On Proving the Correctness of
Data Type Implementations

By
P.A. Subrahmanyam

Department of Computer Science
University of Utah
Salt Lake City, Utah
UUCS - 80-101

On Proving the Correctness of Data Type Implementations

P.A.Subrahmanyam
Department of Computer Science
University of Utah
Salt Lake City, Utah 84112

September 1979

Abstract

In order to prove the correctness (or consistency) of an implementation of a data type with respect to the data type's specifications, the minimal amount of information that needs to be provided consists of: (i) a specification of the type being impiemented; (ii) a specification of the representation type; and (iii) a specification oi an impiementation. This paper develops a method for proving the correctness of data type implementations that requires oniy this minimal amount of information to be specified in order for a proof to be attempted: this is in contrast to several of the existing methods which need additional information augmenting (i)-(iii) to be specified in order to be applicable. The ensuing generality of the proposed method makes it more amenable to automation. Examples of applications of the proof method are presented, all oi which have been automated.

This work was supported in part by an IBM Felirowship

Table of Contents

1. Introduction 1
1.l. Summary oi the Paper 2
2. Preliminary Deíinitions 2
2.1. Some Notational abbreviations 5
2.2. Equivalence under extraction operations 5
2.3. Deíining an implementation 6
2.4. Kernel Functions 9
3. On proving the correctness of an implementation 11
4. Illustrations oi the Prooi Method 13
4.1. Prooí oí an Implementation oí a Stack 13
5: Some comparisons with other prooi methods 17
Appendices
I. Proof of Theorem 7 19
II. Prooi of Theorem 8 22
III. Deíinitions of the types Array and Integer 26
IV. The Prooi of a Queue Implementation 27
List of Figures
Figure 2-1: Stack Deíinition 3
Figure 2-2: Word Algebra generated by FStack 4
Figure 2-3: An Impiementation oi a Stack using an Indexed Array 10
Figure 5-1: Figure Iliustrating Lemma 11 23
Figure 5-2: Definition of the type Integer 26
Figure 5-3: Definition of the type Array 26
Figure 5-4: Definition of the type Queue 27
Figure 5-5: An Implementation oi the type Queue 27

ON PROVING THE CORRECTNESS OF DATA TYPE IMPLEMENTATIONS

1. Introduction

Programming involves representing the abstractions of the objects and operations relevant to a given problem domain using "primitive" objects and operations that are presumed to be already available; ultimately, such primitives are those provided by the available hardware. Various programming methodologies advocate ways of achieving "good" organizations of layers of such representations, in attempting to provide effective means of coping with the complexity of programs. The importance of data abstractions in achieving elegant organizations was cogently argued for by Hoare in [1], and their use has, by now, been ampiy demonstrated.

Hoare also proposed a method for proving the correctness of implementations of data abstractions in [7]. Due to a proliferation of languages incorporating variations of the notion of abstract data types (for example, [8] and [14]), techniques for proving the correctness of implementations of abstract types have since gained in importance [15]. Two of the most widely used techniques are those due to Hoare [7], and Guttag et al [5]. In this paper, we present a new prooi method that is more general than the existing methods; the nature of this generality makes our method more amenable to automation. In particuiar, the method proposed has the important advantage of normally requiring only the minimal amount of information that is necessary in order to enable a proof of the correctness (or consistency) of an implementation of a data type with respect to its specifications. This is in contrast to most of the existing proof methods, including those of [7] and [5], wherein it is usuaily necessary to augment the specifications of (i) the data type being implemented, (ii) the representation type, and (iii) the implementation, with additional information in order to carry out the proois. We relegate details of further comparisons to section 5 .
1.1. Summary of the Paper

We briefly review some basic definitions relating to abstract data types in Section 2. We adopt the view that the inherent structure of an abstract data type is characterized by its "externally observable behavior" -- such behavior is reilected by iunctions that return elements oi "known" types (i.e. types other than the one being defined). A notion of equivalence of instances of a type under extraction is developed to make precise this externally observable behavior. An impiementation of one data type (the Type of Interest TOI) in terms of another (the Target Type TT) is defined as a map between the functions and the objects of the two types that preserves the observable behavior of the TOI. We show (Theorem 7) that this definition coincides with the more conventional deininition of an implementation as a surfective homomorphism from the equivalence classes of the representation (target) type to the equivalence classes of the Type of Interest. However, it is this difierence in perspective that aifords insight into the added generality of our prooi method.

Section 3 outines the theoretical basis underlying the proof method. We first observe that a straightforward induction proof based directly on the developments in Section 2 is not feasible in practice; an alternative prooi strategy is then developed and shown to be correct. In Section 4 we illustrate an application of the prooi method; we have chosen to first illustrate the proof of a implementation of a Stack in order to highlight some of the important differences between the present method and previously proposed prooi strategies (these are elaborated in section 5.) Other examples attempted include proois oi implementations oí a Queue, a SymbolTable, and a TextEditor. All of these proois have been automated.

2. Preliminary Definitions

Definition 1: An abstract data type can be regarded as a many sorted algebra, consisting of a set X of sorts, a set F of function symbols, and a set $o \hat{f}$ equations relating terms generated by F and containing free variables. Each i in F has an associated arity that is an element $\left(x_{1} x_{2} \ldots x_{n}, x_{n+1}\right)$ of $X^{*} x$. We also write $f:\left(x_{1}\right.$, $x_{2}, \ldots x_{n}$) $\rightarrow x_{n+1}$ (for an example, see figure $2-1$ on page 3).

Definition 2: Let $V=\left\{V_{1}, \ldots V_{i}, \ldots\right\}$, where V_{i} is a set of variabies of sort x_{i}. The word algebra $W[F, V]$ generated by F and V consists of the union of the sets $W_{x}^{(n)}[F, V], n=0,1,2 \ldots$ defined as follows:

1. all variables of sort x are in $W_{X}^{(0)}[F, V]$
2. all constants of sort x, (that is $f:() \rightarrow x$) are in $W_{x}^{(0)}[F, V]$
3. if $f: x_{1}, x_{2}, \ldots, x_{k} \rightarrow x_{i}$ then $f\left(t_{1}, \ldots, t_{k}\right)$ is in $W_{x}^{(n)}[F, V]$ if $W_{x}^{(n-2)}[F, V]$. t_{i} is in $W_{X_{i}}^{(n-1)}[F, V]$, and at least one t_{i} is not in $\mathrm{W}_{\mathrm{x}_{\mathrm{i}}}^{(\mathrm{n}-2)}[\mathrm{F}, \mathrm{V}]$
Figure 2-2 illustrates the word algebra generated by functions defined on a Stack.

Type Stack(Item)
Syntax

```
NEWSTACK: () -> Stack
PUSH: (Stack, Item) -> Stack
POP: (Stack) -> Stack
TOP: (Stack) -> Item U {UNDEFINED}
ISEMPTY: (Stack) -> Boolean
```

Semantics

```
for all s in Stack, x in Item,
POP(NEWSTACK) = NEWSTACK
POP(PUSH(s,x)) = s
TOP(NEWSTACK) = UNDEFINED
TOP(PUSH(s,x)) = x
ISEMPTY(NEWSTACK) = true
ISEMPTY(PUSH(s,x)) = false
```

End Stack
Figure 2-1: STACK DEFINITION ${ }^{1}$

[^0]The data type Stack can be viewed as consisting of

- the set of sorts $X, X=$ \{Stack, Item, Boolean\}, the sorts themseives being Stack, Item, Boolean;
- the set of function symbols $\mathrm{F}^{\text {Stack }}=$ \{NEWSTACK, PUSH, POP, TOP, ISEMPTY, TOP\}, with associated arities as shown in figure 2-1, $\mathrm{F}^{\text {Boolean }}=\{$ FALSE, TRUE $\}$, etc.;
- the set of terms in the word algebra generated by this set of iunctions consists of
$W_{\text {Stack }}\left[F^{\text {Stack }},\{x, y, \ldots\}\right]$
$=\{$ NEWSTACK, PUSH(NEWSTACK, x),
- PUSH (NEWSTACK,y),

PUSH (PUSH (NEWSTACK, x) , x), PUSH(PUSH(NEWSTACK, y), y), PUSH(PUSH(NEWSTACK,x),y), PUSH(PUSH(NEWSTACK,y),x),
...,
POP(NEWSTACK), POP(PUSH(NEWSTACK,x)), ... \} etc.;
$W_{\text {Item }}\left[F^{S t a c k},\{x, y, \ldots\}\right]$ $=$ \{TOP(NEWSTACK), TOP (PUSH(NEWSTACK,x)),
...,
...,
TOP (POP(NEWSTACK)),
...) etc.;

- the equations are those shown in figure 2-1.

Figure 2-2: Word algebra generated by FStack

2.1. Some Notational abbreviations

F^{T} denotes the set of functions defined on the data type T; V_{T} denotes the (countable) set of variables of type T. To improve readability, we often abbreviate $W_{T}\left[F \cup F^{G}, V\right]$ to $W_{T}[F]$ (that is, the functions F^{G} defined on the "known" or "global" types G are omitted). When $F=F T$, i.e., F is the entire set of functions defined on type T , we further abbreviate $\mathrm{W}_{\mathrm{T}}\left[\mathrm{F}^{\mathrm{T}}\right]$ to W_{T}.

2.2. Equivaience under extraction operations

The functions F^{T} defined on an abstract data type T can be categorized into Base constructors ($B C^{T}$), which spawn new instances of the type (e.g. NEWSTACK) , Constructors (C^{T}), which form new instances of the type irom existing ones (e.g. PUSH, POP), and extraction functions or extractors (E^{T}), which return members of other "known" types (e.g. TOP, ISEMPTY).

We adopt the viewpoint that any object representing ar instance of a type is completely characterized by its "externally observable" properties; such properties are fust those that are obtained as results of applications of extraction functions defined on the type. This is made precise in the notion of extraction equivalence of instances of the type [12, 10].

Informally, two terms t_{1} and t_{2} are said to be extraction equivalent if every sequence of function applications that terminates with the application of an extraction function yields the same (or "equivalent") results on the two terms. As an exampie, two instances of the type Stack (say, s_{1} and s_{2}) are extraction equivalent if \bar{f} the applications $\operatorname{TOP(s_{1})\text {and}\operatorname {TOP}(s_{2}),\operatorname {TOP}(POP(s_{1})),~(s_{1})}$ and $\operatorname{TOP}\left(\operatorname{POP}\left(s_{2}\right)\right), \ldots, \operatorname{TOP}\left(\operatorname{PUSH}\left(s_{1}, x_{1}\right)\right)$ and $\operatorname{TOP}\left(\operatorname{PUSH}\left(s_{2}, x_{1}\right)\right), \ldots, \operatorname{ISEMPTY}\left(s_{1}\right)$ and $\operatorname{ISEMPTY}\left(s_{2}\right)$, $\operatorname{ISEMPTY}\left(\operatorname{POP}\left(s_{1}\right)\right)$ and $\operatorname{ISEMPTY}\left(\operatorname{POP}\left(s_{2}\right)\right), \ldots$, $\operatorname{ISEMPTY}\left(\operatorname{PUSH}\left(s_{1}, x_{1}\right)\right)$ and $\operatorname{ISEMPTY}\left(\operatorname{PUSH}\left(s_{2}, x_{1}\right)\right)$, \ldots, yieid the same results pairwise.

We now formalize the notion of extraction equivalence. For any term t, we denote by $t\left[v \mid t^{\prime}\right]$ the term obtained from t by replacing each occurrence of v in τ by the term t^{\prime}. (For this to be well defined, it is necessary that the sorts of t° and v be the same.) We denote by $t\left[v\right.$ in $\left.V_{T} \mid t^{\prime}\right]$ the term obtained
by substituting t^{\prime} for all occurrences, in t, of variables that are contained in V_{T}. Let t_{g} be a term in the word algebra $W_{g}[F, V]$ where g in G is difierent irom T; further, let t_{g} contain (one or more) occurrences of variables of sort T. Let t^{\prime} and $t^{\prime \prime}$ be obtained by substituting t_{1} and t_{2} respectively for all occurrences oí variables of sort T in t_{g}. Thus $t^{\prime}=t_{g}\left[v\right.$ in $\left.V_{T} \mid t_{1}\right]$ and $t^{\prime \prime}=$ $t_{g}\left[v\right.$ in $\left.V_{T} \mid t_{2}\right]$. (Note that the terms t^{\prime} and $t^{\prime \prime}$ obtained by this process represent all possible pairs oí terms obtained by applying sequences oí functions ending in an extraction function to t_{1} and $t_{2} c f_{\text {. the example in the }}$ previous paragraph.)

Definition 3: t_{1} and t_{2} are said to be extraction equivalent in T if and only if t^{\prime} and t^{n} are (extraction) equivalent in g. Thus, $\mathrm{t}_{1}=\mathrm{T} \quad \mathrm{t}_{2}$ if and only if
either (i) $t_{1}=t_{2}$,
or (ii) $\begin{aligned} &(\text { for all } g \text { in } G)\left(\text { for all } t_{g} \text { in } W_{g}[F, V]\right) \\ &\left(t_{g}\left[v \text { in } V_{T} \mid t_{l}\right]={ }_{g} t_{g}\left[v \text { in } V_{T} \mid t_{2}\right]\right),\end{aligned}$
where G is the union of all "known types" that are returned by extraction functions defined on T. To avoid ambiguity, the $=$ sign has been labeled to apply over the type domain of its argunents.

Two important observations immediately follow as a result of this definition:

1. When G is the empty set, extraction equivalence becones identical to syntactic equivalence.
2. Syntactic equivalence implies extraction equivalence. Thus, $t_{1}=t_{2} \Rightarrow t_{1}=t_{2}$.
2.3. Defining an implementation

Informally, an implementation o_{i} one data type, the type of interest TOI , in terms of another, the target type T, is a map irom the functions and the objects of TOI to those of TT which preserves-the "observable behavior" of the type of interest. That is, whener extraction functions are applied to objects of TOI, yielding instances of known types, the corresponding computation in the implementation domain should yield identical results. This is the import of the Definition 6 below.

On the other hand, the conventional characterization of a "correct" implementation embodies the requirements that (i) every instance of TOI is represented by some instance(s) of the representation type, and that (ii) the implementations of the functions defined on TOI "work properly." Formally, the existence of a surjective map from the equivalence classes in the representation type TT to the equivalence classes in the type of interest TOI ensures that every instance of $T O I$ is represented by at least one instance of TT. Further, if this map is a homomorphism, it ensures that the functions "work properly" (see [13]). The existing prooi methodologies are based primarily on this definition (see Section 5). In contrast, the proof method that we will outline in section 3 is based on the deinition of correct implementation as developed in Definition 6. We show in Theorem 7 that the above notions of a correct implementation are formaily equivalent. However, as mentioned in Section 1 , the generality of the proof method delineated herein stems from the difference in our perspective.

We can define an implementation map with greater precision in terms of a (restricted) derivor [13]; this is done in Definition 4 below. However, we first need to introduce the notion of a term being viewed as a derived operator: informally, a term "POP(PUSH(s,x))" can be viewed as an operator (say POP-PUSH) with arity POP-PUSH: Stack, Item \rightarrow Stack, that maps the arguments (s, x) to the Stack $" P O P(P U S H(s, x)) . " P O P-P U S H$ is called a derived operation ("derived". irom the term $\operatorname{POPP}(\operatorname{PUSH}(s, x)$)," where s and x are variabies). When we explicitly want to indicate the function derived from a term t, we shall denote it $d-(t)$.

Definition 4: A derivor d consists of the following pair of maps
(a) a map d_{a} from (\{TOI\} UG) to (\{TT\} UG): we shall be concerned only with the case where d_{a} maps $T O I$ to $T T$ and is the identity operator on all of the global sorts g in G. That is,

$$
\begin{gathered}
d_{a}(T O I)=T T \text {, and } \\
(\text { for all } \mathrm{g} \text { in } G)\left[d_{a}(g)=g\right]
\end{gathered}
$$

(This merely embodies the fact that we compute with TI-objects in piace of TOI-objects and that everything else is unchanged.)
(b) a map θ irom $\mathrm{F}^{\mathrm{TOI}}$ to W_{TI} that preserves arity: if $\mathrm{f}: \mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{n}}->\mathrm{x}$ (i in $\mathrm{F}^{\mathrm{TOI}}$), then $\mathrm{d}-\left(\theta[\mathrm{f}]\right.$), (a term in $W_{T T}$) when $v i e w e d$ as a derived operator" must have arity

$$
d-(\theta[i]): d_{a}\left(x_{1}\right) \ldots d_{a}\left(x_{n}\right) \rightarrow d_{a}(x) .
$$

By virtue of the simplification in (a), this arity is simply $x_{1}, \ldots x_{n}->x$ with any occurrences of TOI being replaced by TT.

Henceforth, we simply write $\theta(\dot{f})$ for $\operatorname{d-\theta (j).~The~map~} \theta$ which is of interest to $u s$ acts as the "identity" for iunctions i in F^{G}. Thus, the non-trivial part of θ is the one that transiorms the functions defined on the type of interest to terms in the target type. This map will henceforth be referred to as the implementation map (or simply the implementation θ), and in essence, defines an implementation of the type TOI in teras of the type TT.

Definition 5: The d-derived algebra dTT defined by a derivor d is an algebra with iunctions $\left\{d-\theta(\bar{I}) \mid \bar{i}\right.$ in $\left.F^{\mathrm{TOI}}\right\}$ that is, the function corresponding to \bar{i} is the term $\theta(\bar{i})$ viewed as a derived iunction. The equations of dIT are identical to those of TT.

Example If we consider the implementation of a Stack in terms oi an Indexed Array (see Figure 2-3), the maps comprising the derivor are: $d_{a}($ Stack $)=$ Indexed Array, $d_{a}($ Item $)=$ Item, $d_{a}($ Boolean $)=$ Boolean. The type Indexed Array is a tuple consisting of an Array and an integer; the map. θ is detailed in iigure 2-3.

It is straightiorward to extend the domain oi θ from $\mathrm{F}^{\mathrm{TOI}}$ to $W_{X}\left[F^{T O I} \cup F^{G}, V\right], X$ in \{TOI\} $U G: \quad v a r i a b l e s$ of sort $T O I$ are mapped to variables of sort $T T$, while variables (and iunctions) oi all other sorts remain unchanged. Then, if $t=i\left(t, \ldots t_{\eta}\right)$, we define t. $\theta(t)=\theta\left(\bar{i}_{i}^{\operatorname{T\theta I}}\right)\left(\theta\left(t_{1}, \ldots, \theta\left(t_{n}\right)\right)\right.$.

Definition 6: A map θ defines a correct implementation of TOI in terms of TT if

$$
\text { (for all } g \text { in } G \text {)(for all } t_{g} \text { in } W_{g}\left[F^{\text {TOI })}\left[\theta\left(t_{g}\right)=g_{g}\right]\right. \text {. }
$$

Theorem 7 shows that this interpretation of an implementation coincides with one defining a surfective homomorphism from the extraction equivaience classes of dTT to the extraction equivalence classes of TOI.

Theorem 7:
An implementation map θ such that

$$
\begin{equation*}
\text { (for all g in } \left.G \text {)(for all } t_{g} \text { in } W_{g}\left[F^{\text {TOI }}\right]\right)\left[\theta\left(t_{g}\right)=t_{g}\right] \tag{I}
\end{equation*}
$$

implies the existence oi a surfective homomorphism

$$
\theta^{\prime}: W_{\mathrm{dTT}} / \mathrm{E}^{T T} \rightarrow W_{T O I} / E^{T O T}
$$

where $W_{d T I} / E^{T T}$ (respectively $W_{T O I} / E^{T O I}$,) denotes the extraction equivalence classes induced by the Iunctions $E^{T T}$ (respectively $E^{T O I}$).

Prooi: See Appendix I.

2.4. Kernel Functions

The ifirst phase of constructing the formal specifications for a problem involves speciiying an appropriate syntax that embodies the visible "syntactic interiace" requirements oí the problem, i.e. enumerating a set of functions F^{T} associated with appropriate arities. The second phase of the specification process involves specifying the semantics of the iunctions in F^{T}. In this later phase, it is convenient to $\dot{\text { irst }}$ tentatively identíy a minimal set of base constructors and constructors that serve to generate all representative instances of the type, such as \{NEWSTACK, PUSH\} ior a Stack; we will refer to such a set $O \bar{i}$ functions as a kernel set and denote it K^{T}. İ the semantics of the remaining iunctions can be completely specified by defining their action oniy on the instances of the type generated by the postulated kernel set, then the initiai identification of K^{T} iulifills the formal requirements of a set oí kernel iunctions [11]. 2

More formally, a set of kernel functions K^{T} is characterized by thé fact that every term in $W_{T}\left[F^{T}\right]$ is equivalent (under the set oi defining equations) to at ieast one term in $W_{T}\left[K^{T}\right]$. Invariably, such a set K^{T} is identical to a syntactic version of a kernel set, defined to be the union of the functions that appear in the arguments on the left hand sides of the defining equations of the non-kernel iunctions; an algorithm to identify such a set can be found
${ }^{2} 0 f$ course, this phase of constructing formal specirications may undergo several iterations before a final set of specifications is settled upon, since the initial (and intermediate) specifications may provide an "unsatisiactory" interface for the user.

The map θ defining an implementation oí a Stack using an Indexed Array is defined below. Let $\theta(s)=\langle a, i>$.

```
0(NEWSTACK) = <NEWARRAY, ZERO>
0(PUSH(s,x))=\langleASSIGN (a,SUCC(i),x), SUCC(i)>
0(POP(s)) = <a, PRED(i)>
0(TOP(s)) = DATA(a,i)
0(ISEMPTY(s)) = [i= 2ERO]
```

i is an Integer Index, $\operatorname{SUCC}(i)$ is the Successor of the integer 1 ($=1+1$), PRED(i) is the Predecessor of the integer i (with the semantics $i \dot{-l}$ for monus). Appendix III
details the definitions of the types Array and Integer.

Figule 2-3: THE IMPLEMENTATION OF A STACK USING AN INDEXED ARRAY
in [12].3 In other words, the equations that define the semantics of non-kernel functions refer explicitly only to terms generated by syntactic kernel functions; henceforth, we shall use K^{T} to denote the syntactic kernel set obtained from a given specification of the type T. We now proceed to eiaborate on the relevance of this observation to the proof method.
3. On proving the correctness of an implementation

Recall from Definition 6 that a proof of the correctness of an implementation specified by a map θ involves showing that the following holds

$$
\begin{equation*}
\text { (for all } g \text { in } G \text {)(for all } t_{g} \text { in } W_{g}\left[F^{\left.T O I_{j}\right)} t_{g}=_{g} \theta\left(t_{g}\right)\right. \tag{P}
\end{equation*}
$$

Now, every such term t_{g} is either of the form $e\left(v_{1}, \ldots, v_{n}\right)$ (for some extraction function e in $E^{T O I}$, where $e: X_{1}, \ldots, X_{n} \rightarrow X$, and v_{i} in $v_{X_{i}}$, e.g. TOP(s), or is obtained by instantiating the variables in $e\left(v_{1}, \ldots, v_{n}\right)$ e.g. TOP (NEWSTACK), TOP (POP($\left.s^{\circ}\right)$), etc. Thus, if we consider the set of (uninstantiated) terms S of the form $e\left(v_{1}, \ldots, v_{n}\right)$ and prove that $e\left(v_{1}, \ldots, v_{n}\right)$ $=\theta\left(e\left(v_{1}, \ldots, v_{n}\right)\right)$ for every such term in S, then we shail have proved that θ defines a correct implementation. However, it may not be possible to carry through all of the required proois directly, because of the lack of the appropriate forms of the defining equations. For example, there is no defining equation of the form $\operatorname{TOP}(s)=\ldots$, that is nomally specified for a stack.

As a consequence, in order to use the defining equations of $T O I$ and $T T$ in proving equivalences, it may be required to instantiate the variables in $e\left(v_{1}, \ldots, v_{n}\right)$ with some specific terms. For example, if the variable s in TOP(s) is instantiated to either NEWSTACK or PUSH($\left.s^{\circ}, x\right)$, it becomes possible to use the deifining equations of TOP. It is, however, imperative to guarantee

[^1]that the generality of the overall prooi procedure is not compromised by any such (set oí) specialization(s). The most obvious way to ensure this generality is to use induction on the syntactic structure of the tems in the word algebra generated by F^{T}. For example, this would require considering the terms TOP(NEWSTACK), TOP(PUSH(s,x)), TOP(POP(s)), etc.

Unfortunately, even the specializations ensuing from such a set of instantiated terms may not be adequate to enable a completion of the required proois. This will be the case if the type is not ireely generated by the constructors, i.e., if the set oi non-kernel constructors ($\mathrm{F}^{\mathrm{TOI}}-\mathrm{K}^{\mathrm{TOI}}-\mathrm{E}^{\mathrm{TOI}}$) is non-empty. Thus, in the case of the type Stack, POP is a non-kernel constructor, and there is no explicit equation of the form $\operatorname{TOP}(P O P(s))=\ldots$

Nonetheless, it is possible to develop a proof procedure that uses induction only on the terms generated by a set of kernel iunctions, by recognizing (proving) the extraction equivalence of certain terms in the derived algebra. Proois of extraction equivalence of tems in the derived aigebra must in turn rely primarily on an induction on the structure of tems in $W_{d T T}$, but this often turns out to be ieasible in practice. The resulting prooi procedure is quite general; what is of greater reievance, however, is that it is more amenable to automation. Concluding this prologue, we now outline the proof procedure in greater detail.

We denote by $=d T T$ extraction equivalence in the derived algebra dTT.
Theorem 8: Let R denote the set oi deíning equations of TOI. For each defining equation $t_{1}=t_{2}$ in R, where t_{1}, t_{2} are not in $W_{\text {TOI }}$, ī
and if

$$
\begin{equation*}
t_{1}=t_{2} \Rightarrow \theta\left(t_{1}\right)=d T T \quad \theta\left(t_{2}\right) \tag{A}
\end{equation*}
$$

 then θ defines a correct implementation.
Proof: See Appendix II.
It is crucial to note that the equation (B) above considers only $W_{g}\left[K^{T O I} U\right.$ $\mathrm{E}^{\mathrm{TOI}}$ and not $\left.\mathrm{W}_{\mathrm{g}}\left[\mathrm{F}^{\mathrm{TOI}}\right].\right]$

In order to prove $t_{1}=d T I t_{2}$, it is necessary to prove that
(for all g in G) (for all t_{g} in $\mathrm{W}_{\mathrm{g}}\left[\mathrm{F}^{\mathrm{d} T \mathrm{~T}_{\mathrm{g}}}\right.$)

$$
t_{g}\left[v \text { in } v_{d T T} \mid t_{1}\right] g_{g} t_{g}\left[v \text { in } v_{d T T} \mid t_{2}\right]
$$

This prooi may again be based upon induction on the structure of the terms in the word algebra $W_{d T T}$, and consists of the following steps:

Base case Prove
(for all g in G) (for all t_{g} in $\mathrm{W}_{\mathrm{g}}^{(0)}\left[\mathrm{F}^{\mathrm{dTT}}\right.$]

$$
t_{g}\left[v \text { in } V_{d T T} \mid t_{1}\right]=t_{g}\left[v \text { in } V_{d T T} \mid t_{2}\right]
$$

Assume (as the induction hypothesis)

$$
\begin{aligned}
&(\text { for all } g \text { in } G)\left(\text { for all } t _ { g } \text { in } W _ { g } ^ { (n) } \left[F^{d T T_{]}}\right.\right. \\
& t_{g}\left[v \text { in } V_{d T T} \mid t_{1}\right]=t_{g}\left[v \text { in } V_{d T T} \mid t_{2}\right]
\end{aligned}
$$

Induction step Prove
(for all g in G) (ior all t_{g} in $W_{g}^{(n+l)}\left[F^{d T T}\right.$) $\left.V_{d T T} \mid t_{1}\right]=t_{g}\left[v\right.$ in $\left.V_{d T T} \mid t_{2}\right]$
The prooi or part (B) of Theorem 8 is again obtained by an induction on the terms of $\mathrm{W}_{\text {TOI }}$ (K $\mathrm{K}^{\text {TOI }} \mathrm{U} E^{\text {TOI })}$.

We now illustrate the proof method based on Theorem 8 by proving the correctness of the Stack implementation given in figure 2-3.
4. Illustrations of the Proof Method
4.1. Prooi of an Implementation of a Stack

To prove the given implementation θ correct (see figure 2-3), it is necessary to prove that

$$
\begin{equation*}
\operatorname{TOP}(s)=\theta(\text { TOP }(s)) \text { for all } s \text { in } W_{\text {Stack }} \tag{S1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{ISEMPTY}(s)=\theta(\operatorname{ISEMPTY}(s)) \text { for all } s \text { in } W_{\text {Stack }} \tag{S2}
\end{equation*}
$$

We will discuss only the prooi of (S1) here. The prooi of (S2) is almost identical.

Prooi of (Sl) The mose natural form of a prooi of (Sl) relies on induction
on the structure of the terms in $W_{\text {Stack }}\left[F^{S t a c k}\right]$, but involves the following proof:

$$
\text { (for all s in } \left.W_{S t a c k}^{(n)}\right) \operatorname{TOP}(P O P(s))=\theta(\operatorname{TOP}(P O P(s)) \quad-(T-P O P)
$$ Note however, that the defining equations for TOP apply only to terms of the form NEWSTACK or PUSH(s,x). Thus, (T-POP) cannot be proved directly. In general, equations that involve non-kernel functions cannot be proved directly by using the defining equations. Consequently, any syntactic equivalences that are implied by the deifining equations for non-kernel iunctions (on Stack) must be proven to carry over as extraction equivalences in the (derived) implementation algebra. That is, we need to show that

POP(NEWSTACK) $=$ NEWSTACK
$\Rightarrow \theta(P O P($ NEWSTACK $))={ }_{d A I} \theta($ NEWSTACK $)$
and
$\operatorname{POP}(\operatorname{PUSH}(s, x))=s$
$\Rightarrow \theta(\operatorname{POP}(\operatorname{PUSH}(s, x)))={ }_{d A I} \theta(s)$.
In such a case, by virtue of Theorem 2, it is sufficient to show that $\operatorname{TOP}(s)=\theta(\operatorname{TOP}(s))$ for all s in $W_{\text {Stack }}\left[K^{s t a c k}\right]$,
where the kernel set for Stack is \{NEWSTACK, PUSH\}. This in turn can be proved by induction on the structure of terms in $W_{S t a c k}\left[K^{S t a c k}\right]$, and consists oi the following steps:

Base Case Prove

$$
\begin{equation*}
\text { TOP }(\text { NEWSTACK })=\theta(\text { TOP }(\text { NEWSTACK })) \tag{B1}
\end{equation*}
$$

Assume as the induction hypothesis that (for all s in $W_{\text {Stack }}^{(n)}\left[K^{S t a c k}\right]$) $\operatorname{TOP(s)}=\theta(\operatorname{TOP}(s))$
Induction Step Prove

$$
\begin{equation*}
\text { for all s in } \left.W_{\text {Stack }}^{(n+1}\right)\left(K^{S t a c k}\right) \operatorname{TOP}(\operatorname{PUSH}(s, x)=\theta(\operatorname{TOP}(\operatorname{PUSH}(s, x))) \tag{B2}
\end{equation*}
$$

We now detail some of these proofs.
Prooí of (Al)
(LHS) $=\theta($ POP (NEWSTACK))
$=\theta($ POP $)(\theta$ (NEWSTACK) $)$
$=\theta($ POP) (<NEWARRAY, ZERO $\rangle)$
= <NEWARRAY, PRED(ZERO) >
= <NEWARRAY, ZERO> by the defining equation of PRED.
RHS
$=\theta$ (NEWSTACK)
= <NEWARRAY, ZERO>
= LHS

Since syntactic equivalence implies extraction equivalence, the prooi of (Al) is complete.

Prooí of (A2) By the definition of θ, we have,
$\operatorname{LHS} \quad=\theta(P O P)(\theta(\operatorname{PUSH}(s, x)))$
$=\theta(P O P)(\theta(P \cup S H)(\langle a, i\rangle, x))$
$=\theta($ POP $)(\langle A S S I G N(a, \operatorname{SUCC}(i), x), \operatorname{SUCC}(i)\rangle)$
$=\langle\operatorname{ASSIGN}(a, \operatorname{SUCC}(i), x), \operatorname{PRED}(\operatorname{SUCC}(I))\rangle$
$=\langle\operatorname{ASSIGN}(a, \operatorname{SUCC}(i), x), i\rangle$ (by using $\operatorname{PRED}(\operatorname{SUCC}(i))=i)$
RHS $=\theta(s)=\langle a, i\rangle$

Thus, we need to prove that the terms <ASSIGN(a,SUCC(i), x),i> and <a,i> are extraction equivalent in the derived target type algebra. These terms are not syntactically equivalent. Consequently, to prove the extraction equivalence Oi these two terms, we again need to resort to the basic definition and use induction on the structure of the tems in the derived algebra $W_{d A I}$, where we denote by dAI the derived Array-Index algebra. Observe that
$\mathrm{W}(0)\left\{\theta\left(\mathrm{F}_{\mathrm{dAI}} \mathrm{Stack}\right)\right]=\langle\mathrm{NEWARRAY}$, ZERO \rangle
$W\left\{\begin{array}{l}\mathrm{A}+1 \\ \mathrm{~A}\end{array} \theta(\mathrm{~F}\right.$ Stack $\left.)\right\}=$
$\{\langle A S S I G N(a, \operatorname{SUCC}(i), x), \operatorname{SUCC}(i)\rangle$,
$\langle a, \operatorname{PRED}(i)\rangle \mid\langle a, i\rangle$ in $W(n)\left\{\left(\theta\left(\mathrm{F}^{\mathrm{Stack}}\right)\right]\right\}$
and that $\theta\left(E^{S t a c k}\right)=\{\theta($ TOP $), \theta($ ISEMPTY $)\}$

A prooi of (A2) by induction therefore consists of the following steps:

Base case
$\theta($ IOP $)(\langle N E W A R R A Y, Z E R O\rangle))[\langle a, i\rangle \mid<\operatorname{ASSIGN}(a, \operatorname{SUCC}(i), x]), i\rangle]$
$=\vartheta($ TOP $)(\langle N E W A R R A Y, Z E R O\rangle)[\langle a, i\rangle \mid\langle a, i\rangle]$

Induction hypothesis Assume
(for all <a,i> in $W\left(\begin{array}{l}n) \\ d A I\end{array}\right.$
$\theta(\operatorname{TOP})(\langle a, i\rangle)[\langle a, i\rangle|<A S S I G N(a, \operatorname{SÜCC}(i), x l), i\rangle]$ $=\theta(T O P)(\langle a, i\rangle)[\langle a, i\rangle \mid\langle a, i\rangle]$.

Induction step Prove
(for all <a,i> in $W_{d A I}\left(\frac{n+1)}{}\right.$)
$\theta(\operatorname{TOP})(\langle\operatorname{ASSIGN}(a, s(i), x), s(i)\rangle)[\langle a, i\rangle \mid\langle\operatorname{ASSIGN}(a, \operatorname{SUCC}(i), x l), i\rangle]$
$=\theta($ TOP $)(\langle\operatorname{ASSIGN}(a, s(i), x), \operatorname{SUCC}(i)\rangle \mid\langle a, i\rangle)$
(for all <a,i> in $W\left(\frac{n+1)}{A I}\right)$
$\theta($ TOP $)(<a, \operatorname{PRED}(i)>)[<a, i>|<\operatorname{ASSIGN}(a, \operatorname{SUCC}(i), x 1), i\rangle]$
$=\theta($ TOP) (<a, PRED (i)>) [<a,i>|<a,i>]

In addition, proofs with θ (ISEMPTY) substituted for θ (TOP) must also be carried out. We illustrate only the proois for $\theta(T O P)$, since the proof for θ (ISEMPTY) is similar. The proof of (A2-l) is trivial, since both the LHS and RHS are identical.

Proof of (A2-2)
LHS $\quad=\theta(\operatorname{TOP})(\langle\operatorname{ASSIGN}(\operatorname{ASSIGN}(a, \operatorname{SUCC}(i), x), \operatorname{SUCC}(i)>)$
$=\operatorname{DATA}(\operatorname{ASSIGN}(\operatorname{ASSIGN}(a, \operatorname{SUCC}(i), x 1), \operatorname{SUCC}(i), x), \operatorname{SUCC}(i))$
$=x$ (by the defining equations of DATA)
RHS $\quad=\theta($ TOP $)(\langle A S S I G N(a, \operatorname{SUCC}(i), x), \operatorname{SUCC}(i)>)$
$=\operatorname{DATA}(A S S I G N(a, \operatorname{SUCC}(i), x), \operatorname{SUCC}(i))$
$=x$ (by the defining equations of DATA)
= LHS
Prooí of (A2-3)
LHS $=\theta(\operatorname{TOP})(\langle a, \operatorname{PRED}(i)\rangle)[\langle a, i\rangle|<\operatorname{ASSIGN}(a, \operatorname{SUCC}(i), x l), i\rangle]$
$=\theta(T O P)(<A S S I G N(a, S U C C(i), x l), \operatorname{PRED}(i)>)$
$=\operatorname{DATA}(A S S I G N(a, \operatorname{SUCC}(i), x l), \operatorname{PRED}(i))$
$=\operatorname{DATA}(A, \operatorname{PRED}(\mathrm{i}))$
RHS $=\operatorname{DATA}(a, \operatorname{PRED}(i))=$ LHS

In conjunction with the proois for θ (ISEMPTY), this completes the proof of (A2), and therefore of part (A).

Prooi ó (Bl)
LHS $=$ TOP (NEWSTACK) $=$ UNDEFINED.
RHS $\quad=\theta($ TOP (NEWSTACK) $)$
$=\theta($ TOP $)$ (θ (NEWSTACK))
$=\theta($ TOP) (<NEWARRAY, ZERO>)
= DATA(NEWARRAY, ZERO)
= UNDEFINED
= LHS
Proof of (B2)
Let $\theta(s)=\langle a, i\rangle$
LHS $=\operatorname{TOP}(\operatorname{PUSH}(s, x))$
$=x$ (by the defining equations for TOP)
RHS $=\theta(\operatorname{TOP}(\operatorname{PUSH}(s, x)))$
$=\theta($ TOP $)(\theta$ (PUSH $(s, x)))$
$=\theta($ TOP $)(\theta$ (PUSH) (<a,i>,x))
$=\theta(\operatorname{TOP})(\langle\operatorname{ASSIGN}(a, \operatorname{SUCC}(i), x), \operatorname{SUCC}(i)>)$

```
DATA(ASSIGN(a,SUCC(i),x), SUCC(i))
= x (by the deinining equations for DATA).
= LHS
```

By Theorem 2, the above proois oi Part (A) and (B) together imply that θ deíines a correct impiementation of Stack.
5. Some comparisons with other proof methods
. The conventional notion of a prooí of the correctness of an implementation map θ involves proving the existence of a surjective homomorphism θ° from $W_{d T T} / E^{T T}$ onto $W_{T O I} / E^{T O I}$. Most of the proof methods that have been employed thus far are based primarily on this definition of correctness, and follow essentially either one of following two procedures:
(1) an "abstraction function" $A: W_{d T I} \rightarrow W_{T O I}$ is specified, which serves as a postulated map θ^{\prime}. The correctness prooi then involves showing that A does indeed define a surjective homomorphism. This method is basically due to Hoare [7]. The rep function used in the ALPHARD verification methodology serves a similar purpose [15].
(ii) an equality relation =eq (called an "equality interpretation" in [5]) is specified on the terms in $W_{d T I}$. The existence of the required homomorphic map θ^{\prime} is then proved by making use of this equality interpretation. This method is a slight generalization of (i), since an abstraction function can be used to impose an equality interpretation on $d T T$, whereas the converse is not true. Specifically, the equality interpretation induced by an abstraction Iunction A is:

$$
A(t t 1)=A(t t 2) \Rightarrow t t 1=e q t t 2
$$

Strictly speaking, however, in order to prove the correctness oi an impiementation of a type of interest $T O I$ in terms of a target type $T T$, it should only be necessary to provide the following information:

1. a specification of the type being implemented TOI;
2. a specification of the representation type $T T$;
3. a specification of the implementation map θ.

It therefore detracts from the generality of a proof method if it is required to augment the specifications (1)-(3) above with some additional information in order to carry through a correctness proof. The existing methods, of which we have given some examples above, suffer from this drawack. In both $o \bar{E}$ the above proof methods, it is necessary to supply some extra information--in the form of an abstraction iunction in (i), or an equality interpretation in (ii). This is also true of a recent proposal of Flon and Misra [2].

In contrast, the method we have outlined in this paper does not require any additional information augmenting the specifications (1)-(3). To make a specific comparison, if the proof techniques of [GHM78] are used, the proof of an implementation of a Stack identical to the cne discussed in section 4.1 needs the iollowing equality interpretation to be speci.fied:
$\theta^{\prime}(\langle a, i\rangle)=\operatorname{eq} \theta^{\prime}(\langle a l, i l\rangle)=$
$i \bar{I} \mathrm{i}=\mathrm{il}$ and (İor all k) $[1 \leq k \leq i=\operatorname{DATA}(a, i)=\operatorname{DATA}(a l, i)]$

As we indicated in section 1 , the added generality oi our prooí procedure is quite important, since it facilitates automation. (For example, all of the proois presented in this paper have been automated using the simplifier that forms part of the Stanford Verifier [9].) Of course, it is possible that in the course of a particular proof some specific step cannot be carried through automatically, just as it is possible that in the course of attempting a correctness prooí oí a program using, say, Floyd-Hoare prooímerhods (cí. [3], [6],) it may prove to be difiicult (or inieasible) in practice to demonstrate the invariance of certain assertions. However, our initial empirical explorations with an automated system have certainly served to indicate that the method can be used to carry out non-trivial proofs, thereby lending credibility to its pragmatic utility.
I. Prooi of Theorem 7

We restate the theorem below.

Theorem 7 An impiementation map θ such that

$$
\begin{equation*}
\text { (for all } g \text { in } G)\left(\text { for ail } t_{g} \text { in } W_{g}\left[F^{\text {TOI }}\right]\right)\left(\theta\left(t_{g}\right)={ }_{g} t_{g}\right] \tag{I}
\end{equation*}
$$

implies the existence of a surjective homomorphism

$$
\theta^{\prime}: W_{\mathrm{dTT}} / \mathrm{E}^{\mathrm{TT}} \rightarrow \mathrm{~W}_{\mathrm{TOI}} / \mathrm{E}^{\mathrm{TOI}}
$$

where $W_{d T I} / E^{T I}$ (respectively $W_{T O I} / E^{T O I}$,) denotes the extraction equivalence classes induced by the iunctions $E^{T T}$ (respectively $E^{T O I}$).

The prooi of this theorem rests on lemma 9 below. Let [t] denote the equivalence class of the term t.

Lema 9: Let $\theta(\tilde{t})=t, \tilde{t}$ in $W_{T O I}$ Define $\theta^{\prime}: W_{d T T} \rightarrow W_{T O I}$, where $\theta^{\prime}([t])=[\bar{t}]$. Then θ^{\prime} is a weil deifined map.

Proof. In order for θ^{\prime} to be well defined, it needs to be shown that
(a) If \bar{t} is such that

$$
\begin{equation*}
\theta(\tilde{t})=t \tag{1}
\end{equation*}
$$

(b) θ° is defined for all $[t]$ in $W_{d T T} / E^{d T T}$.

Prooi oi part (a) Assume that there exists a $\bar{t}^{\prime} \neq I O I \quad \bar{r}$ such that $\theta\left(\tilde{r}^{\prime}\right)=$ t. Then, by the definition of extraction equivalence, there must exist t_{g} in $W_{g}\left[F^{T O I}\right]$ such that

$$
\begin{equation*}
t_{g}\left[v \text { in } v_{T O I} \mid \bar{t}\right] \nexists_{g} t_{g}\left[v \text { in } v_{\text {TOI }} \mid \tilde{t}^{\prime}\right] \tag{3}
\end{equation*}
$$

Intuitively, this implies the existence $o \bar{f}$ a sequence of function applications, terminating in the application of an extraction function, that yields inequivalent results when applied to \bar{t} and \bar{t} '. But, by the definition of θ and constraint (I) of the theorem,

$$
\begin{equation*}
t_{g}\left[v \text { in } v_{T O I} \mid \tau\right]=g \theta\left(t_{g}\left[v \text { in } v_{T O I} \mid \tilde{t}\right]\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{g}\left[v \text { in } v_{T O I} \mid \tilde{t}^{\prime}\right]=g \theta\left(t_{g}\left[v \text { in } v_{T O I} \mid \tilde{t}^{\prime}\right]\right) \tag{5}
\end{equation*}
$$

By the definition of θ,

$$
\theta\left(t_{g}\left[v \text { in } V_{T O I} \mid \bar{t}\right]\right\rangle=g_{g} \theta\left(t_{g}\right)\left[v \text { in } V_{T T} \mid \theta(\bar{t})\right]
$$

and

$$
\theta\left(t_{g}\left[v \text { in } v_{T O I} \mid \tilde{t}^{\prime}\right]\right) m_{g} \theta\left(t_{g}\right)\left[v \text { in } v_{T T} \mid \theta\left(\tilde{t}^{\prime}\right)\right]
$$

(3), (4) and (5) imply

$$
\begin{equation*}
\theta\left(t_{g}\right)\left[v \text { in } v_{T T} \mid \theta(\tilde{t})\right] \not \xi_{g} \theta\left(t_{g}\right)\left[v \text { in } v_{T T} \mid \theta\left(\tilde{t}^{\prime}\right)\right] \tag{6}
\end{equation*}
$$

where $\theta\left(t_{g}\right)$ is in $W_{g}\left[F^{d T T} U F^{G}, V_{T T}\right]$.
But (1) and (2) together imply

$$
\theta(\bar{t})=\mathrm{dTT} \theta\left(\overline{t^{\prime}}\right)
$$

and consequently, we have

$$
\begin{align*}
(\text { for all } g \text { in } G) & \left(\text { (ior all } t_{g} \text { in } W_{g}\left[F^{d T T} U F^{G}, V_{T T}\right]\right) \\
& \mathrm{t}_{\mathrm{g}}\left[\mathrm{~V} \text { in } \mathrm{V}_{\mathrm{TT}} \mid \theta(\mathrm{t})\right]^{=}=\mathrm{g}_{\mathrm{g}}\left[\mathrm{v} \text { in } \mathrm{V}_{\mathrm{TT}} \mid \theta\left(\mathrm{t}^{\prime}\right)\right] \tag{7}
\end{align*}
$$

which contradicts (6). Hence the assumption that there exists a $\tilde{t}^{\prime} \not{ }^{\prime}$ TOI \tilde{t} and such that $\theta\left(\tilde{t}^{\prime}\right)=t$ cannot be true.

End oi Prooí.
Prooí oí Part (b).
By virtue of definition 4, the only terms in dTT are those that images under θ of some term in $W_{\text {TOI }}$. There must therefore exist at least one term \tilde{t} in $W_{\text {TOI }}\left[F^{\text {TOI }} \mathrm{U} F^{G}\right]$ which the pre-inage of t under θ. That is, θ^{\prime} is defined for every term t in $d T T$. Tnis completes the proof of the Lemma,

End oí Prooí.

Prooi of the theorem

Consider the map θ° defined in lemma 9. In order to prove the theorem, it needs to be shown that
(A) θ^{\prime} is onto $\mathrm{W}_{\text {TOI }} / \mathrm{E}_{\mathrm{TOI}}$,
(B) θ^{\prime} is a homomorphism.

Prooi of Part (A) To prove that θ^{\prime} is onto, we have to show that for every $[\bar{t}]$ in $W_{T O I} / E^{T O I}$, there is a term in $W_{d T T} / E^{d T T}$ that maps onto $[\bar{t}]$.

Since, for every term $\bar{\tau}$ in $W_{T O I}, \theta(\bar{t})$ is in $W_{d T T}$, by definition of θ^{\prime}, we must have,

$$
\theta^{\prime}([\theta(\bar{t})])=\operatorname{TOI}[\tilde{t}] .
$$

The proof of part (A) follows immediately.

End of Proof.

Proof of Part (B) We need to show that

$$
\begin{equation*}
\theta^{\prime}\left(\left[f\left(\underline{t}^{\prime}\right)\right]\right)=\operatorname{TOI} \theta^{\prime}\left(\left[\bar{I}^{\prime}\right]\right)\left(\theta\left(\left[\underline{t}^{\prime}\right]\right)\right) \tag{8}
\end{equation*}
$$

where \bar{I}^{\prime} is a function in $d T T$, and t^{\prime} represents a tuple of terms.
Let $\overline{\tilde{I}}^{\prime}, \bar{E}^{\prime}$ be such that

$$
\theta\left(\overline{\overline{\mathrm{I}}^{\prime}}\right)=\mathrm{TT} \overline{\mathrm{f}}^{\prime}
$$

and

$$
\theta\left(\dot{t^{\prime}}\right)=T T \underline{t}^{\prime}
$$

(Because of the reasons given in the proof of part (b) of the lemma, such a pair $\tilde{\bar{f}}, \tilde{t}^{\prime}$ must exist.) By definition of θ^{\prime}, we have,

$$
\theta^{\prime}\left(\left[\mathrm{i}^{\prime}\right]\right)=\operatorname{TOI}\left[\tilde{\mathrm{I}}^{\prime}\right]
$$

and

$$
\theta^{\prime}\left(\left[\underline{t}^{\prime}\right]\right)=\operatorname{TOI}\left[\underline{t}^{\prime}\right]
$$

Thus,

$$
\begin{equation*}
\theta^{\prime}\left(\left[\bar{I}^{\prime}\right]\right)\left(\theta^{\prime}\left(\left[\underline{t^{\prime}}\right]\right)\right)=\operatorname{TOI}\left[\tilde{I}^{\prime}\left[\tilde{\underline{t}}^{\prime}\right)\right] \tag{9}
\end{equation*}
$$

Again, by definition of θ,

$$
\theta\left(\bar{I}^{\prime}\left(\underline{E}^{\prime}\right)\right)=I I \theta\left(\tilde{\tilde{I}^{\prime}}\right)\left(\theta\left(\overline{T^{\prime}}\right)\right)=I T \bar{I}^{\prime}\left(\underline{t}^{\prime}\right)
$$

Thus, by definition of θ^{\prime},

$$
\begin{equation*}
\theta^{\prime}\left(\left[\overline{\mathrm{f}}^{\prime}\left(\underline{t}^{\prime}\right)\right]\right)=\operatorname{TOI}\left[\overline{\mathrm{I}}^{\prime}\left(\bar{t}^{\prime}\right)\right] \tag{10}
\end{equation*}
$$

Together, (9) and (10) imply that θ^{\prime} satisfies the homomorphism condition (8), thus proving the theorem.
II. Prooi of Theorem 8

We restate the theorem below.

Theorem 8: Let R denote the set of defining equations of TOI. For each defining equation $t_{1}=t_{2}$ in R, where t_{1}, t_{2} are not in $W_{T O I}$, if

$$
\begin{equation*}
t_{1}=t_{2} \Rightarrow \theta\left(t_{1}\right)=d T T \theta\left(t_{2}\right) \tag{A}
\end{equation*}
$$

and if

then θ defines a correct implementation.

We first prove four lemmas which formalize some fairly intuitive facts, and which are needed in the proof of Theorem 8.

About the lemma 10. This lemma states that

- if a term t_{2} is obtained by instantiating a term t by substituting t^{\prime} for the variables of sort T, where
- t^{\prime} itseli has been obtained by instantiating $t "$ by substituting t_{1} for the variables of sort T, then
- t_{2} can also be obrained directly by substituting t_{1} for variabies of sort T in some t_{2}^{\prime}; the term t_{2}^{\prime} is actually constructed in the proof of the lemma.

Lemma 10:
Consider t, t_{1} in W_{T}. If $t_{2}=\left[v\right.$ in $\left.V_{T} \mid t^{\prime}\right]$ and $t^{\prime}=t^{\prime \prime}\left[v\right.$ in $\left.V_{T} \mid t_{1}\right]$, then there exists t_{2}^{\prime} such that $t_{2}=t_{2}^{\prime}\left[v\right.$ in $\left.V_{T} \mid t_{1}\right]$.

Prooi. The proof is by induction on the structure of t.
(a) Base Case. Let t be in $W_{T}^{(0)}$.
t in $W_{f}(0) \Rightarrow t=v$ or $t=\bar{f}$, where f is in $B C^{T}$.
$t=v \Rightarrow t_{2}=t^{\prime}=t^{\prime \prime}\left[v\right.$ in $\left.v_{T} \mid t_{1}\right]$.
Hence $t_{2}^{\prime}=t^{\prime \prime}$. If $t_{2}=f$ then $E_{2}^{\prime}=f$.
(b) Induction Step Assume that the proposition holds for all t in $W_{T}^{(n-1)}$. Consider t in $W_{T}(n)$. Then t must be of the form $t=f\left(x_{1}, \ldots, x_{m}\right)$ where \hat{i} : $\left(X_{1}, \ldots, X_{m}\right) \rightarrow T$, and x_{i} in $W_{X_{i}}^{(n-1)}$ (and such that at least one x_{i} is not in
$k_{X_{i}}^{(n-2)}$), Variables oi sort I can then occur in x_{1}, \ldots, x_{m}.

$$
\begin{aligned}
t_{2} & =t\left[v \text { in } V_{T} \mid t^{\prime}\right] \\
& =\tilde{f}\left(x_{1}\left[v \text { in } v_{T} \mid t^{\prime}\right], \ldots, x_{m}\left[v \text { in } V_{T} \mid t^{\prime}\right]\right) \\
& =\tilde{i}\left(x_{1}^{\prime}\left[v \text { in } V_{T} \mid t_{1}\right], \ldots, x_{m}^{\prime}\left[v \text { in } V_{T} \mid t_{1}\right]\right) \quad \text { (by hypothesis) } \\
& =\tilde{I}\left(x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right)\left[v \text { in } V_{T} \mid t_{1}\right]
\end{aligned}
$$

Hence $t_{2}^{\prime}=f\left(x_{1}{ }^{\prime}, \ldots, x_{m}{ }^{\circ}\right)$, which completes the proof.
End of Proof.
Leman 11 states that the terms t_{3}, t_{4} obtained from a common term by instantiating variables with extraction equivalent terms are themselves extraction equivalent (although they might be syntactically distinct). This is iliustrated in Figure 5-1.

Figure 5-1: Figure illustrating Lemma 11
Lemma 11: Consider t_{1}, t_{2} in W_{T}. Let $t_{3}=t^{\prime}\left[v\right.$ in $\left.V_{T} \mid t_{1}\right]$, and $t_{4}=$
$t^{\prime}\left[v\right.$ in $\left.v_{T} \mid t_{2}\right]$. Then $t_{1}{ }^{ \pm} T \quad t_{2} \Rightarrow t_{3}={ }_{T} t_{4}$ (where $=T$ denotes extraction equivalence).

Proof.
$t_{3}=T_{4}$
\Leftrightarrow (for all g in G) (for all t_{g} in W_{g})

$$
t_{g}\left[v \text { in } v_{T} \mid t_{3}\right]={ }_{g} t_{g}\left[v \text { in } v_{T} \mid t_{4}\right]
$$

By lemma 10, there is some t_{g} " in W_{g} such that $t_{g}\left[v\right.$ in $\left.V_{T} \mid t_{3}\right]={ }_{g} t_{g}$ " $[v$ in $\left.V_{T} \mid t_{1}\right]$, and $t_{g}\left[v\right.$ in $\left.V_{T} \mid t_{4}\right]=t_{g}{ }^{\prime \prime}\left[v\right.$ in $\left.V_{T} \mid t_{2}\right]$.

Since $t_{1}=T t_{2}$, it follows that $t_{3}=T t_{4}$.
End of Prooi.
Lemma 12: Consider t_{1}, t_{2} in W_{T}. Then $t_{1}=t_{2} \Rightarrow t_{g}\left[v\right.$ in $\left.V_{T} \mid t_{1}\right]=g$. $t_{g}\left[v\right.$ in $\left.V_{T} \mid t_{2}\right]$, where t_{g} is in W_{g}.

Proof: Immediate, from lema 11 , since syntactic equivalence implies extraction equivalence.

End of Proof.
Lemma 13: For all t_{g} in $W_{g}\left[F^{T}\right]$, there is a term t in $W_{T}[F T]$, and a term t_{g}, in $W_{g}\left[E^{T}\right]$, such that ${ }^{g} t_{g}=t_{g}{ }^{\prime}\left[v\right.$ in $\left.V_{T} \mid t\right]$.

Proof. Every term t_{g} is of the form $e\left(t_{1}, \ldots, t_{n}\right)$ winere e is in E^{T}, $e: X_{1}, \ldots, X_{n} \rightarrow g$, and t_{i} is in $W_{X_{i}}\left[F^{T}\right]$. Consider the term $t_{g}{ }^{\prime}=e\left(v_{1}, \ldots, v_{n}\right)$, v_{i} in $V_{X_{i}}$. Then t_{g} is in $W_{g}\left[E^{T}\right]$, and
$t_{g}=g t_{g}{ }^{\prime}\left[v_{1} \mid t_{1}\right] \ldots\left[v_{n} \mid t_{n}\right]$.
End of Prooi.

Proof of the Theorem.

By virtue of the definition of $K^{T O T}$, for every t in $W_{T O I}\left[F^{T O I}\right]$ there exists some t_{1} in $W_{\text {TOI }}\left[K^{\mathrm{TOI}}\right]$, such that $t=t_{1}$.

By Lerma 12 , it follows that

$$
\begin{equation*}
t_{g}\left[v \mid t, t \text { in } W_{T O I}\right]=g t_{g}\left[v \mid t_{1}, t_{1} \text { in } W_{T O I}\left[K^{T O I}\right]\right] \tag{1}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\theta\left(t_{g}[v \mid t]\right)=g_{g} \theta\left(t_{\mathrm{g}}\right)[\theta(v) \mid \theta(t)] \tag{2}
\end{equation*}
$$

By virtue of (A), we have

$$
t=t_{1} \Rightarrow \theta(t) \Rightarrow d T T \theta\left(t_{1}\right)
$$

Consequently, (2) \Rightarrow
$\theta\left(t_{g}\left[v \mid t, t\right.\right.$ in $\left.\left.W_{\text {TOI }}\left[F^{T O I}\right]\right]\right)$
$=\theta\left(t_{g}\right)\left[\theta(v) \mid \theta(t), \quad t\right.$ in $\left.W_{T O I}\left[F^{\mathrm{TOI}}\right]\right]$
$=\theta\left(t_{g}\right)\left[\theta(v) \mid \theta\left(t_{l}\right), t_{l}\right.$ in $\left.W_{T O I}\left[K^{T O I}\right], t=t_{l}\right]$

- Again, by virtue of (B), we have

From (1), (2), (3) and (4), we obtain
(for all g in G) (for all t_{g} in W_{g} [$\mathrm{K}^{\mathrm{TOI}} \cup \mathrm{E}^{\mathrm{TOI}} \mathrm{J}$)
$\mathrm{t}_{\mathrm{g}}\left[\underline{v} \mid \underline{t}, \underline{t}\right.$ in $\left.\mathrm{W}_{\mathrm{TOI}}\left[\mathrm{F}^{\mathrm{TOI}}\right]\right]$
$=t_{g}\left[\underline{v} \mid \underline{t}_{1}\right.$, \underline{t}_{1} in $W_{\mathrm{TOI}}\left[\mathrm{K}^{\mathrm{TOI}}\right]$, $\left.\underline{t}=\underline{t}_{1}\right]$ by (1)
$=\theta\left(t_{g}\left[\underline{v}_{\underline{t}}^{\underline{l}}, \underline{t}_{1}\right.\right.$ in $\left.\left.W_{T O I}\left[K^{T O I}\right]\right]\right)$ by (4)
$=\theta\left(t_{g}\left[\underline{v} \mid \underline{t}, \underline{t}\right.\right.$ in $\left.\left.W_{T O I}\left[F^{T O I}\right]\right\}\right)$ by (2) and (3)
i.e.,
(for all g in G) (for all t_{g} in $\mathrm{W}_{\mathrm{g}}\left[\mathrm{K}^{\mathrm{TOI}} \mathrm{UEET}^{\mathrm{TOI}}\right]$) $\mathrm{t}_{\mathrm{g}}\left[\underline{v} \mid \underline{t}, \underline{t}\right.$ in $\left.\mathrm{W}_{\text {TOI }}\left[\mathrm{F}^{\mathrm{TOI}}\right]\right]$
$=\theta\left(t_{g}\left[\underline{v} \mid \underline{t}, \underline{t}\right.\right.$ in $\left.\left.W_{T O I}\left[F^{T O I}\right]\right]\right)$
But by lemma 13 , t_{g} can be expressed as $t_{g}^{\prime}\left[v \mid t^{\prime}\right.$, t^{\prime} in $\left.W_{T O I}\left[F^{T O I}\right]\right]$ where t_{g}. is in $\mathrm{W}_{\mathrm{g}}\left[\mathrm{E}^{\mathrm{TOI}}\right]$ (and hence in $\mathrm{W}_{\mathrm{g}}\left[\mathrm{K}^{\mathrm{TOI}} \cup \mathrm{E}^{\mathrm{TOI}}\right]$). Consequently, (5) implies that
(for all g in G) (for all t_{g} in $\mathrm{W}_{\mathrm{g}}\left[\mathrm{F}^{\mathrm{TOI}}\right]$)

$$
\begin{equation*}
t_{g}\left[\underline{v} \mid \underline{t}, \underline{t} \text { in } W_{T O I}\left[F^{\mathrm{TOI}}\right]\right]=\theta\left(t_{g}\left[\underline{v} \mid \underline{t}, \underline{t} \text { in } \mathrm{W}_{\mathrm{TOI}}\left[\mathrm{~F}^{\mathrm{TOI}}\right]\right]\right) \tag{6}
\end{equation*}
$$

But (6) is precisely the condition required for correctness of the implementation specified by θ. (Note that the key difierence lies in the quantification of the terms t_{g} :) This proves the theorem.
III. Definitions of the types Array and Integer

Type Integer
Syntax

```
ZERO : () -> Integer
SUCC : (Integer) -> Integer
PRED : (Integer) -> Integer
ISZERO : (Integer) -> Boolean
```

Semantics
for ail in integer
ISZERO(ZERO()) $=$ TRUE
ISZERO $(\operatorname{SUCC}(i))=$ FALSE
$\operatorname{PRED}(Z E R O())=$ ZERO
$\operatorname{PRED}(\operatorname{SUCC}(i))=i$
End Integer

Figure 5-2: Definition of the type Integer

Type Array
Generic type parameter : item
Syntax
NEWARRAY : () -> Array
ASSIGN : (Array, Integer, Item) \rightarrow Array
DATA : (Array,Integer) \rightarrow Item U \{UNDEFINED\}
Semantics
DATA(NEWARRAY, $\mathfrak{i})=$ UNDEFINED
$\operatorname{DATA}(\operatorname{ASSIGN}(a, i, x), j)=i f i=j$ then x else $\operatorname{DATA}(a, j)$
end Ariay
Figure 5-3: Definition of the type Array
IV. The Proof of a Queue Implementation

Consider the implementation of the type Queue (see figure 5-4,) using a target type consisting oi the triple <Array, Integer, Integer>. Intuitively, the iirst integer component points to the iront of the Queue, while the second integer component points to the tail of the Queue. The implementation map θ for the Iunctions on type Queue is given in figure 5-5.

We note that
$B C$ Queue $=\{N E W Q\}$.
CQueue $=\{A D D Q$, DELETEQ $\}$.
$E^{\text {Queue }}=\{$ FRONTQ, ISEMPTYQ $\}$.

The correctness prooi consists oi two parts.
(A) The syntactic equivalence induced on the terms of type queue by the defining equations must be shown to produce extraction equivalent terns in the implementation algebra dAII under the map θ. That is,
$\operatorname{DELETEQ}(N E W Q)=N E W Q \Rightarrow \theta(D E L E T E Q(N E W Q))=\operatorname{dAII} \theta(N E W Q)$
$\operatorname{DELETE}(\operatorname{ADDQ}(q, x))=$ if $\operatorname{ISEMPTYQ}(q)$
then NEWQ
else ADDQ(DELETEQ(q), x)

```
=>0(DELETEQ(ADDQ (q,x))) =}\textrm{dAII
    0(if ISEMPTYQ(q)
        then NEWQ
        else ADDQ(DELETEQ(q),x))
```

(B) By induction on W_{g}, it must be proved that (for ail g in G)
(for all t_{g} in $W_{E_{g}}\left[\left\{N E W Q, A D D Q\right.\right.$, ISEMPTYQ, FRONTQ\} U $\left.\left.F_{g}\right), V\right]$)
This invoives the following proofs:
Base Case

```
FRONTQ(NEWQ)= 
ISEMPTYQ (NEWQ) \(=\theta(\) ISEMPTYQ \((\) NEWQ \())\)
```

Induction Step
(İor ali q in $W_{\text {Queue }}^{(n+1)}\left[\left(K\right.\right.$ Queue $\left.\left.u E^{\text {Queue }}, V\right]\right)$

Type Queue

Syntax

```
NEWQ : () -> Queue
ADDQ : (Queue,Item) -> Queue
DELETEQ : (Queue) -> Queue
FRONTQ : (Queue) -> Item
ISEMPTYQ : (Queue) -> Boolean
```


Semantics

```
for all q, ql in Queue, x in Item;
```

 \(\operatorname{DELETEQ}(N E W Q)=N E W Q\)
 \(\operatorname{DELETEQ}(\operatorname{ADDQ}(q, x))=\) if \(q=\operatorname{NENQ}\)
 then NEWQ
 else \(\operatorname{ADDQ}(D E L E T E Q(q), x)\)
 ISEMPTYQ (NEWQ) $=$ TRUE
$\operatorname{ISEMPTYQ}(\operatorname{ADDQ}(q, x))=\operatorname{FALSE}$
FRONTQ (NEWQ) = UNDEFINED
$\operatorname{FRONTQ}(\operatorname{ADDQ}(\mathrm{q}, \mathrm{x}))=\mathrm{if} \mathrm{q}=\mathrm{NEWQ}$
then x
else FRONTQ(q)

End Queue
Figure 5-4: Definition oi the Type Queue

```
We write }0(q)=\langlea,1,h
0(NEWQ) = <NEWARRAY, ZERO, ZERO>
0(ADDQ (q,x)) = <ASSIGN(a, SUCC(h), x), 1, SUCC(h)>
0(DELETEQ(q)) = if l = h
    then <NEWARRAY, ZERO, ZERO>
    else <a, SUCC(1); h>
0(FRONTQ(q))}=\mathrm{ if l = h
        then UNDEFINED
        else DATA(a, SUCC(1))
0(ISEMPTYQ(q)) = (l=h)
```

Figure 5-5: An Implementation of the Type Queue
$\operatorname{FRONTQ}(\operatorname{ADDQ}(q, x))=\theta(\operatorname{FRONTQ}(\operatorname{ADDQ}(q, x)))$
$\operatorname{ISEMPTYQ}(\operatorname{ADDQ}(q, x))=\theta(\operatorname{ISEMPTYQ}(\operatorname{ADDQ}(q, x)))$
Prooí oí (Al)

```
LHS . = 0(DELETEQ(NEWQ))
    = 0(DELETEQ)(0(NEWQ))
    = 0(DELETEQ) (<NEWARRAY,ZERO,ZERO>)
    = if ZERO = ZERO
        then <NEWARRAY,ZERO,ZERO>
        else <NEWARRAY,SUCC(ZERO),ZERO>
    = <NEWARRAY,ZERO,ZERO>
RHS = <NEWARRAY,ZERO,ZERO>
    = LHS
```

Since syntactic equivalence implies extraction equivaience, this completes the prooi of (Al). Prooí oí (A2)

```
LHS = = (DELETEQ(ADDQ(q,x))
    = 0(DELETEQ) (<ASSIGN(a,SUCC(h),x),1,\operatorname{SUCC}(h)>)
    = if l=SUCC(h)
        then <NEWARRAY,ZERO,ZERO>
        else <ASSIGN(a,SUCC(h),x),SUCC(1),SUCC(h)>
    = <ASSIGN(a,\operatorname{SUCC}(h),x),\operatorname{SUCC}(1),\operatorname{SUCC}(h)>
            (where we use the fact that l S h is true in
            any term <a,l,h> in WdAII...This is proved beiow.)
    = if ISEMPTYQ(q) then 0(NEWQ)
                else }0(ADDQ)(0(DELETEQ (q),x)
    = if l=h
        then <NEWARRAY,ZERO,ZERO>
        else }0\mathrm{ (ADDQ(ij l=h then <NEWARRAY,ZERO,ZERO>
                else <a,SUCC(1),h>),x))
    = if l=h then <NEWARRAY,ZERO,ZERO>
    else if l=h then }0\mathrm{ (ADDQ)(<NEWARRAY,ZERO,ZERO,x)
                el se }0\mathrm{ (ADDQ) (<a, SUCC(1),h>,x)
    = if l=h then <NEWARRAY,ZERO,ZERO>
            else f(ADDQ) (<a,SUCC(1),h>,x)
    = if i=h then <NEWARRAY,ZERO,ZERO>
            else <ASSIGN(a,SUCC(h),x),\operatorname{SUCC}(1),\operatorname{SUCC}(h)>
```

The prooi of (A2) involves a prooi by induction.
Base Case
θ (FRONTQ) (<NEWARRAY, ZERO,ZERO>) $=$
$\theta($ FRONTQ) (<NEWARRAY,ZERO,ZERO>)
$\theta($ ISEMPTYQ) (<NEWARRAY,ZERO,ZERO>) $=$ $\theta($ ISEMPTYQ) (<NEWARRAY,ZERO,ZERO>)

```
Induction hypothesis
0(FRONTQ) (<a,l,h>) [<a,l,h>|
    <ASSIGN(a,SUCC(h),xl),SUCC(1),SUCC(hi>)
= 0(FRONTQ) (<a,1,h>)
    [<a,l,h>|
                                    if 1=h
                                    then <NEWARRAY,ZERO,ZERO>
                                    else <ASSIGN(a,SUCC(h),xi),SUCC(1),SUCC(h)>]
0(ISEMPTYQ) (<a,l,h>) [<a,l,h>|
                                <ASSIGN(a,SUCC(h),xl),SUCC(i),SUCC(h)>)
= 0(ISEMPTYQ)(<a,l,h>)
    |<a,l,h>|
                                    if 1=h
                                    then <NEWARRAY,ZERO,ZERO>
                            else <ASSIGN(a,SUCC(h),xl),SUCC(1),SUCC(h)>]
Induction step
Prove
0(FRONTQ) (<ASSIGN(a,SUCC(h),x),l,SUCC(h)>)
        [<a,1,h> l<ASSIGN (a,SUCC(h),xl), SUCC(1),\operatorname{SUCC(h)>]}
= 0(FRONTQ) (<ASSIGN(a,SUCC(h),x),1,SUCC(h)>)
        [<a,l,h> l
            i= 1=h
            then <NEWARRAY,ZERO,ZERO>
            else <ASSIGN(a,\operatorname{SUCC}(h),xl),SUCC(1),SUCC(h)>]
and
\(\theta(F R O N T Q)\) (if \(l=h\)
then <NEWARRAY,ZERO,ZERO>
else <a, SUCC(1),h)>)
\([\langle a, 1, h\rangle|<\operatorname{ASSIGN}(a, \operatorname{SUCC}(h), x 1), \operatorname{SUCC}(1), \operatorname{SUCC}(h)\rangle)\)
\(=\theta(\) FRONTQ \()(\) if \(1=h\)
then <NEWARRAY,ZERO, ZERO>
else <a, SUCC(1), h>) [<a, \(1, h>\mid\) if \(1=h\) then <NEWARRAY,ZERO,ZERO> else <ASSIGN(a, \(\operatorname{SUCC}(h), x 1), \operatorname{SUCC}(1), \operatorname{SUCC}(h)>\}\)
LHS \(\quad=\theta(\) FRONTQ \()(<A S S I G N(A S S I G N(a, \operatorname{SUCC}(h), x l)\), SUCC(SUCC(h)), \(x)\),
SUCC(1), \(\operatorname{SUCC}(\operatorname{SUCC}(h))>)\)
\(=\) if \(\operatorname{SUCC}(1)=\operatorname{SUCC}(\operatorname{SUCC}(h))\) then UNDEFINED
```

```
            eise DATA(ASSIGN(ASSIGN(a,SUCC(h),xl),
                    SUCC(SUCC(h)),
                        x),
                            SUCC(SUCC(1)))
= if SUCC(SUCC(1)) = SUCC(SUCC(h))
    then x
    else if SUCC(h) = SUCC(SUCC(1))
                then xl
                else DATA(a,SUCC(SUCC(1)))
                (using the invariant l < h)
RHS = if ( l=h)
    then 0(FRONTQ) (<ASSIGN(NEWARRAY,SUCC(ZERO),x),
                        ZERO,SUCC(ZERO)>)
        else 0(FRONTQ) (<ASSIGN(ASSIGN(a,SUCC(h),xl),
                                    SUCC(SUCC(h),x),
                            SUCC(1),SUCC(SUCC(h))>)
= if (l=h)
    then if ZERO=SUCC(ZERO)
        then UNDEFINED
        else (DATA(ASSIGN(NEWARRAY,SUCC(ZERO),X),
                SUCC(ZERO))
    else if SUCC(l) = SUCC(SUCC(h))
            then UNDEFINED
        else DATA(ASSIGN(ASSIGN(a,SUCC(h),xl),.
                                    SUCC(SUCC(h)),x),
                                    SUCC(SUCC(1)))
Using the fact that \(Z E R O\) is not equal to SUCC(ZERO), the definition of
DATA, and l s h m SUCC(i) \not= SUCC(SUCC(h)), we get
RHS
= if l=h
    chen x
    else DATA(ASSIGN(ASSIGN(a,SUCC(h),xl), SUCC(SUCC(h)),x),
                                    SUCC(SUCC(1)))
=if l=h then x
    else if l=h then x
        else ij SUCC(h) = SUCC(SUCC(1)) then xl
                        else DATA(a,SUCC(SUCC(1)))
x if l=h then x
    else ī SUCC(h) = SUCC(SUCC(1))
        then xl
        else DATA(a,SUCC(SUCC(1)))
Thus LHS \(=\) RHS.
This completes the prooí of (A2-1). The proof of (A2-2) can be carried through similarly.
\(\underline{\text { Prooí oí (Fl) }: ~ F R O N T Q(N E W Q) ~}=\theta(F R O N T Q(N E W Q))\)
LHS \(\quad=\) FRONTQ (NEWQ) \(=\) UNDEFINED.
```

RHS

```
= DATA(NEWARRAY, SUCC(ZERO)) = UNDEFINED = RHS
```

Prooi of (F2) $\operatorname{FRONTQ(ADDQ}((q, x))=\theta(\operatorname{FRONTQ}(\operatorname{ADDQ}(q, x)))$

```
LHS = FRONTQ(ADDQ (q,x)) = if ISEMPTYQ(q)
                                    then x
                                    else FRONTQ(q).
    RHS = = (FRONTQ(ADDQ (q,x)))
    = 0(FRONTQ)(<ASSIGN (a,SUCC(h),x),1,SUCC(h)>)
    = if l=SUCC(h) then UNDEFINED
    else DATA(ASSIGN(a,\operatorname{SUCC}(h),x),\operatorname{SUCC}(i))).
```

This prooi needs a case analysis. The two cases on the LHS are

```
ISEMPTYQ(q) : x; --(F2-Ll)
```

not ISEMPTYQ(q) : FRONTQ(q) --(F2-L2)
On the RHS, there are again two cases
l=SUCC(h) : UNDEFINED;
-- (F2-R1)
not $1=\operatorname{SUCC}(h): \operatorname{DATA}(\operatorname{ASSIGN}(a, \operatorname{SUCC}(h), x), \operatorname{SUCC}(1)))$;
--(F2-R2)

In order to complete the prooi, we can assume the following as induction hypotheses:
$\operatorname{FRONTQ}(q)=\theta(\operatorname{FRONTQ}(q))=\operatorname{DATA}(a, \operatorname{SUCC}(1))$
ISEMPTYQ(NEWQ) $=\theta($ ISEMPTYQ(NEWQ) $)=$ TRUE
$\operatorname{ISEMPTYQ}(q)=\theta(\operatorname{ISEMPTYQ}(q))=(1=h)$
5y definition of $\theta(\operatorname{ISEMPTYQ}(q))$, and the induction hypothesis,
LHS oí $(F 2-L 1)=\operatorname{ISEMPTYQ(q)~} \Rightarrow(1=h) \Rightarrow \operatorname{not}(1=S U C C(h))$,
hence the second case ($F 2-R 2$) on the RHS applies.
Further, $(1=h) \Rightarrow \operatorname{DATA}(\operatorname{ASSIGN}(a, \operatorname{SUCC}(h), x), \operatorname{SUCC}(1))=x ;$

Thus,
$\operatorname{ISEMPTYQ}(q) \Rightarrow \operatorname{FRONTQ}(\operatorname{ADDQ}(s, x))=x$, and
$\operatorname{ISEMPTYQ}(q) \Rightarrow \operatorname{not}(1=\operatorname{SUCC}(h)) \&(1=h)$
$\Rightarrow \theta(\operatorname{FRONTQ}(\operatorname{ADDQ}(q, x)))=x$
Again, not $\operatorname{ISEMPTYQ}(q) \Rightarrow$ not ($1=h$), and
not $\operatorname{ISEMPTYQ}(q) \Rightarrow \operatorname{FRONTQ}(A D D Q(q, x))=\operatorname{FRONTQ}(q)$
By the induction hypothesis,
$\operatorname{FRONTQ}(q)=\theta(\operatorname{FRONTQ}(q))=\operatorname{DATA}(a, \operatorname{SUCC}(1))$.

If we use the fact that $1 \leq h$ is an invariant in the derived algebra (see
below), the it can never be the case that $1=\operatorname{SUCC}(h)$. Hence, we have

```
(1 f SUCC(h)) & (l f h) =>
RHS Oi (F2-R2) = DATA(ASSIGN(a,SUCC(h),x),SUCC(1)
    = if SUCC(h) = SUCC(1)
    then x
    else DATA(a,SUCC(1))
    = DATA(a,SUCC(l)).
```

The prooí of (F2) Follows by virtue of (1) and (3) and (4).

Prooi oi the invariance oi $1 \leq h$.

The proof is by induction on the structure of the terms of the derived algebra.

Base case The base constructors form the set of terms in $W^{(0)}$ Queue $\left.{ }^{[F Q u e u e}, V\right]$. The invariant must be verified for each base constructor (there is only one). We have

```
0(NEWQ) = <NEWARRAY, 2ERO, ZERO>.
                                    l= ZERO < ZERO = h.
```

Induction step If $\theta(q)=\langle a, l, h\rangle$ then assume as the induction hypothesis 1 $\leq h$, if q is in $W_{Q u e u e, ~ a n d ~ i s ~ o b t a i n e d ~ b y ~ a p p l y i n g ~ a ~ c o n s t r u c t o r ~ f u n c t i o n ~ t o ~}^{(n)}$ terms in $W_{\text {Queue }}^{(n-i)}\left[F^{\text {Queue }}, V\right]$.
$\theta(\operatorname{ADDQ}(q, x))=\langle\operatorname{ASSIGN}(a, \operatorname{SUCC}(h), x), 1, \operatorname{SUCC}(h)\rangle$
$i \leq h \Rightarrow 1 \leq \operatorname{SUCC}(h)$
$\theta(\operatorname{DELETEQ}(q))=$ if $l=h$ then <a,ZERO, ZERO> else <a, SUCC(1),h>
$1 \leq h \& l=h \Rightarrow 2 E R O \leq$ ZERO
$1 \leq h \&$ not $l=h \Rightarrow 1<h \Rightarrow \operatorname{SUCC}(1) \leq h$
Tnus, in both cases, the condition ($1 \leq h$) is preserved, concluding the proof.

Prooí of (Il)
$\operatorname{ISEMPTYQ}(N E W Q)=\theta(\operatorname{ISEMPTYQ}(N E W Q))$
LHS = true.
RHS $=($ ZERO $=$ ZERO $)=$ true.
Prooi oí (I2)

$$
\operatorname{ISEMPTYQ}(\operatorname{ADDQ}(q, x))=\theta(\operatorname{ISEMPTYQ}(\operatorname{ADDQ}(q, x)))
$$

= ialse.
RHS $=\theta(I S E M P T Y Q)(<A S S I G N(a, \operatorname{SUCC}(h), x), 1, \operatorname{SUCC}(h)>)$
$=(i=\operatorname{SUCC}(h))$
$=$ Ialse
(Using the iact that ($1 \leq h$)

REFERENCES

[1]-O.J.Dahi, E.W.Dijkstra, C.A.R.Hoare.
Structured Programming.
Academic Press, New York, 1972.
[2] L.Flon, J.Misra.
A Unified Approach to the Specification and Verification of Abstract Data Types.

[3] R.W.Fioyd.
Assigning Meanings to Programs.
In J.I.Schwartz, editor, Proceedings of a Svmposium in Applied Mathematics, Vol. 19, pages 19-32. American Mathematical Society, 1967.
[4] J.Goguen, J. Thatcher, E. Wagner.
An Initial Algebra Approach to the Specification, Correctness, and Implementation o Abstract Data Iypes.
Prentice-Hali, N.J, 1979, pages 50-149.
[5] J.Guttag, E.Horowitz, D.Musser.
Abstract Data Types and Soitware Validation.
CACM 21:1048-64, 1978.
[6] C.A.R.Hoare.
An axiomatic Basis for Computer Programming.
Communicetions of the ACM 12(10):576-580,583, October, 1969.
[7] C.A.R.Hoare.
Proof of Correctness of Data Representations.
Acta Informatica 1:271-281, 1972.
[8] S.H.Liskov, A.Snyder, R.Atikinson, C.Schariert.
Abstraction mechanisms in CLU.
Fecinicai Report Computation Structures Group Memo 144-1, MIT-LCS, Jan, 1977:
[9] D.C.Luckham et al.
Staniord Pascai Verifier User Manual, Edition 1 .
Iechnicai Report, Stanford University, April, 1979.
[10] P.A.Subrahmanyam.
Towards Automatic Program Synchesis: Obtaining Impiementations from Formal Specifications.
Technical Report, State University of New York at Stony Brook, October, 1977.
[11] P.A.Subrahmanyam.
Perspectives on the use of Abstract Data Types in Programming Methodology.
November 1978, Unpublished Memo, Dept. of Computer Science, SUNY at Stony Brook.
[12] P.A.Subrahmanyam.
Towards a Theory of Program Synthesis: Automating Implementations of Abstract Data Types.
PhD thesis, Department of Computer Science, State University of New York at Stony Brook, August, 1979.
[13] J.Thatcher, E.Wagner,J.Wright. Data Type Specifications: Parameterization and the Power of Specification Techniques.
In Proceedings, Tenth SIGACT Symp. , pages 119-132. ACM, SIGACT, April
[14] W.A.Wulf, R.L.London, M.Shaw. Abstraction and Verificaticn in ALPHARD. Technical Report, CMU, ISI, August, 1976.
[15] W.A.Wulf, R.L.London, M.Shaw.
An Introduction to the construction and verification of Alphard Programs.
IEEE Transactions on Software Engineering SE-2(4):253-265, December, 1976.

[^0]: ${ }^{1}$ For the purposes of this paper, we ignore the technicalities arising out of the presence of parameterized types and functions returaing "error" values (see $[13,4]$). However, the reader's intuition will not lead him astray in his comprehension of this paper.

[^1]: ${ }^{3}$ The notion of a syntactic kernel set is introduced only to circumvent the pathoiogicai undecidabilities that can arise in computing a "semantic" version of the kernel set.

