View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by The University of Utah: J. Willard Marriott Digital Library

A PROGRAMMER'S GUIDE TO

PDP-10 EULER

by

William M. Newman
Henri Gouraud

Donald R. Oestreicher

June 1970 UTEC-CSc-70-105

This research was supported in part by the University of Utah Computer
Science Division and the Advanced Research Projects Agency of the Department
of Defense, monitored by Rome Air Development Center, Griffiss Air Force
Base, New York 13440, under contract AF30(602)-4277. ARPA Order No. 829.

https://core.ac.uk/display/276277412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ACKNOWLEDGMENTS

EULER was originally implemented on the PDP-10 as a class
exercise. Since then it has grown into a full-fledged compiler—
interpreter system. We would like, however, to acknowledge the
work done on the original implementation by members of CS 632 at
the University of Utah, namely David Anderson, Kay Brown, Duane
Call, Patrick Baudelaire, Roger DeBry, Joe Locascio, Don Vickers,

and Martin Yonke.

We would also like to thank Jim Curry and Carl Ellison

for their helpful advice and assistance.

Part 111: Advanced EULER Programming........ccoccoveiiiiiiiiiniiiieneennes

1. Use of Statement Valuesooiiiiiiiiimanaaaaiaaaaannns
2. o 0 TN o o B -
3. External and Library Proceduresoooooiiiaan..
4. File Input-0UutpuUt i eeaa e e eaas
5. Coping with Large List-Structurescooeaaaooo-.
6. S e Nd - REC e TV B ittt e e aeaaaan

Appendix 1I: Basic Operators

Appendix 11: EULER Reserved Procedures

Appendix I1I1: EULER Library Procedures

Appendix IV: Euler D, SEULD

Appendix V: List of Error Messages

Appendix VI: Euler-6

Appendix VII: EULER Compiler Error Messages

Appendix VIII: Linking Assembly Code to EULER Programs

Appendix IX: Data Formats

ABSTRACT

This manual describes the EULER language as implemented
on the DEC PDP-10 computer. EULER is a block-structured language,
similar to Algol-60 but simplified by omitting type declarations
and by altering the way procedures are defined and called. PDP-10
EULER includes features for list- and array-manipulation, and also

for a number of forms of input-output, 1including graphics.

INTRODUCTION

EULER is a block-structured language, similar in appearance to
Algol but embodying many fresh concepts which make it an easier lan-
guage to understand and use. The original reason for implementing it on
the PDP-10 was to create a language for experimenting with data structures.
However, it soon appeared that EULER had many applications as a general-
purpose language with good data-handling and debugging facilities, and

this manual has been prepared for people who wish to make use of it as

such.

The first thing that must be said about PDP-10 EULER is that it is
different from EULER as proposed by Wirth and Weber~n. It contains
for statements, arrays as well as lists, and omits go to statements.

There are also some major differences in the way it has been implemented,
but these are probably not of interest to the general user. Readers
familiar with Algol 60(2) will have little difficulty in using EULER,
once they have understood the basic differences between the two languages.
These are covered in Part 1.

EULER programs are executed by an interpreter called SEUL. This
interpreter operates on Polish-string object code generated by the
EULER compiler. The object code is in the form of six-bit bytes, and
some care was taken to make it readable for debugging purposes. A
number of other debugging aids have been added to the interpreter which
probably make this feature redundant.

Other useful features of PDP-10 EULER are string, list and ma-

trix operations, file input-output and a very straightforward library

feature. These are all described in the rest of this report.

PART |

THE BASIC FEATURES OF EULER

1. EULER Variables

Like most high-level languages, EULER has facilities for
handling integers, real numbers, boolean values, strings and arrays.
These can all be stored into variables and manipulated in the usual
way. However, EULER imposes no restrictions on the type of data
that may be stored into a given variable. A single variable may,
during execution of a program, successively contain an integer,
real number, a boolean value, a string, an array, a list and a pro-
cedure. This contrasts with Algol 60, in which variables are de-
clared to have a certain type when the program is written and during
execution can contain only that type of data.

The EULER interpreter avoids this restriction by saving a few
extra bits of information with each variable; by using these bits
during execution it can determine how the contents should be treated.
This of course reduces execution speed. However, it permits mixed
types of data to be stored into lists and arrays, and it also reduces
the burden on the programmer. EULER variables are declared in a single
NEW declaration following the start of a block:

BEGIN NEW A, Z1, Z2, MAXVALUE;
END

Any statement between the declaration and the final END may refer

to these variables. Outside the block they are meaningless, and any

attempt to refer to them will cause an error. The contents of a
variable just after it has been declared are undefined. Variable
names may be any (lumber of characters in length; all characters are
significant.

Variables may be subscripted to address a particular cell in a
Is it or an array or to pass arguments to a procedure: -

A[23]
L3[K+1]

MAX[A,B]

Each of the subscripts in the list enclosed within brackets may
be any EULER statement or expression: see below for a list of the vari-
ous types of statement permitted in EULER. Also discussed below is
the use of multiple subscripts, such as:

L23 [K] [3] [N-t-5]

2. Expressions

Expressions may be formed from variables, constants and other
expressions enclosed in parentheses. The most common type is an arith-

metic expression:

A+ 3.2 - 100 * (B + C/17)

However, Jlogical expressions are just as useful: they have either true

or jffilse values

A > B
A = 3 OR NOT (B < 17 AND BOOL3)
Expressions may also involve strings, lists or arrays, as described

later.

3. Statements

EULER includes most of the types of statements permitted by

Algol. These include assignment statements, conditional (IF) state-

ments, FOR statements, and compound statements or blocks. An expres-

sion (arithmetic or logical) 1is a valid EULER statement. GO TO state-

ments and labels are omitted. PDP-10 EULER also includes some

special forms of output statement (PRINT, WRITE) and list manipula-

tion statement (INSERT, REMOVE).

3.1 Assignment Statement

An important feature of EULER is that every statement has a

value. In most cases this value is not put to any use, but is thrown

away after the semicolon which separates statements is passed. For

example, the value of the following statement is the sum of the values

stored in A and B:

A+ B;
By itself, this expression does nothing. Similarly, the following con-
ditional expression may have the value of C or D, but will not affect

the state of the program:

IF A > B THEN C ELSE D;

On the other hand, if we incorporate this expression into an assignment
statementfas EULER will allow us to do, we can change the program's state:
P IF A> B THEN C ELSE D;

Here the value of the statement, which is the value of either C or D,

is stored into P. EULER allows any statement, with any type of value,

to be used as the right-hand side of an assignment statement.

3.2 FOR Statement

The FOR statement provides a basis for most algorithms involv-
ing repeated operations. There are several variants of the FOR state-
ment. The FOR-STEP-UNTIL statement allows an operation to be executed

a predetermined number of times:

FOR K 1 STEP 1 UNTIL 10 DO A[K] ~ ©

This will store zero into cells AJ[l] to A[10] inclusive. The scope

of the DO is limited to one statement:

FOR N ~ 1 STEP 1 UNTIL 5 DO P ~ P * N; Q*"Q + P

The first statement following DO,"P w P * N" will be executed five
times; the second, "Q ®= Q + P", will be executed only once, following
completion of the FOR statement. To cause both statements to be executed

after every step, we must include them in a single compound statement:

FOR N 1 STEP 1 UNTIL 5 DO

BEGIN

WHILE may be used instead of UNTIL or STEP-UNTIL so that looping

terminates when a condition is no longer true:

LOOKING + TRUE;
FOR K 1 STEP 1 WHILE LOOKING DO

LOOKING A [K] #N ;

The above will loop through A until a cell equal to N is found.

FOR INP TRUE WHILE INP DO
BEGIN NEW N;
N INVAL;
ANS ANS + N

END

This example creates an endless loop since INP never becomes false.

This type of loop is wuseful for writing interactive programs in EULER.

Note that there is no semicolon before an END. Semicolons are

used only to separate a statement or declaration from the following

statement. Errors will occur if this rule is not followed.

4. String Manipulation in EULER

A string of any length may be stored into a variable:

S3 ® "THIS IS THE PLACE"

The contents of this variable may then be printed out, concatenated

with other strings, or manipulated in various ways. It is not pos-
sible to access individual characters in a string. However, any
string may be converted to a list of integers, using the reserved

procedure UNSTRING:

L7 UNSTRING [S3]

Each cell in the list L7 will receive one character, converted into

integer representing the appropriate ASCIlI code. The reverse operation

is also permitted:

S2 < STRING [N]

N may be a list or array of integers or just a single integer. A
string is formed of all the codes up to the first zero or non-integer.
5. Arrays and Matrices
EULER arrays are similar to FORTRAN arrays in that the lower
bound 1is always unity. However, EULER arrays may have any number of
dimensions. They are created as follows:
A ~ ARRAY[2,ASIZE]
and may be accessed as follows:
A1, J3+1] 2
Any type of information may be stored in any array cell, including
another array:
A3 [10] "JOHN SMITH"*
A3 [11] TRUE;
A3 [14] ARRAY [20] ;
An array stored in a cell of another array can be accessed by double
subscripting:
X A3 [14] [N]
Two-dimensional arrays may be treated as matrices. The interpre-

ter is able to

A ARRAY [2,3]

B ARRAY [3,4]

carry out matrix multiplication

; %A becomes a matrix with 2 rows

’

and addition:

of 3 cells%®

This will create a new array C, whose dimensions are 2x4, containing

the matrix product of A and B. M atrices may be scaled:

A -e ARRAY [1,4] ;

A -e A/IA[1,47];

M atrices may contain integer or real values in any mixture. The
result of a matrix operation leaves all the contents real.
6. Lists

Wirth's original description of EULER includes list-processing

operations, and with a few minor changes these have been implemented

in PDP-10 EULER. Figure 1 shows e
L1 - HZ1LZj

an EULER list, stored into a

T'abc"|
variable L. Cells in this list
can be accessed in the same way J_ TRUE
as array cells: for example,

123 | 1/1 0.0
L[1]=3.6, L[2] ="ABC", L[4]=123.
L[3] is itself a list, and its Figure 1

cells can be addressed by double subscripting: L[3][1]=TRUE, L[3][2]=0.0.
There are three principal ways of constructing a list:

1.) By explicitly defining its contents:

L~[3.6,"ABC", [TRUE,0.0],123]

2.) By defining the list and later defining its contents:

L+LIST[4]

L[1]+3 .6;

L [2] ABC" ;

L [3]7LIST [2] ;
L[4]17123;

L [31[1]1~TRUE;

L[3]1[2]*0.0;

3.) By concatenating existing lists:

LI-<- [3.6, "ABC"];
L2-<- [TRUE ,0.07 ;

L3AL1&[L2]&[123]

The expression [] can be used to indicate an empty list.

Wirth"s two other operations, LENGTH and TAIL, are also included.

LENGTH allows the number of cells in a list to be determined:

LENGTH[L]=4

LENGTH[L[3]]=2

TAIL removes the first element from a list:

TAIL [L] = ["ABC", [TRUE,0.0] ,123]

TAIL[TAIL[L][2]11[1]=0.0

PDP-10 EULER also includes two special statements, INSERT and

REMOVE, to make Ilist operations more efficient. INSERT has four vari-

ants :

a) INSERT LI BEFORE L2

b) INSERT LI AFTER L2

c) INSERT LI BEFORE L2:N

d) INSERT LI AFTER L2:N

(a) and (b) add list L2 to list LI, respectively before the first

and after the last element of L2. (c) and (d) permit additions to be

made anywhere within a list--N is an index into L2, and can be any

10
expression. For example, the structure in Figure 1 could be created

as follows: '

INSERT ["ABC", [TRUE,0.0]] AFTER [3.6,123]:1

REMOVE has only one form:

REMOVE L :N

which removes the Nth element of list L. Thus REMOVE L:1 is equivalent

to L«-TAIL[L].

The value of the INSERT statement is the resultant list struc-
ture. REMOVE returns as value the removed element.
7. Procedures

One of the most attractive features of EULER is its handling

of procedures. Basically, a procedure may be assigned to any variable;
then whenever that variable is accessed, the procedure will be exe-
cuted. Procedures may be stored into cells of an array or list. The

way in which procedures are defined is as follows:

OUTAB-<-1PRINT A; PRINT B’

All the statements included within quotes are executed when
the procedure is accessed. Arguments may be passed to procedures by
the use of subscripts; there must be a formal declaration at the start

of the procedure, listing all the parameters to be passed:

MAX*-1FORMAL A ,B; IF A>B THEN A ELSE B’;

X+-MAX[J,3*P-17] ;

The mechanism of calling procedures in EULER 1is quite different
from that in Algol. Unless specified, parameters are passed by value.
Each of the expressions in the subscript list is ovo.luated, and each
of these values is assigned to a formal variable, starting with the
first. Thus in the example above, A would receive the value of J, B
the value of the expression 3*P-17.

Calls by name are achieved by enclosing the arguments within

quotes. Consider the figllowing example:

A40;

PKkIJNT2ATORMAL X; ; PRI NT X 75

rRIKT2 [A] ;

PRINT2['A1}i

PRINT2 [Al merely prints the number 2: since it is called by
value, the contents of A are not changed. PRINT2[*"A"] on the other
hand is a call by name, hence all references within PRINT2 to the
formal X are treated as references to A. At the end of this second
call, A contains the value 2.

The value returned by a procedure is the value of the last

statement executed within the procedure. Thus the value of the above
procedure MAX js the value of the I1?-express.!on. Procedures may
also be thought of as returning an address . For axampj c:

CELL34'A[3] ';
CSLL2+22;

E-CELL3;

This example defines an "access procedure” which allows data

to be stored into or read out of A[3] as if CELL3 were a simple

12

variable. Note that when a procedure 1is stored into a variable, that
variable becomes "execute only™ and no other contents can replace
che procedure. m

Arrays, lists and strings may be passed as arguments to a
procedure. For example, the following procedure ZMATRIX will create
a two-dimensional array of the required dimensions, with all cells

set to zero:

ZMATRIX-"FORMAL M ,N;

BEGIN NEW A,J,K;

AMARRAY[M,NJ;

FOR -1 STEP 1 UNTIL M DO

FOR K+-1 STEP 1 UNTIL N DO

A, K]-K);

END*

and can then be called as follows:

ROTNJ-ZMATRIX [3,3]

8. Teletype Input and Qjtput

The INPUT statement in EULER reads one character from the

teletype. If nothing has been typed, the program waits until a
character is typed. The value of INPUT 1is an 1integer, representing the
ASCIl code of thecharacter typed. It may be converted to a single-

character string with the STRING operator:

IF STRING[INPUT]="G" THEN PROGO

The INPUT statement has been incorporated in a number of library

procedures for input of numbers and text (see Appendix 111).

Output to the teletype 1is achieved by using the PRINT state-

ment :
PRINT A;
PRINT "ANSWER IS", X23
Any number of arguments may be listed in a PRINT statement,
and their values may be of type integer, real or string. Numbers are
printed out in a fixed format. Programmers may define their own for-

mat as follows:

PRINT A,B IN "A=\W B=\\.\\\ ";

FMT*-"ANGLE IS \\ .\ DEGREES"

PRINT 180*THETA/PI IN FMT;

Each item in the output list of a formatted PRINT statement
will be inserted in a field of the format; these fields are indicated
by back-slashes. A period will cause numbers to be converted to
floating-point notation—otherwise integer notation will be wused.

Positive values are left unsigned unless a sign position is indicated:

PRINT XI, X2 IN "+\\\ +\\\"

9. Euler Constants

Constants may be integers, real numbers, or strings. Any
number including a decimal point is treated as real. Any text en-
closed within double quotes is stored as a string. The compiler will

not accept certain characters within strings, so the following

conventions are used:

B bel 1

C carriage return
F form feed

L line feed

N carriage return
S space

T tab

1

single quote

10. Program Fortnatting and Contents

Spaces, tabs, and carriage-return/line-feeds may be inserted
anywhere in the source program except within a symbol or operator,
within a string enclosed in double quotes. The. program may therefo
be indented by means of spaces and tabs, as illustrated by most of

the examples in this manual.

Wherever a space, tab, or carriage-return/line-feed is per-

mitted, a comment may be inserted by enclosing it within percent

symbols:
_ IF A > B THEN WEXCHANGE A AND B%

BEGIN NEW T; %T 1S TEMPORARY VAR%

T™A; ANB ; B AT YEXCHANGE COMPLETE®

Comments may extend to more than one line.

14

or

re

The complete program should be enclosed within a BEGIN..._END

pair. This first BEGIN must be followed by a declaration, and

preceded by a title, which is any symbol

TITLE PROG3 -

BEGIN NEW X, Y, P;

END

PART 11

HOW TO USE PDP-10 EULER

1. Compiling

Source programs should be prepared and filed in the usual way

with QED or TECO. They can then be compiled in the following manner:

.R EULEITF -

*DEVIFNAME1 .EXTADEV:FNAME2 .EXT

or the following shorter form may be used:

.R EULER

FXXXXL=XXXX

This assumes that the source file is XXXX.SRC and is on the disk.
An object file called XXXX.MAC is created, also on the disk. Users
are encouraged to use this form since the EULER debugging routines

rely upon these file-name conventions.

2. Loading and Executing

EULER programs are not compiled into machine code and loaded 1in

the conventional manner. Instead they are interpreted by a progranm
called SEUL*. Users should type

.R SEUL
*Non-French speakers: this 1is unpronounceable. The closest approxi-

mation 1is SERL.

17

and then type the name of the object file produced by the EULER

compiler:

.R SEUL

*DSK: XXXX. MAC

If the device name is omitted, DSK is assumed; if both device

name and extension are omitted, DSK and .MAC are assumed. Provided

the normal file-name conventions are used, the following is therefore

sufficient:

.R SEUL

FXXXX

Loader switches are provided to request special action during

loading. These may be typed at any point in the file name.

/U prints out all undeclared variables
after loading. These include ex-
ternal and library procedures.

/B

program enters EULER DDT after loading.

Example:

.R SEUL

*PROG/U

Unless the /B switch is wused, the program proceeds to execute

as' soon as loading is complete.

A carriage-return/line-feed is output

to the teletype as execution commences. ‘

3. Run-Time Errors

If an error is detected during execution, the following happens:

18

i) An error message is printed on the teletype;
ii) The statement in the source file in which the
error occurred is printed;
iii) The program returns to the monitor.

We have tried to ensure that the source statement printed out
is indeed the statement in which the error occurred. However, the
technique we have used takes some short cuts to avoid complete re-
compilation of the program. On occasions, several statements will be
printed if SEUL cannot determine the precise statement in which the
error occurred. A list of error messages will be found in Appendix V.
4. Debugging Aids

Debugging aids fall into two categories:

i) Facilities to print out the state of the program;
ii) Facilities to set break-points so that execution
is interrupted at a certain point.

Whenever a run-time error occurs, the contents of any active
variable may be printed out. To do this, type REENTER (or REE for
short). The program should respond with an asterisk, and you may
then type the name of any active variable followed by a slash. | f
the variable is inactive, "U?" will be printed in an appropriate format.
The following are some examples of printouts from EULER DDT:

.REE

*VAL/ 231

*K/ 5.60017
*NAME/ "JOE"
*FOUND/ TRUE
*XYzZ/ UNDEF

19

Variables to which procedures have been assigned, and formal
variables called by name, simply print out as "PROC". Similarly
arrays and lists print out as "ARRAY" and "LIST". You may however
access individual array and list cells by adding a subscript or
subscripts to the name:
*MAT[3,2]/ 1.71503
*L3[5]1[61/ 77

To print out the entire active stack contents, type:
V4

Break-points may be set prior to execution by wusing the /B
loader switch. A fter loading is complete an asterisk is printed,
and up to eight break-points may then be set in the program. Wher-
ever possible this feature uses the conventions of PDP-10 DDT.

To set a break-point, type a line number in the source code
followed by $nB ($ = alt-mode; n is the break-point number, 1 to 8).
The break-point will be set at the first "store"™ operation in that
line. For example, if the following is line 27 of the source program,
and 27$1B is typed, the program will break before storing 33 into A:

A<_33; B~"-A+5;

To cause breaking on the second or successive "store" operations,

you may type:
27,2%1B
or 27,3%1B etc.

20

The integer following the comma indicates to which of the

"stores" the break-point is to be attached. If this number exceeds
the number of assignments on the line, a statement will be chosen in
the lines following. The break-point number, n, may be omitted. In
this case numbers are assigned automatically, starting at 1. To

clear a break-point type 0$nB. To clear all break-points, type $B.

To print out the contents of any line, type the line number,

followed by a slash:

27/
The most recent line typed can be referred to as and
other lines may be addressed relative to it:
271 prints line 27
41/ prints line 28, . becomes 28
.,1%$B sets a break-point at the first "store"
in line 28
--5,2%B sets another break-point at the second
"store" in line 23
e 2/ prints line 30 (space and + are equivalent)
As in PDP-10 DDT, line-feed and .+1/ are equivalent, and so are +
and .-1/.
To start execution, type $G. The program will execute normally
until a break-point is encountered. Then execution will cease, and

the break-point number, together with the value just about to be

stored, will be printed:

3B >> 0.01753

*

You may now examine variables and set or clear break-points,

as described above. To resume execution, type $P.

PART 111

ADVANCED EULER PROGRAMMING

This section is devoted to some of the more refined techniques
in EULER programming, and to some of the facilities in the language

which were not described in Part 1.

1. Use of Statement Values

It is frequently possible to take advantage of the fact that
statements possess values. An example was given earlier in Part 1.
More elaborate examples are discussed here.

When matrices are being used, it is sometimes necessary to
create a new matrix with its cells set to certain initial values.
Suppose we wish to store into A either the matrix currently in
B or, if B is undefined, a 3x3 unity matrix. This can be done as

follows:

A™-IF TYPE [B] = 4 THEN B ELSE
BEGIN NEW T,J ,K;
TA-ARRAY [3,3] ;
FOR J«-1 STEP 1 UNTIL 3 DO
FOR K«-1 STEP 1 UNTIL 3 DO

T[J,K]«-IF J=K THEN 1 ELSE O0;

END

This example makes use twice of the values of IF statements.

Another technique that may be used with IF statements is the compound

22

logical expression. The expression following "IF" may be any ex-

pression whose value is true or false. An expression may be any state-

ment or statements enclosed within parentheses*, so the following is

permitted:

IF (AAB[X];A>0) THEN Q7A

Since all the statements within parentheses are executed be-

fore the test is carried out, this provides a method of including

unconditional statements in chains of IF statements (IF...THEN...

ELSE IF.. . THEN.. .ELSE IF...) without the use of BEGIN and END:

IF(XAX-1;A[X,Y]=0) THEN TRUE ELSE
IF (XAX+1;Y-*-Y+I; A[X,Y] =0) THEN TRUE ELSE
IF (XAX+1;Y-*Y-I:A[X,Y] =0) THEN TRUE ELSE

(XAX-1;Y+-Y-1;A[X,Y]=0)

The above statement finds whether any cell adjacent to (X,Y)
in the matrix A contains zero, and if so returns with X and Y set
to the position of the first such cell it finds.

Difficulties often arise with IF statements because all parts
of a complex logical expression are evaluated before the test is
applied (this is out of line with Wirth's proposals). In a statement
of the form IF LI AND L2 THEN A ELSE B the evaluation of L2 may
cause an error if LI has the value false. One solution is the nested
IF statement:

IF LI THEN
BEGIN ,

IF L2 THEN A

END ELSE B

* Note that parentheses () are equivalent to BEGIN END

) 23

The BEGIN is necessary here since the second IF statement does

not include an ELSE clause, but the first one does. Another correct

version is:

IF LI THEN IF L2 THEN A ELSE B ELSE B

and the following will also work: '

IF(IF LI THEN L2 ELSE FALSE) THEN A ELSE B

2. Procedures
Part | mentioned that variables into which procedures have been
stored become "execute only." This means that it is not possible suc-

cessively to store different procedures into a variable as follows:

p -e 'IF N=0 THEN A ELSE B1,;

P +~'A+ B+ 0

Whenever a procedure variable is accessed, the procedure is called

immediately; so the example above will succeed only in storing the sec-

ond procedure into either A or B.

The only way to replace one procedure by another is to reclaim and

re-allocate the space it occupies. This is difficult to do with ordinary

variables, since a variable is only reclaimed when the end is reached of

L
the block in which it was de- o>
1
clared. With lists and arrays, |
1, PROC PROC
however, it is easier to do. \
. . . Li
Suppose we wish to build a list 1
r

L in the form shown in Figure 2.

Figure 2

24

Each element of L is itself a list, which contains in the first

element a procedure indicating what to do with the following two

elements. If we wish to change the procedure, leaving the rest of
the sub-list unchanged, we can do do by discarding the first element
and then redefining it. For example:

L[K]*-LIST[1] & TAIL [L[K]]:

L[K][1]”'FORMAL A,B; A+B': 1

We may now "evaluate" any sublist K in the following manner:

VAL+-L[K] [1] [L [K] [2] ,L[K] [3]]

The concept of recursive procedures is widely understood and

used. All EULER procedures may be called recursively. However, if
the number of nested calls exceeds 30, stack overflow will occur.
To illustrate the wuse of recursion, here is an example taken from the

EULER library file:

TITLE SINE
'FORMAL X; BEGIN NEW PI; n
PI~3.14159;
IF X>=0 THEN
. BEGIN IF X<0.1 THEN X-(Xt3)/6 ELSE
IF X<=PI/2 THEN 2*SIN[X/2] *SQRT[1-SIN[X/2] t2] ELSE
IF X<=Pl THEN SIN[PI-X] ELSE SIN[X-2*PI]
END ELSE -SIN[-X]

END'

One of the original ideas behind PDP-10 EULER was the concept

of using procedures as access functions. It is possible to wuse

procedures to attach names to specific list or array elements, and

25

to store into and read out of these elements by means of their names:

BEGIN NEW A, LENGTH, HEIGHT, WIDTH, K, J;
-*-ARRAY [100 , 3] ;
LENGTH-*-1FORMAL X; A[X,11';
HEIGHTA FORMAL X; A[X,2]";

WIDTHS'FORMAL X; A[X,31';

LENGTH [K]-*-INVAL;

IF LENGTH[J]=0 THEN...

The above example makes LENGTH[X] synonymous with A[X,1]. Notice

the use of EULER's block structure to pre-empt a "reserved" procedure

name, i.e., LENGTH. Within the block in which LENGTH is declared the
user's procedure will take precedence over the reserved LENGTH procedure
which determines lengths of lists and arrays. Users who feel they can

improve upon the EULER library procedures can pre-empt them in the

same way, as described below.

3. External and Library Procedures

EULER programs may be written as external procedures by adopting

and following slightly modified syntax:

TITLE EXTPROC TITLE EXTPROC
"FORMAL F I, F2; 1o,
or
A complete example is shown above in the sine procedure. External

procedures may be called from other programs without declaring them. The

26

interpreter assumesthat every undefined variable is an external pro-
cedure and attempts to find it on the disk as follows:
a) by looking it up on the users area with extension .MAC;
b) by looking it up on his area with extension .EUL;
c) by looking it up under [1,1] with extension .EUL.
If all of these fail, an error message is printed. This order of prece-
dence is useful in a number of ways. For example, if a program has
been designed to be controlled by the mouse, and the user wishes to test
it from the teletype, he can do so by writing his own external MOUSE
procedure and filing the object code on his disk area as MOUSE.MAC or
MOUSE.EUL. The following procedure would allow him to type in a switch
number and two coordinates, and to the program would be indistinguish-
able from library MOUSE procedure:
TITLE MOUSE
'BEGIN NEW SN;
SN<-INVAL;
IF SN=1 THEN [TRUE, FALSE, FALSE, INVAL, INVAL] ELSE
IF SN=2 THEN [FALSE, TRUE, FALSE, INVAL, INVAL] ELSE
[FALSE, FALSE, TRUE, INVAL, INVAL]
END'
4. File Input-Output
EULER programs may read and write standard PDP-10 text files.

For this purpose, a WRITE statement
have been added. They operate in
and INPUT:

and a

a fashion exactly

reserved procedure

called READ

analogous to PRINT

27

WRITE "MOVE AC,",NAME; % will write MOVE AC, and the

contents of NAME %

CH-«-READ; % will read one character into

CH as an integer %

WRITE statements may include format specifications.
In order to make use of READ and WRITE, the programmer must include
statements to open and close files. If you are going to write a file,

you must open it for output:

OUTFILE["DSK","FNAME","EXTN"];

After all output is complete, the file is closed for output:

OCLOSE;

Since only one file at a time may be opened for output, the OCLOSE
statement requires no arguments. Existing files may be opened for input

and later closed as follows:

INFILE["DSK","FNAME" ,"EXTN"];

ICLOSE;

During input it is possible to check whether the end of the file
has been reached by using EFILE. This will return true if the end has

been reached, otherwise it will return false:

IF EFILE THEN ICLOSE ELSE CH [K+-K+1] *-READ

Arguments for INFILE AND OUTFILE may be given as shown above, i.e

as a separate string for device name, file name, and extension. Other

28
combinations of arguments are permitted, and the complete list is as

follows:

t"FNAME"] assumes device DSK, no extension
["FNAME", "EXTN"] assumes device DSK
["DEV", "FNAME", "EXTN"]
INFILE
["DEV", "ENAME", "EXTN", PROJ, PROG] where PROJ and
OUTFILE .
PROG are project and programmer numbers
["FNAME", "EXTN", PROJ, PROG]

["FNAME", PROJ, PROG]

It is of course permissible to use any string as device name,
file name, or extension, although names that are too long will be trun-
cated. The following program will write out successive cells of the list

LTEXT as files called LTEXT.001, LTEXT.002, etc.:

FOR KA-l STEP 1 UNTIL LENGTH [LTEXT] DO
BEGIN
OUTFILE["LTEXT",STRING[[K//100+48,(K MOD 100)//10+48,K MOD 10+48]]];
WRITE
OCLOSE

END

File input-output will work successfully for the following physi-

cal devices:

DSK
DTAB~DTA7

PTP

a dummy file-name and extension must
PTR

be given
TTY

29

5. Coping with Large List-Structures

Almost any program that makes use of lists will tend to produce
large structures. This raises two problems:
a) It becomes very tedious to examine and debug these structures;
b) The program will eventually grow too big to be accommodated
in core.

With these problems in mind, two features have been added to EULER.

One is a library procedure call WRLIST. It will write out a text file
listing all the contents of a named list, making it possible to examine
the contents. It is called as follows:

WRLIST["DEV", "NAME", "EXT", LISTNAME]

LISTNAME is the variable containing the list . The resultant text
file looks something like this:
[CELL1, CELL2, CELLS3....... CELLN]
/
where CELL1, CELL2, etc., are the contents of each cell. These contents

are written out in a format appropriate to the data type, for example:

[3.6, "ABC",

[TRUE, 0.07,

123]

This is the WRLIST output of the list structure shown on page 8.

30

Since WRLIST can output arrays, it provides a convenient means

of dumping out the entire contents of an array without using FOR

statements:

WRLIST["TTY", "X", "X", [A]]

There is currently no RDLIST procedure to read in the results of
WRLIST. To cope with this need, and with the second problem mentioned
above, the EULER interpreter has been extended to permit the reading
and writing of lists in library format. The principal value of this

is to permit the use of secondary memory for storing data, as follows:

SWAPOUT["XXX", LIT; will write out LI onto the

disk as a file called XXX

LINSWAPOUTI["XXX", LI1]; will do the same, and will reclaim

the storage occupied by LI.

J*LENGTH [LI] ; will cause LI to be read back

in from XXX

L2'<-SWAPIN["XXX"] will perform the equivalent of storing
the original contents of LI into L2.
The actual operation will not take
place until L2 is referenced, e.g.,

by LENGTH[L2].

Thus, after a list has been swapped out, it can still be accessed
and modified as if it were in core—the very next access will automatically
bring it back in. SWAPIN and SWAPOUT use the same file-name argument

conventions as INFILE and OUTFILE, except for the additional final argu-

ment to SWAPOUT.

31

6. Send-Receive

If two EULER programs are running simultaneously, theycan com-

municate via send-receive. Send-receive permits programs to do the

following:

a) to announce their name for the purpose of sending

messages to and receiving them from other jobs;

b) to send a message to another job of known name;

c) to wait for a message from another job;
d) to determine whether a message has been received

from another job, and if so to determine the name

of the sender and the message contents.

A process name may be any text string. For example:

"WILLTAM"

"MASTERPROCESS™

are valid names for processes. A program announces its name to the

outside world by the following procedure call:

DECLARE[™JOE"]

After declaring its name, a program may send a message to another

program whose name it knows:

SEND ["PETE"™, MSG]

A message may be one of the following:

i) an integer in the range 0 to 250,000

ii) a text string

iii) a list

32

To receive a message, a program calls:

XA"RECEIVE["JOE"]

This will be executed immediately, and will store into X:
a) an empty list, if no message has been received;
b) a two-element list, [sender, message], if a message has

been received from the requested sender;

c) a single-element list, [sender], if the requested sender
sent nothing, but another sender, whose name is now re-
turned, has sent a message. A second RECEIVE is necessary

to determine his message.

RECEIVE[O] will receive a message independent of its sender. In
this case the name of the sending process may be not a string but a list
containing two integers. If you wish the program simply to halt until
a message is received, you may use RECWAIT. RECWAIT ["JOE"] will cause
the program to halt until a message is received from process JOE.
RECWAIT[0] waits until a message is received, irrespective of the sender.

The values returned by RECWAIT and RECEIVE are identical.

As an example of the use of send-receive, suppose that we wish to
allow two terminal users to send messages to each other without using the
standard TALK facility of the PDP-10. The following program will handle

each end of such a conversation:

TITLE SR
BEGIN HISNAME, RUNNING;
PRINT "TYPE YOUR NAME:";

DECLARE [INTEXT]; % declares typed string as
name of process %

PRINT "TYPE DESTINATION:",
HISNAME+-INTEXT;

PRINT "DO YOU WISH TO WAIT FOR A MESSAGE?";

IF INTEXT # "Y" THEN % send a message
SEND[HISNAME,INTEXT];
FOR RUNNING TRUE WHILE RUNNING DO
BEGIN

% wait for a message %
PRINT RECWAIT[HISNAME][2]
% when received, print it
SEND[HISNAME, INTEXT]

% send another %

APPENDIX .

BASIC OPERATORS

APPENDIX |1

EULER RESERVED PROCEDURES

ARRAY[M,N...] creates an array with dimensions M,N...
EFILE ' checks for end-of-file, returns true/false
EXIT program returns to the Monitor e

ENTIER[N] makes an integer

ICLOSE closes file after input

INFILE[...] opens file for input

INPUT inputs one character from teletype
LENGTH[L] returns the length of a list, array, or string
LIST[N] creates a list of N cells

OCLOSE closes file after output

OUTFILE[. . .] opens file for output

READ reads one character from file

STRING [L] converts list, array or integer to string
TAIL[L] removes the first cell of a list

TYPE[V] returns the type of argument V:

-1 means undefined

0 means real

1 means integer

2 means boolean

3 means string

4 means array

5 means list

UNSTRINGIS] converts string to list

DECLARE
SEND

RECEIVE
RECWAIT

INSTRING

INTEXT

INVAL

INVERT

MOUSE

APPENDIX 111.

EULER LIBRARY PROCEDURES

See Part 111., Section 6.

Reads in a text string from

e.g., LOOKUP[INSTRING]

Terminating characters are

= and carriage-return.

Identical to INSTRING,

but

the teletype.

space, period,

carriage-

return is the only terminator.

Reads 1in one signed

point number from

e.g., X~MINVAL

the

integer

Terminating characters are

or carriage return.

Will invert a matrix

e.g., MIAINVERTI[M2]

or floating-

teletype.

comma, space

Reads the status of the mouse or tablet

next time a switch

as value a five-element array,

in element 1:

in element 2:

in element 3:

is pressed.

switch

1 setting

or false)

switch

switch

2 setting

3 setting

Returns

containing:

(true

RANDOM

SIN
COS
ARCTAN

SMOUSE

SQRT

WRLIST

38

in element 4: x-coordinate (integer

in range 0-1023)

in element 5: y-coordinate (integer

in range 0-1023)

Note that when the Sylvania tablet is in

use, switches 1, 2 and 3 are turned on

(=true) progressively in that order as

the stylus approaches the tablet surface,

e.g., M~ MOUSE;

IF M [1] THEN (X-*-M[4]; Y~M[5])

Returns a pseudo-random number in the

range 0 to 1.0.

e.g., X"RANDOM

Trigonometric functions. Angles are

assumed to be in radians.

ldentical to MOUSE, but the coordinates

are scaled to lie in the range -1 to +1.

Square root function.

Writes out a text file representation of

any list; wuseful for debugging. The file

may be written out onto the teletype.

e.g., WRLIST["DSK","FNAME", "EXT",L];

WRLIST["TTY","X","X",L]

These will write out the list L onto a disk

file called FNAME.EXT and onto the tele-

type, respectively.

APPENDIX 1V.

EULER D,

Before the appearance of EULER-G a very simple graphic package
was implemented for Euler. This package is still available as part
of a special interpreter called SEULD. Euler programs which use
this system can be compiled by the standard EULER compiler.

The graphical commands are:

POS[X,Y] % Position beam to absolute coordi-
nates X, Y %

POINT[X, Y] % Display a point at absolute co-
ordinates X, Y %

LINE[X1,Y1,X2,Y2] % Draw a solid line from absolute
coordinates XI,Y1 to absolute
coordinatesX2,Y2 %

LINETO[X2,Y2] % Draw a solid line from the present
position of the beam to the absolute
coordinatesX2, Y2 %

All coordinates must be between 0 and 2047. The visible portion
of the screen is the lower left quadrant of this area (0,0 to 1023,
1023). Arguments may be integers or floating-point numbers.

To display some text, one may use the command POS[X,Y] to position
the beam, followed by DISPLAY X, Y, Z IN F where the DISPLAY statement

SEULD

39

has exactly the same syntax as the PRINT statement. The format F
may be omitted. Characters whose ASCII code is less than 40O will

be 1ignored.

The command CLEAR will clear the entire screen.

The command.? POS, POINT, LINE, LINETO, CLEAR are implemented

as external procedures.

004 CANNOT ROTATE 3-D PICTURES

005 "SIZE N' "ILL MOT WORK, MO OF DIMENSIONS UNKNOWN
006 "SCALE N* WILL MOT WORK, NO OF DIMENSIONS UNKNOWN
007 MO END OF FILE ON CHARACTER SFT

010 STRANGE, FRAME FILE HAS BEEN LOST

011 NO CHARACTER SET FILE FOUND ON DISK

012 CAN’'T ENTER FRAME FILE

013 DISK | NIT ERROR

014 OUTPUT ERROR TO STA

015 STATZ ERROR ON OUTPUT TO DSK

020 CALLING FRAME FROM WITHIN FRAME

021 PARAMETER LIST IN FUNNY SHAPE

2272. DISPLAY PARAMETER NOT NUMERIC

023 DISPLAY PARAMETERS MUST OF. A LIST

024 MO OF PARAMETERS MUST BE 2 OR 3 .

025 WINDOW OR VIEWPORT MUST PE SPECIFIED AS A LIST

02* NO OF PARAMETERS MUST RE EVEN

027 WRONG NO OF PARAMS FOR WINDOW OR VIEWPORT

030 TRANSFORMATION MUST BE AM ARRAY

03 1 TRANSFORMATION ARRAY MUST BE 2-DIMENSIONAL

032 TRANSFORMATION MATRIX MUST BE SQUARE

033 PERMISSIBLE SIZES FOR TRANSFORMATION ARE 2X2,3X3,4X4
037 ASTERISK OMITTED FROM FRAME PROCEDURE DEFINITION
040 VALUE LEFT FOR JUMP-ON-EALSF NOT BOOLEAN

04 1 WRONG NO OF WINDOW ARGUMENTS

042 WRONG NO OF POSITION ARGUMENTS

043 WRONG ND OF SIZE ARGUMENTS

044 WRONG NO OF SCALE ARGUMENTS

045 CANNOT DEFINE BOTH SIZE AND SCALE

046 ERROR IN PASSING DISPLAY ARGUMENTS

047 WRONG SIZE OF MATRIX FOR TRA NS FORMATION

050 CANNOT ROTATE AND TRANSFORM I[N SAME DISPLAY CALL
05! CANNOT ROTATE 3-D PICTURE

052 SCALXY AND RFLSCALE DO NOT WORK YET '/ITU ROTATIONS
053 TRANSFORMATIONS ARE NOT PERMITTED IN FRAME PROCEDURES
054 "HIT™ SHOULD HAVE 3 ARGUMENTS: X, Y, NAME

056 SCALE SHOULD NOT BE DEFINED IN FRAME PROCEDURE
057 ROTATIONS CANNOT PE DEFINED IN FRAME PROCEDURES
067 HUH? SINE RTN ASKED FOR SORT OF NEG NO

070 THIS DISPLAY OPERATION MOT YET IMPLEMENTED, SORRY
072 LINF ARGUMENTS MUST BE PASSED AS LIST

073 WRONG NO OF LINE PARAMETERS FOR CURRENT NO OF DIMS
077 ILLEGAL INSTRUCTION CODE

100 TOO MANY BLOCK LEVELS

101 TOO MANY VARIABLES DECLARED AT THE SAME LEVEL

102. STACK IN ABNORMAL STATE AT "END™"

103 DISPLAY REGISTER UNDERFLOW ON "END”

104 UNKNOWN DESCRIPTOR IN FETCHED VARIABLE

105 RETURN ADDRESS WORD FOUND IN PLACE OF VARIABLE

106 DOWN-POINTER FOUND IN PLACE OF VARIABLE

107 SAVED DISPLAY REGISTER FOUND IB PLACE OF VARIABLE
110 NEW TOP DISPLAY REGISTER FOUND IN PI.ACE OF VARIABLE
111 SPFCIAL ARRAY DESCRIPTOR FHUND IN PLACE OF VARIABLE
112 no ADDRESS POINTER FOUND ON STORE

200 NOT A PROCEDURE EXECUTING CALL

2.01
202
203
204
205
206
210
301
310
312
314
315
31S
317
336
340
342
344
346
347
350
352
360
361
362
363
364
377
500
501
502
503
540
541
542
551
552
553
554
555
557
600
601
602
603
604
605
606
607
610
700
701
702
703
704

NUMBER OF PROCEDURE ARGUMENTS NOT INTEGER

TOO MANY ARGUMENTS IN CALL

NO RETURN ADDRESS FOUND ON RETURN FROM PROCEDURE
NO SAVED TOP DISPLAY REGISTER FOUND (P.RSTR)
CALL INSTRUCTION EXECUTED UNEXPECTEDLY

NO SAVED TOP DISPLAY REGISTER FOIIMn (P.~HIM)

NO DOWN POINTER FOUND ON STACK

CAN'T EXPONENTIATE BY NON-INTEGER

NON-NUMERIC ARGUMENTS FOR ADDITION

NON-NUMERIC ARGUMENTS FOR SUBTRACTION
NON-NUMERIC ARGUMENTS FOR MULTIPLICATION
DIVISION BY ZERO

NON-NUMERIC ARGUMENTS FOR DIVISION

NON-NUMERIC ARGUMENTS FOR EXPONENTIATION

MOD ERROR

"OR"™ ERROR

"AND" ERROR

"NOT" ERROR

NON-BOOLEAN IN BOOLEAN OPERATION

NON-BOOLEAN IN BOOLEAN OPERATION

MON-NUMERIC ARGUMENT FOR ABS

NON-NUMERIC ARGUMENT FOR COMPLEMENT

MATRIX OPERATIONS APPLY ONLY TO 2-DIMENSIONAL ARRAYS
ILLEGAL OPERATION ON MATRICES

MATRICES WRONG SIZES FOR MULTIPLY

MATRIX CONTAINS NON-NUMERIC DATA

MATRICES OF DIFFERENT SIZES, CANNOT RE ADDED OR SUBTRACTED
UNIMPLEMENTED MATRIX OPERATION

NUMBER OF ITEMS IN OUTPUT LIST NOT INTEGER
ILLEGAL TYPE OF ITEM IN OUTPUT LIST

WRONG FORMAT FOR STRING OUTPUT

TOO FEW ITEMS IN OUTPUT LIST COMPARED WITH NUMBER OF FIELDS
WRONG NUMBER OF ARGUMENTS IN A POS.LIME OR POINT CALL
ARGUMENT OF POS,LINE OR POINT IS NOT A NUMBER
POS, LI ME OR POINT WAS CALLED WITHOUT ARGUMENTS
DEVICE NOT AVAILABLE

NO FILE NAME GIVEN

FILE NOT FOUND

TOO MANY NEW VARIABLES OR EORMALS

TOO MANY BLOCK LEVELS

TOO MANY EXTERNAL VARIABLES

ILLEGAL INSTRUCTION FORMAT FOR ARRAY DEFINITION
ARRAY DIMENSION VALUE NOT AN INTEGER

WRONG TYPE OF VARIABLE USED FOR ARRAY CALL
NON-INTEGER USED IN ARRAY DEFINITION

NUMBER OF ARRAY DIMENSIONS NOT AM INTEGER
INCORRECT NUMBER OF ARRAY DIMENSIONS

ARRAY DIMENSION VALUE NOT AN INTEGER

SUBSCRIPT NOT AN INTEGER

SUBSCRIPT OUT OF RANGE

BAD DYNAMIC VARIABLE PASSED TO INTERPRETER

SYS ERR - BAD NUMERIC FORMAT

FILE NAME ENTER ERROR

FILE NAME LOOKUP ERROR

OUTPUT DEVICE INITIALIZATION ERROR

705
706
707
710
711
712
713
714
715
716
717
720
721
722
723
724
725
726
727
730

INPUT DEVICE INITIALIZATION ERROR

BAD FILE NAME FORMAT

OUTPUT CLOSE ERROR

INPUT CLOSE ERROR

OUTPUT ERROR

INPUT ERROR

WRONG NUMBER OF PARAMETERS PASSED TO LIST
WRONG NUMBER OF PARAMETERS PASSED TO LIST
BAD LIST PASSED TO INTERPRETER

INDEX TOO SMALL FOR LIST

INDEX TOO LARGE FOR LIST

WRONG NUMBER OF PARAMETERS PASSED TO SRPROC
WRONG NUMBER OF PARAMETERS PASSED TO TAIL
WRONG TYPE OF PARAMETERS PASSED TO COMCA4TINATION
WRONG TYPE OF PARAMETERS PASSFD TO UNSTRING
RESERVED PROCEDURE EXPECTED ON? PARAMETER
WRONG TYPE OF PARAMETERS PASSED TO STRING
WRONG TYPE OF ARRAY PASSED TO STRING
RESERVED PROCEDURE EXPECTED AN INTEGFR
WRONG TYPE OF PARAMETERS PASSED TO SRPROC

73 1 RUN UUO RETURNED

732
733
734
776
777

ENTIER TAKES ONLY ONE PARAMETER

ENTIER TAKES ONLY REAL, INTEGER, OR BOOLEAN
BAD ARGUEMENTS TO COMPARE |.E. =,<,>,# ,>=,<r
SYS ERR - JUMP IS TOO LARGE

SYS ERR - DICTIONARY OVERFLOW

END LEAVE THIS AS LAST LINE PLEASE: ALL FOLLOWING LINES

IGNORED

APPENDIX VI

EULER-G

This appendix describes some extensions which have been made

to PDP-10 Euler to permit interactive graphics. The extended language,

called Euler-G, should not be confused with the library of graphical

procedures in SEULD.

Euler-G uses many of the ideas first proposed in Dial [3]. These

include the concept of display procedures, and the assumption that all

pictures are scaled before being displayed. Euler-G also contains ad-

ditional features such as the means to specify rotations and viewports

and the ability to display projections of three-dimensional objects.

These features should make Euler-G considerably more useful than Dial.

Euler-G produces display files for the Univac 1559. These files

are created first in a device-independent format, which is converted

to 1559 format by a separate transmission program. It is therefore ex-

tremely easy to convert Euler-G so as to output to other devices. Work

has already begun on a plotter output package.

Basic Graphical Operations

Graphical output is generated by means of a small set of primi-
tives. The most important primitives are the following:
MOVE TO P : move the display beam to point P
MOVE D : move the display beam through a dis-

tance D from its current position

LINE TO P : draw a line from the current beanm

position to point P

45

LINE D draw a line of length D from the
current beam position
DISPLAY TI, T2... display text items TI, T2...
at the current beam position
The remaining primitives are variants of LINE TO and LINE which
produce different line textures:
ZIP TO P . ;
the corners between lines are slightly
ZIP D \} rounded. Useful for drawing curves.
DOT TO P
to draw dotted lines
DOT D
All points and distances must be specified by lists. These
lists must have either two or three elements, depending on whether two-
dimensional or three-dimensional objects
are being defined. For example:
200,250
MOVE TO [100,150]; LINE TO [200,250]
100,150
will draw a line from (100,150) to (200,
Figure 1 250) as shown in Figure 1.
Instead of a list, the name may be used of any variable which
currently contains a list. For example: '
L3 [10.0, 3.7] ;
LINE L3;
or
MOVE TO POINTLIST[1];
FOR K 2 STEP 1 UNTIL LENGTH [POINTLIST] DO

LINE TO POINTLIST[K];

The second example will produce a sequence of connected lines,
such as is shown in Figure 2 (b), from a list POINTLIST containing

their coordinates in the format shown 1in Figure 2(a).

POINTLIST- X,

/1

Figure 2(a) Figure 2(b)
The DISPLAY statement is modeled on the Euler PRINT statement,
and produces on the display the same output that PRINT produces on

the teletype. The same formatting technique 1is used:
DISPLAY A, B IN "A = B = \\ NN\

Page Coordinates and Screen Coordinates

Most display programming systems force the user to define pictures

in a fixed coordinate system, the coordinate system of the display screen.

This 1is not the case with Euler-6G. Instead pictures are defined in

what is called the page coordinate system, and are displayed by trans-

forming the appropriate parts of the picture into screen coordinates.

47

The programmer has a great deal of freedom to specify: (a) the region
of the page which he wishes to see on the screen, (b) the transformation
which he wishes to apply to the picture, and (c) the region of the
screen which he would like the picture to occupy. This does not imply
that he always has to take advantage of all this flexibility. The nor-
mal procedure is to specify a rectangular window onto the page informa-
tion, and a rectangular viewport onto the screen. Figure 3 shows an
example. All the page information 1lying within the window will appear
on the screen within the viewport;

everything else is eliminated.

The statement to define this

transformation 1is the display 7
viewport
screen

procedure call, of which the
Figure 3
following 1is an example:

POINTS WITHIN [200,200,100,100] ONTO [0,0,1,1]

POINTS refers to a procedure, which might well be the example
given and shown 1in Figure 2. The window onto POINTS 1is specified by
WITHIN [200,200,100,100], which means that the center of the window 1is

at (200,200) and that it measures 100

page coordinate units in size, measured

from the center to each edge. The view-
port has its size from this point. This
is the full screen size: rather than use

the particular coordinate system of the

Univac 1559, Euler-G assumes the screen

Figure 4 dimensions to be those shown in Figure 4.

complete-sequence of

nected-line

the
procedure
should

procedure

procedure.

without

DELETE

and

new

order to

instructions for

picture might be the following:
FRAMEI *'"POINTS WITHIN [200, 200,100,100]
oNnTO [0,0,1,11%*
POINTS "BEGIN NEW K;
MOVE TO POINTLIST[1]
FOR K72 STEP 1 UNTIL LENGTH[POINTLISTI
LINE TO POINTLIST[K]
END'
FRAMEL ;

asterisk preceding the body of the

which is not itself called fronm

include this special mark, indicating that

Frame procedures have a number of special

place, they allow the picture on the screen to

logically separate parts, each of which

affecting the others. A frame <can be

statement:

DELETE FRAMEI

generating

procedure

another

can be

48

a con-

DO

FRAMETI .

display

properties.

be composed

altered

removed by

be altered by changing the data which it accesses, and

it again. For example, if we changed the contents of the
then called FRAMEI. we should see a new picture repre-

contents of POINTS. Alternatively the window might be

show a different part of the complete

picture.

Display Procedure Calls
It may be useful to call display procedures to several levels.

For example, we might wish to define a symbol that appears repeatedly
in a certain picturc. Figure 5 shows a
symbol commonly used to indicate wind velo-
city and direction in weather maps. We
could define this as a display procedure
called WINDSY I, and create a "weather map"”

by means of the following statement:

FOR RAI STEP 1 UNTIL LENGTH[STATIONS] DO

WINDSYM AT STATIONS[K]

TMs assumes that the position of each weather station is held
in a list called STATIONS. The result will be a picture such as Fig-

ure 6. We can add a rotation to each symbol as follows:

FOR K<-1 STEP 1 UNTIL LENGTH [STATIONS] DO

WTNDSYM AT STATIONS[K] ROT WD[K]

WD is a list containing the wind directions, measured in radians.
Arguments may be passed to display procedures. The number of
"bars® on a symbol could be held i, a list called BARS and passed

as followsm

FOR K-el STEP 1 UNTIL i1fcENGTH[STATIONS] DO

WINDS YM <_BARS [KI 7 AT STATIONS [K] ROT WD [K]

The definition of WINDWYM might look something like the following:

50

WINDSYM 'FORMAL N; % N 1S NUMBER OF BARS %
BEGIN NEW K;
CIRCLE WITHIN [0,0,1,1] SIZE 1 AT [0,0];
"MOVE TO [1,01;
LINE TO [5,01;
FOR Kf-1 STEP 1 UNTIL N DO
(LINE [1,0];LINE[1,-1]; MOVE [-1,11)

END'

CIRCLE is yet another display procedure, possibly written as an exter-

nal procedure.

The complete range of transformations and other arguments which

may accompany a display procedure call are as follows;
Window: WITHIN + 4-element list
Viewport: ONTO + 4-element list
Position: AT + 2-element list
Size: SIZE + 2-element list or scalar
Scale: SCALE + 2-element list or scalar
Rotation: ROT + scalar

Transformation: TRANS + 2x2 or 3x3 array

Name: AS + integer or real number

They may be listed in any order. ONTO [a,b,c,d] is equivalent to AT]|[a,

b]SIZE[c,d]. If both size dimensions are the same, a single scalar may
be used; the same applies to SCALE. Rotations are measured anti-clock-
wise in radians. Names have no effect on the picture: they are for

use in detecting mouse hits and so forth.

Windows play an important part in reducing processing time.

Suppose we have defined the weather map shown in Figure 7, and wish to

view just the portion shown by the dotted outline. The program shown

51

above will test every line of

every symbol for visibility,

and discard those outside the

window. If there are a lot

of invisible symbols this

will take a lot of time. Figure 7

We can reduce this time by specifying a window around the symbol:

WINDSYM[BARS[K]] WITHIN [0,0,10,10] AT ... etc.

This implies that we are only interested in the information with-
in the boundary shown in Figure 8(a), and the program can immediately
eliminate those symbols whose boundaries
lie entirely outside the main window. In
Figure 8(b) this would mean the upper

three symbols.

The Use of Names
Names are useful principally for
pointing with the mouse. The reserved

procedure HIT[x,y] will return a value

true or false according to whether any

lines or text lie within a small dis-
tance of (x,y) on the screen. Usually
this information on its own is of little
use: we need to know which item lies
at (x,y). This is why names are useful.
I1f, for example, we would like to point at one of the wind symbols on our

weather map, we should call each symbol with a unique name:

52

FOR K«-1 STEP 1 UNTIL LENGTH [STATIONS] DO
WINDSYM AS K AT .etc.

When HIT returns a value true, the name of the symbol we were
pointing at is in HITNAME.

The x and y values are normally the x and y coordinates of the
mouse, in screen coordinates. To determine these values, use the
library procedure SMOUSE. This returns a five-element list as its
value each time one of the mouse switches is pressed:

M SMOUSE;
% M[1J IS TRUE IF SWITCH 1 WAS PRESSED, OTHERWISE FALSE
M[2] AND M[3] CONTAIN THE SAME

INFORMATION FOR SWITCHES 2 AND 3.

M[4]

IN THE RANGE

Usually when HIT is

a certain part of the

HIT: this 1is the

bols at which we are

symbols, we

map:

MAP

FRAME

name of

pointing.

should pass

AND M[5] CONTAIN X AND Y

-1 TO +1 %

used we would like to restrict its scope to

picture. This can be done by passing a name to

the procedure call one level above the sym-

So if we are going to point at wind-

HIT the name of the call to the whole weather

'BEGIN NEW K;

FOR K«-I STEP 1 UNTIL LENGTH [STATIONS] DO

WINDSYM AS K WITHIN [0,0,10,10] ROT WD[K]
AT STATIONS[K]

END"';

*'MAP WITHIN W ONTO V AS 100",

53

FRAME; . . !
M «- SMOUSE [
IF HIT[M[4],M[5], 100] THEN

% HITNAME NOW CONTAINS THE SYMBOL NUMBER % "

’

A second use for names is in converting from screen coordinates
to page coordinates. This can be done with the reserved procedure

SCALXY. For example '

SCALXY [X,Y,100]

"1 m .
would return the position, in the coordinate system of MAP, correspond- 1
ing to (X,Y) in screen coordinates. For obscure reasons, SCALXY will

not return correct values unless the frame containing the procedure
call in question has been called at least once.

A reserved variable which may be accessed within a display pro- '

cedure is RELSCALE. It returns as value the relative scale on the
screen of the current "instance" of this procedure, i.e., the ratio
of page units to screen units. It returns a list if the scales in

the x- and y-directions are different.

Display Procedure Call Syntax

The syntax of display procedure calls permits any sequence of
statements within parentheses to be used in place of a procedure vari-
able name. For example, the following is a permissible display procedure

call:

(MOVE TO[20,0]; LINE TO [30,30]) AT [X,Y] SCALE 5

This form may be convenient for such things as displaying text messages:
FTEXT * '(DISPLAY "START") AT [-.1,.9] WITHIN [0,0,100,1007";
FTEXT;

This will display the message "START" near the top center of the screen.
The display procedure call syntax also requires that all display

procedures called from a frame procedure are called with a window or

a viewport specified.

Displaying Three-dimensional Data
LINE, LINE TO, MOVE, etc. may specify three coordinates instead
of two. In thifs case the third is treated as a z-coordinate. Three-di-
mensional information may be transformed in the same way as two-dimen-
sional, with the restriction that rotation cannot be specified by ROT.
Windows and viewports, other than the final window and viewport speci-
fied in the frame procedure, should have six arguments instead of four;
scale, size and position lists should contain three elements; and
transformation matrices should be 3x3 or 4x4. SCALXY will not work on
three-dimensional data.
How to Use Euler-G
A special Euler-G compiler has been written, and can be run
as follows:
.R EULERG
*PROG”PROG

This assumes the source file of the user's program

is on the disk under

55

the name PROG.SRC. To run the program, type:

*R SEULG
*PROG
The debugging features of EULER are all included in Euler-G.
Summary
F e ' defines a frame procedure
DP TR ' defines a display procedure
F calls a frame procedure
DELETE F deletes it
CLEAR clears the screen
DP followed by one or more transformations calls a
display procedure. Transformations allowed are:
WITHIN [x,y,w,h] window, center (x,y), size 2wx2h
ONTO [x,y,w,h] viewport, center (x,y), size 2wx2h []
AT [x,y] position
SIZE [w,h] size 2wx2h
SIZE S size 2sx2s
SCALE [w,h] scale wxh
SCALE S scale sxs
ROT r rotated r radians anti-clockwise
TRANS t transformed by matrix t
AS n name n
MOVE TO [x,y] move beam to (Xx,y)
MOVE [dx,dy] move beam through distance dx,dy
LINE TO [x,y] draw line to (x,y)
LINE [dx,dy] draw line of length dx,dy
ZIP TO [x,y] like LINE TO, zip mode
ZIP [dx,dy] like LINE, zip mode
DOT TO [x,y] dotted LINE TO
DOT [dx,dy] dotted LINE
DISPLAY tl,t2 display text items tl,t2 '
DISPLAY tl,t2 IN f display text in format f
HIT [x,y,n] look for hit under call n at screen position
(x,y), return true or false; return name
in HITNAME
SCALXY[x,y,n] scale (x,y) from screen coordinates to page
coordinates for call n.
RELSCALE returns relative scale of current display

procedure

APPENDIX VII: EULER Compiler Error Messages ,

Syntax Error 1 Illegal title
2 Outermost block must include declarations
3 Illegal declaration list
4 Illegal formal variable list
5 Not a valid statement
6 Illegal statement terminator
7 Illegal subscript list
8 Integer must follow period
9 Illegal statement terminator

10 No begin or quote following title

11 Illegal item in declaration
12 Illegal variable following for
13 Only unsubscripted variable names allowed in declarations
14 For statement expects
15 No expression following ® in for statement
16 Illegal expression following step
17 Illegal expression following until
18 Illegal expression following while
19 Either until or while must be included in stepped for statement
20 Illegal expression as operand to arithmetic test
21 No do in for statement
22 Illegal operand for arithmetic binary operator
23 Illegal expression following if
24 No then in if_ statement
25 Illegal expression as operand for not
26 Illegal operand following unary + or -
27 Illegal statement as item in output list
28 Illegal item wused as format
29 Illegal expression as operand for or
30 Illegal expression as operand for and
System Error 8: Null string, not permitted (use 1 =z ™)
127: String extends over more than one line, not permitted (use 'N)
End of File Input: Compiler reached end of file without finding final end
or quote.

Stack Overflow: Too many nested blocks

APPENDIX VIII

LINKING ASSEMBLY CODE TO EULER PROGRAMS

Assembly code may be linked to EULER programs by creating
user procedures. There is provision for up to ten user procedures.
They are called UPO through UP9. These procedures may or may not
have parameters, but they must return a value. There is also a facil-

ity to initialize wuser procedures when the program starts.

1. Empty User Procedure Macro Source

An empty user procedure macro source called UPROC.MAC is avail-
able from the system programmers. This file has the necessary linkage
declarations, accumulator and special symbol definitions, and macro
definitions. This file should be used to create user procedure files.

A copy of UPROC.MAC is included at the end of this appendix.

2. Accumulator Usage
Accumulators which have names starting with T or FREE may be used
without the user having to save them. All others in general should not

be touched, except as described below. Accumulator 0 should never be

used because the macros use it.

3. User Procedure Initialization

When a program starts, control is transferred to UPI$$S. The
user may do whatever initialization is necessary and then return control

to the interpreter by executing a RET instruction.

4. User Procedures

When a user procedure

When the procedure is complete,

by executing a JRST I.RET if

if there are parameters.

5. Parameters to User

Parameters to the user

The value at (WP) is the number
Appendix IX for data formats.)
through-n(WP) which is the first

Before the procedure returns
should execute the instruction

value and once more for the parameter

6. Determining the Data Type
Two macros are provided

data type of EULER values. They are

and SKp Descriptor Not Equal,

SKDE address of value,

The types of interest are:

UNDEFINED

INTEGER

REAL

BOOLEAN

Procedures

procedures

58

control is transferred to UPn$$$.

is returned to the interpreter

no parameters, or a JRST I.BRET

are passed on the WP stack.

of parameters as an integer. (See
- th.
The value at-I(WP) is the n parameter
parameter.
control to the interpreter, it
CAL B.PEEL once for each parameter

count value.

of a Value

the program to determine the

SKDE and SKDN, SKp Descriptor Equal,

respectively. The format is:

of value desired.

D.UNDF

D.INT

D.BOOL

59

STRING D.STR or D.TSTR
ARRAY D.ARR or D.TAR
LIST D.LIST or D.TLST

See Appendix IX for data formats.

7. Returning Values)
A fter the proper number of calls on B.PEEL the procedure must

put its return value on the stack. This is done by the following code:

MOVE AC, value '

STACK AC.

If the procedure wishes to return an undefined value, the code would

be: -

MOVE AC, [D.UNDFI

STACK AC.

8. Internal Subroutines
Internal subroutines may be called by CAL subroutine and the

subroutine will return with a RET.

9. Saving Accumulators on the Stack

AC's may be saved on the stack by SAVE AC and restored by FETCH AC.

10. Free Storage
To get a block of free storage N word long, the following code

is used:

60

MOVElD TAC, N
CAL S .GET

TAC now contains a pointer to the block.

To return a block to free storage, the following code is used:

MOVE TAC, ptr to block
CAL S _RETS

62

3. Booleans

Bit 35=1 is true, and Bit 35=0 is false.

4. Strings

The right half is a pointer to a ASCIZ block of characters.

Arrays
The right half is a pointer to an array.

Array format is:

Word O: D.INT,, number of dimension
Word 1: D.DOPE,, size dimension n
Word n: D.DOPE,, size dimension 1
Word n+1: value [1,...,1,1]
Word n+2: value [1,...,1,2]
Word nHTD® value [D:},DQ, A ,Dn]

i

6. Lists

The right half is a pointer to a list header:
List header

word -1 D.DUBB LENGTH
word O N FIRST ELEMENT PTR
word 1 Nth ELEMENT PTR LAST ELEMVENT PTR

List Element

word 0 D.SINB NEXT ELEVENT PTR
word 1 VALUE

64

