
F r e d : A n A r c h i t e c t u r e fo r a
S e l f - T im e d D e c o u p le d C o m p u t e r

W illiam F. Richardson and Erik Brunvand

UUCS-95-008

D epartm ent of C om puter Science
U niversity of U tah

Salt Lake City, UT 84112 USA

May 8 , 1995

A b s t r a c t
Decoupled com puter architectures provide an effective m eans of exploiting instruction level

parallelism . Self-tim ed m icropipeline system s are inherently decoupled due to the elastic
na tu re of the basic FIFO struc tu re , and m ay be ideally suited for constructing decoupled
com puter arch itectures. Fred is a self-tim ed decoupled, pipelined com puter arch itectu re
based on m icropipelines. We present the arch itectu re of Fred, w ith specific details on a
m icropipelined im plem entation th a t includes support for m ultip le functional units and out-
of-order instruction com pletion due to the self-tim ed decoupling.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A synchronous S y s tem s Research Group
U niversity o f U tah, D epartm en t o f C om pu ter Science

F r e d : A n A r c h i t e c t u r e f o r a S e l f - T i m e d D e c o u p l e d C o m p u t e r

WILLIAM F. RICHARDSON (w illr ic h @ c s .u ta h .e d u)
ERIK L. BRIJNVAND (b ru n v a n d @ c s .u ta h .e d u)

C om puter Science D epartm en t
3190 M errill E ngineering B u ild ing ’
U niversity o f Utah
Sa lt Lake City, Utah 84.112

Keywords: processor design, computer architecture, micropipelines, FIFO, asynchronous systems

A bstract. Decoupled computer architectures provide an effective means of exploiting instruction level parallelism.
Self-timed micropipeline systems are inherently decoupled due to the elastic nature of the basic FIFO structure, and
may be ideally suited for constructing decoupled computer architectures. Fred is a self-timed decoupled, pipelined
computer architecture based on micropipelines. We present the architecture of Fred, with specific details on a
micropipelined implementation that includes support for multiple functional units and out-of-order instruction com
pletion due to the self-timed decoupling.

1 In trod u ction

As computer systems have grown in size and complexity, the difficulty in synchronizing the system
components has also grown. For example, simply distributing the clock signal throughout a large
synchronous system can be a major source of complication. Clock skew is a serious concern in a
large system, and is becoming significant even within a single chip. At the chip level, more and
more of the power budget is being used to distribute the clock signal, while designing the clock
distribution network can take a significant portion of the design time.

These symptoms have led to an increased interest in asynchronous designs. General asynchronous
circuits do not use a global clock for synchronization, but instead rely on the behavior and arrange
ment of the circuit elements to keep the signals proceeding in the correct sequence. However, these
circuits can be very difficult to design and debug without some additional structure to help the
designer deal with the complexity. While there are many different asynchronous methodologies,
one of the simplest to design, test, and debug is the self-timed micropipeline approach described by
Sutherland [18], which avoids clock-related timing problems by enforcing a simple communication
protocol between circuit elements. This is quite different from traditional synchronous signaling
conventions where signal events occur at specific times and must remain asserted for specific time
intervals. In self-timed systems it is im portant only tha t the correct sequence of signals be main
tained. The timing of these signals is an issue of performance tha t can be handled separately.

Experience has shown the difficulty of writing parallel programs, yet most sequential programs
have an (arguably) significant amount of instruction-level parallelism [13, 20]1. One way of exploit
ing this parallelism is by decoupling the memory access portion of an instruction stream from the
execution portion [7, 21, 5]. By performing the two operations independently, peaks and valleys in

1Nicolau claims there is lots of parallelism available. Wall claims there’s some, but not much.

mailto:willrich@cs.utah.edu
mailto:brunvand@cs.utah.edu

F R E D : A N A R C H I T E C T U R E F O R A S E L F - T I M E D D E C O U P L E D C O M P U T E R 2

each may be sm oothed, resulting in an overall performance gain.

Although decoupled architectures have been proposed and built using a traditional synchronous
design style, a self-timed approach seems to offer many advantages. Typically the independent
com ponents of the machine are decoupled through a FIFO queue of some sort. As long as the
machine com ponents are all subject to the sam e system clock, connecting the com ponents through
the FIFOs is subject to only the usual problems of clock skew and distribution. If, however,
the com ponents are running at different rates or on separate clocks the FIFO must serve as a
synchronizing element and thus presents even more serious problems.

The micropipeline approach is based on simple, self-timed, elastic, FIFO queues, which suggests
that decoupled com puter architectures may be implemented much more easily in a self-timed mi
cropipeline form than with a clocked design. Because the FIFOs are self-timed, synchronization
of the decoupled elements is handled naturally as a part of the FIFO com munication. The elastic
nature of a micropipeline FIFO allows the decoupled units to run at data-dependent speeds; pro
ducing or consuming data as fast as possible for the given program and data. Because the data are
passed around in self-timed FIFO queues, and the decoupled processing elem ents are running at
their own rate, the degree of decoupling is increased in this type of system organization, w ithout the
overhead of a global controller keeping track of the state of the decoupled com ponents. This should
allow increased performance due to the increased decoupling and potentially faster local control
of the com ponents, however it also means that exception handling must be considered carefully.
Because each of the elem ents is running at its own rate, and data are possibly being transm itted
through FIFO queues when the exception is signaled, care must be taken to make sure that the
machine can process an exception in a functionally precise way without losing sta te that might be
in the process of being modified by a different com ponent.

Fred is a self-timed decoupled, pipelined processor architecture based on micropipelines. We
present the architecture of Fred, with specific details on a micropipelined implementation that
includes support for out-of-order instruction completion due to the decoupling, and a model for
functionally precise exception processing.

2 A syn chron ous P rocessors

In spite of the possible advantages, there have been very few asynchronous processors reported
in the literature. Early work in asynchronous computer architecture includes the Macromodule
project during the early 70’s at W ashington University [3] and the self-timed dataflow machines
built at the University of Utah in the late 70’s [4].

Although these projects were successful in many ways, asynchronous processor design did not
progress much, perhaps because the circuit concepts were a little too far ahead of the available
technology. W ith the advent of easily available custom ASIC technology, either as VLSI or FPG A s,
asynchronous processor design is beginning to attract renewed attention. Some recent processor
projects include the following:

T h e C a lT ech A s y n c h r o n o u s M ic r o p r o c e sso r The first asynchronous VLSI processor was built
by Alain M artin’s group at CalTech [11]. It is com pletely asynchronous, using (m ostly) delay-
insensitive circuits and dual-rail data encoding. The processor as implemented has a small
16-bit instruction set, uses a simple two-stage fetch-execute pipeline, is not decoupled, and

F R E D : A N A R C H I T E C T U R E F O R A S E L F - T I M E D D E C O U P L E D C O M P U T E R 3

does not handle exceptions. It has been fabricated both in OMOS and GaAs.

T h e N S R The NSR (Non-Synchronous RISC) processor [2, 15] is structured as a five-stage pipeline
where each pipe stage operates concurrently and com municates over self-timed data channels
in the style of micropipelines. Branches, jumps, and memory accesses are also decoupled
through the use of additional FIFO queues which can hide the execution latency of these
instructions. The NSR was built using FPG A s. It is pipelined and decoupled, but doesn’t
handle exceptions. It is a simple 16-bit processor with only sixteen instructions, since it was
built partially as an exercise in using FPG A s for rapid prototyping of self-timed circuits [1].

T h e A m u le t A group at M anchester has built a self-timed micropipelined VLSI implementation
of the ARM processor [6] which is an extrem ely power-efficient commercial microprocessor.
The Amulet is a real processor in the sense that it mimics the behavior of an existing com
mercial processor and it handles simple exceptions. It is more deeply pipelined than the
synchronous ARM, but it is not decoupled (although it does allow instruction prefetching),
and its precise exception model is a simple one. The Amulet has been designed and fabricated.
The performance of the first-generation design is within a factor of two of the commercial
version [14]. Future versions of Amulet are expected to close this gap.

T h e C o u n te r f lo w P ip e l in e P r o c e s s o r The Counterflow Pipeline Processor (C F PP) Architec
ture is an innovative architecture proposed by a group at Sun M icrosystem s Labs [17]. It
derives its name from its fundamental feature, that instructions and results flow in opposite
directions in a pipeline and interact as they pass. The nature of the Counterflow Pipeline is
such that it supports in a very natural way a form of hardware register renaming, extensive
data forwarding, and speculative execution across control flow changes. It should also be able
to support exception processing.

A self-timed micropipeline-style implementation of the C FPP has been proposed. The C FPP
is deeply pipelined and partially decoupled, with memory accesses launched and completed
at different stages in the pipeline. It can handle exceptions, and a self-timed implementa
tion which mimics a commercial RISC processor’s instruction set has been simulated. The
potential of this architecture is intriguing, but still unknown.

3 M icrop ip elin es

Micropipelines are self-timed, event driven, elastic pipelines that may or may not contain process
ing between the pipe stages [18]. If no processing is done between the pipe stages, the micropipeline
reduces to a simple first-in first-out (FIFO) buffer. A block diagram of a generic micropipeline is
shown in Figure 1. It consists of three parts: a control network consisting of one C-element per
micropipeline stage, a latch in each stage, and possibly som e processing logic between the stages.

The Fred processor is implemented in a micropipeline style where concurrent processes cooperate
using a request/acknowledge handshake, and connections between the processes may be pipelined
to any desired degree by adding more micropipeline stages to the path. The pipelines and processes
involved in the Fred processor use two-phase transition signaling and bundled data paths. Two-
phase signaling involves a protocol whereby a process is requested to perform some action by
receiving an event on its Req input, and will signal that it has completed the action by producing

F R E D : A N A R C H I T E C T U R E F O R A S E L F - T I M E D D E C O U P L E D C O M P U T E R 4

R I N AOUT

A IN ROUT

Figure 1: A Generic Micropipeline

an event on its Ack output. The fact that each self-timed process signals its completion allows for
simple sequencing of operations in a larger self-timed system. “Transition signaling” means that
the events tha t are communicated on the control lines are encoded in signal transitions rather than
signal levels. A transition on a control line from low to high or from high to low is considered as
an event and no distinction is made between two type of transitions.

“Bundled data path” means tha t data must be stable at a latch before the latching control signal
arrives. The transition control signal indicates tha t the bundled data path is valid, and tha t the
latch may update its contents. The delay elements shown in Figure 1 model the delay required
to satisfy this constraint as the data move through the logic at each stage. This condition is a
compromise to complete self-timed, but in practice the bundling constraint is a local constraint
tha t is not hard to meet, and it allows the use of standard datapath circuits in the design. The
logic could of course be self-timed and generate a completion signal, which would eliminate the need
for the delay a t the expense of more complicated logic for detecting completion of the processing.
Latches used in such circuits are transition latches which latch new data upon receipt of a request
event and produce an acknowledgment event when done.

The C-elements control the action of the micropipeline by acting as protocol preserving AND
gates for the transition control signals of the micropipeline. These gates, drawn as an AND gate
with a C inside, will drive their output low when both inputs are low, and high when both inputs
are high. When the inputs are at different states, the output is held at its previous level. Note
tha t one input of each C-element used in Figure 1 is inverted. Thus, assuming tha t all the control
signals s ta rt low, the leftmost C-element will produce a transition to the leftmost latch when the
incoming request (RIN) line first makes a transition from low to high. The acknowledge from
the latch will produce a similar request through the next C-element to the right. Meanwhile, the
leftmost C-element will not produce another request to the leftmost latch until there are transitions
both on RIN (signaling tha t there are more data to be accepted) and the Ack from the next latch
to the right (signaling tha t the next stage has finished with the current data). Each pipe stage acts

F R E D : A N A R C H I T E C T U R E F O R A S E L F - T I M E D D E C O U P L E D C O M P U T E R 5

as a concurrent process that will accept new data when the previous stage has data to give, and
the next stage is finished with the data currently held. More details on building systems using a
two-phase micropipeline circuit style can be found elsewhere [18, 15, 14].

4 T he Fred A rch itectu re

The Fred architecture is based roughly on the NSR architecture developed at the University
of Utah [2, 15]. As such it consists of several decoupled independent processes connected by
FIFO queues of various lengths, an approach which we believe offers a number of advantages over
a clocked synchronous organization. The Fred architecture specifies the instruction set and the
general layout and behavior of the processor. Other extensions to the Fred architecture may be
made. New instructions may be added, and additional functional units may be incorporated. The
existing functional units may be rearranged, combined, or replaced. The details of the exception
handling mechanism is not specified by the architecture, but some means must be provided.

A prototype of Fred has been implemented in a detailed VHDL model. Figure 2 shows the
overall organization. Each box in the figure is a self-timed process communicating via dedicated
data paths rather than buses. Each of these data paths, shown as wires in Figure 2, may be
pipelined to any desired depth without affecting the results of the computation. Because Fred uses
self-timed micropipelines [18] in which pipeline stages communicate locally only with neighboring
stages in order to pass data, there is no extra control circuitry involved in adding additional pipeline
stages. Because buses are not used, the corresponding resource contention is avoided.

The VHDL version chooses particular implementations for each of the main pieces of Fred. In
particular, the Dispatch unit is organized so as to issue instructions in order, but to allow out-
of-order completion. This is of particular interest in a self-timed processor where the multiple
functional units might take varying amounts of time to compute a result. An individual functional
unit might even take different amounts of time to compute a result based on the data which will
lead naturally to out of order instruction completion. The VHDL prototype is fully operational,
including out-of-order instruction completion and a functionally precise exception model. The
timing and configuration parameters can be adjusted for each component of the design.

Multiple independent functional units allow several instructions to be in progress at a given time.
Because the machine organization is self-timed, the functional units may take as long or short a
time as necessary to complete their function. One of the performance advantages of a self-timed
organization is directly related to this ability to finish an instruction as soon as possible, without
waiting for the next discrete clock cycle. It also allows the machine to be upgraded incrementally
by replacing functional units with higher performance circuits after the machine is built with no
global consequences or retiming. The performance benefits of the improved circuits are realized by
having the acknowledgment produced more quickly and thus the instruction tha t uses tha t circuit
finishes faster.

There are 32 general registers in the Fred architecture. Registers r 2 through r31 are normal
general-purpose registers, but rO and r l have special meaning. Register rO may be used as the
destination of an instruction, but will always contain zero. Register r l is not really a register at all
but provides read access to a data memory pipeline similar to tha t used in the WM machine [21].
Specifying r l as the destination of an instruction inserts the result into the pipeline. Each use of r l
as a source for an instruction retrieves one word from the Rl Queue. For example, the instruction

In
str

uc
tio

n
Me

mo
ir/

F R E D : A N A R C H I T E C T U R E F O R A S E L F - T I M E D D E C O U P L E D C O M P U T E R 6

Data Memory

Figure 2: Fred Block Diagram. Solid black lines are primary data paths, grey lines are control
paths. All data and control paths may be pipelined.

F R E D : A N A R C H I T E C T U R E F O R A S E L F - T I M E D D E C O U P L E D C O M P U T E R 7

“add r 2 , r l , r l ” would fetch two words from the R l Queue, add them together, and place the sum
in register r 2 . Likewise, assuming tha t sequential access to register r l would result in values A, B,
and C, the instruction s t r l , r l , r l would write the value C into memory location A + B. D ata
from any of the functional units may be queued into the R l Queue, and loads from memory can
also be queued. It may be possible to subsume some of the memory latency by queuing loaded data
in the Rl Queue in advance of its use. Note tha t the program receives different information each
time it performs a read access on register r l , thus achieving a form of register renaming directly
in the Rl Queue. Instructions which write to the R l Queue are forced to complete in-order, to
provide deterministic behavior. ,

Deadlocking the processor is theoretically possible. Because both the Rl Queue and Branch
Queue (section 4.2.2) are filled and emptied via two separate instructions, it is possible to issue an
incorrect number of these instructions so tha t the producer/consumer relationship of the queues is
violated. Fred’s dispatch logic will detect these cases, and take an exception before an instruction
sequence is issued tha t would result in deadlock.

4.1 In s tru c tio n Set

Choosing an instruction set for a RISC processor can be a complex task [9, 8 , 10]. Rather than
attem pt to design a new instruction set from scratch, an instruction set from an existing commercial
RISC processor was adapted. Much of the Fred instruction set is taken directly from the Motorola
88100 instruction set [12]. However, Fred does not implement all the 88100 instructions, and several
of Fred’s instructions do not correspond to any instructions of the 88100. The instructions, and
the functional units tha t execute them, are shown in Figure 3.

Logic & Bitfield Arithmetic Memory Branch Control
and d r add Id bit bbO getcr

mask ext addu st ble bbl putcr
or extu cmp xmem bne br rte
xor ffO div beq doit sync

ffl divu bge mvpc trap
mak mul bgt
rot
set

sub
subu

Figure 3: Fred Instructions

4.2 In s tru c tio n D isp a tch

Instruction Dispatch is, in some sense, the main control unit for the Fred processor. It is responsi
ble for keeping track of the F’rogram Counter, fetching new instructions, issuing instructions to the
rest of the processor, and monitoring the instruction stream to watch for data hazards. Instructions
are fetched and issued in program order to the rest of the machine as quickly as possible. Because
different functional units may take different amounts of time to complete, individual instructions
may complete in a different order than which they were issued.

F R E D : A N A R C H I T E C T U R E F O R A S E L F - T I M E D D E C O U P L E D C O M P U T E R 8

4-2.1 The Instruction Window

An Instruction Window (IW) is used to buffer incoming instructions and to track the status of
issued instructions [19]. A register scoreboard is used to avoid all data hazards. The IW is a set
of internal registers located in the Dispatch unit which tracks the state of all current instructions.
Each slot in the IW contains information about each instruction such as its opcode, address, current
status, and various other parameters. As each instruction is fetched, it is placed into the IW. New
instructions may continue to be added to the IW independently, as long as there is room for them.
The scoreboard is also maintained in the Dispatch unit, and is cleared when results arrive at the
Register File.

Instructions are issued from the IW in program order when all their data dependencies are sat
isfied (including WAW dependencies). Issuing an instruction does not remove it from the IW.
Instead, instructions are removed from the IW only after they have completed successfully. Each
issued instruction is assigned a tag which uniquely distinguishes it from all other current instruc
tions. When an instruction completes, it uses this tag to report its status to back to the IW. The
status is usually an indication tha t the instruction completed successfully, but is also used to report
exceptions. Instructions signal completion as soon as the functional unit which processes them has
generated a valid result, even though tha t result may not yet have reached its final destination.
When an instruction is unsuccessful, it returns an exception status to the IW, which then begins
exception processing. Instructions which can never cause exceptions do not have to report their
status, and can be removed from the IW when they are dispatched. Because instructions may
complete out-of-order, recoverable exceptions can cause unforseen WAW hazards. The Instruction
Window contains enough information to resolve these issues.

The Dispatch unit uses the Instruction Window and scoreboard to determine when to issue new
instructions to the rest of the machine. When instruction issue occurs, the required operands are
requested from the Register File (possibly through a FIFO), and the instruction is issued to the
EX unit (also possibly through a FIFO).

4-2.2 Branch Instructions

Flow control instructions are significantly affected by the degree of decoupling in Fred. By
decoupling the branch instructions into an address generating part and a sequence change part,
we gain the ability to prefetch instructions effectively. Fred does not require any special external
memory system, but it can provide prefetching information which may be used by an intelligent
cache or prefetch unit. This information is generated by the Branch unit when branch target
addresses are computed, and is always correct.

The instructions for both absolute and relative branches compute a 32-bit value which will
replace the program counter if the branch is taken, but the branch is not taken immediately.
Instead, the branch target value is computed by the Branch unit and passed back to the Dispatch
unit, along with a condition bit indicating whether the branch should be taken or not. These data
are consumed by the Dispatch unit when a subsequent “d o i t” instruction is encountered, and the
branch is either taken or not taken at tha t time. Although this action is similar to the synchronous
concept of squashing instructions, Fred does not convert the d o it instructions into NO-OPs, but
instead removes them completely from the main processor pipeline.

A n y n u m b er o f in str u c t io n s (in c lu d in g zero) m ay b e p laced b etw een th e branch ta r g e t com p u -

F R E D : A N A R C H I T E C T U R E F O R A S E L F - T I M E D D E C O U P L E D C O M P U T E R 9

tation and the d o it instruction. From the programmer’s view, these instructions do not have to
be common to both branches, nor must they be undone if the branch goes in an unexpected way.
The only requirement for these instructions is tha t they not be needed to determine the direc
tion of the branch. The branch instruction can be placed in the current block as soon as it is
possible to compute the direction. The d o i t instruction should come only when the branch must
be taken, allowing maximum time for instruction prefetching, as shown in Figure 4. Because the
d o it is consumed entirely within the Dispatch Unit, it will take effect as soon as the branch target
data is available, allowing instructions past the branch point to be loaded into the IW before the
prior instructions have completed (or even issued). This lets the IW act as an instruction prefetch
buffer, but it is always correct, never speculative. Figure 5 shows an example, based on the code
in Figure 4B.

This two-phase branch model allows for a variable number of “delay slots” by allowing an arbi
trary number of instructions to be executed between the computation of the branch target and its
use. It also allows other interesting behaviors such as achieving the effect of loop unrolling without
increasing code size. This can be accomplished by computing several branch targets at one time
and putting them in the branch queue before executing the loop code2. To avoid extra instruction
fetches, the d o it instruction can be implicitly inserted into the instruction stream by setting a bit
available in the opcode of any other instruction.

Loop:
addu r 3 , r 3 , 3
mul r 9 , r 2 , r 3
addu r 2 , r 9 , 2
subu r 8 , r 8 , 1
bend g t , r 8 ,Loop
d o i t

Loop:
subu r 8 , r 8 ,1
bend g t , r 8 , Loop
addu r3,r3,3
mul r9,r2,r3
addu. d r2,r9,2

A. Simple ordering. B. Reordered, with implicit d o it .

Figure 4: Two ways of ordering the same program segment.

4.3 In d e p e n d e n t F u n c tio n a l U n its

The Distributor is responsible for routing instructions to their proper functional unit. It takes
incoming instructions and operands, matches them up where needed, and routes instructions to
appropriate functional units. There are five independent functional units in the prototype imple
mentation of Fred: Logic, Arithmetic, Memory, Branch, Control. Each functional unit is responsible
for a particular type of instruction shown in Figure 3. Instructions arrive in program order but may
complete in any order because the pipelines are self-timed, and the functional units themselves may
take more or less time to execute a given instruction. The Distributor and its associated functional
units collectively make up the Execution unit (EX).

Each of the functional units may produce results tha t are written back to the register file directly,

2This trick may not be of much use, but it sounds interesting.

F R E D : A N A R C H I T E C T U R E F O R A S E L F - T I M E D D E C O U P L E D C O M P U T E R 10

Tag Status Instruction Loop#
4 Issued mul r9,r2,r3 1

Tag Status Instruction Loop# 5 — addu r2,r9,2 1
1 Issued subu r8,r8,l 1 7 — subu r8,r8 ,l 2
2 bend g t,r8,Loop 1 8 — bend g t,r8,Loop 2
3 — add u r3,r3,3 1 9 — addu r3,r3,3 2
4 — mul r9,r2,r3 1 10 — mul r9,r2,r3 2
5 addu r2,r9,2 1 11 — addu r2,r9,2 2
6 — doit 1 12 — doit 2

A. Branch target not yet available. B. Branch target consumed.

Figure 5: Prefetching by the Instruction Window. A) Prefetching must wait until the branch target
is available. B) When the target is available, the d o it is consumed and prefetching continues with
the next iteration of the loop.

or reenter the register file through the Rl Queue. In addition, forwarding may take place in each
functional unit in a manner similar to tha t found in synchronous processors. The only difference is
that in a synchronous processor the forwarded data will stay in the forwarding register only until
the following clock tick. In a self-timed processor, data could stay in the forwarding register until
the next instruction tha t wanted tha t data removes it. Although this is not implemented in the
current version of Fred, this could be managed easily either by hardware or software (compiler).

The Memory subunit is treated as just another functional unit. The only difference is tha t the
Memory unit sometimes produces data tha t is written to the data memory rather than the Register
File.

4.4 Register File

The Register File responds to requests from the Dispatch unit for operands which it delivers
through a FIFO to the EX unit. These operands are paired with instructions and passed to the
appropriate functional unit. Because the instructions are issued in program order, there is no
matching required to determine which operands should be paired with which instructions. They
emerge from the FIFO queues in the correct sequence.

On the incoming side, the Register File accepts results from each functional unit tha t produces
data. These results are accepted independently from each functional unit and are not multiplexed
onto a common bus. D ata hazards are prevented by the scoreboard and the Dispatch unit, which
will not issue an instruction until all its data dependencies are satisfied, so there will never be
conflicts for a register destination. The Register File clears the associated scoreboard bit when
resu lts arrive at a p a rticu la r register. Instruction results may also be w ritten in to the Rl Queue
as described earlier, but there is no actual register associated with the Rl Queue. Instead, the
Dispatch unit clears the scoreboard bit for register r l when the producing instruction completes
successfully.

F R E D : A N A R C H I T E C T U R E F O R A S E L F - T I M E D D E C O U P L E D C O M P U T E R 11

5 E x c e p tio n s

Fred uses an Instruction Window [19] in the Dispatch unit to maintain the status of all current
instructions. Exceptions are functionally precise. The exception model seen by the programmer
is not tha t of a single point where the exception occurred. Instead, there is a set of instructions
which were in progress. The hardware guarantees tha t this set (unless empty) will consist only of
instructions which either faulted or which have been fetched but not yet issued when the exception
occurred. The instructions in this set are a subset of a sequential portion of the dynamic program
instructions. The missing elements are those instructions which completed successfully out of order,
and so should not be re-issued. Because the total state of the processor is not available at one known
time (such as on a clock tick), the details of the exception handling are somewhat complicated, but
no more so than for a synchronous processor tha t is deeply pipelined and may issue or complete
instructions out of order. This is described in more detail elsewhere [16].

6 C onclusions

Self-timed implementation seems to be a natural match for decoupled computer architectures.
The ability to allow different parts of the machine to proceed a t their own rate, and the natural
use of self-timed FIFO queues, enhances the decoupling due to the architecture. The current
prototype of Fred is in the form of a detailed VHDL model. This model is completely functional
including the out-of-order instruction completion and functionally precise exceptions. We have a
Fred assembler and a translator to convert 88100 assembly language into Fred’s instruction set,
so we can run compiled C programs through the VHDL simulation. We are in the process of
investigating tradeoffs involved in queue depth, decoupled branches, functional unit performance,
out-of-order instruction completion, exception handling, and other features of the architecture.

R eferen ces

1. Erik Brunvand. Using FPGAs to prototype a self-timed computer. In International Workshop
on Field Programmable Logic arid Applications, Vienna University of Technology, September
1992.

2. Erik Brunvand. The NSR processor. In Proceedings of the 26th Annual Hawaii International
Conference on System Sciences, pages 428-435, Maui, Hawaii, January 1993.

3. Wesley A. Clark and Charles A. Molnar. Macromodular system design. Technical Report 23,
Computer Systems Laboratory, Washington University, April 1973.

4. A.L. Davis. The architecture and system method for DDM1: A recursively structured data-
driven machine. In 5th Annual Symp. on Computer Architecture, April 1978.

5. Matthew Farrens, Pius Ng, and Phil Nico. A comparison of superscalar and decoupled ac
cess/execute architectures. In Proceedings of the 26th Annual A C M /IE E E International Sym
posium on Microarchitecture, Austin, Texas, December 1993. IEEE,ACM.

6. S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V. Woods. A micropipelined ARM.
In Proceedings of the VII Banff Workshop: Asynchronous Hardware Design, Banff, Canada,

F R E D : A N A R C H I T E C T U R E F O R A S E L F - T I M E D D E C O U P L E D C O M P U T E R 12

August 1993.

7. J. R. Goodman, J. Hsieh, K. Liou, A. R. Pleszkun, P. B. Schechter, and H. C. Young. PIPE:
A VLSI decoupled architecture. In 12th Annual International Symposium on Computer Archi
tecture, pages ‘20-27. IEEE Computer Society, June 1985.

8. Thomas R. Gross, John L. Hennessy, Stephen A. Przybylski, and Christopher Rowen. Measure
ment and evaluation of the MIPS architecture and processor. ACM Transactions on Computer
Systems, 6(3):229-257, August 1988.

9. John Hennessy, Norman Jouppi, Forest Baskett, Thomas Gross, and John Gill. Hard
ware/software tradeoffs for increased performance. In Proceedings of the Symposium on Archi
tectural Support for Programming Languages and Operating System s, pages 2-11. ACM, April
1982.

10. Manolis G. H. Katevenis. Reduced Instruction Set Computer Architectures for VLSI. MIT
Press, 1985.

11. Alain Martin, Steven Burns, T.K. Lee, Drazen Borkovic, and Pieter Hazewindus. The design
of an asynchronous microprocessor. In Proc. CalTech Conference on VLSI, 1989.

12. Motorola. MC88100 RISC Microprocessor User’s Manual. Prentice Hall, Englewood Cliffs,
New Jersey 07632, second edition, 1990.

13. Alexandru Nicolau and Joseph A. Fisher. Measuring the parallelism available for very long in
struction word architectures. IEEE Transactions on Computers, C-33 (11): 110—118, November
1984.

14. Nigel Charles Paver. The Design and Implementation of an Asynchronous Microprocessor.
PhD thesis, Unversity of Manchester, 1994.
http://www.cs.man.ac.uk/amulet/publications/thesis/paver94_phd.html

15. William F. Richardson and Erik Brunvand. The NSR processor prototype. Technical Report
UUCS-92-029, University of Utah, August 1992.
ftp://ftp.cs.Utah.edu/techreports/1992/UUCS-92-029.ps.Z

16. William F. Richardson and Erik Brunvand. Precise exception handling for a self-timed proces
sor. To appear in 1995 International Conference on Computer Design: VLSI in Computers &
Processors, October 1995.

17. Robert F. Sproull and Ivan E. Sutherland. Counterflow pipeline processor architecture. Tech
nical Report SMLI TR-94-25, Sun Microsystems Laboratories, Inc., M /S 29-01, 2550 Garcia
Avenue, Mountain View, CA 94043, April 1994.
http://www.sun.com/smli/technical-reports/1994/smli_tr-94-25.ps

18. Ivan Sutherland. Micropipelines. Communications of the ACM , 32(6):720-738, 1989.

19. H. C. Torng and Martin Day. Interrupt handling for out-of-order execution processors. IEEE
Transactions on Computers, 42(1): 122-127, January 1993.

http://www.cs.man.ac.uk/amulet/publications/thesis/paver94_phd.html
ftp://ftp.cs.Utah.edu/techreports/1992/UUCS-92-029.ps.Z
http://www.sun.com/smli/technical-reports/1994/smli_tr-94-25.ps

F R E D : A N A R C H I T E C T U R E F O R A S E L F - T I M E D D E C O U P L E D C O M P U T E R 13

20. David W. Wall. Limits of instruction-level parallelism. WRL Technical Note TN-15, Digital
Western Research Laboratory, 100 Hamilton Avenue, Palo Alto, CA 94301, December 1990.

21. Wm. A. Wulf. The WM computer architecture. Computer Architecture News, 16(1), March
1988.

