#*#*######**#*###*#*#**#*####***#####)

PROCEDURE FindOPort(Owner: pO bjec t ; nam: ARRAY OF CHAR): p P o r t ;

(a*####*##*#**#**#*##*##*##**#*##****#***#####*************##*******###**
* *
* F in d lP o r t S - Same a s F indPor tS b u t look f o r i n p u t p o r t . *
* I f the p o r t i s n o t found, no e r r o r m essage i s p r i n t e d *
* (s im ply r e t u r n NIL). *
* *
a**#*#**#*###########*##****#####**#**####***#*#####*#*###*****#*#****#*)

PROCEDURE F ind IPo r tS (O w ner : pO b jec t ; nam: ARRAY OF CHAR): p P o r t ;

85

S i m o n II A p p e n d i x e s

(**«««*********
* *
* FindOPortS - Same a s F indP or tS bu t look f o r o u tp u t p o r t . *
* I f the p o r t i s n o t found, no e r r o r m essage i s p r i n t e d *
* (s imply r e t u r n NIL). *
* *
ft**###****)

PROCEDURE FindOPortS(Owner: pObjec t ; nam: ARRAY OF CHAR): p P o r t ;

(######******#****###******#*************########*#################*#####
* *
* Connect - Connect t h e m essage s o u rce (s r c p t) , t o t h e m essage *
* d e s t i n a t i o n (d s t p t) . *
* *
###*###################################*#######»####################*##*)

PROCEDURE C o n n e c t (s r c p t , d s t p t : p P o r t) ;

(**
* *
* Disconnec t - D isconnec t the m essage s o u rc e (s r c p t) , from th e *
* m essage d e s t i n a t i o n (d s t p t) . *
* *
a***#*##########****###***#*#######**##*##*#########################*###)

PROCEDURE D is c o n n e c t (s r c p t , d s t p t : p P o r t) ;

(****««***«****
* *
* SetKey - S e t t h e key o f th e i n p u t p o r t (p t) to ky and msk. *
* *
**)

PROCEDURE S e t K e y (p t : p P o r t ; k y , m s k : WORD);

86

S i m o n II A p p e n d i x e s

(**
* *
* Se tP o r tT ag - S e t th e t a g o f the i n p u t p o r t (p t) to the u s e r *
* d e f in e d v a lu e (t g) . *
* *
**)

PROCEDURE S e t P o r t T a g (p t : p P o r t ; t g : INTEGER);

(**
* *
* MakGSMPort - C re a t e a p o r t f o r th e c u r r e n t o b j e c t w i th an *
* in p u t s e r v e r (S e r v e r) , and a s e r v e r c o n t e x t (c t) , t o r e c e i v e *
* Genera l System M essages o f ty p e , t y . A s s o c i a te t g (t a g) w i th *
* th e p o r t . Note: This i s a READ-ONLY p o r t ! *
* *
ft**####*######**)

PROCEDURE MakGSMPort(ty: CARDINAL; S e r v e r : S r v r P r c ; c t : ADDRESS;
t g : INTEGER);

(**
* *

* DelGSMPort - D e le t e th e GSM p o r t o f t y p e , t y , on th e *
* c u r r e n t l y e x e c u t in g o b j e c t . *
* *
**)

PROCEDURE DelGSMPort(ty: CARDINAL);

8 7

S i m o n II A p p e n d i x e s

(*

* *
*

* P rocedures to M anipu la te M essages
*

* *

*)

(**
* *
* MakMsg - C rea te a m essage o f l e n g t h , d a t a l e n . Data f i e l d i s *
* n o t f i l l e d i n . *
* *
**)

PROCEDURE MakMsg(datalen: CARDINAL): pMsg;

(**
* *
* MakMsgD - C re a t e a m essage o f l e n g t h , d a t a l e n . Data f i e l d i s *
* cop ied from " d a t a " . *
* *
**)

PROCEDURE MakMsgD(data: ADDRESS; d a t a l e n : CARDINAL): pMsg;

(**
* *
* ChgMsg - Replace th e m essage w i th a copy c o n t a i n i n g new d a t a *
* (newdata) hav ing a new l e n g t h (new len) . D e le t e th e o ld *
* m essage and r e t u r n a p o i n t e r to t h e new message. *
* *
**)

PROCEDURE C h g M s g (o l d m s : p M s g ; n e w d a t a : ADDRESS; n e w l e n : CARDINAL): p M s g ;

8 8

S i m o n II A p p e n d i x e s

(**
* #
* DelMsg - D e le te a m essage (ms) and i t s a t t r i b u t e s , i f any. *
* I f the m essage i s in the queue , upda te th e queue. *
* *
**)

PROCEDURE DelMsg(ms: pMsg);

(**
#
* DupMsg - C r e a t e s a d u p l i c a t e copy o f th e m essage (and i t s *
* a t t r i b u t e s) p o in t e d to by s rcms , and r e t u r n s a p o i n t e r to *
* th e newly c r e a t e d message. *
* *
**)

PROCEDURE DupMsg(srcms: pMsg): pMsg;

(**
* #
* FindMsgsPrt - Search the queue f o r m essages o r i g i n a t i n g from *
* the p o r t , s r c p t , and p l a c e them in the e d i t l i s t . *
* *
****************#**######################*#****###**********************)

PROCEDURE F in d M s g s P r t (s r c p t : p P o r t) ;

(a*******************################*########**#*******##***************
* *
* FindMsgsObj - Search th e queue f o r m essages o r i g i n a t i n g from *
* th e o b j e c t , s r c o b , and p l a c e them i n th e e d i t l i s t . *
* *
a*******************##*#********##****####****#**********#****#*#*******)

PROCEDURE F i n d M s g s O b j (s r c o b : p O b j e c t) ;

8 9

S i m o n II A p p e n d i x e s

(**
* *
* FindNext - Return th e n e x t message in the e d i t l i s t . I f *
* empty, r e t u r n N i l . *
* *
**)

PROCEDURE F in d N e x tO : pMsg;

(**«*******************
* *
* Resched - Reschedule the message , ms, d e l a y in g i t by t i m i n c r *
* u n i t s o f t im e . *
* *
**)

PROCEDURE Resched(ms: pMsg; t i m i n c r : CARDINAL);

(**
* *

* DelayMsgsPrt - Find a l l m essages i n th e queue o r i g i n a t i n g from *
* th e p o r t , s r c p t , and d e l a y them (r e s c h e d u l e) by t i m in c r u n i t s *
* o f t im e . *
* *
**)

PROCEDURE D e la y M s g s P r t (s r c p t : p P o r t ; t i m i n c r : CARDINAL);

(**
* *
* DelayMsgsObj - Find a l l messages in t h e queue o r i g i n a t i n g from *
* th e o b j e c t , s r c o b , and d e l a y them (r e s c h e d u l e) by t i m in c r u n i t s *
* o f t im e . *
* *
**)

PROCEDURE DelayMsgsObj(srcob: pO b jec t ; t i m i n c r : CARDINAL);

9 0

S i m o n II A p p e n d i x e s

(**
» *
* Send - Send th e m essage (ms) o u t o f p o r t (p t) , to be r e c e iv e d *
* t i m in c r u n i t s o f t ime from now (CurTime). *
* *
**)

PROCEDURE Send(ms: pMsg; p t : p P o r t ; t i m i n c r : CARDINAL);

(***»
* *
SendMsg - Send d a t a o f l e n g t h (l e n) , a s a message o u t o f *
p o r t (p t) , to be r e c e i v e d t i m i n c r u n i t s o f t ime from now *
(CurTime). *
*
**)

PROCEDURE SendMsg(data: ADDRESS; l e n : CARDINAL; p t : p P o r t ;
t i m i n c r : CARDINAL);

(**
* *
* KeyedSend - Send th e m essage (ms) o u t o f p o r t (p t) , to be *
* r e c e iv e d t i m i n c r u n i t s o f t ime from now (CurTime). The *
* m essage i s on ly d i s t r i b u t e d t o / t h r o u g h in p u t p o r t s w i th *
* matching key s . The match ing t e s t i s : *
* M essage Key AND P o r t Mask = P o r t Key AND M essage Mask *
* #
a*####**###########*####*#######**#**#**##############***##*#****#*###*#)

PROCEDURE KeyedSend(ms: pMsg; p t : p P o r t ; t i m i n c r : CARDINAL;
ky, msk: WORD);

91

S i m o n II A p p e n d i x e s

(**
* *
* KeyedSendMsg - Send d a t a o f l e n g t h (l e n) , a s a m essage o u t *
* o f p o r t (p t) , t o be r e c e iv e d t i m i n c r u n i t s o f t ime from now #
* (CurTime). The m essage i s on ly d i s t r i b u t e d t o / t h r o u g h in p u t *
* p o r t s w i th matching keys . The match ing t e s t i s : *
* M essage Key AND P o r t Mask = P o r t Key AND M essage Mask *
* *
ft***#******##*******)

PROCEDURE KeyedSendMsg(data: ADDRESS; l e n : CARDINAL; p t : p P o r t ;
t i m i n c r : CARDINAL; ky, msk: WORD);

(*#**###*##*#**#**##*#**############*#*##****#**##*##*###########***##*##
* *
* DefGSMTyp - Def ine a new GSM type w i th th e name, nam, *
* and r e t u r n i t s c o r re spond ing t y p e . *
* *
it***)

PROCEDURE DefGSMTyp(nam: ARRAY OF CHAR): CARDINAL;

(**
* #
* SendGSM - C re a t e a G enera l System M essage o f type (t y) , and *
* c o n t a i n i n g d a t a (GSMdata), o f l e n g t h (d a t a l e n) , and send i t *

#* to be r e c e i v e d t i m i n c r u n i t s o f t ime from now (CurTime).
* *
**)

PROCEDURE SendGSM(GSMdata: ADDRESS; d a t a l e n : CARDINAL; ty : CARDINAL;
t i m i n c r : CARDINAL);

92

(*

*

* P rocedures to M anipu la te A t t r i b u t e s
*

* *

•)

(**

S i m o n II A p p e n d i x e s

* *

* *
* DefAttrTyp - Def ine a new a t t r i b u t e type w i th th e name, *
* nam, and r e t u r n i t s c o r r e s p o n d in g ty p e . *
* *
**)

PROCEDURE DefAttrTyp(nam: ARRAY OF CHAR): CARDINAL;

(**
» *
* MakAttr - C re a t e an a t t r i b u t e o f l e n g t h , d a t a l e n , and *
* ty p e , t y , and a t t a c h i t t o message, ms. *
* *
**)

PROCEDURE M akA tt r (ty : CARDINAL; d a t a l e n : CARDINAL; ms: pMsg): p A t t r i b ;

(a#****#**#*#######***#*##*##################**#**#*####*#############*##
* *

* F in d A t t r - Search th e message , ms, f o r an a t t a c h e d *
* a t t r i b u t e o f t y p e , t y . *
* *
a##########*###*#***##*###**####*#####################*##***####**######)

PROCEDURE F i n d A t t r (t y : CARDINAL; m s : p M s g) : p A t t r i b ;

S i m o n II A p p e n d i x e s

(**************«**********«**
* *
* ChgAttr - Replace th e a t t r i b u t e w ith a copy c o n t a i n i n g new *
* d a t a (newdata) hav ing a new l e n g t h (new len) . D e le te th e o ld *
* a t t r i b u t e and r e t u r n a p o i n t e r to th e new a t t r i b u t e . *
* *
a##*##############################)

PROCEDURE C h g A t t r (o l d a t : p A t t r i b ; newdata: ADDRESS;
newlen: CARDINAL): p A t t r i b ;

(a#*##*###*##########
* *
* D e lA t t r - D e le t e an a t t r i b u t e (a t) . *
* *
ft************#*******##******#***#*****##***#**#**********#**#******#***)

PROCEDURE D e l A t t r (a t : p A t t r i b) ;

(ft#**##*#***#**#******###*##**#*****#*#**#**##**####****#**#**#***###*#**
*
* DupAttrs - C r e a t e s a d u p l i c a t e copy o f each a t t r i b u t e *
* a t t a c h e d to t h e m essage p o in ted to by s rcms , and appends *
* th e newly c r e a t e d a t t r i b u t e s to the m essage p o in t e d to by *
* ds tm s . *
* *
it***)

PROCEDURE D upA t t r s (s rcm s , ds tm s: pMsg);

94

Sim on II A ppendixes

*
* E xecution and M isce llan eou s Procedures

*
* *

*)

(a*##########*##*#**#####*###*##*################**#########*##**#**###*#
* *
* StopAt - F orce s im u la tion to s to p (and retu rn from S im u late) *
* a t the s p e c i f i e d era and tim e. *
* *
**)

* *

PROCEDURE S top A t(e ra , tim e: CARDINAL);

(**
*

Sim ulate - Begin s im u la tion e x e cu t io n . S im u lation con tin u es *
u n t i l no messages are l e f t in the queue or the "S topA t" time *
i s reach ed . I f the "S topA t" tim e i s reach ed , s im u la tion can *
be continued by s e t t in g the StopAt time h igh er and c a l l in g *
S im u late . Upon re tu rn in g , the c o n fig u r a t io n i s s t i l l in ta c t *
so th at another run u sin g the same c o n fig u r a t io n can be *
perform ed (s e e R e se tC lock). *

*
a*******###****##*####################################*****####****####*)

PROCEDURE S im u late() ;

95

Simon II Appendixes

(a###
* *
* R esetC lock - Removes any messages from the event queue and *
* s e t s the cu rren t era and time to z e r o , so th at another run *
* may be perform ed using the same c o n f ig u r a t io n . *
» *
**)

PROCEDURE R e se tC lo ck () ;

(**
* *
* Reset - A fte r re tu rn in g from S im ulate, Reset can be c a l le d *
* to d e le te the cu rren t c o n f ig u r a t io n , so th at a new one can *
* be co n stru cte d fo r a subsequent run. (R eset a u to m a tica lly *
* c a l l s R e se tC lo ck .) Only a t t r ib u te ty p es , GSM ty p e s , and *
* the e x te rn a l symbol ta b le a re p reserved . *
* *
**)

PROCEDURE R e s e tO ;

(**
* »
* GetMem - A llo c a te a b lo ck o f memory, o f len g th s i z e , and *
* retu rn the beginn ing address in mem. N ote: GetMem w i l l *
* a l lo c a t e on ly in te g r a l m u ltip le s o f whole WORDs. *
* *
a *******************# **************# **************# ********#************)

PROCEDURE GetMem(VAR mem: ADDRESS; s i z e : CARDINAL);

Simon II A ppendixes

(a#**#*##
* *
* FreeMem - D ea llo ca te a b lock o f memory s ta r t in g a t mem o f *
* len gth s i z e . *
* *
**)

PROCEDURE FreeMem(mem: ADDRESS; s i z e : CARDINAL);

(**
* *
* Copy - Copy a memory b lock o f len gth le n , from " s r c " to " d s t " . *
* N ote: The copy op era tion i s perform ed a WORD a t a time (le n *
* i s rounded up to the next whole WORD). *
* *
a*##*#)

PROCEDURE C o p y (src , d s t : ADDRESS; le n : CARDINAL);

(**
* *
* EnterName - Searches the symbol ta b le f o r nam. I f not th ere *
* i t c r e a te s an e n try . A p o in te r to the en try i s re tu rn ed . *
* *
**)

PROCEDURE EnterName(nam: ARRAY OF CHAR): pXName;

97

Simon II Appendixes

(**
* *
* Wait - Wait fo r the next message from any p o r t , and c a l l i t s *
* input s e r v e r . A p o in te r to the r e s u lt in g m essage, and i t s *
* data re co rd are retu rn ed . I f the p o in te r to the data re co rd *
* (d a t) i s N il , Wait w aits fo r the next message to a r r iv e . *
* *
**)

PROCEDURE Wait(VAR ms: pMsg; VAR d a t: ADDRESS);

END Simon.

98

Simon II A ppendixes

Appendix II
Simulation Debugging

Simon is distributed with a debugging module called SimonDebug, which provides

simple execution tracing capabilities and error reporting. The Simon kernel requires

SimonDebug to always be included when the simulation program is linked. A user

customized version of SimonDebug may be used instead of the distributed version, if

desired (see Installation Notes). It should also be understood that the use of SimonDebug

in no way precludes the use of debugging tools provided by the host com puter system.

11.1. Execution Tracing

Simon Debug provides two types of tracing: structure and message tracing. When

structure tracing is enabled, SimonDebug reports all changes to the configuration

structure (objects, ports, connections). When message tracing is enabled, SimonDebug

reports whenever a message is sent or received. Tracing is enabled and disabled by

calling the following SimonDebug procedures. (Initially, tracing is disabled.)

PROCEDURE TraceOn ();

TraceOn turns on structure and message tracing.

PROCEDURE TraceOff ();

TraceOff turns off structure and message tracing.

PROCEDURE STraceOn ();

STraceOn turns on structure tracing.

PROCEDURE STraceOff ();

STraceOff turns off structure tracing.

PROCEDURE MTraceOn ();

MTraceOn turns on message tracing.

PROCEDURE MTraceOff ();

MTraceOff turns off message tracing.

99

The first pair of procedures enables and disables both structure and message

tracing. The second pair affects only structure tracing, and the third pair affects only

message tracing.

11.2. Error Reporting

SimonDebug provides an error reporter called "Error". This procedure is used to

report all Simon errors, but can also be used by user programs. The first line of an error

message appears as follows:

! Error D etected by <procedure name> W hile E xecuting < o b je ct name>

The second line of the error message is passed to Error by the calling procedure.

After reporting the error, Error returns to the caller. The arguments for calling Error are:

Simon II A ppendixes

PROCEDURE Error (ProcNam:
ErrMsg:
Param l:
Param2:

ARRAY OF CHAR;
ARRAY OF CHAR;
ADDRESS;
ADDRESS

ProclMam

ErrMsg

Param l

Param2

is the string name of the calling (reporting) procedure.

is the string text of the second line of the error
message.

is the address of an item to be formatted into ErrMsg.

is the address of an item to be formatted into ErrMsg.

Up to tw o items may be form atted into the ErrMsg string in a manner similar to

printf in the "C" programming language. Formatting proceeds as follows. If a

(percent character) is encountered in the ErrMsg string, it signifies the point at which an

item is to be form atted and inserted into the error message. The character following the

determines the type of the item and how it is to be formatted. The following

characters are valid:

1 0 0

Sim on II A ppendixes

d
s

o
P
t

a

g

generates the external string name of the object,
generates the external string name of the port,
generates the port type (Shell O utput Shell Input,
Output, Input Input Read-Only),
generates the external string name of an
attribute type.
generates the external string name of a GSM type,
formats a string variable (ARRAY OF CHAR),
formats an INTEGER or CARDINAL variable.

All other characters are ignored. If less than two items are to be form atted, then

the unused parameters (Param2, Param l) should be Nil. For example, the Simon

procedure SetKey is used to set the port key for input ports only. If the specified port

"pt" (of type pPort) is not an input port, SetKey makes the following call:

E rror("S etK ey” , "In a p p rop ria te O peration fo r %t P o rt , /£p", p t , p t)

In addition to Error, SimonDebug provides procedures to output the external string

name of an ob ject port, port type, attribute type, or GSM type:

PROCEDURE PrintObjectName (
ob: pObject);

PROCEDURE PrintPortName (
pt: pPort);

PROCEDURE PrintPortType (
pt: pPort);

PROCEDURE PrintAttrType (
ptype: ADDRESS);

PROCEDURE PrintGSMType (

Note that while the parameter for the first three procedures is a pointer to the

respective data structure, the parameter for the last two procedures is a pointer to a

CARDINAL (the type field).

ptype: ADDRESS);

101

Simon II Appendixes

1 0 2

Appendix III
Installation Notes

When Simon is installed on a particular machine, some slight adjustments to the

code may be necessary.

111.1. TSIZE Resolution Versus Address Resolution

Modula 2 should be implemented so that the units of TSIZE match the address

resolution of the host machine. However, this is not always the case. Simon is designed

to use the same unit size as TSIZE, whatever it is. Nevertheless, there is a line of code in

GetMem (preceded by a special comment, "(*!*)") which is sensitive to this issue:

MemBlk:=MemBlk + s iz e DIV TSIZE(CHAR);

The value in size is in TSIZE units. Dividing it by TSIZE(CHAR) converts it to addressable

units (assuming a byte addressable machine). If the basic addressable unit is something

else (such as WORD), then size should be divided by TSIZE of the addressable unit.

111.2. Memory Management

Near the beginning of the Simon implementation module (about the second page)

are three constants which affect mem ory m anagement (GetMem, FreeMem): UnitSiz,

AllocBlkSiz, and MaxBlkSiz. Internal to Simon, memory is allocated and deallocated in

units of "granules". The constant ''UnitSiz'' determines how big a granule is in TSIZE

units. UnitSiz must be a power of two, and must be greater than or equal to

TSIZE(ADDRESS), and must be an integral multiple of TSIZE(WORD). The second constant

"AllocBlkSiz" is the size (in units of granules) of memory blocks which Simon gets from

the operating system when it needs more memory. Simon maintains free chunks of

mem ory in an array of bins. Each bin contains only one size of m emory chunks. Since

the array is fixed in size, only requests for sizes up to a certain limit can be handled.

Larger requests are directly passed on to ALLOCATE and DEALLOCATE. The third constant

"MaxBlkSiz" determines the maximum request size (in units of granules) which will be

handled directly by Simon. It must be less than or equal to AllocBlkSiz.

Sim on II A ppendixes

103

111.3. Hash Table Sizes

The symbol table (containing external string names) and the GSM port list are

implemented using hashing. In either case, Simon calculates a hash value which is then

divided by the hash table size. The remainder is used as an index into the hash table.

The hash table then points to a linked list which is searched serially for the desired entry.

Obviously, the larger the hash table, the faster the search, but more memory is required.

Near the beginning of the Simon definition module (about the second page) are the

constants which determine the hash table sizes. SHshSiz sets the size of the symbol

table hash table, and GHshSiz sets the size of the GSM port hash table.

111.4. Clock Limit

A couple of lines down from the hash table constants is the constant "TicLimit".

The value of TicLimit determines the maximum value of the global clock "CurTime". When

CurTime equals or exceeds this limit, TicLimit is subtracted from it and the clock overflow

"CurEra" is incremented. TicLimit should be set to the maximum power of ten that can be

contained in a CARDINAL variable. This allows CurEra and CurTime to be output as a

single (concatenated) number without requiring the use of a complicated "double

precision" division procedure.

111.5. SimonDebug

SimonDebug is a module supplied with the distribution of Simon II. Although it will

probably m eet most user's needs for debugging and error reporting, it's possible that a

more sophisticated debugger may be needed. SimonDebug was written in a separate

module so that the user could substitute his own debugger module if necessary. Any

debugger module must provide a compatible interface including: exporting of an error

reporting procedure (Error) and all trace procedures, and importing and setting the trace

flags (STrace and MTrace). The SimonDebug source code should be examined to

determ ine the details of the procedure arguments. An interactive customized debugger

module could provide a variety of capabilities, including the ability to examine the system

configuration. This is possible since the Simon kernel exports all of its data types and

data structures, including the symbol table of external names. (See the Simon definition

module - Appendix I.)

Simon II Appendixes

104

Sim on II A ppen dixes

SimonDebug was written using the I/O procedures provided by the DEC WRL

implementation of Modula 2. If Simon is to be installed on a different machine, it will be

necessary to change all of the I/O calls in the SimonDebug module. (In the distributed

version of SimonDebug the I/O procedures have parameters which are very similar to

those of the scanf and printf standard functions in the "C" language.) Since the Simon

kernel contains no I/O calls, it requires no changes.

105

Simon II

06

Sim on II

Index

AttrHdrSiz 62
Attribute 46

creation 47
deletion 49
duplication 49
example 67, 68
identification 48
internal representation (type Attrib) 74
modification 49
types 47

Block move (Copy) 41

ChgAttr 49
ChgMsg 33
Clean-up procedure 39
Configuration 5, 11, 20, 29
Connect 22
Context

input server 46
object 63
object context creation 64
object context example 65

Copy 41
CurEra 37
CurlnSrvr 62
CurLen 62
CurMsg 62
CurObj 28, 62
CurSrvrCt 62
CurTag 36
CurTime 11, 37

Data types 11, 14, 71
Attrib / pAttrib 46
Msg / pMsg 12
Object / pObject 11
Port / pPort 11
XName / pXNam e 62

Debugging 99, 104
DefAttrTyp 47
DefGSMTyp 54
DelAttr 49
DelayMsgsObj 57
DelayMsgsPrt 57
DelGSMPort 55
DelMsg 16
DelObject 32
DelPort 29
Disconnect 29
DupAttrs 49
DupMsg 34
Dynamic reconfiguration 29

EnterName 62
Error 100

107

Simon II

Error reporting 100
Event based simulation 45
Event queue editing 56

delaying messages 57, 58
deleting a message 59
identifying messages 57
modifying messages 58

Execution (simulation) 23
efficiency 35, 36, 38, 104
multiple runs 40, 54
scheduling 5, 23
termination 24

External names
attribute types 47
creation 62
GSM types 54
internal representation (type XName) 76
objects 21
output of 101
pointer (type pXName) 62
ports 13, 23, 27, 35
server 62

FindAttr 48
FindlPort 30
FindlPortS 31
FindMsgsObj 58
FindMsgsPrt 58
FindNext 58
FindOPort 30
FindOPortS 31
FindPort 23
FindPortS 30
FreeMem 38

General System Message (GSM) 53
GSM transmission 55
input server 54
input server context 54
port creation 54
port deletion 55
port tag 54
types 54

GetMem 38
Global variables and constants 11, 71

AttrHdrSiz 62
CurEra 37
CurlnSrvr 62
CurLen 62
CurMsg 62
CurObj 28, 62
CurSrvrCt 62
CurTag 36
CurTime 11, 37
MsgHdrSiz 62
TicLimit 32, 37, 58, 104

Hierarchy 8, 27

108

Sim on II

Initialization 5, 11, 20, 53
Input server 45
Installation notes 103
Interrupt simulation 56, 59

Keyed messages / ports 50
KeyedSend 51

Length (units) 12, 103

Main procedure 5, 20, 53
Main procedure example 24
MakAttr 47
MakCleanUp 39
MakCleanUpR 40
MakContext 64
MakContextR 64
MakGSMPort 55
MaklPort 13
MaklRPort 35
MakMsg 14
MakMsgD 34
MakObject 21
MakOPort 12
MakSIPort 27
MakSOPort 27
Mem ory

managem ent 37, 38, 103
static variables for input server 46
static variables for support layers 63
usage 22, 37

Message 7
accessing the data record 14
attribute duplication 49
attributes 46
creation 14, 34
deletion 16
duplication 34
GSM 53
GSM transmission 55
internal representation (type Msg) 12, 73
keyed 50
keyed message transmission 51
l ifetime / disposition 7, 16, 33
modification 33, 46
pointer (type pMsg) 12
reception 15, 33, 45
transmission 15, 32, 34

Methodology 5
MovObject 31
MovObjectP 31
MsgHdrSiz 62
M TraceOff 99
MTraceOn 99
Multiple run support 40, 54

N am e server 62

Object 6

109

Simon II

atomic 8, 28
behavior 14
clean-up 39, 66, 69
context 63
creation 21
deletion 32
example 16
global variables 38
hierarchy 8, 27
initialization 1 2, 21
internal representation (type Object) 11, 74
lifetime 28
parameter record 12, 22
pointer (type pObject) 11
procedure 5, 12
procedure example 28
relocation 31
shell 8, 28
structured 8, 28
termination 32, 39
work space 21, 37

Object procedure 12

Port 6
connection 22
connection rules 6, 8, 22
creation 12, 27
deletion 29
disconnection 29
fan - in / fan -ou t 6
GSM 53
GSM creation 54
identification 16, 23, 30, 31, 36
input port key 50
input server 13, 45, 61
input server context 46
input server example 68
internal representation (type Port) 11, 75
pointer (type pPort) 11
read-only input 35
search 23, 30, 31
setting port keys 51
setting port tags 36
shell 8, 27
tag 36

Process based simulation 45
Program

main procedure 5

Resched 58
Reset 40
ResetClock 40

Send 15
SendGSM 55
SendMsg 34
SetKey 51
SetPortTag 36
Simon procedures

1 1 0

Sim on II

miscellaneous 94
to manipulate attributes 92
to manipulate messages 87
to manipulate objects 78
to manipulate ports 82

Simulate 23
Simulation program 5, 11

main procedure 20, 53
main procedure example 24
object procedure 5, 12
object procedure example 16, 28
support (layer) procedures 61

Size (units) 12, 103
Statistics gathering 7
Stop time 24
StopAt 24
STraceOff 99
STraceOn 99
Support layer 5, 45, 61

example 65
global pointer 63
initialization 64
object context 63
object context creation 64

TicLimit 37
Tim e (simulated)

clock 11
CurEra 37
CurTime 11, 37
extended precision clock 37, 104
simulating delay 7, 18, 66
stop time 24
TicLimit 32, 37, 58, 104

TraceOff 99
TraceOn 99

W ait 15, 45

' 1 1

Simon II

1 2

