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ABSTRACT

In order to prove the correctness (or consistency) of an 

implementation of a data type with respect to the data type's 

specifications, the minimal amount of information that needs to be 

provided consists o f: (i) a specification of the type being 

implemented; (i i )  a specification of the representation type; and 

( i i i )  a specification of an implementation. This paper develops a 

method for proving the correctness of data type implementations that 

requires oniy this minimal amount of information to be specified in 

order for a proof to be attempted; this is in contrast to several of 

the existing methods which need additional information augmenting 

(i )- (i i i )  to be specified in order to be applicable. The ensuing 

generality of the proposed method makes it more amenable to 

automation. Examples of applications of the proof method are 

presented, all of which have been automated.

This work was supported in part by an IBM Fellowship
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ON PROVING THE CORRECTNESS OF DATA TYPE IMPLEMENTATIONS

1. Introduction

Programming involves representing the abstractions of the obiects and 

operations relevant to a given problem domain using "primitive" obj ects and 

operations that are presumed to be already available; ultimately, such 

primitives are those provided by the available hardware. Various programming 

methodologies advocate ways of achieving "good" . organizations of layers of 

such representations, in attempting to provide effective means of coping with 

the complexity of programs. The importance of data abstractions in achieving 

elegant organizations was cogently argued for by Hoare in [1], and their use 

has, by now, been amply demonstrated. '

Hoare also proposed a method for proving the correctness of implementations 

of data abstractions in [7]. Due to a proliferation of languages incorporating 

variations of the notion of abstract data types (for example, [8] and [14]), 

techniques for proving the correctness of implementations of abstract types 

have since gained in importance [15], Two of the most widely used techniques 

are those due to Hoare [7], and Guttag et al [5]. In this paper, we present a 

new proof method that is more general than the existing methods; the nature of 

this generality makes our method more amenable to automation. In particular, 

the method proposed has the important advantage of normally requiring only the 

minimal amount of information that is necessary in order to enable a proof of 

the correctness (or consistency) of an implementation of a data type with 

respect to its specifications. This is in contrast to most of the existing 

proof methods, including those of [7] and [5], wherein it is usually necessary 

to augment the specifications of ( i) the data type being implemented, ( i i )  the 

representation type, and ( i i i )  the implementation, with additional information 

in order to carry out the proofs. We relegate details of further comparisons 

to section 5. -
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1 .1 . Summary of the Paper ,

W e 'briefly  review some basic definitions relating to abstract data types in 

Section 2. We adopt the view that the inherent structure of an abstract data 

type is characterized by its "externally observable behavior" —  such behavior 

is reflected by functions that return elements of "known" types ( i .e .  types 

other than the one being defined) . A notion of equivalence of instances of a 

type under extraction is developed to make precise this externally observable 

behavior. An implementation of one data type (the Type of Interest TOI) in 

terms of another (the Target Type TT) is defined as a map between the 

functions and the obi ects of the two types that preserves the observable 

behavior of the TOI. We show (Theorem 7) that this definition coincides with 

the more conventional definition of an implementation as a sur! ective 

homomorphism from the equivalence classes of the representation (target) type 

to the equivalence classes of the Type of Interest. However, it is this 

difference in perspective that affords insight into the added generality of 

our proof method. .

Section 3 outlines the theoretical basis underlying the proof method. We 

first observe that a straightforward induction proof based directly on the 

developments in Section 2 is not feasible in practice; an alternative proof 

strategy is then developed and shown to be correct. In Section 4 we illustrate 

an application of the proof method; we have chosen to first illustrate the 

proof of a implementation of a Stack in order to highlight some of the 

important differences between the present method and previously proposed proof 

strategies (these are elaborated in section 5 .)  Other examples attempted 

include proofs of implementations of a Queue, a SymbolTable, and a TextEditor. 

All of these proofs have been automated.

2. Preliminary Definitions

Definition 1: An abstract data type can be regarded as a many 

sorted algebra, consisting of a set X of sorts, a set F of function 

symbols, and a set of equations relating terms generated by F and 

containing free variables. Each f in F has an associated arity that 

is an element (x ix2 • ,x n ’xn+l^ x We a l so write f : ( x j ,

* 2 » * * .xn ) -> xn+i ( f ° r an example, see figure 2-1 on page 3 ).
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Definition 2: Let V * <V j , . .  . , . .  . > , where is a set of 

variables of sort x^ . The word algebra W[F,V] generated by F and V 

consists of the union of the sets w£n^[F ,V ], n = 0 ,1 ,2 .  . .defined as 

follows:

1. all variables of sort x are in [F,V]

2. all constants of sort x , (that is f : () -> x) are in W^0)[F,V]

3. if f : X j ,x 2 » . . .» X k  _> , x * then f ( t j , . . , t j c) is in w£n^[F,V] if
for each i ,  t. is in W^n-^ [ F ,V ] ,  and at least one t,- is not in

W£n-2 ) [F ,V]. 1
i

Figure 2-2 illustrates the word algebra generated by functions defined on a 

Stack.

Type Stack(Item) .

Syntax

NEWSTACK: () -> Stack .

PUSH: (.Stack, Item) -> Stack

POP: (Stack) -> Stack

TOP: (Stack) -> Item U {UNDEFINED)

ISEMPTY: (Stack) -> Boolean

Semantics

for all s in Stack, x in Item,

POP(NEWSTACK; = NEWSTACK 

POP(PUSH(s,x)) = s

TOP(NEWSTACK) = UNDEFINED 

TOP(PUSH(s ,x )) - x

IS EMPTY(NEWSTACK) - true 

ISEMPTY(PUSH(s,x)) - false

End Stack

Figure 2-1: STACK DEFINITION1

For the purposes of this paper, we ignore the technicalities arising out of 

the presence of parameterized types and functions returning "error" values 

(see [13, 4 ] ) .  However, the reader's intuition will not lead him astray in his 

comprehension of this paper.
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- the set of sorts X, X - {Stack, Item, Boolean), the sorts 

themseives being Stack, Item, Boolean;

- the set of function symbols F^tac^ * (NEWSTACK, PUSH, POP, TOP, 

ISEMPTY, TOP), with associated., arities as shown in figure 2-1, 
pBoolean .  {FALSE, TRUE), e t c .;

- the set or terras in the word algebra generated by this set of

■ __ functions consists of .

^ S t a c k ^ ^  C ’ ( x , y , . . . ) ]
. * {NEWSTACK,

PUSH(NEWSTACK,x) ,

' PUSH(NEWSTACK,y),

• • • 1
PUSH(PUSH(NEWSTACK,x),x) ,

PUSH(PUSH(NEWSTACK,y) ,y) ,

PUSH(PUSH(NEWSTACK,x) ,y) ,

PUSH(PUSH(NEWSTACK,y),x) ,

POP(NEWSTACK),

POP(PUSH(NEWSTACK,x)) ,

. . .  ) etc . ;

WItem[FStaCk’ <x.y.--.>1
* (TOP(NEWSTACK),

. TOP(PUSH(NEWSTACK,x)) ,

• « M

• • • $
TOP(POP(NEWSTACK)) ,

. . . )  etc .;

The data type Stack can be viewed as consisting of

- the equations are those shown in figure 2-1.

Figure 2-2: Word algebra generated by F^tac^
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denotes the set of functions defined on the data type T; Vj denotes the 

(countable) set of variables of type T. To improve readability, we often 

abbreviate W^.[F U F^,V] to W^[F] (that is , the functions F^ defined on the 

"known" or "global" types G are omitted). When F * F^, i . e . ,  F is the entire 

set of functions defined on type T, we further abbreviate W^.[F^] to W^.

-2.2. Equivalence under extraction operations .

- T
The runctions F defined on an abstract data type T can be categorized into

Base . constructors (BC ^), which spawn new instances of the type (e .g .

- - T
NEWSTACK) , Constructors (C ) ,  which form new instances of the type from

T
existing ones (e .g . PUSH, POP), and extraction functions or extractors (E ) ,  

which return members of other "known" types (e .g . TOP, ISEMPTY).

We adopt the viewpoint that any obi ect representing ar instance of a type 

is completely characterized by its "externally observable" properties; such 

properties are just those that are obtained as results of applications of 

extraction functions defined on the type. This is made precise in the notion 

of extraction equivalence of instances of the type [12, 10]. '

Informally, two terms t^ and t 2 are said to be extraction equivalent if 

every sequence of function applications that terminates with the application 

of an extraction function yields the same (or "equivalent") results on the two 

terms. As an example, two instances of the type Stack (say, s^ and s2 ) are 

extraction equivalent iff the applications TOP(sj) and T0P(S2), T0P(P0P(sj))

and T0P(P0P(s2 ) ) .......... T0P(PUSH(s1,x L) ) and T0P(PUSH(s2 ,X j ) ) ,  . . . ,  ISEMPTY(s1)

and ISEMPTY(s2 ) ,  ISEMPTYCP0P (S j )) and ISEMPTY(POP(s2) ) ,  . . . ,

ISEMPTY(PUSH(s1 ,x 1)) and ISEMPTY(PUSH(s2 ,x 1) ) ............ yield the same results

pairw ise .

We now formalize the notion of extraction equivalence. For any term t, we 

denote by t[v|t '] the term obtained from t by replacing each occurrence of v 

in t by the term t ' . (For this to be well defined, it is necessary that the 

sorts of t' and v be the. same.) We denote by t[v in V̂ . It'] the term obtained

2 . 1 .  Some Notational abbreviations
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by substituting t' for aii occurrences, in t , of variables that are contained 

in V- Let t be a term in the word algebra W [F,V] where j» in G is different
O O

from T; further, let t contain (one or more) occurrences of variables of sort
O

T. Let t' and t" be obtained by substituting tj and t2 respectively for all

occurrences of variables of sort T in t . Thus t' ■ t [v in V-Jt,] and t" -
g g l T 1 1J

tg[v in V̂ . 112 ] • (Note that- the terms t' and t" obtained by this process

represent ail possible pairs of terms obtained by applying sequences of

functions ending in an extraction function to tj and t2 c i. the example in the

previous paragraph.) n

Definition 3: tj and to are said to be extraction equivalent in T 

if and only if t' and t are (extraction) equivalent in g. Thus, 

ti =t ^2 if and only if • '

either (i) tj - t2 , •

or ( i i )  (for all g in G )(for  all tg in W [F,V])

(tg [v in “ g cg^v in ’ • ’

where G is the union of all "known types" that are returned by 

extraction functions defined on T. To avoid ambiguity, the * sign has 

been labeled to apply over the type domain of its arguments.

Two important observations immediately follow as a result of this 

d efin ition :

1. When G is the empty set, extraction equivalence becomes identical 

to syntactic equivalence.

2. Syntactic equivalence implies extraction equivalence. Thus,

tj = t2 => tj =T t2 . ’ 3

. ■ ,‘i» 0' r- :

2 .3 . Defining an implementation

Informally, an implementation of one data type, the type of interest TOI, 

in terms of another, the target type TT, is a map from the functions and the 

obj ects of TOI to those of TT which preserves-the "observable behavior" of the 

type of interest. That is , whenever extraction functions are applied to 

objects of TOI, yielding instances of known types, the corresponding 

computation in the implementation domain should yield identical results. This 

is the import of the Definition 6 below.
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On Che other hand, the conventional characterization of a "correct" 

implementation embodies the requirements that ( i) every instance of TOI is 

represented by some instance(s) of the representation type, and that ( i i )  the 

implementations of the functions defined on TOI "work properly." Formally, the 

existence of a surj ective map from the equivalence classes in the 

representation type TT to the equivalence classes in the type of interest TOI 

ensures that every instance of TOI is represented by at least one instance of 

TT. Further, if this map is a homomorphism, it ensures that the functions 

"work properly" (see [1 3 ] ) . The existing proof methodologies are based 

primarily on this definition (see Section 5 ) .  In contrast, the proof method 

that we will outline in section 3 is based on the definition of correct 

implementation as developed in Definition 6. We show in Theorem 7 that the 

above notions of a correct implementation are formally equivalent. However, 

as mentioned in Section 1, the generality of the proof method delineated 

herein stems from the difference in our perspective. '

We can define an implementation map with greater precision in terms o f .a  

(restricted) derivor [13]; this is done in Definition 4 below. However, we 

first need to introduce the notion of a term being viewed as a derived 

operator: informally, a term "P0P(PUSH (s ,x )) "  can be viewed as an operator 

(say POP-PUSH) with arity POP-PUSH: Stack, Item -> Stack, that maps the 

arguments (s ,x ) to the Stack "P0P (PU SH (s ,x )) . "  POP-PUSH is called a derived 

operation ("derived" • from the terra "P0P (PU SH (s ,x )) , "  where s and x are 

v a r iab le s ). When we explicitly  want to indicate the function derived from a 

term t, we shall denote it d- (t).

.Definition 4 : A derivor d consists of the following pair of maps

(a) a map dfl from ({TOI} U G) to ({TT} U G ); we shall be concerned 

only with the case where dfl maps TOI ~to TT and is the identity 

operator on all of the global,sorts g in G. That is ,

da (T0I) * TT, and

(for all g in G) [da (g) - g]

(This merely embodies the fact that we compute with TT-obj ects in 
piace of TOI-objects and that everything else is unchanged.)
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TOT
(b) a map 0 from F 1 L to that preserves arity : if f : x j . . . x n->x 

(f in F^®*), then d - (0 [f] ), (a term in W ^ )  when viewed as a "derived 

operator" must have arity

d- ( 9 [f] ) : da (x ^ ) . .  *da(xn) -> da(x ) .

By virtue of the simplification in (a ) ,  this arity is simply 

x ^ , . . . x n->x with any occurrences of TOI being replaced by TT.

Henceforth, we simply write 9 (f )  for d- 9(f). The map 9 which is of 

interest to us acts as the "identity " for functions f in F^. Thus, the 

-non-trivial part of 0 is the one that transforms the functions defined on the 

type of interest to terms in the target type. This map will henceforth be 

referred to as the implementation map (or simply the implementation 9 ) ,  and in 

essence, defines an implementation of the type TOI in teras of the type TT.

Definition 5 : The d-derived algebTa dTT defined by a derivor d is 

an algebra with functions <d-9(f) | f in FT01} that is , the function 

corresponding to f is the term 0 (f ) viewed as a derived function. The 

equations of dTT are identical to those of TT.

Example If we consider the implementation of a Stack in terms of an Indexed 

Array (see Figure 2-3), the maps comprising the derivor are: da (Stack) « 

Indexed Array, da (Ttem) = Item, da (Boolean) = Boolean. Tne type Indexed Array 

is a tuple consisting of an Array and an integer; the map. 0 is detailed in 

figure 2-3.

It is straightforward to extend the domain of 0 from F ^ ^  to 

U F^,V] , X in {TOI} U G: variables of sort TOI are mapped to 

variables of sort TT, while variables (and functions) of all other sorts 

remain unchanged. Then, if t - f (t . t ) ,  we define

I., ft(t) = 0 (fT d l ) ( 9 ( t j , . .  ,e (t n) ) .

Definition 6: A map 0 defines a correct implementation of TOI in 

terms of TT if  .

• (for all g in G )(for  all tg in Wg [FT01) [ 9 (tg> =gtg] .

Theorem 7 shows that this interpretation of an implementation coincides 

with one defining a sur^ ective homomorphism from the extraction equivalence 

classes of dTT to the extraction equivalence classes of TOI. 1 ’

Theorem 7:

An implementation' map 0 such that
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(for all g in G )(for all tg in W ^ F 101]) =  tg] (I)

implies the existence of a surj ective homomorphism

8 ' : WdTT/ E*  -> WT0I / ET

where (respectively W^q j / E ^ *  ,) denotes the extraction

equivalence classes induced by the runctions E ^  (respectively E^® *).

Proof: See Appendix I .

‘2_»A. Kernel Functions

The first phase of constructing the formal specifications for a problem

involves specifying an appropriate syntax that embodies the visible "syntactic

interface" requirements of the problem, i .e .  enumerating a set of functions

F associated with appropriate arities . The second phase of the specirication

process involves specifying the semantics of the functions in F . In this

later phase, it is convenient to first tentatively identify a minimal set of

base constructors and constructors that serve to generate all representative

instances of the type, such as {NEWSTACK, PUSH) for a Stack; we will refer to

such a set of functions as a kernel set and denote it K^. If  the semantics of

the remaining functions can be completely specified by defining their action

only on the instances of the type generated by the postulated kernel set, then

- T
the initial identification or K fu lfills  the formal requirements of a set of 

kernel functions [11).

T "
More formally, a set of kernel functions K is characterized by the fact

T
that every term in Wj[F ] is equivalent (under the set of defining equations)

T T
to at ieast one term in W^[K ]. Invariably, such a set K is identical to a

syntactic version of a kernel set, defined to be the union of the functions

that appear in the arguments on the left hand sides of the defining equations

of the non-kernel functions; an algorithm to identify such a set can be found

2 „
Or course, this phase or constructing formal specifications may undergo 

several iterations before a final set of specifications is settled upon, since 

the initial (and intermediate). specifications may provide an "unsatisfactory" 

interface for the user.
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The map 0 defining an implementation of a Stack using 

an Indexed Array is defined below. Let 0(s) « <a,i> .

0 (NEWSTACK) = <NEWARRAY, ZER0>

0 (PU SH (s ,x )) - <ASSIGN(a, SUCC(i),x) , SUCC(i)> 

0 (POP (s)) * <a, PRED(i)>

0 (TOP(s)) - DATA(a,i)

0 (ISEMPTY(s)) - [i = ZERO]

i is an Integer Index, SUCC(i) is the Successor of the integer i 

(■ i+1), PRED(i) is the Predecessor of the integer i (with the 

semantics for monus) . Appendix III  

details the definitions of the types Array and Integer.

Figure 2-3: THE IMPLEMENTATION OF A STACK USING AN INDEXED ARRAY
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in [12 ] .^  In other words, the equations that define the semantics of 

non-kernel functions refer explicitly  only to terms generated by syntactic 

kernel functions; henceforth, we shall use to denote the syntactic kernel 

set obtained from a given specification of the type T. We now proceed to 

elaborate on the relevance of this observation to the proof method.

3 . On proving the correctness of an implementation

Recall from Definition 6 that a proof of the correctness of an 

implementation specified by a map 0 involves showing that the following holds

(for all g in G)(ror all tR in Wg [FT0Il) t? - 0 (t  ) . -- (P)

Now, every such term t is either of the form e ( v j , . . . , v n) (for some

TOT
extraction runction e in EiU i, where e : X j, . . . ,  Xn -> X, and v i in Vx ,) 

e .g .  TOP(s) , or is obtained by instantiating the variables in e (v ^ , . . . ,vQ) 

e .g . TOP (NEWSTACK), TOP (POP ( s ' )) , etc. Thus, if we consider the set of 

(uninstantiated) terms S of the form e ( v j , . . . , v n ) and prove that e ( v j , . . . , v  )

■ 0 (e (v j , . .  . ,v )) for every such term in S, then we shall have proved that. 0 

defines a correct implementation. However, it may not be possible to carry 

through all .of the required proofs directly, because of the lack of the 

appropriate forms of the defining equations. For example, there is no 

defining equation of the form TOP(s) * . . . ,  that is' normally specified for a 

stack.

As a consequence, in order to use the defining equations of TOI and TT in 

proving equivalences, it may be required to instantiate the variables in 

e ( v j , . . . , v n) with some specific terms. For example, if the variable s in 

TOP(s) is instantiated to either NEWSTACK or P U S H (s ',x ), it becomes possible 

to use the defining equations of TOP. It i s ,""however, imperative to guarantee

3 ■
The notion of a syntactic kernel set is introduced only to circumvent the 

pathological undecidabilities that can arise in computing a "semantic" version 

of the kernel set. -
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that the generality of the overall proof procedure is not compromised by any 

such (set of) sp ecializatio ns) . The most obvious way to ensure this • 

generality is to use induction on the syntactic structure of the terms in the 

word algebra generated by F^. For example, this would require considering the 

terms TOP(NEWSTACK), TOP(PUSH(s,x)) ,  TOP(POP(s)), etc.

Unfortunately, even the specializations ensuing from such a set of 

.instantiated terms may not be adequate to enable a completion of the required 

proofs. This will be the case if the type is not freely generated by the 

constructors, i . e . ,  if the set of non-kernel constructors ( is 

non-empty. Thus, in the case of the type Stack, POP is a non-kernel 

constructor, and there is no explicit equation of the form TOP(POP(s)) ■ . . .

Nonetheless, it is possible to develop a proof procedure that uses 

induction only on the terms generated by a set of kernel functions, by 

recognizing (proving) the extraction equivalence of certain terms in the 

derived algebra. Proofs of extraction equivalence of terms in the derived 

aigebra must in turn rely primarily on an induction on the structure of terms 

in but this often turns out to be feasible in practice. The resulting

proof procedure is quite general; what is of greater relevance, however, is 

that it is more amenable to automation. Concluding this prologue, we now 

outline the proof procedure in greater detail.

We denote by “ ^TT extraction equivalence in the derived algebra dTT.

Theorem 8 : Let R denote the set of defining equations of TOI. For 

each defining equation t^ - t2 in R, where tj , t2 are not in W^.gj, if

t^ = t2 *> 9 (t j )  “ dTT c2) —  (A)
and if ’

(for all g in G) (for all tg in Wg [KT01 U ET0T] ) tg -g6 (t g ) — (B) 

then 0 defines a correct implementation.

Proof: See Appendix I I .  -

It is crucial to note that the equation (B) above considers only Wg U 

ET01 and not Wg [FT0T] .]
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In order to prove tj =dxT c2* necessarT  to prove that

(for all g in G) (for all tg in W^[Fdrr])

tg [v in VdTT|t1r - g tg [v in VdTT|t2].

This proof may again be based upon induction on the structure of the terms in 

the word algebra wdj j ,  and consists of the following steps:

Base case Prove

" (for all g in G) (for all t in [F**^-]

tg [v in vdTT|tjn - t [v in VdTT|t2l

Assume (as the induction hypothesis)

(for all g in G) (for all tg in [F ^^ ]

tg [v in Vd r r |t11 - tg [v in vdTTl t2]

Induction step Prove

(for all g in G) (for all t in W^n+^  [F^^T)

tg [v in - tg [v in vdTTI t2l

The proof of part (B) of Theorem 8 is again obtained by an induction on the 

terms of W , ^  [K101 U ET01) .

We now illustrate the proof method based on Theorem 8 by proving the 

correctness of the Stack, implementation given in figure 2-3.

4 . Illustrations of the Proof Method -

4 .1 .  Proof of an Implementation of a Stack

To prove the given implementation 9 correct (see figure 2-3), it is 

necessary to prove that . '

TOP(s) - 9 (T 0 P (s )) for all s in WStack --(SI)

and -

ISEMPTY(s) =■ 9(ISEMPTY(s)) for all s in WStack. --(S2)

We wilL discuss only the proof of (S I) here. The proof of (S2) is almost

identical.. .

Proof of (S I) The most natural form of a proof of (S I) relies on induction
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on the structure of the terms in wgtack [F^tack] , but involves the following 

proof:

(for all s in W ^ ck) TOP(POP(s)) - 9 (T0P(P0P(s)) — (T-POP)

Note however, that the defining equations for TOP apply only to terms of the 

form NEWSTACK or PUSH(s,x). Thus, (T-POP) cannot be proved directly. In 

general, equations that involve non-kernel functions cannot be proved directly 

by using the defining equations. Consequently, any syntactic equivalences 

that are implied by the defining equations for non-kernel functions (on Stack) 

must be proven to carry over as extraction equivalences in the (derived) 

implementation algebra. That is ,  we need to show that

POP(NEWSTACK) - NEWSTACK

-> 0 (POP(NEWSTACK)) -dAI e(NEWSTACK) ~ ( A 1 )

and

POP(PUSH(s,x)) - s . .

«> 9 (P0P (PUSH (s ,x ))) -dAI 9 ( s ) . — (A2)

In such a case, by virtue of Theorem 2, it is sufficient to show that 

. TOP(s) = 9 (T 0 P (s )) for all s in WStack[Kstack] ,

where the kernel set for Stack is {NEWSTACK,PUSH). This in turn can be 

proved by induction on the structure of terms in Wgtack[K^tack] , and consists 

of the following steps:

Base Case Prove

TOP(NEWSTACK) - 9 (TOP(NEWSTACK)) — (Bl)

Assume as the induction hypothesis that

(for all s in w^ c k [KStackl ) TOP(s) - 9(T0P(s))

Induction Step Prove

for all s in £[KStack] )TOP(PUSH(s ,x) * 9(T0P(PUSH(s,x ))) — (B2)

We now detail some of these proofs.

Proof of (Al) _

(LHS) * 9 (POP(NEWSTACK))

- 9 (POP)( 9 (NEWSTACK)) - '

- 9 (POP) (<NEWARRAY,ZERO>)

- <NEWARRAY, PRED( ZERO)>

= <NEWARRAY, ZERO  by the defining equation of PRED.

RHS - 9 (NEWSTACK)

- <NEWARRAY, ZERO>
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- LHS

Since syntactic equivalence implies extraction equivalence, the proof of 

(Al) is complete.

Proof of (A2) By the definition of 0, we have,

LHS - e(POP) (9 (PU SH (s ,x )))

= 0 (POP) ( 0 (PUSH) (<a-,i> ,x) )

= e(POP) (<ASSIGN(a,SUCC(i),x),SUCC(i)>)

= <ASSIGN (a ,SUCC(i),x ), PRED(SUCC(I))>

= <ASSIGN(a, SU CC(i) ,x ) ,i>  (by using PRED(SUCC(i)) - i)

RHS = 0 ( s ) = <a,i>

a

Thus, we need to prove that the terms <ASSIGN(a, SUCC(i),x ),i>  and <a,i> are 

extraction equivalent in the derived target type algebra. These terms are not 

syntactically equivalent. Consequently, to prove the extraction equivalence 

of these two terras, we again need to resort to the basic definition and use 

induction on the structure of the terras in the derived algebra where we

denote by dAI the derived Array-Index algebra. Observe that

w ( > ( FS‘ ack)] = <N EWARRAY, Z ERO>

w 3 K n te<FStack>l - • .
{ <ASSIGN(a, SUCC(i),x),SUCC(i)> , ,

<a,PRED(i)> I <a,i> in [0 (FStack)] >

and that 0 (E Stack) = {0(TOP), 0(ISEMPTY)>

A proof of (A2) by induction therefore consists of the following steps:

Base case .

6 (TOP) (<NEWARRAY, Z E R O ) ) [<a, i> | <ASSIGN ( a , SUCC( i) ,x l ) , i>]

= 9(T0P) (<NEWARRAY, ZERO) [<a,i> |<a,i>] — (A2-1)

Induction hypothesis Assume 

(for all <a,i> in

9 (TOP) (<a , i>) [<a, i> | <ASSIGN (a, SUCC( i) , x l ) , i>]

= 9(T0P) (<a,i>) [<a ,i>|<a,i>].

Induction step Prove 

(for ail <a,i> in

9 (TOP) (< A S S IG N (a ,s f i ) ,x ) ,s ( i )> )  [<a,i>|<ASSIGN(a, SUCC(i) ,xl) ,i>]
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- e(TOP) (<A SS IG N (a ,s (i) ,x ) ,SU C C (i)> |< a ,i> )  — (A2-2) 

(for all <a,i> in ^)

0(TOP) (<a,PRED(i)>) [<a,i>|<ASSIGN(a,SUCC(i),xl),i>]

- 0 (TOP) (<a,PRED(i)>) [<a,i> |<a,i>] — (A2-3)

In addition, proofs with 0(ISEMPTY) substituted for 0(TOP) must also be 

carried out. We illustrate only the proofs for 0 (T O P ) , since the proof for 

0 (ISE11PTY) . is similar. The proof of (A2-1) is trivial, since both the LHS and 

RHS are identical.

Proof of (A2-2)

LHS = 0 (TOP) (<ASSIGN(ASSIGN(a, SUCC(i),x),SUCC(i)> )

- DATA(ASSIGN(ASSIGN(a,SUCC(i),xl) ,SU CC(i) ,x ) ,SUCC(i))

■ x (by the defining equations of DATA)

RHS - 0(TOP) (<ASSIGN(a ,SUCC(i),x ), SUCC(i)>)
- DATA(ASSIGN(a, SUCC(i),x),SUCC(i))

■ x (by the defining equations of DATA)

- LHS

Proof of (A2-3)

LHS - 0(TOP) (<a,PRED(i)>) [<a,i>I<ASSIGN(a, SU C C(i) ,x l ) , i>]

- 0(TOP) (<ASSIGN(a,SUCC(i),xl) ,  PRED(i)>)

= DATA(ASSIGN( a , SUCC(i) ,xl) , PRED( i ) ) - ■'

- DATA(A,PRED( i ) ) .

RHS = DATA(a, PRED(i)) - LHS

In conj unction with the proofs for &(ISEMPTY), this completes the proof of 

(A2), and therefore of part (A ) .

Proof of (Bl)

LHS - TOP(NEWSTACK) - UNDEFINED.

RHS - 0 (TOP(NEWSTACK))

- 0(TOP) ( 0 (NEWSTACK))

= 0 (TOP) (<NEWARRAY, ZERO)

- DATA(NEWARRAY, ZERO) „

- UNDEFINED

- LHS

Proof of (B2)

Let 0(s) * <a,i> -

LHS - TOP(PUSH( s , x ) )

■ x (by the defining equations for TOP)
RHS = 0 (TOP(PUSH(s , x ) ))

- 0 (TOP) ( 0 (PUSH (s , x ) ))

= 0(TOP) ( 0 (PUSH) (< a ,i> ,x ) )

= 0(TOP) (<ASSIGN(a, S U C C (i ) ,x ) , SUCC(i)>) -
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- DATA(ASSIGN(a ,SUCC(i),x), SUCC(i))
= x (by the defining equations for DATA).

= LHS .

By Theorem 2, the above proofs of Part (A) and (B) together imply that 0 

defines a correct implementation of Stack.

5. Some comparisons with other proof methods

‘ _ The conventional notion of a proof of the correctness of an implementation

map 0 involves proving the existence of a surj ective homomorphism 0 ' from 

TT TOT
onto W^q ^ /E  . Most of the proof methods that have been employed 

thus far are based primarily on this definition of correctness, and follow 

essentially either one of following two procedures:

(1) an "abstraction function" A: -> is specified, which serves as

a postulated map 0 ' .  The correctness proof then involves showing that A does 

indeed define a surjective homomorphism. This method is basically due to Hoare

[7]. The rep function used in the ALPHARD verification methodology serves a 

similar purpose [15].

(ii)  an equality relation * (called an "equality interpretation" in [5 ]) 

is specified on the terms in The existence of the required homomorphic

map 0 ' is then proved by making use of this equality interpretation. This 

method is a slight generalization of ( i ) ,  since an abstraction function can be 

used to impose an equaLity interpretation on dTT, whereas the converse is not 

true. Specifically, the equality interpretation induced by an abstraction 

function A is :

A (ttl) - A(tt2) => ttl =eq tt2.

Strictly speaking, however, in order to prove the correctness of an 

implementation of a type of interest TOI in terms of a target type TT, it 

should only be necessary to provide the following information:

1. a specification of the type being implemented TOI;

2. a specification of the representation type TT;
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It therefore detracts from the generality of a proof method if it is 

required to augment the specifications ( 1 )—(3) above with some additional 

information in order to carry through a correctness proof. The existing 

methods, of which we have given some examples above, suffer from this 

drawback. In both of the above proof methods, it is necessary to supply some 

extra information— in the form of an abstraction function in ( i) , or an 

equality interpretation in ( i i ) .  This is also true of a recent proposal of 

Flon and Misra [2] .

In contrast, the method we have outlined in this paper does not require any 

additional information augmenting the specifications (l )- (3 ) .  To make a 

specific comparison, if the proof techniques of [GHM78] are used, the proof of 

an implementation of a Stack identical to the one discussed in section 4.1 

needs the following equality interpretation to be specified:

0 ' (< a ,i> )  - 0 ' (< al , i l >) -

if i*il  and (for all k) [1 <_ k <_ i = DATA(a,i) ■ DATA(al,i)]

As we indicated in section 1, the added generality of our proof procedure 

is quite important, since it facilitates automation. (For example, all of the 

proofs presented in this paper have been automated using the simplifier that 

forms part of the Stanford Verifier [9].) Of course, it is possible that in 

the course of a particular proof, some specific step cannot be carried through 

automatically, i ust as it is possible that in the course of attempting a 

correctness proof of a program using, say, Floyd-Hoare proof methods (cf .

[3], [6] , )  it may prove to be difficult (or infeasible) in practice to 

demonstrate the invariance of certain assertions. However, our initial 

empirical, explorations with an automated system have certainly served to 

indicate that the method can be used to carry out non-trivial proofs, thereby 

lending credibility to its pragmatic utility .

3. a s p e c i f i c a t i o n  of the  implementa t ion map 6.
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We restate the theorem below.

Theorem 7 An implementation map 0 such that

(for all g in G)(for ail tg in Wg [FT0 1 ] ) [ 9 ( tg) « t ] (I)

implies the existence of & surj ective homomorphism 

. 0 '  : WdTT/ £TT -> WTQI / ET01

where (respectively WTQj /E  ,) denotes the extraction equivalence

TT TOT
classes induced by the functions E (respectively E ) .

The proof of this theorem rests on lemma 9 below. Let [ t] denote the

equivalence class of the term t. '

Lemma 9 : Let 0 (t)  * t, t in W^0 ^. Define 9 '  : wdTT -> WT 0I ’ 

where 0 ' ( [ t ] ) = [t] . Then 9 '  is a well defined map.

Proof. In order for 9 '  to be well defined, it needs to be shown that

(a) If t is such that

9(t) - t ( 1 )

then there must not exist t' c such that

. 6 (t ')  - t ( 2 )

(b) 9 ' is defined for all [t] in W ^ ^ / E ^ ^ .

Proof of part (a) Assume that there exists a t' t such that 9 ( t ' )  =

t. Then, by the definition of extraction equivalence, there must exist t in
* O

W [FT®*] such that _ _

tg [v in VT Q I|t] t? [v in VI 0I |t'] (3)

Intuitively, this implies the existence of a sequence of function

applications, terminating in the application of an extraction function, that

yieids inequivaient resuLts when applied to t and t' . But, by the definition

of 9 and constraint ( I )  of the theorem,

tg [v in Vt o j U ]  -g 9 ( t g [v in VTQI |t] ) (A)

and __ __ .

tg [v in VTQI|t'] -g 9 ( t g [v in VT Q II t'] ) (5)

I .  Proof  of  Theorem 7
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By the definition of 0, _ _

9 ( tg [ v in | t ]) _ g 0 ( tg) [ v in | 0 ( t ) ]

and __ __

0 (tg [v VT0I |t' ] )  « g 0 (tg)[v in VTT |e( t')]

( 3 ) ,  (4) and (5) imply _ _

- 6 (tg) [v in VTT |©(t )] i*g 0(tg) [v in VTT|e (t ')]  . (6 )

where 0(t  ) is in Wg [FdTT U F ^ V ^ ]  .

But (1) and (2) together imply

0 ( t ) 0 ( t )

and consequently, we have

(for all g in G) (for all t in_ W [FdTT U FG,Vj T] ) ^

tgtv in VTfl0 (t )l  -g tg [v in VTT|0 (t ')]  (7)

which contradicts ( 6 ) .  Hence the assumption that there exists a t' ^TOI t 

and such that 0 ( t ' )  = t cannot be true. End of Proof.

Proof of Part (b_) .

By virtue of definition 4, the only terms in dTT are those that images 

under 0 of some term in W^q ^. There must therefore exist at least one term t 

in Ŵ .qj  [F^®* U F^] which the pre-image of t under 0. That is ,  0 ' is defined 

for every term t in dTT. Tnis completes the proof of the Lemma.

. End of Proof.

Proof of the theorem '

Consider the map 0 '  defined in lemma 9. In order to prove the theorem, it

needs to be shown that *

(A) 0 ' is onto wto i/Et o i ,

(B) 0 '  is a homomorphism.

Proof of Part (A) To prove that 0 '  is onto, we have to show that for every 

[t] in W.J.QJ/E^^, there is a term in W^j j / E ^ ^  that maps onto [t].



Since, for every term t in W^.qj, 0(t) is in W ^ x *  by definition of 0 ' ,  we

must have, _ _

„ 0 ( I 0 (t )]) =,poi .

The proof of part (A) follows immediately.

- End of Proof.

Proof of Part (B) We need to show that

. 0 ' ( [ f ( t / ) ] )  * T0I e ' ( [ f ' ] ) ( e ( U ' ] ) )  ( 8 )

where f ' is a function in dTT, and _t' represents a tuple of terms.

Let f ' ,  t/ be such that ' ' -

e( f ' )  =TT f '  .

and __

0 (1 ' )  ^  t' .

(Because of the reasons given in the proof of part (b) of the lemma, such a 

pair f ' , t/ must exist .)  By definition of 0',__we have,

0 ( I f ]) =toi  ̂ ^

and ; - : ‘ ‘ y v

0 ( [_t ] ) =tqi [_t' 1

Thus,

e ' ( [ f ' i ) ( e ' ( U ' ] ) )  -t o i  [ i ' l l ' ) ]  (9)

Again, by definition of 0,

0 ( f ' ( t / ) )  =TT 9 ( f ' ) ( 8 ( t ' ) )  * TT r ' U ' )

Thus, by definition of 0 ' ,  .

0 ' ( [ r ' ( t / ) ]  ) =TOi t f ' U ' ) ]  ( 1 0 )

Together, (9) and (10) imply that 0 ' satisfies the homomorphism condition

( 8 ) ,  thus proving the theorem. ' • "*

End of Proof.

• 21
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We restate the theorem below.

Theorem 8 : Let R denote the set of defining equations of TOI. For each 

defining equation t^ - t£ in R, where t j ,  t£ are not in wjoi*

tj “ t£ 0 ( t j ) “ ^TT 0(t2) — (A)

and if

(for all g in G> (for all tg in Wg [KT01]) U ET01] ) tg - g Q ^g )  —  

then & defines a correct implementation.

We first prove four lemmas which formalize some fairly intuitive facts, and 

which are needed in the proof of Theorem 8 . .

About the lemma 10. This lemma states that

- if a term t2 is obtained by instantiating a term t by substituting 

t' for the variables of sort T, where

- t' itself has been obtained by instantiating t" by substituting tj 

for the variables of sort T, then

- t2 can also be obtained directly by substituting t^ for variables of 

sort T in some t^; the terra t£ is actually constructed in the proof 

of the lemma.

Lemma 10:

Consider t, tj in Wj. If t2 * (v in V j|t ']  and t '=t "[v  in V j|tj] ,  

then there exists t^ such that t 2 * [v in VT |tj].

Proof. The proof is by induction on the structure of t.

(a) Base Case. Let t be in W^®^.

t in W^®^ => t * v or t * f , where f is in BC^. 

t * v => t2 ■ t' ■ t " [v in V jlt j] .  _

Hence t£ * t " . If t 2 * f then ££ * f.

(b) Induction Step Assume that the proposition holds for all t in W.£n“ ^ .  

Consider t in w£n) . Then t must be of the form t * f ( x p  . . . ,  xm) where f : 

(X j ,  . . . ,  Xm) -> T, and x^ in W^n” ^  (and such that at least one x^ is not in

I I .  Proof  of  Theorem 8 .
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) • Variables of sort T can then occur in X j ,  xm.

t 2 = t [v in V*p 1 1 ' ]

= f (xj[v  in VT | t ' ] , . . . ,xm[v in VT |t '] )

= f ( x j ' [ v  in VT | t j ] , . .  . ,xm' [v in VT 11 ])

. (by hypothesis)

= f ( x j ' . , xm' )  [v in VT |t1]

Hence t^ = f ( x ^ ' , . . . ,xm' ) ,  which completes the proof.

. End of Proof.

Lemma 11 states that the terms t-j, t^ obtained from a common term' by 

instantiating variables with extraction equivalent terms are themselves 

extraction equivalent (although they might be syntactically d ist inct ) . This is 

illustrated in Figure 5-1.

Ml

Figure 5-1: Figure illustrating Lemma 11 

Lemma 11: Consider tj, t 2 in WT . Let t 3 = t '[v  in VT |t1], and t4 =
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t' [v in 112 )- Then tj *•£ c2 “ > c3 =T c4 ^ŵ ere =t denotes extraction 
equivalence).

Proof.

C3 “ T C4

<=> (for all g in G) (for all tg in Wg)

tg [v in VT 113] =g tg [v in VT 114 ] .

_ By lemma 10, there is some t " in W such that te [v in V-r-lto] » t_"[v  in 
_ 0 6  f e 1 -3 © ©

VT |tj] , and tg [ v in VT 11 ^] - tg"[v  in VT 11 2_] .

Since tj t2 , it follows that t3 c4 * . End of Proof.

Lemma 12: Consider t p  t 2 in WT . Then tĵ  = t2 ■> tg [v in VT 11  ̂1 =g 

tg[v in V j|t2], where tg is in Wg .

Proof: Immediate, from lemma 11, since syntactic equivalence 

implies extraction equivalence.

. End of Proof.

Lemma 13: For all tg in W [F^], there is a term t in W^fFTI, and a 

term tg' in Wg [ET], such that tg » t ' [v in VT |t].

Proof. Every term tg is of the form e( t j , .  , t n) where e is in E^, 

e i X ^ , . . . , ) ^  -> g, and t^ is in W^£F^] . Consider the term tg ' = e (v j , . . . ,vn) , 

Vj_ in . Then tg ' is in Wg [ET) ,  and

"g  Cg V̂ 1 ^C1 ^ ’ v̂n I cn ^ *

• End of Froof.

Proof of the Theorem.

By virtue of the definition of for every t in [F ^ * ]  there exists

some tj in WTQI[KT01], such that t « tj.

By Lemma 12, it follows that

tg [v|t, t in WToX] -g tgTvltp t 1 in WT0I [KT01]] ( 1 )

Also ,

9 (t g [v|t]) -g 9 (tg)[0 (v )|9 (t )]  (2)
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Consequently, (2) =>

0 ( t g [v|t, t in WT0I [FT01] ] )

- 9 (tg ) [ 0 ( v ) I & ( t ) , t in wT0 I [fT01]]

= 0(tg) [9( v) | 0 ( t^ ) , t 1 in Wt o i [KT01], t = t (3)

' Again, by virtue of ( B) , we have

(for all g in G) (for all t in W [KT®* U )

^  V - 1- ’ I  in wt o i ^ T0I]]  ^ V - 1- ’ 1  in WTo i [KT01]])  (A)

From ( 1 ) ,  ( 2 ) ,  (3) and ( 4 ) ,  we obtain 

(for all g in G) (for all t in W [KT®* U ET®^])
rt §

cg [ l J l ’ 1  in ^TOI ffT 0 1  J1

“ cg M l i >  I i  in Wt o i [KT01], £  - _tj] by ( 1 )

* © (t g M t ,! *  i .1 in Wt o i [KT01]]) by (4)

* 0 (t g [v|_t, t_ in Wt o i [FT01 ]]) by (2) and (3)

i . e . ,

(for all g in G) (for all t in W [KT01 U ET01] ) 

cg [ t_ in WT0I [FT0In

= 9 ( t g [v|t, t in Wt o i [FT01]]) (5)

TO T
But by lemma 13, tg can be expressed as tg ' [ v | t ' ,  t' in Ŵ .qj  [F ]] where 

tR' is in W [E^®*] (and hence in W g[K ^*  U E^®*]). Consequently, (5) implies 

that

(for all g in G) (for all t in W [FTOI] )
O ©

tg [v|_t, _t in W^^j-JF101]] - £  in W ^ t F 101]]) ( 6 )

But ( 6 ) is precisely the condition required for correctness of the 

implementation specified by 0 . (Note that the key difference lies in the 

quantification of the terms t -) This proves the theorem.

End of Proof.

By v i r t u e  of (A) ,  we have

t “ t j  ■> 0 ( t )  0 ( t j )
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I I I .  D e f i n i t i o n s  of  the  t ypes  Array and I n t e g e r

Type Integer 

Syntax

ZERO : () -> Integer

SUCC : (Integer) -> Integer

PRED : (Integer) -> Integer

ISZERO : (Integer) -> Boolean

Semantics

for ail i in Integer

ISZERO(ZERO()) = TRUE 

ISZERO( SUCC(i)) = FALSE

PRED( ZERO())  = ZERO 

PRED(SUCC( i ) ) = i

End Integer

Figure 5-2: Definition of the type Integer

Type Array

Generic type parameter : item 

Syntax

NEWARRAY : () -> Array '

ASSIGN : (Array,Integer,Item) -> Array 

DATA : ( Array, Integer) -> Item U {UNDEFINED)

Semantics ’ .
’ ' " * ; . ■’ •'

s

DATA(NEWARRAY,! ) = UNDEFINED

DATA(ASSIGN(a, i , x ) ) = i f  i=j then x else DATA(a,i) 

end Array

Figure  5-3:  D e f i n i t i o n  of  the  type Array
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Consider the implementation of the type Queue (see figure 5-4,) using a 

target type consisting of the triple <Array, Integer, Integer>. Intuitively, 

the first integer component points to the front of the Queue, while the second 

integer component points to the tail of the Queue. Tne implementation map 0 

for the functions on type Queue is given in figure 5-5.

We note that

B c Q u e u e  =  < N E W q } .  .

CQueue = {ADDQ, DELETEQ).

EQueue = { FROn t q , ISEMPTYQ). '

IV. The Proof  of  a Queue Implementa t ion

Tne correctness proof consists of two parts.

(A) The syntactic equivalence induced on the terms of type Queue by the 

defining equations must be shown to produce extraction equivalent terms in the 

implementation algebra dAII under the map 0. That is ,

DELETEQ(NEWQ) * NEWQ => 9 (DELETEQ (NEWQ)) -d A n  0(NEWQ) ~ (A 1 )

DELETE(ADDQ(q,x)) = if ISEMPTYQ(q)

then NEWQ .

else ADDQ(DELETEQ(q),x)

=> 9(DELETEQ(ADDQ(q,x))) -d A n  

9 (if ISEMPTYQ(q) 

then NEWQ

else ADDQ(DELETEQ(q),x)) — (A2)

(B) By induction on W^, it must be proved that 

(for ail g in G)

(for all t in W [{NEWQ,ADDQ,ISEMPTYQ,FRONTQ} U FG ,V])

6 (tg) — (B)

This involves the following proofs:

Base Case

FRONTQ(NEWQ) * 0 (FRONTQ(NEWQ)) --(FI)

ISEMPTYQ(NEWQ) = ©(ISEMPTYQ(NEWQ)) --(II)

Induction Step

( f o r  a l l  q in [ (KQueue u EQu e ue , V])
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Type Queue 

Syntax

NEWQ : () -> Queue 

ADDQ : (Queue, Item) -> Queue

* „ DELETEQ : (Queue) -> Queue •

FRONTQ : (Queue) -> Item 

ISEMPTYQ : (Queue) -> Boolean

Semantics

for all q, ql in Queue, x in Item;

DELETEQ(NEWQ) - NEWQ .

DELETEQ(ADDQ(q,x)) - if q - NEWQ

then NEWQ

else ADDQ(DELETEQ(q),x)

ISEMPTYQ(NEWQ) - TRUE 

ISEMPTYQ(ADDQ(q,x)) = FALSE

FRONTQ(NEWQ) = UNDEFINED -

FRONTQ(ADDQ(q,x)) - if q - NEWQ .

then x

else FRONTQ(q)

End Queue

Figure 5-4: Definition of the Type Queue

We write 9(q) * <a,l,h>

6 (NEWQ) = <NEWARRAY, ZERO, ZERO

8 (ADDQ(q,x)) - <ASSIGN(a, SUCC(h), x ) , 1 , SUCC(h)> 

9(DELETEQ(q)) - if 1 - h

then <NEWARRAY, ZERO, ZERO> 

else <a, SUCC(l)*, h>

0 ( FRONTQ(q)) - if 1 - h

then UNDEFINED 

else DATA(a, SUCC(l))

9(ISEMPTYQ(q)) - (1-h)

Figure  5-5 :  An Implementa t ion of  t he  Type Queue
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FRONTQ( ADDQ(q,x)) = 6 (FRONTQ(ADDQ( q ,x ) )) — (F2)

ISEMPTYQ(ADDQ(q,x)) * ©(ISEMPTYQ(ADDQ(q,x))) --(12)

Proof of (Al)

LHS - = ©(DELETEQ(NEWQ))

= ©(DELETEQ)(©(NEWQ))

= ©(DELETEQ) (<NEWARRAY, ZERO, ZERO)

* if ZERO * ZERO

then <NEWARRAY,ZERO,ZERO 

eise <NEWARRAY,SUCC(ZERO),ZERO>

= <NEWARRAY, ZERO, ZERO

RHS » <NEWARRAY,ZERO,‘ZE R O

- LHS

Since syntactic equivalence implies extraction equivalence, this completes

the proof of (A l ) .  .

Proof of (A2)

LHS = ©(D ELET EQ(ADDQ( q ,x ))

= ©(DELETEQ) (<ASSIGN(a, SU CC(h ),x ) , 1 , SUCC(h)>)

- if l=SUCC(h) ' 

then <NEWARRAY,ZERO,ZERO

else <ASSIGN(a,SUCC(h),x),SUCC(1),SUCC(h)>

- <ASSIGN(a, SUCC(h),x),SUCC(1),SUCC(h)>

(where we use the fact that 1 < h is true in _

any term <a,l,h> in This is proved below.)

RHS = if ISEMPTYQ(q) then ©(NEWQ)

else ©(ADDQ)(©(DELETEQ (q ) ,x ) )  '

= if l=h

then <NEWARRAY, ZERO,ZERO "

else ©(ADDQ(if l=h then <NEWARRAY,ZERO,ZERO> ,

else <a,SUCC(1 ) ,h > ) ,x ) )

= if l*h then <NEWARRAY, ZERO, ZE R O  -

‘ else if l=h then ©(ADDQ)(<NEWARRAY,ZERO,ZERO,x) 

else ©(ADDQ)(<a,SUCC(l),h>,x)

= if 1-h then <NEWARRAY,ZERO,ZERO>

else ©(ADDQ) (<a,SUCC(1 ) ,h>,x)

= if 1-h then <NEWARRAY, ZERO, ZERO

else <ASSIGN(a, SUCC(h),x),SUCC(1),SUCC(h)>

The proof of (A2) involves a proof by induction.

Base Case

©(FRONTQ) (<NEWARRAY,ZERO,ZERO>) -

©(FRONTQ) (<NEWARRAY,ZERO,ZERO)

©(ISEMPTYQ) (<NEWARRAY, ZERO, ZE R O ) - -

©(ISEMPTYQ) (<NEWARRAY,ZERO,ZERO)
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e(FRONTQ) (<a , 1 ,h>) [<a,l,h>|

<ASSIGN(a , SUCC(h),xl) ,SUCC(1) ,SUCC(h)>]
= 9 (FRONTQ)(<a, 1 ,h>)

[<a, 1 ,h> | 

if l=h

then <NEWARRAY,ZERO,ZERO>

else <ASSIGN(a, SUCC(h),xl),SUCC(1),SUCC(h)>]

9 (ISEMPTYQ) (<a ,l ,h>) [<a,l,h>|

<ASSIGN(a, SUCC(h),xl),SUCC(1),SUCC(h)>]

= 9 (ISEMPTYQ)(<a,l,h>)

[<a,l,h> | 

if l=h

then <NEWARRAY,ZERO, ZERO>

else <ASSIGN(a,SUCC(h),xl),SUCC(1),SUCC(h)>]

I nduc t i on  h y po t he s i s

Induction step 

Prove

8 (FRONTQ) ( <ASSIGN(a, SUCC(h),x),l ,SUCC(h)>)

[<a, 1 ,h>|<ASSIGN(a ,SUCC(h ),xl) , SUCC(l),SUCC(h)>l

- 0 (FRONTQ) ( <ASSIGN ( a , SUCC(h) ,x) ,l,SUCC(h)>)

[<a,l,h>| 

if l*h

then <NEWARRAY, ZERO, ZERO

else <ASSIGN(a, SUCC(h),xl),SUCC(1),SUCC(h)>]

and -

9 (FRONTQ) (i f  l=h

then <NEWARRAY,ZERO,ZER0> .

else <a,SUCC(l) ,h)>)

[<a, 1 ,h>|<ASSIGN(a, SUCC(h),xl) , SUCC(l) ,SUCC(h)>]

- 9 (FRONTQ)(if 1-h

then <NEWARRAY, ZERO, ZERO

else <a,SUCC(1 ) ,h>) '

[<a, 1 ,h> | 

if l=h

then <NEWARRAY, ZERO, ZERO  

• else <ASSIGN(a,SUCC(h),xl),SUCC(1),SUCC(h)>]

LHS * 9 (FRONTQ) ( <ASSIGN(ASSIGN(a, SUCC(h) ,xl) ,

SUCC(SUCC(h)) ,  

x r ,

SUCC(l),

SUCC(SUCC(h))>)

= if SUCC(l) = SUCC(SUCC(h)) 

then UNDEFINED

— (A2-1)

— (A2-2)
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else DATA(ASSIGN(ASSIGN(a,SUCC(h),xl),

. SUCC(SUCC(h)) ,

x) ,

SUCC(SUCC(1)))

- if SUCC(SUCC(1)) = SUCC(SUCC(h)) 

then x

else if SUCC(h) = SUCC(SUCC(1)) 

then xl

else DATA(a, SUCC(SUCC(1 )))

(using the invariant 1  <_ h)

RHS = if ( l=h)

then ©(FRONTQ) ( <ASSIGN(NEWARRAY,SUCC(ZERO),x),

ZERO,SUCC(ZERO)>) 

else ©(FRONTQ) ( <ASSIGN(ASSIGN(a, SUCC(h),xl) ,

SUCC(SUCC(h),x ) ,

SUCC(l), SUCC(SUCC(h))>)

=if  ( 1 -h) 

then if ZERO=SUCC(ZERO) 

then UNDEFINED

else (DATA(ASSIGN(NEWARRAY,SUCC( ZERO),X ),

SUCC(ZERO)) '

else if SUCC(l) = SUCC( SUCC(h)) 

then UNDEFINED

else DATA ( ASSIGN (ASSIGN (-a, SUCC( h) ,xl) ,,

SUCC(SUCC(h)) ,x) , '

SUCC(SUCC(1)))

Using the fact that ZERO is not equal to SUCC(ZERO), the definition of

DATA, and 1 £  h => SUCC(i) 4 SUCC(SUCC(h)) ,  we get 

RHS '

= if l=h 

then x

else DATA(ASSIGN(ASSIGN(a, SU C C (h ) ,x l ) , SUCC(SUCC(h)>,x) ,

SUCC(SUCCd)))

= if l=h then x

else if l=h then x

else if SUCC(h) * SUCC(SUCC(1)) then xl . .

else DATA(a, SUCC(SUCC(1 )))

= if l=h then x

else if SUCC(h) = SUCC(SUCC(1)) . 

then xl

else DATA(a, SUCC(SUCC(1 )))

Thus LHS = RHS. -

This completes the proof of (A2-1). The proof of (A2-2) can be carried 

through similarly. -

Proof of (FI) : FRONTQ(NEWQ) = 0 (FRONTQ(NEWQ)) 

LHS = FRONTQ(NEWQ) = UNDEFINED.
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RHS - DATA(NEWARRAY, SUCC(ZERO)) - UNDEFINED -RHS

Proof of (F2) FRONTQ( ADDQ ( ( q , x ) ) - 9 (FRONTQ(ADDQ( q ,x ) ))

LHS - FRONTQ(ADDQ(q,x)) = if ISEMPTYQ(q)

then x

else FRONTQ(q).

RHS - 9 ( FRONTQ(ADDQ(q,x)))

= 9 ( FRONTQ)( <ASSIGN(a, SUCC(h),x),l ,SUCC(h)>)

- if l-SUCC(h) then UNDEFINED

else DATA(ASSIGN(a,SUCC(h),x),SUCC(1 ) ) )  .

This proof needs a case analysis. The two cases on the LHS are

ISEMPTYQ(q) : x; — (F2-L1)

not ISEMPTYQ(q) : FRONTQ(q) — (F2-L2)

On the RHS, there are again two cases

l-SUCC(h) : UNDEFINED; — (F2-R1)
not i=SUCC(h) : DATA( ASSIGN(a, SUCC(h),x) , SUCC(1 ) ) ) ;  — (F2-R2)

In order to complete the proof, we can assume the following as induction

hypotheses:

FRONTQ(q) = 9 ( FRONTQ(q)) - DATA(a, SUCC(1))

ISEMPTYQ(NEWQ) = 9 (ISEMPTYQ(NEWQ)) = TRUE -

ISEMPTYQ(q) = 9 (ISEMPTYQ(q)) - (1-h) .

By definition of 9(ISEMPTYQ(q)) ,  and the induction hypothesis,

LHS of (F2-L1) * ISEMPTYQ(q) -> (1-h) => not (l-SUCC(h)),

hence the second case (F2-R2) on the RHS applies. -

Further, (1-h) -> DATA(ASSIGN(a, SU C C(h ) ,x ) , SUCC(1)) - x; -

Thus ,

ISEMPTYQ(q) => FRONTQ(ADDQ( s , x ) ) - x, and --(1)

ISEMPTYQ(q) -> not (l-SUCC(h)) 4 . (1-h)

-> 9 ( FRONTQ(ADDQ(q,x))) - x — (2)

Again, not ISEMPTYQ(q) -> not (1-h), and

not ISEMPTYQ(q) => FRONTQ(ADDQ( q ,x ) ) - FRONTQ(q)

By the induction hypothesis,

FRONTQ(q) - 9 ( FRONTQ(q)) - DATA(a,SUCC(1 ) ) .  --(3)

If we use the fact that 1 < h is an invariant in the derived alg..ebra (see
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beiow ), the it can never be the case that 1 ■ SUCC(h) . Hence, we have 

(1 4 SUCC(h)) & (1 4 h) =>

RHS of ( F2-R2) - DATA(ASSIGN(a, SUC C(h ) ,x ) , SUCC(1)

= if SUCC(h) = SUCC(l) 

then x

else DATA(a,SUCC(1))

= DATA(a, SUCC( 1) ) . — (4)

The proof of (F2) Follows by virtue of (1) and (3) and (4 ) .

Proof of the invariance of _1 <_ h^

The proof is by induction on the structure of the terms of the derived 

algebra. ‘

Base case The base constructors form the set of terms in 

 ̂Queue
[pQueue ^ ^  The

invariant must be verified for each base constructor

(there is only one). We have

8 (NEWQ) = <NEWARRAY, ZERO, Z E R O .

1 « ZERO <_ ZERO - h.

Induction step If 9(q) - <a,l,h> then assume as the induction hypothesis 1 

<_ h, if q is in , and is obtained by applying a constructor function to

terms in [FQueue, V] . "  .

0 ( ADDQ(q,x)) = <ASSIGN(a,SUCC(h) ,x) ,1 , SUCC(h)>

1 1  h => 1 1  SUCC(h)

9(DELETEQ(q)) = if l=h '

. then <a,ZER0, ZERO> -

else <a, SUCC(1 ) ,h>

1 <_ h & l=h «> ZERO <_ ZERO 

1 <_ h & not l=h => 1 < h *> SUCC(l) £  h

Tnus, in both cases, the condition (1 <_ h) is preserved, 

concluding the proof. „ '

Proof of ( I I )

ISEMPTYQ(NEWQ) - 8 (ISEMPTYQ(NEWQ)) --(II)

LHS = true.

RHS = (ZERO * ZERO) “ true. ‘ *

Proof of (12) ‘

ISEMPTYQ( ADDQ(q,x)) = 8 ( ISEMPTYQ(ADDQ(q ,x ) )) — (12)

LHS ■ false.

RHS = 8 (ISEMPTYQ)(<ASSIGN(a,SUCC(h),x),1 , SUCC(h)>) ’ ’ »



34

= (i = SUCC(h))

*.fai se
(Using the fact that (1 < h ) )
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