
Some Recent Asynchronous
System Design Methodologies

Ganesh Gopalakrishnan and Prabhat Jain

UUCS-90-016

Department of Computer Science
University of Utah

Salt Lake City, UT 84112 USA

September 26, 1990

Abstract
We present an in-depth study of some techniques for asynchronous system design, anal

ysis, and verification. After defining basic terminology, we take one simple example - a
four-phase to two-phase converter - and present its design using (a) classical flow-tables; (b)
Signal Transition Graphs of [8]; and (c) Trace Theory of [15]. We then present necessary
and sufficient conditions for Delay Insensitivity, proposed by [38], and illustrate it on our
example. Finally, we present the work of [13] on the verification of asynchronous circuits,
and illustrate it on the circuits derived in the paper. The following points are emphasized:
(i) presentation of techniques at more depth than in a general survey; (ii) illustration of all
the aspects discussed on a common example; (iii) comparative study of the works presented.
Many interesting works had to be left out, solely because of our lack of space and time.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 GANESH GOPALAKRISHNAN, PRABHAT JAIN

1 Introduction 1

2 Possib le M eanings o f “Synchronous” and “A synchronous” 1

3 Basics o f A synchronous Hardware System s 3
3.1 Fundamental .vs. Input-Output Mode .. 4
3.2 Speed Independent .vs. Delay-Insensitive... 4

4 Term inology and N otations 5

5 Introduction o f the exam ple QR42 5

6 D esign o f QR42 U sing Flow -tables 6
6.1 Primitive Flow-table for Q R 4 2 ... 6

7 D esign o f QR42 U sing Signal Transition Graphs 8
7.1 Syntactic Checks and Transformations on S T G s ... 11
7.2 From STGs to State G ra p h s... 12
7.3 Synthesis Through Net C ontraction ... 15

8 D esign o f QR42 U sing Trace Theory 23
8.1 Directed Trace S tr u c tu r e s .. 25
8.2 Commands ... 26

8.2.1 A Unidirectional W I R E ... 28
8.2.2 A M e r g e E lem en t.. 28
8.2.3 A C -E L E M E N T ... 28
8.2.4 A T O G G L E ... 29

8.3 Specification of Q R 42 .. 29
8.4 Synthesis Step 1 : F a c to r in g ... 30
8.5 Synthesis Step 2: Decomposition .. 31

8.5.1 Example of D ecom position.. 33
8.6 Synthesis Step 3: DI Decomposition C h eck ... 34
8.7 Synthesis Step 4: Application of Separation T h eo rem ... 34
8.8 Synthesis Step 5: Identification of the Prim itives... 35

Contents

9 Characterizing D elay Insensitiv ity 36
9.1 Absence of Transmission Interference.. 36
9.2 Non-Reliance on Relative D elays.. 37
9.3 Absence of Computation Interference.. 37
9.4 Proper A rb itra tio n ... 38
9.5 Checking Udding’s Conditions on QR42 ... 38

10 Verification o f A synchronous Circuits 39
10.1 C on form an ce .. 39
10.2 Using Conformance Checking for Verification.. 40

10.2.1 Verification for Speed Independence... 41
10.2.2 Verification for E q u iv a len ce ... 41

10.3 Illustration of the Verifier .. 41
10.4 A Deeper Analysis of Chu’s T ech n iq u e .. 42

11 C oncluding Rem arks 43
11 .1 On the Works Not Studied H e re .. 43
11.2 Closing T h o u g h ts ... 44

List o f Figures

1 Models of Synchronous (a) and Asynchronous (b) S y s te m s 3
2 Block Diagram of the QR42 S y stem ... 6

3 Primitive Flow-table for Q R 4 2 ... 7
4 Reduced Flow-table for Q R 4 2 ... 8

5 Y, z-map for Q R 4 2 ... 8

6 Equations for next state (Y ,̂ V̂) and output functions (b, c) 8

7 Original STG of QR42 (a), and the same with Persistency Edges (b) 10
8 State Graph for Q R 4 2 ... 13
9 The Final S T G .. 16
10 The Final State G r a p h ... 17
11 (a)Redundant STG for b; (b)‘a’ removed; (c)SG for (b); (d)K-map for ‘b’ . . 20
12 (a)Without ‘y ’; (b)With ‘y ’; (c)SG for (b); (d)K-map for ‘y ’; (e)K-map for ‘c’ 21
13 (a)STG for ‘x ’; (b)SG for ‘x’; (c)K-map for ‘x’ ... 22

SOM E R E C E N T A SYNC H RO NO U S S Y S T E M DESIGN METHODOLOGIES 3

4 GANESH GOPALAKRISHNAN, PRABHAT JAIN

14 Logic Equations for signals 6, y, c, and x ... 23
15 Final Circuit Resulting from Chu’s T ech n iq u e .. 24
16 A Wire, Merge, C-element, and T o g g le .. 27
17 An Example Showing D ecom p osition .. 32
18 Circuit Synthesized Using Ebergen’s A pproach.. 35
19 Wire Implemented as a Buffer and an Or g a t e ... 43

List o f Tables

1 Introduction

Recently there has been renewed interest in asynchronous digital circuit design. This
revival of interest seems to be largely due to the following reasons: (i) some recent pub
lications (e.g. [35]) have provided the much needed inspiration; (ii) some large designs
have been automatically synthesized (e.g. [27]); (iii) mathematical techniques for reasoning
about asynchronous behavior have matured (e.g. [38,15,13]). Among the claimed advantages
of asynchronous design are freedom from the constraint of lockstep synchronous execution
where the clock cycle has to accommodate the slowest combinational path, ease of transla
tion of a problem in a distributed computation, and even self diagnosisfll]. The reader is
referred to [35] [28, Chapter 7] for excellent introductions to asynchronous design.

In this paper, we provide a glimpse of this research area by taking one simple example and
lead the reader through various synthesis and verification techniques. The paper is organized
as follows. We first present some basics of asynchronous systems. We then introduce our
main example: a four-phase to two-phase converter with “quick return” (QR421). We
present the design of this example using:

• “Classical approaches” [16];

• Signal Transition Graphs [8];

• Trace Theory [15];

We then present some techniques for reasoning about and verifying asynchronous designs,
based on the works of Ebergen[15] and Dill[13].

The following points are emphasized: (i) presentation of techniques at more depth than in
a general survey; (ii) illustrating all the aspects discussed on a common example; (iii) com
parative study of the works presented. Many interesting works had to be left out, solely
because of our lack of space and time. (Some of these works are mentioned among our con
cluding remarks.) We have nothing to say (for or against) works that have not been surveyed
here, and hope that they will be similarly studied elsewhere.

Finally, many of the terms that we have used here, and whose definitions we have para
phrased, have been used by past researchers. Wherever possible, we have cited researchers
to whom the term is attributed, or in whose work we saw the term cited. In a few instances,
we have to refer the reader to the “prevelant folklore” of this subject area.

2 Possib le M eanings o f “Synchronous” and “A synchronous”

The words “asynchronous” and “synchronous” have acquired different meanings in hard
ware and software design. These different usages are beginning to be of concern during

1 We were introduced to this example by Jo Ebergen.

SOM E R E C E N T A SYNC H RO NO U S S Y S T E M DESIGN METHODOLOGIES 1

2 GANESH GOPALAKRISHNAN, PRABHAT JAIN

modern times, because software specification and compilation techniques are now being
used for hardware design also. Hence, researchers with a hardware background can end up
confusing their counterparts with a software background. We do not attempt to provide the
final answer here, but merely provide working definitions so that this paper will hopefully
avoid certain confusions amongst readers who are primarily software oriented or primarily
hardware oriented.

There are two aspects of a system that can be either asynchronous or synchronous: com
putational steps and communication [34]. ,

D efin ition 1 A collection of subsystems within a system are synchronous with respect to
their computation if step M -f 1 of computation in one system cannot occur unless step M has
occurred within all other systems. Example 1: Synchronous hardware. Example 2: Systolic
arrays [4 0].

D efin ition 2 A collection of subsystems within a system are asynchronous with respect to
their computation if the computational rates of the systems are not directly constrained in
any way. (However, they may be indirectly constrained by the communications.) Example
1: Asynchronous hardware. Example 2: Distributed implementations of CSP[19] or Ada[29]
programs.

D efin ition 3 A collection of systems are synchronous with respect to their communication
if a set of N processes wishing to communicate with each other are required to rendezvous; in
other words, they are forced to communicate through a zero sized buffer; thus, all the senders
and receivers must wait for each other to reach a common control state, and then “physically
hand over data” through a memoryless medium (such as a wire). Example 1: Rendezvous of
the language Ada, or CSP. For both Ada and CSP, N = 2 . (Languages with N > 2 are said
to support multi-way rendezvous.) Example 2: Synchronous hardware systems. Synchronous
hardware systems actually engage in a rendezvous communication “implicitly”—by being in
the “right pair of states at the right t im e”.

D efin ition 4 A collection of systems are asynchronous with respect to their communication
if all the members of a set o f processes wishing to communicate with each other need not
wait for each other. Example: “wait free” communication supported by the use of buffers,
the presence of which is not reflected in the semantics of the language. Example: The
Kahn model[23] o f functional multiprocessing, where processes communicate through infinite
streams.’

D efin ition 5 For the purposes of this paper, we define a synchronous (hardware) system
to one that is synchronous with respect to computation and communication, and an asyn-
ch ronous (hardware) system to be one that is synchronous with respect to communication
and asynchronous with respect to computation.

SOM E R E C E N T ASYN C H R O N O U S S Y S T E M DESIGN METHODOLOGIES 3

COMBINA
TIONAL

CIRCUIT

MEM

CLOCK

Ca) (b)

Figure 1: Models of Synchronous (a) and Asynchronous (b) Systems

3 Basics o f A synchronous Hardware System s

By examining the general block diagram of sequential systems given in figure 1 for both
synchronous and asynchronous systems, important differences between them can be pointed
out. In synchronous systems operating on one central fixed-period clock, the clock period
must be greater than the delay of the slowest combinational path that would materialize at
least once during the computation. By virtue of this feature, hazards[16] occurring on both
the state-feedback path as well as the outputs can be ignored (assuming that the outputs of
the entire system are synchronously sampled). In asynchronous systems, the computational
rate can vary across the spatial and temporal dimensions of the system. In asynchronous
digital systems that do not rely on any absolute delays (such as absolute delay bounds
for gates or wires), the computational rate is governed only by (a) the synchronization
skeleton[25]—i.e. a graph of action dependencies on (other) actions; and (b) the rate at
which exogenous[8] (externally generated) data arrives into the system.

The last sentence points to the existence of many different styles of asynchronous design.
We now present some widely studied classification schemes. These schemes themselves are
related to each other in many (complex) ways.

4 GANESH GOPALAKRISHNAN, PRABHAT JAIN

3.1 Fundam ental .vs. Input-O utput M ode

An asynchronous system is operated in the fundamental mode if the next exogenous exci
tation is not applied until every node of the system has updated itself and reached a steady
state following the current exogenous excitation[16]. (The method to be employed to detect
the attainment of steady state is not prescribed.) An asynchronous system is operated in
the Input-Output (I/O) mode if it is permitted to apply the next exogenous excitation im
mediately after any activity is observed on any one of the output wires in response to the
currently applied exogenous excitation.

There are many suggestive examples that indicate the limits as well as ramifications of
fundamental and I/O mode operation. There are also many specific results that tell that
for certain well-known components, the I/O mode of operation is not safe; for example, the
most widely used asynchronous system building block—a C-element—can fail when operated
under the I/O mode[5]. In practice, such failures can be avoided by resorting to knowledge
about absolute gate delays[5].

3.2 Speed Independent .vs. D elay-Insensitive

The structure of a digital system can be viewed as a tuple (M , i , o , N) where M is a set
of modules; i (m) , m G M , are the input ports of module m, and o(ra) its output ports, and
N C V(L)m€M (i { m) U o(m))) are nodes—subsets of ports that are electrically connected.
Each module is a black-box about whose innards nothing is known.

Predicate speed-independent is true of a system if, under the assumption that wires have
zero delay, the system implements a certain logical behavior B independent of the actual de
lays of the modules themselves. Predicate delay-insensitive is true of systems that implement
a certain logical behavior B independent of the actual delays of the modules as well as wires.
We propose two memory aids to make these two terms more mnemonic: Speed-Independent
= Module-Speed-Independent, and Delay-Insensitive = Module-and-Wire-delay-insensitive.

Unfortunately, the above statements are far from being precise definitions! In order to
provide precise definitions, it is necessary to have a semantics for the specification language
in question, so that the concept of “a behavior B ” can be defined. Much controversy exists
in the field currently, because there is often a lack of either clear understanding or agreement
as to what the term “behavior of an asynchronous system” or “delay” means in general.

The situation has improved considerably, of late. Many theoretical models of asynchronous
system behavior have been very carefully defined. Precise definitions of speed independence
and delay insensitivity have been provided in the context of these works. Two recent impor
tant results are now listed. Udding [38] has identified four necessary and sufficient conditions
for delay-insensitive signaling. (These conditions will be illustrated in section 9.) Brzozowski
and Ebergen[4] have shown the impossibility of realizing certain basic components in a purely
delay-insensitive manner if only gates may be used.

SOME RECENT ASYNCHRONOUS SYSTEM DESIGN METHODOLOGIES 5

4 Terminology and Notations

A signal refers to a wire that carries a high (logical 1) or low (logical 0) voltage. If s is a
signal, s-f- is a signal transition where s is set to high, and s — is a signal transition where
s is set to low. 5+ is said to be the complement signal transition of s — (and vice versa). If
s is an output signal, then s-f- is read “generate s going high” . If s is an input signal, s+
is read “await s going high” [8]. (However, when talking about signals in general (without
considering their directions), we shall omit the underlines.)

A sequence a+; b— indicates that b— should come after a+. The notation c+ || d— says
that c-f- and d— can occur in parallel. The notation [a]* denotes zero or more repetitions
of a. The notations and ‘ ||’ can be combined, using parentheses if necessary, to specify
partial orderings among a set of signals. Given two partial orders R\ and i?2 over a set, Ri is
an augment of R 2 if Ri is equally constrained, or more constrained than i?2- 1° other words,
the graph of R\ has the same or more edges than the graph of i?2- When Ri is an augment
of R 2 1 R 2 is said to subsum e i?i[32].

In asynchronous systems, modules obey various signaling protocols. Four-phase signaling
is a protocol followed by two systems to synchronize their computations. In this protocol,
two systems are connected by a channel consisting of two wires req (for request) and ack (for
acknowledge). One end of the channel is called active (because it initiates the synchroniza
tion) and the other end passive [26]. req is an output for the active end, and ack is an input
for the active end (and vice versa for the passive end). The protocol at the active end is

re<j4-; ack-V\ req— ; ack— .

The protocol at the passive end is

r e q - \ a c k - \ req— ; ack — .

These are complete cycles of the four-phase protocol. Four-phase signaling is also called
return-to-zero signaling in literature.

In the two-phase signaling protocol, the interfaces skip the phase of returning the wires
to their former state; example: req-\-\ ack-\- is an active two-phase cycle. The next cycle for
this interface would be req —; ack—. Two-phase signaling is also called non-return-to-zero
and transition signaling in literature.

5 Introduction of the example QR42

Module QR42 can be used to connect two systems 51 and 52 as shown in Figure 2, where
51 follows four-cycle signaling and S2 follows two-cycle signaling. Such a situation can arise
(for example) while connecting two buffers obeying these two different signaling protocols.

6 GANESH GOPALAKRISHNAN, PRABHAT JAIN

Figure 2: Block Diagram of the QR42 System

Assuming that all the signals start at low voltage, one cycle of QR42’s activities that
realizes its requirement is

a~f~: c-(-; d-\-\ b + ; a,—; b — a,-\-; c— 5 d— ; b-\-; a— b—

However, this cycle is not the most efficient one, because the acknowledgement to 51 is not
generated until after an entire cycle has been performed on the 52 interface. To increase
throughput, QR42 has to overlap the executions of its interfaces as much as possible, as in:

((&+; a~) || (c+; d +))\ 6—; a+; ((&+; a—) || (c—; d—)); b—]* (1)

In this cycle, notice that 6+ and c+ are generated in parallel (as well as, later, b+ and c—).
This allows 51 and 52 to respond to these acks and do whatever internal processing that
needs to be done in parallel, thus enhancing the system throughput. Also notice that the
partial order implied by the second protocol subsumes that implied by the first protocol.
One of the basic ideas in speeding up asynchronous computations is to find that partial
order which is correct (with respect to a specification) and subsumes all other partial orders.

We now examine the specification and synthesis of QR42 using various approaches.

6 Design of QR42 Using Flow-tables

6.1 Primitive Flow-table for QR42

A flow-table has a row corresponding to each internal state, and a column corresponding
to each input combination (also called input state). A combination of an input state and
an internal state is called a total state. For every total state, a flow-table specifies the next
internal state and the output.

Synthesis using flow-tables starts with system specification in the form of a primitive flow
table. A primitive flow table has at-most one stable entry (see below) per row. The primitive
flow-table for QR42 is shown in figure 3.

We denote the next state and the output for the total state (<?,, Ij) by N(qi, Ij) and Z(qi, Ij)
respectively. If N (qi,Ij) = qi, then qi is said to be a stable state under input I j , and the

SOME RECENT ASYNCHRONOUS SYSTEM DESIGN METHODOLOGIES 7

state ad

00 01 11 10

1 1 , 00 - - 2, 11

2 3, 11 - 4, 11 H I ii
3 G O ii 5, 01 - -

4 - 5, 01 0 11 -

5 - [4 oi 6, 10 -

6 - 7, 10 © 1 0 8, 10

7 1, 00 0 1 0 - -

8 1, 00 - - 8 , 10

Figure 3: Primitive Flow-table for QR42

entry corresponding to <?,- is boxed in the flow-table. All other states are unstable, and their
entries are not boxed. State transitions are caused by input changes. If a transition from a
stable configuration (qi,Im) caused by changing 7m to In results in state qj, and is
not stable, the state changes again to N (q j,In), and continues to change within column In
until a stable configuration is reached.

For each row <?,- of the table, next state entries are specified for input states that may
follow the input state containing the stable state in row As an example of how to read
such a flow-table, assume that the system is in state 1 to begin with, with the current inputs
being 00. From the flow-table we see that the system is in the stable state 1. Now suppose
the input is changed to 10. From row 1 we see that the system performs a transition into
state 2 , and from row 2 of the flow-table, for input 10, we see that the system remains in
state 2. The entries in row 1, and inputs 01 and 11 are unspecified. The remaining entries
are specified similarly. Usually the number of states used to specify the problem via the
primitive flow-table are much larger than what is necessary to realize the specified function.
In order to represent the same behavior using a smaller number of states (for more economical
realization), a flow table reduction is performed, by capitalizing on the unspecified entries.
The reduced flow-table is shown in figure 4.

We now illustrate how to implement the compacted flow-table in terms of a gate/flip-flop
network. The first step is to perform state assignment. This is done by representing the
internal states by combinations of values of binary state variables. There are various state
assignment schemes such as connected row set assignment, shared row assignm ent, single
transition time assignment, etc. ([16, Chapter 6]). In our example, we find a simple Unicode
assignment (one code per state).

Once the state assignment is done, the next state and output functions can be defined.

8 GANESH GOPALAKRISHNAN, PRABHAT JAIN

state ad
00 01 11 10

A
B
C

A
B
A,

, 00
, 11
00

A
A,
C

. 01

01
1 10

C,
B_
C

10
, 11

, 10

B,
B_
C

11
, 11
1 10

Figure 4: Reduced Flow-table for QR42

A
B
C

2/i 3/2 ad
00 01 11 10

00

10

01

00

10

00,

, 00

, 11
00

00

00,

01

,01

01

, 10

01,

10

01

10

, 11

, 10

10,

10

01

11

, 11

, 10

Figure 5: Y, z-map for QR42

These functions can be presented in a tabular form shown in figure 5; such a table presents
the so called Y (next state) and z (output) maps.

From these maps, we obtain the excitation function for the flip flops that implement the
internal states. The equations are listed in figure 6 . A circuit can be obtained from such
equations using standard techniques.

7 Design of QR42 Using Signal Transition Graphs

In his dissertation[8], Chu has developed a methodology for synthesizing speed independent
circuits starting from input specification in the form of graphs called signal transition graphs

Yi = t/2 • a ■ d + t/i • t/2 • a + 2/1 • y 2 ■ d
Y2 = 2/1 • « • d + 2/1 • 2/2 • d + yi • y 2 ■ a

b = y 1 + y 2_
c = 2/2 • a • d + 2/2 • a ■ d + 2/1 • y2

Figure 6: Equations for next state (Yl5 Y2) and output functions (b, c)

SOME RECENT ASYNCHRONOUS SYSTEM DESIGN METHODOLOGIES 9

(STGs). Though Chu has provided a semantics for STGs based on live-safe free-choice Petri
nets, we shall provide a direct (informal) semantics for STGs in this paper.

Basically, an STG is a finite directed graph in which the nodes are signal transitions, and
the arcs are precedence constraints. An arc st\ —► st2 constraints signal transition sti to
be an immediate predecessor of s ^ 2 cannot occur unless all its immediate predecessors
have. If st\ —► st2, then st 2 is an immediate successor of sti. sti —► st2 means st2 is a
successor of sti. If a node label of an STG is underlined, the signal transition corresponding
to this node is of an input signal. Non-underlined transitions are those of output signals.
The distinction between inputs and outputs is maintained for many reasons, some of which
will be illustrated in the following.

Notice that if there are two arcs incident on a node n, all the immediate predecessors
of n are constrained to occur before n. In this sense, n serves the purpose of a join or
rendezvous point. In [8], STGs are treated as interpreted Free-choice Petri neis[31] where
STG nodes are modeled as Petri net transitions and STG arcs as Petri net places. Chu uses
many results from Petri net theory, which, in this paper, we shall present more intuitively
wherever possible.

A Petri net transition fires only when all its input places have at least one token. Firing
reduces the token count of the input places by one, and increases the token count of the
output places by one. A marking of a Petri net is an assignment of tokens to places. A
marking also tells where “control” resides. When an STG is provided, an initial marking
is also provided for it. It turns out that the class of Petri nets that model STGs always
satisfy the one token per loop restriction— the total number of tokens in all the places on any
loop must not exceed 1. Given this restriction, an initial marking need only specify a subset
of STG edges (which then are endowed with one token each). The STG that captures the
signaling requirements of QR42 is provided in figure 7(a). This STG specification captures
equation 1 directly. The initial marking of this STG consists of the edge leading into the
topmost a-f transition. Markings reachable from this initial marking are shown below: (Here,
a —► b is to be read: ‘the edge from a to b\)

• Corresponding to the upper half of the graph, we have the edges:

GANESH GOPALAKRISHNAN, PRABHAT JAIN

SOME RECENT ASYNCHRONOUS SYSTEM DESIGN METHODOLOGIES 11

{a--- > b-,c-\-- > <^+},

{ a --- > b-,d-\-- > 6— }

• the edge {6 ------> « + } , and

• and a set of markings (similar to the upper-half of the STG) for the lower half of the
STG also.

Notice that each such marking corresponds to a “cut” through the graph.
The synthesis procedure using the STG approach consists of the following steps:

1. Check the syntax of the given STG for liveness and persistency. If the STG does not
pass any of these checks, modify it appropriately (usually by augmenting it with extra
edges, section 7.1).

2. Derive the equivalent finite automaton of the STG and perform state assignment to
produce a state graph. Then examine this state graph and check for state assignment
problems, augmenting the specification with extra internal signals in case there are
state assignment problems (section 7.2).

3. From the state graph obtained in step 2, it is possible to obtain a circuit that realizes
the specification. However, the step of contraction applied to the STG of step 2 usually
yields more efficient circuits. So the remaining steps are: perform contraction on the
given STG to obtain many simple STGs, and map them to their respective state
graphs. From these state graphs, obtain a K-map representation, and the final circuit
corresponding to these K-maps. Assemble these circuits to obtain the overall circuit
(section 7.3).

7.1 Syntactic Checks and Transformations on STGs

The checks performed on STGs are for liveness and persistency. An STG is defined to be
live if it is strongly connected, and if in any of its simple cycles, for every signal t, transitions
t+ and t— alternate. The requirement of strong connection guarantees that after a signal
transition, the ‘next’ signal transition is always defined. The requirement of alternation
guarantees that a signal that has attained high voltage (representing, say, logic 1) will not
be again required to go high without first having gone low. Likewise a signal that is low
will first have to go high before being required to go low again. (Note that the definition
of STGs does allow for non-alternating transitions.) If an STG doesn’t meet these liveness
requirements, it is rejected.

Next we address persistence.

12 GANESH GOPALAKRISHNAN, PRABHAT JAIN

Definition 6 In an STG, if s t\ and s —► t2, and if s is the complement transition of t\,
then, in order to guarantee persistence, t2 —* ti must hold.

Persistence in this sense is necessary to guarantee speed independence, in Chu’s approach. In
the next section we discuss non-persistence due to state assignment (sometimes, referred to
as “the state assignment problem” in Chu’s sense). This latter notion of persistence, taken
together with the notion of persistence defined in definition 6 is necessary and sufficient to
guarantee speed independence, in Chu’s approach. .

Persistence means the following, as far as the behavior of a circuit is concerned. Suppose
a circuit element C is subject to the transition of a signal s on one of its inputs. Then,
signal s must last at its present state long enough for C to observe the value of s , and
moreover, no other signal t in the system must undergo a transition so as to cause another
(the opposite) transition on s meanwhile. (This notion is also related to what is called Semi
Modularity in [36].) An STG may be inherently persistent; or it can be made persistent by
adding extra edges in it, whose purpose is to delay the occurrence of the opposite transition
of signal s referred to above. Formally, in the given STG, if ̂ —»■ <i and s —► t2, and if s is
the complement transition of <i, and if t2 —► ti is not present, then add an edge (called the
persistency edge) somewhere in the STG (usually directed from t2 to <x) such that t2 —> t\.

However, there is a caveat: if tx is an input transition, then adding such an edge would
cause the in-degree of t\ to go up by one. A constraint that Chu’s approach imposes is
that input transitions (such as t\) have an in-degree of exactly one. This is explained as
follows. If we were to allow an input transition to have an in-degree > 1, it is tantamount to
imposing a constraint on the environment— that the environment generate t\ only after its
two immediate predecessor transitions have occurred. Constraining the environment in such
complex ways (e.g. to force the environment to wait for two responses from the system before
it is allowed to generate its next action) is not allowed in Chu’s approach. Such situations
are highly unusual in protocols such as return-to-zero for which Chu’s approach is largely
intended. Refer to [8] for further details.

Now let us proceed to make the STG of QR42 shown in figure 7(a) persistent. Notice
that in the upper-half of this STG, a+ —> a— and a+_ —► c+, but the constraint c-\-----► a—
does not exist. There is a similar situation in the lower-half, with c— instead of c+. Going
by our definition, it appears that one way to make this STG persistent would be to add
two persistency arcs, c-\-----► a— and c------► a—. However, this is not acceptable as pointed
out above. Therefore, we add the persistency arcs C+ —► b+ and c— —► b+ as shown in
figure 7(b), with the persistency edges labeled by the letter ‘p\

7.2 From ST G s to State Graphs

In this section, we obtain a state graph for QR42, and point out that it suffers from
non-persistence due to state assignment. We then show how to modify the STG suitably.

SOME RECENT ASYNCHRONOUS SYSTEM DESIGN METHODOLOGIES

Figure 8: State Graph for QR42

The state graph for QR42 is shown in figure 8. In this graph the nodes are states, node
labels are state assignments, and edges are signal transitions. If nodei —* node2, then the
state assignment of node 1 has bit corresponding to 5 0 and node2 has this bit set to 1.
Similarly if 5 — is the transition label, then these bits are 1 and 0 respectively. A state graph
can be arrived at in several ways. One way is to generate the set of reachable markings and
determine the state corresponding to each marking.

The initial state graph obtained can be such that there exist two distinct states Si and s2

carrying the same state assignment, and further, the set of transitions possible from Si and
s 2 will allow for “behaviors not called for in the original specification” . We refer to this as
non-persistence due to state assignment. We now elaborate on this point.

An STG specifies a partial order of signal transition occurrences. Any sequence occurrences
of signal transitions in the actual circuit must be consistent with this partial order. Now,
if at least one of the transitions tu possible from state Si is that of a non-input signal, and
likewise there is a non-input signal transition t2j from s2, and the occurrence of t2j can
disable tu from occurring, the following scenario is possible:

• The system reaches state Si;

• It is in effect in state s 2 also (because the state assignments of Si and s 2 are the same);

• So it takes t2 j',

• Therefore it cannot take tu\

• But tu was supposed to be possible in state Si!

Thus, the system does not meet its specification.
The reason why we chose tu and t2j to be non-input transitions is that it is precisely the

non-input transitions that a system can make autonomously (or endogenously). If all transi
tions were to be input transitions, then, the external world would decided which transitions
are taken, and so the problem alluded to above would not arise.

In the state graph for QR42 in figure 8 , there are two pairs of states which have the same
state assignment. Let us consider one of these pairs. For this pair of states, the transition of
the output signal c is non-persistent because the two signals b and c are enabled in the pair
of states and if transition on b is taken from one of them, the system goes to a state where
transition on c is disabled.

The obvious solution to non-persistence due to state assignment is to add an extra (inter
nal) signal x, and disambiguate the state assignments of Si and s 2 using x. Transitions of x
can be introduced in the original STG as shown in figure 9 and the state graph can
be re-obtained. Once the state graph is obtained, a Karnaugh map is constructed using the
concept of implied states of signals, and the final circuit obtained.

14 GANESH GOPALAKRISHNAN, PRABHAT JAIN

SOME RECENT ASYNCHRONOUS SYSTEM DESIGN METHODOLOGIES 15

The above steps will be illustrated in the next section, because, in practice, the approach of
net contraction yields more efficient circuits. In net contraction, several STGs are obtained
from the input STG, their state graphs are obtained, and these individual state graphs are
mapped into individual circuits which are then wired together.

7.3 Synthesis Through Net Contraction

SOME RECENT ASYNCHRONOUS SYSTEM DESIGN METHODOLOGIES

Figure 10: The Final State Graph

18 GANESH GOPALAKRISHNAN, PRABHAT JAIN

The final STG after the addition of two persistency arcs and the introduction of extra
internal signal x is shown in figure 9. The state graph corresponding to the final STG is shown
in figure 10. Though the final state graph can be implemented directly, or more efficient
circuit can be obtained by the decomposition technique. This decomposition technique is
based on a graph-theoretic operation called contraction. We will illustrate this technique
through our QR42 example. Only the output and the internal signals need be implemented.
In our example, signals b, c, and x need be implemented. For each output and internal
signal to be implemented, the input set is found. Input set I(i) pf a signal i is the set of
signals whose transitions cause the transitions of signal i. Or, in other words, the input set
of a signal i is the set of signals whose transitions are the immediate predecessors of the
transitions of the signal i in the STG. Once the input set of all the output and the internal
signals are found, the STG is decomposed in the smaller STGs, each of which contains the
transitions of the signals in the set i U /(&), for each i which is a non-input signal.

In the implementation, signals in the input set I(i) of a signal i form the input to the logic
element for i. The contracted net for a signal i (output or internal) is obtained from the
STG by eliminating the transitions of the signals which are not in the set i U I(i), in such
a way that the temporal relations among remaining transitions is preserved. The contracted
state graph for the contracted net of a signal is obtained using exactly the same technique
as discussed in the previous section. Contracted state graphs can also be obtained from the
top-level state graph by using the state graph contraction in the following way. To obtain
the contracted state graph for a signal i, the transitions of the signals which are not in the
set i U I(i) for a signal i (output or internal) are replaced by the empty transition e, and
then all states connected by e are collapsed into a new “superstate” . Thus, the state graphs
obtained from the contracted nets are themselves contracted versions of the top-level state
graph.

From a state graph, a logic implementation can be obtained directly. The logic function
of a non-input (output or internal) signal i can be obtained from the state graph as follows:

In state s , the implied value of signal t, denoted by f (s , i), is given by

f (3 i) = I s'(0 if 3s' e S : s
’ I ^(O otherwise,

s' A t = u

Where t. denotes a transition of signal i (either t+ or t_). The set of implied values of i
in all the states of the state graph constitutes the logic function /(*) of i. The K-map for
the signal i is obtained which contains the an entry corresponding to each state in the state
graph of i. The entry corresponding to state s of the state graph contains the implied value
of signal i in state s. The logic function f { i) can be determined from such a K-map for signal
i.

Any function of form x = S + x ■ R can be realized as a S/R flipflop with S and R being

SOME RECENT ASYNCHRONOUS SYSTEM DESIGN METHODOLOGIES 19

functions of other signals. In CMOS, such a configuration can be combined into a complex
DCVS gate, which will be no more complex than a C-element and is much simpler than a
direct implementation using S/R flipflop.

Once the logic function for every non-input signal has been obtained, the complete circuit
can be obtained by connecting these logic elements such that the input and output signals
of the logic elements are connected properly to satisfy the input set requirement of all the
constituent logic elements.

SOME RECENT ASYNCHRONOUS SYSTEM DESIGN METHODOLOGIES

Figure 12: (a)Without ‘y’; (b)With ‘y’; (c)SG for (b); (d)K-map for ‘y’

SOME RECENT ASYNCHRONOUS SYSTEM DESIGN METHODOLOGIES 23

b = c • x + c • x
y = a -c + y- c + y - a
c = a -c + y- c + y- a
x = a ■ x + d ■ x + a ■ d _

Figure 14: Logic Equations for signals 6, y, c, and x

Now, we illustrate the decomposition technique on QR42 example. The output and the
internal signals in the STG of figure 9 to be implemented are 6, c, and x. The input sets
of these signals are {a,c, x }, {a }, and {a, d} respectively. Contracted nets for these signals
based on their input sets are shown in figure 11(a), 12(a), and 13(a) respectively. Now,
let us consider signal b first. As seen in the figure 11(a), there is a redundant arc from a+
to 6+ which can be removed and the contracted STG for signal b can further be reduced to
the one shown in figure 11(b). In this STG (figure 11(b)), b has the input set {c ,x }. The
corresponding state graph is shown in figure 11(c). K-map for this state graph is shown in
figure 11(d). Logic equations can be obtained from the K-map.

The state graph for signal c has the state assignment problem due to a_ —* a+ arc with no
intervening transition of any other signal. To alleviate this problem, we introduce transitions
of an extra internal signal y to get the STG shown in figure 12(b). The state graph for this
STG is shown in figure 12(c). K-maps for y and c are obtained from this state graph and
are shown in figure 12(d) and figure 12(e) respectively.

Similarly, the state graph and K-map for signal x are shown in figure 13(b) and figure 13(c).
The boolean equations for the signals 6, y, c, and x are obtained from their K-maps and

are shown in figure 14.
The boolean equations for signals y,c, and x can be realized as SR-flip flops. From the

boolean equations of these signals, it is clear that the condition S • R — 0 for the SR-flip
flops is satisfied. Using the above implementation for the signals b, y, c, and x , we get the
final circuit as shown in figure 15.

8 Design of QR42 Using Trace Theory

For his dissertation [15] Ebergen has developed a technique for synthesizing speed-independent
as well as delay-insensitive circuits. The input to his procedure is a command specifying a
directed trace structure. This command is subject to semantics preserving transformations,
finally resulting in a set of commands that models a circuit. His technique is based on a
formalism called trace theory. Trace theory is also used as the basic formalism in [42,41,38].
Dill [13] uses a variant of trace theory, but does not use this theory for circuit synthesis. Its

use for circuit verification will be illustrated in the next section.

8.1 Directed Trace Structures

Taking an analogy with automata theory, trace structures are analogous to the pair
(ialphabet, language) of a finite automaton. Commands, that denote trace structures, are
analogous to regular expressions that denote the regular languages of automata. It may
help readers to try this analogy on the definitions to follow, keeping in mind, however, that
many of the operators used in trace theory have no counterparts in the traditional automata
theory (e.g. [21]).

In trace theory, specifications are given by means of a directed trace structure, which is
a triple (A ,B ,X) where A and B are finite sets of symbols and X C [A U B)*. The word
“directed” captures the fact that input and output directions of symbols (synonymous with
signal transitions as will be seen shortly) is retained. Here (A U B)* is the set of all finite
sequences of symbols over A U B — in other words traces. The alphabet of a directed trace
structure R = (A, B ,X) is A U B , and is denoted by aR. A, the input alphabet, is denoted
by iR; B , the output alphabet, by oi?; and the traces of R by tR.

Given two trace structures R and S and a set of symbols A, new trace structures may be
obtained by the following constructs:

Concatenation: R ;S = (iR U iS ,oR U oS,tRtS). i?; S is a trace structure whose input
alphabet is the union of the input alphabets of R and S, whose output alphabet is the
union of the output alphabets of R and S, and whose traces are the concatenation of
the traces of R and S.

Union: R | S = (iR U iS ,oR U oS,tR U tS) where the alphabets are united, and the trace
sets are also united.

Repetition: [i?] = (iR ,o R ,(tR)*), where the alphabets are retained, and the Kleene-closure
of the trace set is taken.

Prefix-closure: prefR = (iR ,oR , {t 0 | (3 :: ti . t0ti G tR)}). Here, the alphabets are
retained. If there is a trace t in R , all the proper prefixes of t are added to the trace
set of prefi?. For example, if tR = { a, abc, da}, then ^(prefi?) = {e, a, ab, abc, d, da}.
The prefix-closure operator is quite handy for capturing the true behavior of real world
systems. For example, if a real world system has the capability to produce a sequence
of actions abc, it could not have done so without first having produced the sequences
e, a, and ab. This set of sequences is precisely the one given by taking pref.

Projection: R J, A = (iR fl A, oR fl A, {t J, A \ t £ tR }). Here, portions of the alphabet that
overlap with A are retained, and only those symbols of tR that are contained in A are

SOME RECENT ASYNCHRONOUS SYSTEM DESIGN METHODOLOGIES 25

26 GANESH GOPALAKRISHNAN, PRABHAT JAIN

retained. This construct is handy in modeling a system whose “internal” signals are
of no interest for the outside of the system, and hence can be projected away.

Weave: This is a powerful operator used usually for writing the specification of systems
exhibiting a large amount of concurrency. Its definition is

R || S = (iR U iS, oR U oS, {t £ (aR U aS)* | t J, aR £ tR A t J. aS £ tS})

The input and output alphabets are united. The set of traces of R || S is a subset
of (aR U aS)* such that if t is in this subset, then t is consistent with R ’s behavior
(t J. aR £ tR) and t is consistent with S ’s behavior (t J. aS £ tS). As we shall see
soon, || is used usually as follows: specify various facets of the system behavior (in the
form of R and S'); then take the conjunction of the constraints implied by these facets
(obtain R || 5).

As an example to further illustrate ||, the behavior of QR42 can be specified by specifying the
behaviors of its two interfaces separately (the “facets”), and then specifying the constraints
that exist between the actions of these facets by using ||.

8.2 Commands

Commands denote directed trace structures. The BNF for commands that we consider,
and the directed trace structures that they denote, are now presented. We use dts(cmd) to
denote the directed trace structure of command cmd.

cmd ::= a?, denoting ({a }, 0, {a})
| a!, denoting (0, {a }, {a})
|!a?, denoting ({a}, {a}, {a})

cmd\\cmd2 denoting dts(cmd\)\dts^cmdi)
cmdi || cmc?2 denoting dts(cmdi) || dts(cmd2)
cmdi | cmc?2 denoting dts(cmd]) \ dts(cmd2)
[cmd] denoting [dts(cmd)]
prefcmd denoting prefdts(cmd)

In the trace model, a commonly used interpretation for an occurence of a symbol such
as a is that of a signal transition on a terminal of a component— high going, or low going.
The signaling discipline employed is what is commonly known as transition signaling or non-
return-to-zero (NRZ) signaling [35]. It is possible to realize circuits employing four-cycle
signaling by making sure that there are an even number of alternating signal transitions
in any cyclic activity; however, there are many inherent advantages to employing transition
signaling and most of Ebergen’s circuits are synthesized in this style. By way of examples, we
specify a unidirectional W IR E , a M E R G E , a C -E L E M E N T , and a T O G G L E using the command
notation (figure 16). These will be the primitives used in QR42.

SOME RECENT ASYNCHRONOUS SYSTEM DESIGN METHODOLOGIES

Wire

Merge

C-element

Toggle

Figure 16: A Wire, Merge, C-element, and Toggle

28 GANESH GOPALAKRISHNAN, PRABHAT JAIN

8.2.1 A Unidirectional WIRE

A WIRE conducts transitions from one of its terminals to the other terminal. The command
describing a WIRE is

pref [a?; 6!].

This denotes the trace structure

{ {a } , { b } , { e ,a ,ab ,a ba , . . . }) .

By examining the possible traces, it becomes clear that each trace captures a ‘moment in the
lifetime’ of a w ir e — a complete record of the role it has played in the system thus far. For
example, the trace a specifies that moment in a w ir e ’s lifetime, where it has been subject
to an a input, but has not responded yet with a b output. Notice that it is wrong to write
the WIRE’s behavior as

[a?; H],

because it allows for the traces e, ab, abab,. .. only; this does not capture those moments
where the WIRE has been subject to an excitation but has not responded.

Notice also that we exclude aa from the trace set, for this connotes “data overrun” or
“choking”— a situation in which the WIRE has been subject to the next excitation before
it has responded to the current one. As we shall see in section 9, the prohibition of such
traces is necessary for guaranteeing delay-insensitive behavior. In the case of the WIRE, the
environment of the WIRE has to ‘cooperate’ with it by first applying an a and waiting for a
b before another a is issued.

Thus commands that describe circuit elements are chosen to be prescriptions for safe
usage so as to get a certain I/O functionality. Commands are not descriptions of all possible
behaviors.

8.2.2 A M e r g e Element

A MERGE, usually realized by an XOR gate, merges signal transitions on its inputs. The
command that describes its behavior is

pref[(a?|i?); c!].

This allows for either a or 6 to be subject to a transition; the environment then waits for c
to respond before a or b is excited again.

8.2.3 A C-ELEMENT

A C-ELEMENT, also known as a rendezvous element, awaits transitions on a and b in some
order before it produces a transition on c. Its behavior is captured by the command

pref [(a? || 6?);c!].

SOME RECENT ASYNCHRONOUS SYSTEM DESIGN METHODOLOGIES 29

There are many different commands that describe the same behavior. Command

pref[(a?;d) || (6?; c!)]

also captures a C-ELEMENT’s behavior. The weave of a ? ; d and 6 ? ;d allows an a? and a b?
to occur in either order, followed by the occurrence of a c!, before a? or 6? can occur again.
Yet another way of writing the behavior of a C-ELEMENT is

pref[a?;d] || pref[6?; d].

In Ebergen’s technique, it is important to have many such alternative descriptions available
for a circuit element, so that the semantics preserving transformations may be directed with
greater flexibility towards any of the many equivalent “patterns” (commands).

8 .2 .4 A TOGGLE

A TO G G L E steers every even numbered (starting to count from 0) transition on a into 60
and every odd numbered transition on a into 61. Its behavioral description is

pref[a?; 60!; a?; 6l!]

8.3 Specification of QR42

The QR42 system can be specified in Ebergen’s notation by command E:

E = pref[a?; ((6!; a?) || (d ; d?)); 6!].

The sub-command a?; ((6!; a?) || (d;<f?));6! is repeated. All its prefixes are also allowed,
because of the pref operator applied to the repetition. The sub-command allows an a! to
occur first. Then, the sequences 6!; a? and d;<f? are woven. Since these sequences do not
share any symbol, (by studying the definition of weave) it may be concluded that these two
sequences are completely concurrent. Once they both have occurred, action 6! can occur.
Thus, notice that an a? is allowed, followed by a 6!, followed by another a?. However,
at this point, a 6! is delayed until a d has been issued and a <f? has been received in
response to it. Thus, a four cycle handshake is completed on a, 6 only after a two cycle
handshake is completed on c, d, but the systems connected to the interfaces are allowed to
work concurrently.

After writing such a specification, one can gain confidence in its correctness through several
means, but mainly by proving a “catalog” of desired properties based on it. Ebergen’s
approach is elegant in the sense that the proof of such properties is well supported through
a detailed body of mathematical results developed in [15].

There is an algorithm described in [15], but this is a very general algorithm and does not
yield the optimal result in most cases. To obtain an optimal result, we have to resort to
heuristics and experience. The situation is similar to algorithm design.

30 GANESH GOPALAKRISHNAN, PRABHAT JAIN

We illustrate one such sequence of rule selections on the QR42 system. A general treatment
of the various rules, and when they are appropriate, is beyond the scope of this survey. All we
hope to convey through the following section is the overall nature of the semantics-preserving
transformations.

8.4 Synthesis Step 1: Factoring

The first step in the QR42 example is (what we call) the factoring step, where a series of
semantics-preserving transformations are applied to the original specification (a command)
to obtain a command in a form amenable to applying the decomposition step.

We take command E and identify distinct occurrences of a and b in it, calling the first
occurrence of a ao and the second ai. As we shall see momentarily, internal signals ao and
ai can be generated within the system by using a T O G G L E . The main advantage gained is
that whenever any one of the signals a0, a\, b0, i>1; c, or d undergo a transition, the state of
the system is determined uniquely, because these signal transitions occur exactly once in a
cycle of activity. Using this idea, we first study the command E' as

£ ' = pref[a0?;((&0!;ai?) || (c!; dl)); fê].

This can be rewritten as

E ' = pref[a0?; b0\; ai?; V] || pref[a0?; c!; d?; V]-

The idea behind this transformation is to move || outermost. This form is preferred, because
it lends itself to the step of decomposition. The correctness of this command can be verified
by noting that the ‘weavands’ (arguments of the weave operation) both begin with a0? and
end with i>i!, and have different characters in the middle. In such commands, the occurrence
of the a0? and of the weavands correspond (or synchronize), and the actions in-between
can occur in any order.

Now we notice that the occurrence of ao causes bol in the first weavand, and c! in the
second. When this situation occurs, a fruitful direction in which to guide the synthesis
approach is to introduce an internal signal \X\? after ao in both the weavands. Likewise, we
notice that after ai? in the first weavand and d? in the second weavand, bx occurs in both
weavands, and so we introduce \X ?̂ before fej! in the weavands. Internal actions of the form
\X? are both inputs and outputs; they will end up being inputs for certain internal elements,
and outputs for certain others. Now, E has been rewritten to

E '= (pref[a0?;!X i?;& o!;ai?;!*2? ;M || pref[a0?; !* !? ; d; dV, \X2V, 6,!]) | {a0,ai,6d,6i,c,d}

Let us call the weavands E\ and E 2.

8.5 Synthesis Step 2: Decomposition

One of the most important concepts in Ebergen’s work is that of decomposition. In this
section we digress a bit from the development so far and present the theory and intuition
behind decomposition. Then we shall apply decomposition to E\ and E 2 obtained above.

Decomposition is a relation between a command and a list of commands, and is written
thus:

E ^ (E u . . . , E n).

This is to be read: E is decomposed into (E i , . . . , E n). The intuition (and purpose) behind
decomposition is to decompose a complex command E into a list of simpler commands
E i , . . . , E n such that if these simpler commands are, in turn, realized as circuits Cj , . . . , Cn,
then interconnecting these circuits to form a circuit C guarantees that:

• C is well-formed. In other words, C when connected to its environment (call it C)
is such that: (i) it has no unconnected (“dangling”) inputs or outputs; (ii) no two
subcomponents of C have their outputs connected together;

• The closed system consisting o fC together with its environment C is speed independent.
In other words, neither the environment C nor any of the subcomponents C\, . . . , Cn of
C will ever be in a state such that: (i) the subcomponent is in a position to produce a
certain output signal a; (ii) none of the connected subcomponents are in a position to
accept a. In other words, no component will be subject to computation interference.

• The interconnection of C with its environment C becomes a closed system that can
“run all by itself” . (In fact it has no inputs or outputs available any more.) This closed
system exhibits all the traces that were called for in the original specification.

More precisely, to define when E and E \, . . . , E n are in the decomposition relation, we first
define the reflection of E , that models the environment. This process is denoted by E . The
directed trace structure of E is obtained from that of E by swapping the input and output
alphabets of E , and retaining the same traces of E , except that every output action of E is
changed to an input action of E , and vice versa. E models the environment of E because:

• It is capable of supplying any event that is awaited by E\

• It is capable of accepting any of the events generated by E;

• Its state transitions match those of E , so that the above correspondence between E
and E is maintained.

In fact, it is a notable feature of Ebergen’s work that when a command E is synthesized
into a circuit, that circuit is guaranteed to work only for environments that conform to E.
This notion of conformance is also used by Dill (discussed in section 10).

SOME RECENT ASYNCHRONO US SYSTEM DESIGN METHODOLOGIES 31

32 GANESH GOPALAKEISHNAN, PEABHAT JAIN

E i

rG
a0l

&o?

ai'.

M 0

p r e f la o t iX i l

Xx\ a0?
v

L o
Mj

pref[X\!\ 60!] p ref[a j] X 2'.\ p ref[X 2 l\ ^!]

rG)
W

m 2

r 0
x2\ an

L o
m 3

&l! J*’T L0
M a

Figure 17: An Example Showing Decomposition

Definition 7 Process A conforms to process (written A ■< B) B if (i) A accepts all the
inputs that B does, and (ii) A does not generate an output unless B does so.

An environment E E that conforms to E is a “lesser” environment, in that it demands less
of E than E does, but is willing to accept anything that E can.

Now we define the decomposition relation more formally. Let E q = E . Then E and
E\, . . . , E n are in the decomposition relation if:

No unconnected I /O : The system E q, . . . , E n is closed;

No clashing outputs". The system E 0, . . . , E n has no two outputs tied to each other;

Simulation is Correct: Conduct the ‘simulation’ of Eo, . . . , E n as follows:

• Represent the commands Eo, . . •, E n by their equivalent finite-state diagrams. We
are assuming that Eo, . . . , E n are || free commands, and for such commands, the
finite-state diagram is easy to obtain. Some examples are provided in figure 17.
This figure illustrates the decomposition of command E i.

• Start E q, . . . , E n in its start state;

SOME RECENT ASYNCHRONOUS SYSTEM DESIGN METHODOLOGIES 33

• If none of Ei is in a position to produce an endogenous action, then the simulation
stops;

• Otherwise, for every member of the set E{, . . . , Ej of systems capable of performing
an endogenous action, (with £* used as a representative in the following) do:

— Perform one of the endogenous actions a possible for E (Repeat this for
every such action a possible.) This action is necessarily an output action.

— For all remaining Ei whose input alphabet contains a, check that these com
mands can accept a. If not, then there is computation interference and the
decomposition relation does not hold between E and E \,. . . , E n. Were such a
decomposition to be attempted, “choking” would result.

— Assuming that all the processes whose input sorts contain a are receptive to
a (check for “no choking” passed in the previous step), advance the state of
all these processes, as well as that of the process generating a.

— Repeat the above steps until no more new states are visited.

• Every trace specified in E may occur in the simulation.

8.5.1 Example of Decomposition

Let us check if the following decomposition relation is true:

Ei -» (pref [a0?; A^!], pref[A^?; 6q!], pref[ai?; X 2 l], p r e f ^ ? ; 61!]).

Recall that

Ei = (pref[a0?;!A r1? ;60!;a i?;!A r2? ;6i!]) J. {a0,&0, a i , M-
= pref[ao?;6o!;ai?;6i!].

The finite-state diagrams of E\, and the commands it (supposedly) decomposes into, are
shown in figure 17. All these “machines” are initially in their state 0. The state of the
simulation is the tuple (0 , 0 , 0 , 0 , 0).

1. The only machine capable of an endogenous action, a0!, is M q. The only machine
which has ao in its input sort is M\. It is capable of accepting a<j. So advance Mo and
Mj. The state of the simulation is (1, 1,0 ,0 ,0).

2 . Now alone is capable of an endogenous action, namely X i!. is in the input
sort of M 2 which is in a position to accept it. The simulation state is advanced to
(1 , 0 , 1 , 0 , 0).

3. Now M 2 alone is capable of an endogenous action, namely b0\ which is accepted by
M 0. Following this action, the simulation state is advanced to (2,0 ,0 ,0 ,0). By similar
reasoning, (3 ,0 ,0 ,1 ,0), (3 ,0 ,0, 0,1), and finally (0 ,0 ,0 ,0 ,0) are attained.

34 GANESH GOPALAKRISHNAN, PRABHAT JAIN

4. Since (0 ,0 ,0 ,0 ,0) is re-visited, the simulation can be stopped.

In this example, at every simulation state, only one endogenous action was possible. If more
than one endogenous action is possible, the simulation is, in effect, forked into as many
simulations, and these possibilities are pursued separately.

From the above example, we can see that the claimed decomposition is indeed correct.
Likewise, we decompose E 2 into

E 2 - * (preffao?;^ !], pref[Xi?;c!], pref[rf?;X2!],pref[X2?; 6i!]).

8.6 Synthesis Step 3: DI Decomposition Check

Decomposition guarantees speed independence as explained in the previous section. How
ever, for delay-insensitive behaviors, what is known as delay-insensitive decomposition (DI
decomposition for short) is to be performed. One easy way to do this is to perform ordinary
decomposition and then verify that the components obtained are all D I components.

DI components are those that exhibit the D I signaling protocol. This concept has been
extensively studied by both Ebergen and Udding (we shall discuss the latter’s work in sec
tion 9). Udding was the first to characterize a DI component formally by means of trace
theory. Ebergen gave an alternative characterization by means of the decomposition relation,
which turns out to be equivalent to to Udding’s [15]. In [13] yet another, also equivalent to
udding’s, characterization can be found. Dill’s verifier can verify if a component satisfies the
DI signalling protocol. In [15] a syntactic check for commands is described. (This is one of
the significant recent results in the area of asynchronous system design.)

Any component whose behavior is described by commands of the form

pref [a?; 6!]

is a DI component. Since our decompositions yield only such components, we have, in effect,
achieved a DI decomposition without further ado.

8.7 Synthesis Step 4: Application of Separation Theorem

The Separation Theorem is one of the important theorems applied during design refine
ment. Due to lack of space, we resort to a correct, but perhaps less formal statement of the
theorem.

Definition 8 Suppose E — E\ || E 2. Suppose E\ and E 2 have been decomposed into
E u , • • •, Eui and E 2i , . . . , E 2 i2 respectively. Divide

E s = { i ? n , . . . , E\Vj} U {E 2 i, . . . , £ 2 12 }

into a set o f clusters c/l5 . . . ,c /m such that:

SOME RECENT ASYNCHRONOUS SYSTEM DESIGN METHODOLOGIES 35

Figure 18: Circuit Synthesized Using Ebergen’s Approach

• The union o f the clusters = E s ;

• F or every cluster that has m ore than one element, the elements o f that cluster taken
pairwise are found to share at least one output sym bol;

• A n element from one cluster does not share an output port with any element from any
other cluster.

Apply the weave operator to each cluster— written as || c/,-. (Since || is commutative and
associative, this notation means the repeated application o f || to the elements o f cl{.) Call
these com m ands parcl\ , . . . , parclm. Then,

E —> (parcli, . . . ,parclm).

In our example, we can identify only one cluster containing two elements:

{p re f[a x?; X 2\], p re f [d?; X 2!]}.

All other clusters have only a single element.
Thus,

E -» (p re f[a 0?; A'j!], p re f[X j? ; b0\],

p r e f f a ? ; ^ !] || p re f[d ? ;X 2!],
p r e f [X 2?;6x!], p r e f ix ? ; c!]). (2)

8 .8 S yn th es is S tep 5: Id e n tif ic a t io n o f th e P r im it iv e s

At this stage, we are in a position to match the result of the decomposition with standard
asynchronous components. The overall approach is the following:

36 GANESH GOPALAKRISHNAN, PRABHAT JAIN

• Treat the right-hand side of equation 2 as a network of components.

• Generate a0 and aa from a using a T O G G L E .

• We notice that whenever there is a ao?, an is generated. A unidirectional W IRE
will achieve this behavior. Likewise, X x"l causes a d , X x1 causes a b0 l, and X 2 ? causes
a V , all of which are achieved by w i r e s .

• Whenever there is an ai? and a d? in either order, an X 2l is generated. A C -E L E M E N T
will achieve this behavior.

• A b is generated whenever there is a b0 or a by. This is achieved by a M E R G E element.

• The final circuit using these components is shown in figure 18.

9 Characterizing Delay Insensitivity

In his dissertation [38], Udding has stated and proved four necessary and sufficient con
ditions for a circuit specification to be called delay insensitive. Circuit specifications are
expressed in a language of commands. Commands denote directed trace structures. But for
a few minor syntactic differences, Udding’s notation is similar to the one used by Ebergen.
In this paper we shall discuss Udding’s work using Ebergen’s notations. In the following,
we shall refer to trace structures by T , and denote its traces (its trace set) by tT and its
alphabet by aT.

9.1 Absence of Transmission Interference

The first condition, referred to as R q, helps prevent transmission interference. Suppose a
system generates a signal transition a+ on a wire and very soon thereafter generates an a—
on the same wire. Since nothing can be assumed of absolute or relative delays of wires in
a circuit, a “runt” pulse can form on wire ‘a’. (A runt pulse is one which rises partly to a
logical value (one or zero), but before it attains this logic value, proceeds to change in the
other direction. The amplitude of voltage swing of a runt pulse can, in the worst case, be
zero.) This is a well-known source of circuit malfunction. Transmission interference is one
of the sources of non-persistence (or “choking”) referred to, earlier.

Condition R q helps prevent transition interference. It prevents a system from sending or
receiving two consecutive signal transitions on a wire. More precisely,

s £ tT =$■ saa tT , f o r a £ aT

As an example, in all hand-shake protocols, request and acknowledge alternate. Two
requests or acknowledges that immediately follow one another are never issued.

SOME RECENT ASYNCHRONOUS SYSTEM DESIGN METHODOLOGIES 37

9.2 Non-Reliance on Relative Delays

The second condition, referred to as i?i, helps prevent two signals arriving in “opposite
order than expected” . Consider a system which waits for a signal a to arrive first, then
a signal 6, and then proceeds in its computation. Suppose the system considers it to be
erroneous if b were to arrive first. If signals a and b of the system were to be connected to
the external world via actual wires that have unknown delays, then, regardless of the order
in which the environment of the system transmits transitions on a and b, it is possible for
the system to receive a b first.

Condition i?i asserts that if a system accepts the order ab of signal arrivals, it must also
accept the order ba. More precisely, for traces s ,f G tT , and for symbols a, 6 £ aT of the
same type (i.e. a and b are both inputs or both outputs), sabt £ tT sbat £ tT.

As an example, the C-ELEMENT accepts its inputs in either order before it generates its
output.

9.3 Absence of Computation Interference

This condition, referred to as R'2, helps avoid computation interference as well. (Condition
a condition stronger than R 2, is introduced by Udding in his paper.) Computation

interference is said to occur when a signal arrives at a system which is not in a state where
it is prepared to accept the signal. Computation interference is the other source (over and
above transmission interference) of non-persistence.

Following Udding’s terminology, let us refer to the system under study as mechanism. Let
the mechanism have two input signals a , c and an output signal b . Picture these signals
being connected to the environment by very long wires with arbitrary delays. Let the other
ends of the wires be referred to by a, b and c. We write x < y to mean x occurs before y.

Though the wires have arbitrary delays, due to causality, we have a < a . In other words,
an a is input at the environment’s boundary before it is input at the mechanism’s boundary.
Similarly, b < b. So, if b < a, then b < a . However, if a < b, then both b < a and a < b
are possible. Thus, it is possible for the environment’s boundary to be experiencing a trace
sabt, s, t £ tT , whilst the mechanism’s boundary is experiencing the trace sb a t. However,
if the mechanism does not have a trace sb a t, then this possibility does not arise.

We are now going to leave out the primes associated with a etc., as they were introduced
only for notational clarity. (In studying DI circuits, wires are not explicitly modeled in the
above fashion by giving distinct names to their ends.)

Condition R '2 is
sabtc £ tT A sbat £ tT =>■ sbatc £ tT

With respect to the explanation given above, this means that if sabtc is a possible trace at
the environment’s boundary, and if sbat is a trace possible at the mechanism’s boundary,

38 GANESH GOPALAKRISHNAN, PRABHAT JAIN

then sbatc must be possible at the mechanism’s boundary.
In other words, as we saw above, the environment could be doing the sequence sabt while

the mechanism is engaging in sbat. Now, if the environment attempts an extension of the
trace sabt to sabtc, then the mechanism must be prepared to allow the extension of sbat
to sbatc. If not, the mechanism will find itself subject to a c that it is not prepared to
accept— or computational interference will result.

This condition is not that easy to fathom. Refer to [38] for more examples.

9.4 Proper Arbitration

This condition is referred to as R3. (Udding also presents two stronger conditions R 3 and
R 3.) An arbiter can make a choice between two inputs— in other words, the acceptance
of one input by the arbiter is tantamount to the refusal of the other input. Similarly,
many asynchronous systems make autonomous non-deterministic decisions, where it choses
between two outputs; in this case, the choice of one output is tantamount to the rejection of
the other. (E.g. a “coin tosser” circuit.)

Udding’s last condition states that an input may not cause an output to be refused, and vice
versa. Let us do a case analysis and see why this is desirable. Suppose the mechanism is in a
state where it is faced with the choice between accepting an input and generating an output.
Suppose it chooses to generate the output. The environment has no immediate way of
knowing that this choice was taken by the mechanism (because the wire from the mechanism
to the environment can be very slow), and so the environment can end up generating the input
to the mechanism which the mechanism chose not to accept. This can result in computation
interference. The complementary situation is similar. Condition R3 states

sa £ tT A sb € tT =>■ sab € tT

where a, 6 € aT and a, b are of opposite type.

9.5 Checking Udding’s Conditions on QR42

The traces of QR42 are more readily seen if the command describing its behavior is written
as

a?; 6! a?; cl d? 6!
a?; 6! d; a? d? 6!
a?; 6! cl;d? a? bl

a?; cl bl;a? d? bl

a?; cl bl-,d? a? bl

a?; cl d?;bl a? bl]

SOME RECENT ASYNCHRONOUS SYSTEM DESIGN METHODOLOGIES 39

None of the alternatives contains two consecutive occurrences of the same symbol. Each
alternative begins with an a? and ends with a 6!, and hence the repetition of the alternatives
will not give rise to two consecutive occurrences of the same symbol. Hence, condition R0 is
satisfied, and so QR42 is free of transmission interference.

Coming to condition Ri, the only two pairs of symbols of the same type that can appear
consecutively are (b, c), and (a,d). We can see that for any trace of the form sbct where s
and t are traces, scbt is also a legal trace of QR42. Similarly for a trace of the form sadt,
sdat is also a trace of QR42. Hence condition Ri, non-reliance on relative delays, is satisfied.

Checking R'2 by studying the different traces requires extensive case analysis. A formal
proof is to be preferred. However, here we take one example and show R ̂ for that example.
Consider the input symbols a, d and output symbol b. If R2 holds, sactd A scat =$- scatd,
for s, t £ tT. Trace abacd is in tT , and this matches with sactd for s = ab and t — t. Trace
abca is in tT, and this matches with scat, again for the same s and t. However, we see that
abcad, which matches with scatd, is also in tT.

Finally, let us check R3. Consider b and d to be the symbols of opposite types. It is to
be checked that sa £ tT and sb £ tT implies sab £ tT. As an example, acb £ tT and also
acd £ tT. We see that acbd £ tT and also acdb £ tT.

Since the command describing QR42 is repetitive, a formal proof of the above conditions
through induction is possible but tedious.

10 Verification of Asynchronous Circuits

In this section, we first introduce the notion of conformance and present two uses of this
notion for asynchronous circuit verification.

10.1 Conformance

Given two modules M i and M 2, if M 2 implements a subset of the traces of M i, it is, in
general, not “safe” to substitute M 2 for M\ in an arbitrary context. For example, if the
command of a C-ELEMENT is reduced to

pref[(a?; 6?); c!]

then clearly it is not safe to substitute this “C-ELEMENT” for a genuine C-ELEMENT. As
an example, the environment can generate a b action after it has received a c action, thus
choking this “C-ELEMENT” . (Also, notice that Udding’s condition Ri is violated by this
“C-ELEMENT” .)

Now, consider the command describing the “quick return” unit QR42, and also commands
describing two variants of QR42:

40 GANESH GOPALAKRISHNAN, PRABHAT JAIN

E = pref [a?; ((bl; a?) || (c!; </?)); 6!].

MR42, a ‘medium-speed return unit’:

pref [a?; ((6! || c!); (a? || <*?)); 6!].

SR4 2 , a ‘slow-speed return unit’:

pref[a?; c!; </?; 6!; a?; 6!].

We notice that:

QR42:

• Both M R 42 and SR42 implement a subset of the traces of QR42.

• Yet, it is safe to substitute SR42 for QR42, but not M R 42 in any context, and not
lead to any choking. (The operation of the overall system would slow down as SR42
has no parallelism exhibited by QR42.)

What is it that makes the subset of traces provided by M R 42 and SR42 “special”?
The answer to this question provided by Dill is through the notion of conformance given

in definition 7 [14]. Basically, SR42 conforms to the behavior of QR42. Thus, SR42 accepts
all the inputs that QR42 accepts and does not generate an output unless QR42 does so. (If
not, it could cause failure of the surrounding circuitry when QR42 would not have.)

For a given input and output alphabet, conformance is a partial order, with a least element
that conforms to all other modules. For example, the least element in the conformance
ordering over the input alphabet a, d and output alphabet 6, c is

pref[a?|rf?].

This module, called a universal do-nothing[\2>] can be realized using a block of wood with
two nails labeled a and d driven into it, spaced apart! This fact graphically illustrates that
when M 2 conforms to M 2 will be required to do no harm, but not required to do any
good!

10.2 Using Conformance Checking for Verification

Having introduced conformance, we are now in a position to illustrate two of the verifica
tion techniques proposed by Dill. (These techniques are, in effect, also captured by Ebergen’s
definition of decomposition.)

SOME RECENT ASYNCHRONOUS SYSTEM DESIGN METHODOLOGIES 41

10.2.1 Verification for Speed Independence

• Let T$ be the trace structure specifying the desired behavior of a circuit.

• Let T/ be a claimed implementation of the circuit.

• T/ is a speed-independent circuit realization of Ts if X/ ■< Ts.

Relation ^ is established in Dill’s verifier as follows: ,

• The environment “implied by” Ts, called the reflection of Ts in section 8 , is denoted
by Ts .

• Ti ^ Ts if the simulation (in the sense of section 8) of T/ and Ts does not fail due to
choking.

• Dill introduces the operator |, a function from two trace structures to a trace struc
ture, that denotes the effect of “parallel composition” , or “simulating the concurrent
behavior” of two trace structures. In terms of |, 7 / ^ Ts if X/ | Ts is free of failures
due to choking.

10.2.2 Verification for Equivalence

As noted before, a universal do-nothing module over a certain alphabet conforms to any
behavior over the same alphabet. Clearly, something more than conformance, which is
merely a partial order, needs to be checked in order to certify purported implementations of
given specifications.

In Dill’s approach, in order to certify that T/ is equivalent (with respect to traces accepted

and generated), to Ts, it is necessary to establish conformation equivalence, =? '. Tj = Ts
if Ti ■< Ts and Ts ^ X/.

10.3 Illustration of the Verifier

In this section we illustrate the use of Dill’s verifier for the following tasks: (a) certify the
circuit obtained using Ebergen’s technique to be speed-independent; (b) certify the circuit
obtained using Chu’s technique to be speed-independent.

Consider task (a). The steps in this verification are as follows:

1. Specify the desired behavior of QRA2 by presenting a finite state machine that has the
desired traces;

2. First specify the components used in the circuit in figure 18 using state machines; Then
specify the interconnection among these components to form the realization;

42 GANESH GOPALAKRISHNAN, PRABHAT JAIN

3. Invoke the function conforms-to-p of the verifier.

Ebergen’s circuit was successfully verified by the verifier, for absence of speed independence.
However, the circuit in figure 15 exhibited a choking error, as shown by the following excerpt
from a terminal session with the verifier:

(conforms-to-p (qr42-imp-chu) *qr42spec*)
Error: Choke in component 2, which is ... (essentially the gate N0R2)
Path: (A S-IN1 N0TUSED1 C B A) .

The verifier indicates that the problem lies in gate NOR2. It also prints out the sequence of
signal transitions leading to the error. The above printout shows, against Path:, that

• An a input came, and caused transitions on s-inl, and notusedl. It also caused a
transition on c, which caused a transition on b.

• This last b transition caused an a transition to be generated by the system.

• It can so happen that N0R2 has not yet responded to the first a transition. If this is
the case (and this is the choking error that the system reports), then when the second
a comes, it can cancel the change in output that N0R2 was about to schedule on its
output; in other words, N0R2 chokes!

Does this mean that Chu’s technique is flawed? Or, is Dill’s notion of conformance too
strong?

10.4 A Deeper Analysis of Chu’s Technique

To answer the above crucial question, we considered the simplest possible situation in
which we could think of recreating the same error condition. It turns out that we can
recreate the situation on the design of a wire!

Consider a unidirectional wire with input a and output b specified using Signal Transition
Graphs (STGs). We name a node of the STG wire, and specify the graph through the
following simple tail recursion:

wire = aH---- ► b-\-----► a------► b------► wire

The technique of section 7 can be applied to obtain a state graph, perform state assignment,
obtain a Karnaugh map, and finally, as is to be expected, the technique yields the boolean
equation b = a. Now how do we implement this equation? One way is to simply provide a
wire. Another way is to use two inverters in cascade. Yet another way is to use the circuit
shown in figure 19. This circuit does not conform to the behavior of a wire, according to

SOME RECENT ASYNCHRONOUS SYSTEM DESIGN METHODOLOGIES 43

a

Figure 19: Wire Implemented as a Buffer and an Or gate

Dill’s verifier— specifically, the sequence a; b; a can cause the buffer to choke, assuming that
it is very slow.

Here is the answer to all these apparent “problems” with Chu’s technique. His synthesis
technique assumes that for every circuit synthesized from the boolean equations obtained
from the state graphs, all the internal nodes of the circuit stabilize before any output node
of the circuit changes in value. Therefore, the choking errors reported by Dill’s verifier can
be ignored, and it becomes the designer’s responsibility to make sure that this fundamental
mode assumption is satisfied.

There is yet another place where caution is to exercised with the circuit of figure 15. (We
had to observe this possible error manually, as Dill’s verifier did not get past the choking
error in gate N0R2.) When the signal d makes a transition, it is possible for FF3’s s and r
inputs to be momentarily set to a 1. This problem can be avoided by using a reset dominant
SR flip-flop in place of FF3.

11 Concluding Remarks

11.1 On the W orks N ot Studied Here

In this section we attempt to briefly mention some of the works not studied here. (We are
fully aware of the omissions we are bound to make in this attempt, and request the reader
to kindly inform us of these.)

[l] presents a concurrent programming notation for describing computations slated for
asynchronous and synchronous implementation. The notion of event refinement and ab
straction is being studied.

[3] presents a technique for compiling OCCAM programs into VLSI circuits. The approach
is to first generate direct implementations for the various OCCAM constructs, and then
perform optimizations on the circuits generated.

[6] presents a tool for compiling asynchronous state machines into PPL[30,33]. [7] presents
a verification technique for asynchronous processes based on a special form of finite automata.

[2] present techniques for verifying asynchronous sequential circuits using Temporal Logic
model checking.

[9] present a technique for realizing speed-independent combinational logic in the asyn
chronous style. [10] present a technique for realizing speed-independent state machines in
the asynchronous style. [12] present the design of a simple asynchronous RISC processor.
[11] show that self-timed designs can also be self diagnostic.

[20] presents a technique for the direct implementation of asynchronous systems, using
‘one-hot codes’. [39] presents a language for designing asynchronous systems. [24] has stud
ied asynchronous computations in an abstract setting. [18] presents a system for verifying
asynchronous designs, using a special form of asynchronous automata.

[26] has developed a technique for synthesizing asynchronous circuits from specifications
in a language similar to Dijkstra’s guarded command language. An asynchronous micropro
cessor has been compiled.

[36] presents a technique based on Signal Transition Graphs for realizing asynchronous
systems. Efficient VLSI realizations of circuits using cascade logic, and signal-processing
applications are emphasized.

Much of the early pioneering work in asynchronous design, including the detailed study
of metastability was done by [37].

[41] has applied trace theory to asynchronous design. [42] investigated the application of
trace theory for asynchronous design. [22] have developed a notation called Synchronous
Transition Systems, and have designed asynchronous systems using it. They have also veri
fied asynchronous systems using the Larch Theorem prover [17].

11.2 Closing Thoughts

We have merely scratched the surface of a very fast moving area of research. It is our
observation that despite the attractions of asynchronous circuits in terms of modularity,
performance, etc., their design calls for a totally new approach to circuit design, analysis,
verification, synthesis, and testing, to name a few areas.

It seems that an asynchronous circuit designed without adequate mathematical analysis
is bound to contain speed-dependent errors. “Mental simulation” of “typical” scenarios has
proved to be too inadequate time and again, because of the vast number of combinations of
scenarios that can actually arise in asynchronous designs. Dill[13] provides several interesting
examples of what can go wrong (and what has gone wrong with published circuits!). On
the other hand, techniques similar to [15] have (within their currently limited scope of
application) have largely succeeded in reducing asynchronous design to a routine calculational
activity. Such techniques do hold a great deal of promise. It is our opinion that in order to
make progress in asynchronous design, in addition to widening the scope of existing formal
design techniques, our education system calls for many changes. For a start, beginning

44 GANESH GOPALAKRISHNAN, PRABHAT JAIN

SOME RECENT ASYNCHRONOUS SYSTEM DESIGN METHODOLOGIES 45

students in digital design must be taught rigorous mathematical techniques for asynchronous
(and even synchronous!) design.
Acknowledgements: Sincere thanks to: (a) Venkatesh Akella, for initiating the study of
asynchronous systems in the first author’s research group; (b) Prof.Sanjay Rajopadhye for
spending a week at Utah, discussing asynchronous system design and offering many insightful
comments; (c) Prof.Ran Ginosar, for co-teaching an asynchronous system design course with
the first author, and providing much valuable feedback; (d) Prof. Jo C. Ebergen, for spending
five days at Utah, and teaching the authors many things— too many to mention; (e) Dr.Tam-
Anh Chu, for spending five days at Utah and teaching the authors many things regarding
his work, and other works; (f) Prof.David Dill, for making his verifier available to us, and for
feedback; (g) Prof.Erik Brunvand, for many valuable suggestions; (h) Prof.Graham Birtwistle
for his feedback and encouragement. This work was supported by NSF under award MIP-
8902558.

References

1. Venkatesh Akella. Action Refinement based Transformation of Concurrent Processes
into Asynchronous Hardware. Ph.D. research in progress.

2 . M. Browne, Edmund Clarke, D. Dill, and B. Mishra. Automatic Verification of Sequential
Circuits using Temporal Logic. In Proceedings of the Seventh International Conference
on Computer Hardware Description Languages, pages 98-113, North-Holland, 1985.

3. Erik Brunvand and Robert F. Sproull. Translating Concurrent Communicating Pro
grams into Delay-Insensitive Circuits. In International Conference on Computer-aided
Design, IC C AD 89, April 1989.

4. John Brzozowski and Jo C. Ebergen. On the Delay-Sensitivity of Gate Networks. Tech
nical Report CSN90/X, Eindhoven University of Technology, 1990. Submitted to IEEE
Transactions on Computers.

5. John Brzozowski and Jo C. Ebergen. Recent Developments in the Design of Asyn
chronous Circuits. Technical Report CS-89-18, Department of Computer Science, Uni
versity of Waterloo, May 1989.

6. Tony M. Carter. ASSASSIN: A CAD System, for Self-Timed Control-Unit Design. Tech
nical Report UTEC-82-013, Dept, of Computer Science, University of Utah, Salt Lake
City, UT 84112, October 1982.

7. Eduard Cerny, P.Rioux, and C.Berthet. Comparison of Specification and Implemen
tation for Asynchronous Circuits with Arbitrary Delays. In Luk J.M. Claesen, editor,

Formal VLSI Specification and Synthesis (Proc. of the IFIP W G 1 0 .2 /W G 10.5 Inter
national Workshop on Applied Formal Methods for Correct VLSI Design, Houthalen,
Belgium, November, 1989), pages 133-149, 1990.

8. Tam-Anh Chu. Synthesis of Self-timed VLSI Circuits from Graph Theoretic Specifica
tions. PhD thesis, Department of EECS, Massachusetts Institute of Technology, Septem
ber 1987.

9. liana David, Ran Ginosar, and M.Yoeli. An Efficient Implementation of Boolean Func
tions as Self-Timed Circuits. Technical Report 678, Department of Electrical Engineer
ing, Technion, Haifa, Israel, September 1988.

10. liana David, Ran Ginosar, and M.Yoeli. Implementing Sequential Machines as Self
Timed Circuits.

11. liana David, Ran Ginosar, and M.Yoeli. Self Timed is Self Diagnostic. 1990.

12. liana David, Ran Ginosar, and M.Yoeli. Self-timed Architecture of a Reduced Instruction
Set Computer.

13. David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-independent
Circuits. MIT Press, 1989. An A C M Distinguished Dissertation.

14. David L. Dill, Steven M. Nowick, and Robert F. Sproull. Specification and Automatic
Verification of Self-Timed Queues. Technical Report CSL-TR-89-387, Computer Sys
tems Laboratory, Stanford University, August 1989.

15. Jo C. Ebergen. Translating Programs into Delay Insensitive Circuits. Centre for Math
ematics and Computer Science, Amsterdam, 1989. C W I Tract 56.

16. Arthur D. Friedman. Fundamentals of Logic Design and Switching Theory. Computer
Science Press, 1986.

17. Stephen Garland, John Guttag, and Jorgen Staunstrup. Verification of VLSI circuits us
ing LP. In George Milne, editor, 1988 Glasgow Workshop (IFIP W G 10.2) on Hardware
Verification, 1988.

18. Z. Har’El and Robert P. Kurshan. Software For Analytical Development of Communi
cation Protocols. A T& T Technical Journal, January 1990. To appear.

19. C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM ,
21(8):666-677, August 1978. Original article on CSP.

20. Lee Hollaar. Direct Implementation of Asynchronous Control Units. IEEE Transactions
on Computers, c-31(12):l 133—1141, December 1982.

46 GANESH GOPALAKRISHNAN, PRABHAT JAIN

SOME RECENT ASYNCHRONOUS SYSTEM DESIGN METHODOLOGIES 47

21. John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison Wesley, 1979.

22. J.Staunstrup and M.R.Greenstreet. Designing Delay Insensitive Circuits using “Synchro
nized Transitions”. In Luk J.M. Claesen, editor, Formal VLSI Specification and Synthe
sis (Proc. of the IFIP W G 1 0 .2 /W G 10.5 International Workshop on Applied Formal
Methods for Correct VLSI Design, Houthalen, Belgium, November, 1989), pages 209
226, 1990.

23. Gilles Kahn and David MacQueen. Couroutines and Networks of Parallel Processes. In
IFIP -77, pages 993-998, North-Holland, 1977.

24. Robert M. Keller. Towards a Theory of Universal Speed-Independent Modules. IEEE
Transactions on Computers, C-23(l):21-33, January 1974.

25. Zohar Manna and Pierre Wolper. Synthesis of Communicating Processes from Temporal
Logic Specifications. In Proc. of the Workshop on Logics of Programs, Yorktown-Heights,
NY, Springer-Verlag, 1981. LNCS.

26. Alain J. Martin. Formal Program Transformations for VLSI Circuit Synthesis. In Eds-
ger W . Dijkstra, editor, Formal Development of Programs and Proofs, Addison-Wesley,
1990.

27. Alain J. Martin, Steven Burns, T.K.Lee, D.Borkovic, and P.J.Hazewindus. The De
sign of an Asynchronous Microprocessor. In C.L.Seitz, editor, Proc. Decennial Caltech
Conference on VLSI, MIT Press, 1989.

28. C. A. Mead and L. Conway. An Introduction to VLSI Systems. Addison Wesley, 1980.

29. Dept, of Defense. The ADA Language Specification, M IL-STD-1815-A. American Na
tional Standards Institute, 1430 Broadway, NY (212) 642-4900, 1983.

30. Suhas S. Patil and T. A. Welch. A Programmable Logic Approach for VLSI. IEEE
Trans, on Computers, C-28(9):594-601, 1979.

31. J. L. Peterson. Petri Nets. Computing Surveys, 9:223-252, September 1977.

32. Vaughan Pratt. Modeling Concurrency with Partial Orders. International Journal of
Parallel Programming, (l):33-72, February 1986.

33. K.F. Smith, T.M. Carter, and C. E. Hunt. Structured Logic Design of Integrated Circuits
Using the Stored Logic Array. IEEE Transactions on Electron Devices, ED-29(4):765-
776, April 1982.

48 GANESH GOPALAKRISHNAN, PRABHAT JAIN

34. Eugene W . Stark. Graduate Seminar on “Concurrency Theory” taught at SUNY, Stony
Brook, 1985.

35. Ivan Sutherland. Micropipelines. Communications o f the A C M , June 1989. The 1988
A C M Turing Award Lecture.

36. David G. Messerchmitt Teresa H.-Y. Meng, Robert W. Brodersen. Automatic Syn
thesis of Asynchronous Circuits from High-level Specifications. IEEE Transactions on
Computer-Aided Design, 8(ll):1185-1205, November 1989. .

37. T.J.Chaney and C.E.Molnar. Anomalous Behavior of Synchronizer and Arbiter Circuits.
IEEE Transactions on Computers, C-22(4):421-422, April 1973.

38. Jan Tijmen Udding. A Formal Model for Defining and Classifying Delay-insensitive
Circuits and Systems. Distributed Computing, (1):197—204, 1986.

39. Jan Tijmen Udding and Mark B. Josephs. The design of a delay-insensitive stack.

40. Jeffrey D. Ullman. Computational Aspects of VLSI. Computer Science Press, 1984.

41. C. van Berkel, C. Niessen, M.Rem, and R.Saeijs. VLSI Programming and Silicon Com
pilation: a Novel Approach from Phillips Research. In Proceedings of IEEE International
Conference on Computer Design (ICCD), 1988.

42. Jan L. A. van de Snepscheut. Trace Theory and VLSI Design. Springer Verlag, 1985.
LNCS 200.

Formal Aspects of VLSI Research Group
University o f Utah, Department of Computer Science

Some Recent Asynchronous System Design Methodologies

GANESH GOPALAKRISHNAN
PRABH AT JAIN

(,ganesh@cs.utah.edu)
(jain@cs.utah.edu)

University o f Utah '
Dept, o f Computer Science
Salt Lake City, Utah 84112

K e y w o rd s : Asynchronous Design, Formal Specification, Verification, Delay Insensitivity, Speed Indepen
dence

A bstract. We present an in-depth study o f some techniques for asynchronous system design, analysis,
and verification. A fter defining basic terminology, we take one simple example— a four-phase to two-phase
convertei— and present its design using (a) classical flow-tables; (b) Signal Transition Graphs o f [8]; and
(c) Trace Theory o f [15]. We then present necessary and sufficient conditions for Delay Insensitivity, pro
posed by [38], and illustrate it on our example. Finally, we present the work o f [IS] on the verification o f
asynchronous circuits, and illustrate it on the circuits derived in the paper. The following points are em
phasized: (i) presentation o f techniques at more depth than in a general survey; (ii) illustration o f all the
aspects discussed on a common example; (Hi) comparative study o f the works presented. Many interesting
works had to be left out, solely because o f our lack o f space and time.

mailto:ganesh@cs.utah.edu
mailto:jain@cs.utah.edu

