
By

- P.A. Subrahmanyam

Department of Computer Science

University of Utah

Salt Lake City, Utah

On Proving the Correctness of
Data Type Implementations

UUCS - 80-101

On Proving the Correctness of Data Type Implementations

- P.A.Subrahmanyam

Department of Computer Science

University of Utah

Salt Lake City, Utah 84112

September 1979

ABSTRACT

In order to prove the correctness (or consistency) of an

implementation of a data type with respect to the data type's

specifications, the minimal amount of information that needs to be

provided consists o f: (i) a specification of the type being

implemented; (i i) a specification of the representation type; and

(i i i) a specification of an implementation. This paper develops a

method for proving the correctness of data type implementations that

requires oniy this minimal amount of information to be specified in

order for a proof to be attempted; this is in contrast to several of

the existing methods which need additional information augmenting

(i)- (i i i) to be specified in order to be applicable. The ensuing

generality of the proposed method makes it more amenable to

automation. Examples of applications of the proof method are

presented, all of which have been automated.

This work was supported in part by an IBM Fellowship

Table of Contents

1. Introduction 1

1 .1 . Summary of the Paper 2
2 . Preliminary Definitions ... 2

2 .1 . Some Notational abbreviations 5

2 .2 . Equivalence under extraction operations 5

2 .3 . Defining an implementation 6

2 .4 . Kernel Functions ' 9

3 . On proving the correctness of an implementation f£ 11

A. Illustrations of the Proof Method 13

4 .1 . Proof of an Implementation of a Stack 13

5? Some comparisons with other proof methods 17

- Appendices

I . Proof of Theorem 7 ’ 19

I I . Proof of Theorem 8 . 2 2

I I I . Definitions of the types Array and Integer . 26

IV . The Proof of a Queue Implementation . ' 27

‘ v' List of Figures

Figure 2-1: Stack Definition 3

Figure 2-2: Word Algebra generated by FStack ■ 4
Figure 2-3: An Implementation o~c a Stack using an Indexed Array 10

Figure 5-1: Figure Illustrating Lemma 11 - 23

Figure 5-2: Definition of the type Integer . . 26

Figure 5-3: Definition of the type Array « • 26
Figure 5-4: Definition of the type Queue ' 27

Figure 5-5: An Implementation of the type Queue 27

1

ON PROVING THE CORRECTNESS OF DATA TYPE IMPLEMENTATIONS

1. Introduction

Programming involves representing the abstractions of the obiects and

operations relevant to a given problem domain using "primitive" obj ects and

operations that are presumed to be already available; ultimately, such

primitives are those provided by the available hardware. Various programming

methodologies advocate ways of achieving "good" . organizations of layers of

such representations, in attempting to provide effective means of coping with

the complexity of programs. The importance of data abstractions in achieving

elegant organizations was cogently argued for by Hoare in [1], and their use

has, by now, been amply demonstrated. '

Hoare also proposed a method for proving the correctness of implementations

of data abstractions in [7]. Due to a proliferation of languages incorporating

variations of the notion of abstract data types (for example, [8] and [14]),

techniques for proving the correctness of implementations of abstract types

have since gained in importance [15], Two of the most widely used techniques

are those due to Hoare [7], and Guttag et al [5]. In this paper, we present a

new proof method that is more general than the existing methods; the nature of

this generality makes our method more amenable to automation. In particular,

the method proposed has the important advantage of normally requiring only the

minimal amount of information that is necessary in order to enable a proof of

the correctness (or consistency) of an implementation of a data type with

respect to its specifications. This is in contrast to most of the existing

proof methods, including those of [7] and [5], wherein it is usually necessary

to augment the specifications of (i) the data type being implemented, (i i) the

representation type, and (i i i) the implementation, with additional information

in order to carry out the proofs. We relegate details of further comparisons

to section 5. -

2

1 .1 . Summary of the Paper ,

W e 'briefly review some basic definitions relating to abstract data types in

Section 2. We adopt the view that the inherent structure of an abstract data

type is characterized by its "externally observable behavior" — such behavior

is reflected by functions that return elements of "known" types (i .e . types

other than the one being defined) . A notion of equivalence of instances of a

type under extraction is developed to make precise this externally observable

behavior. An implementation of one data type (the Type of Interest TOI) in

terms of another (the Target Type TT) is defined as a map between the

functions and the obi ects of the two types that preserves the observable

behavior of the TOI. We show (Theorem 7) that this definition coincides with

the more conventional definition of an implementation as a sur! ective

homomorphism from the equivalence classes of the representation (target) type

to the equivalence classes of the Type of Interest. However, it is this

difference in perspective that affords insight into the added generality of

our proof method. .

Section 3 outlines the theoretical basis underlying the proof method. We

first observe that a straightforward induction proof based directly on the

developments in Section 2 is not feasible in practice; an alternative proof

strategy is then developed and shown to be correct. In Section 4 we illustrate

an application of the proof method; we have chosen to first illustrate the

proof of a implementation of a Stack in order to highlight some of the

important differences between the present method and previously proposed proof

strategies (these are elaborated in section 5 .) Other examples attempted

include proofs of implementations of a Queue, a SymbolTable, and a TextEditor.

All of these proofs have been automated.

2. Preliminary Definitions

Definition 1: An abstract data type can be regarded as a many

sorted algebra, consisting of a set X of sorts, a set F of function

symbols, and a set of equations relating terms generated by F and

containing free variables. Each f in F has an associated arity that

is an element (x ix2 • ,x n ’xn+l^ x We a l so write f : (x j ,

* 2 » * * .xn) -> xn+i (f ° r an example, see figure 2-1 on page 3).

3

Definition 2: Let V * <V j , . . . , . . . > , where is a set of

variables of sort x^ . The word algebra W[F,V] generated by F and V

consists of the union of the sets w£n^[F ,V], n = 0 ,1 ,2 . . .defined as

follows:

1. all variables of sort x are in [F,V]

2. all constants of sort x , (that is f : () -> x) are in W^0)[F,V]

3. if f : X j ,x 2 » . . .» X k _> , x * then f (t j , . . , t j c) is in w£n^[F,V] if
for each i , t. is in W^n-^ [F ,V] , and at least one t,- is not in

W£n-2) [F ,V]. 1
i

Figure 2-2 illustrates the word algebra generated by functions defined on a

Stack.

Type Stack(Item) .

Syntax

NEWSTACK: () -> Stack .

PUSH: (.Stack, Item) -> Stack

POP: (Stack) -> Stack

TOP: (Stack) -> Item U {UNDEFINED)

ISEMPTY: (Stack) -> Boolean

Semantics

for all s in Stack, x in Item,

POP(NEWSTACK; = NEWSTACK

POP(PUSH(s,x)) = s

TOP(NEWSTACK) = UNDEFINED

TOP(PUSH(s ,x)) - x

IS EMPTY(NEWSTACK) - true

ISEMPTY(PUSH(s,x)) - false

End Stack

Figure 2-1: STACK DEFINITION1

For the purposes of this paper, we ignore the technicalities arising out of

the presence of parameterized types and functions returning "error" values

(see [13, 4]) . However, the reader's intuition will not lead him astray in his

comprehension of this paper.

4

- the set of sorts X, X - {Stack, Item, Boolean), the sorts

themseives being Stack, Item, Boolean;

- the set of function symbols F^tac^ * (NEWSTACK, PUSH, POP, TOP,

ISEMPTY, TOP), with associated., arities as shown in figure 2-1,
pBoolean . {FALSE, TRUE), e t c .;

- the set or terras in the word algebra generated by this set of

■ __ functions consists of .

^ S t a c k ^ ^ C ’ (x , y , . . .)]
. * {NEWSTACK,

PUSH(NEWSTACK,x) ,

' PUSH(NEWSTACK,y),

• • • 1
PUSH(PUSH(NEWSTACK,x),x) ,

PUSH(PUSH(NEWSTACK,y) ,y) ,

PUSH(PUSH(NEWSTACK,x) ,y) ,

PUSH(PUSH(NEWSTACK,y),x) ,

POP(NEWSTACK),

POP(PUSH(NEWSTACK,x)) ,

. . .) etc . ;

WItem[FStaCk’ <x.y.--.>1
* (TOP(NEWSTACK),

. TOP(PUSH(NEWSTACK,x)) ,

• « M

• • • $
TOP(POP(NEWSTACK)) ,

. . .) etc .;

The data type Stack can be viewed as consisting of

- the equations are those shown in figure 2-1.

Figure 2-2: Word algebra generated by F^tac^

5

denotes the set of functions defined on the data type T; Vj denotes the

(countable) set of variables of type T. To improve readability, we often

abbreviate W^.[F U F^,V] to W^[F] (that is , the functions F^ defined on the

"known" or "global" types G are omitted). When F * F^, i . e . , F is the entire

set of functions defined on type T, we further abbreviate W^.[F^] to W^.

-2.2. Equivalence under extraction operations .

- T
The runctions F defined on an abstract data type T can be categorized into

Base . constructors (BC ^), which spawn new instances of the type (e .g .

- - T
NEWSTACK) , Constructors (C) , which form new instances of the type from

T
existing ones (e .g . PUSH, POP), and extraction functions or extractors (E) ,

which return members of other "known" types (e .g . TOP, ISEMPTY).

We adopt the viewpoint that any obi ect representing ar instance of a type

is completely characterized by its "externally observable" properties; such

properties are just those that are obtained as results of applications of

extraction functions defined on the type. This is made precise in the notion

of extraction equivalence of instances of the type [12, 10]. '

Informally, two terms t^ and t 2 are said to be extraction equivalent if

every sequence of function applications that terminates with the application

of an extraction function yields the same (or "equivalent") results on the two

terms. As an example, two instances of the type Stack (say, s^ and s2) are

extraction equivalent iff the applications TOP(sj) and T0P(S2), T0P(P0P(sj))

and T0P(P0P(s2)) T0P(PUSH(s1,x L)) and T0P(PUSH(s2 ,X j)) , . . . , ISEMPTY(s1)

and ISEMPTY(s2) , ISEMPTYCP0P (S j)) and ISEMPTY(POP(s2)) , . . . ,

ISEMPTY(PUSH(s1 ,x 1)) and ISEMPTY(PUSH(s2 ,x 1)) yield the same results

pairw ise .

We now formalize the notion of extraction equivalence. For any term t, we

denote by t[v|t '] the term obtained from t by replacing each occurrence of v

in t by the term t ' . (For this to be well defined, it is necessary that the

sorts of t' and v be the. same.) We denote by t[v in V̂ . It'] the term obtained

2 . 1 . Some Notational abbreviations

6

by substituting t' for aii occurrences, in t , of variables that are contained

in V- Let t be a term in the word algebra W [F,V] where j» in G is different
O O

from T; further, let t contain (one or more) occurrences of variables of sort
O

T. Let t' and t" be obtained by substituting tj and t2 respectively for all

occurrences of variables of sort T in t . Thus t' ■ t [v in V-Jt,] and t" -
g g l T 1 1J

tg[v in V̂ . 112] • (Note that- the terms t' and t" obtained by this process

represent ail possible pairs of terms obtained by applying sequences of

functions ending in an extraction function to tj and t2 c i. the example in the

previous paragraph.) n

Definition 3: tj and to are said to be extraction equivalent in T

if and only if t' and t are (extraction) equivalent in g. Thus,

ti =t ^2 if and only if • '

either (i) tj - t2 , •

or (i i) (for all g in G)(for all tg in W [F,V])

(tg [v in “ g cg^v in ’ • ’

where G is the union of all "known types" that are returned by

extraction functions defined on T. To avoid ambiguity, the * sign has

been labeled to apply over the type domain of its arguments.

Two important observations immediately follow as a result of this

d efin ition :

1. When G is the empty set, extraction equivalence becomes identical

to syntactic equivalence.

2. Syntactic equivalence implies extraction equivalence. Thus,

tj = t2 => tj =T t2 . ’ 3

. ■ ,‘i» 0' r- :

2 .3 . Defining an implementation

Informally, an implementation of one data type, the type of interest TOI,

in terms of another, the target type TT, is a map from the functions and the

obj ects of TOI to those of TT which preserves-the "observable behavior" of the

type of interest. That is , whenever extraction functions are applied to

objects of TOI, yielding instances of known types, the corresponding

computation in the implementation domain should yield identical results. This

is the import of the Definition 6 below.

7

On Che other hand, the conventional characterization of a "correct"

implementation embodies the requirements that (i) every instance of TOI is

represented by some instance(s) of the representation type, and that (i i) the

implementations of the functions defined on TOI "work properly." Formally, the

existence of a surj ective map from the equivalence classes in the

representation type TT to the equivalence classes in the type of interest TOI

ensures that every instance of TOI is represented by at least one instance of

TT. Further, if this map is a homomorphism, it ensures that the functions

"work properly" (see [1 3]) . The existing proof methodologies are based

primarily on this definition (see Section 5) . In contrast, the proof method

that we will outline in section 3 is based on the definition of correct

implementation as developed in Definition 6. We show in Theorem 7 that the

above notions of a correct implementation are formally equivalent. However,

as mentioned in Section 1, the generality of the proof method delineated

herein stems from the difference in our perspective. '

We can define an implementation map with greater precision in terms o f .a

(restricted) derivor [13]; this is done in Definition 4 below. However, we

first need to introduce the notion of a term being viewed as a derived

operator: informally, a term "P0P(PUSH (s ,x)) " can be viewed as an operator

(say POP-PUSH) with arity POP-PUSH: Stack, Item -> Stack, that maps the

arguments (s ,x) to the Stack "P0P (PU SH (s ,x)) . " POP-PUSH is called a derived

operation ("derived" • from the terra "P0P (PU SH (s ,x)) , " where s and x are

v a r iab le s). When we explicitly want to indicate the function derived from a

term t, we shall denote it d- (t).

.Definition 4 : A derivor d consists of the following pair of maps

(a) a map dfl from ({TOI} U G) to ({TT} U G); we shall be concerned

only with the case where dfl maps TOI ~to TT and is the identity

operator on all of the global,sorts g in G. That is ,

da (T0I) * TT, and

(for all g in G) [da (g) - g]

(This merely embodies the fact that we compute with TT-obj ects in
piace of TOI-objects and that everything else is unchanged.)

8

TOT
(b) a map 0 from F 1 L to that preserves arity : if f : x j . . . x n->x

(f in F^®*), then d - (0 [f]), (a term in W ^) when viewed as a "derived

operator" must have arity

d- (9 [f]) : da (x ^) . . *da(xn) -> da(x) .

By virtue of the simplification in (a) , this arity is simply

x ^ , . . . x n->x with any occurrences of TOI being replaced by TT.

Henceforth, we simply write 9 (f) for d- 9(f). The map 9 which is of

interest to us acts as the "identity " for functions f in F^. Thus, the

-non-trivial part of 0 is the one that transforms the functions defined on the

type of interest to terms in the target type. This map will henceforth be

referred to as the implementation map (or simply the implementation 9) , and in

essence, defines an implementation of the type TOI in teras of the type TT.

Definition 5 : The d-derived algebTa dTT defined by a derivor d is

an algebra with functions <d-9(f) | f in FT01} that is , the function

corresponding to f is the term 0 (f) viewed as a derived function. The

equations of dTT are identical to those of TT.

Example If we consider the implementation of a Stack in terms of an Indexed

Array (see Figure 2-3), the maps comprising the derivor are: da (Stack) «

Indexed Array, da (Ttem) = Item, da (Boolean) = Boolean. Tne type Indexed Array

is a tuple consisting of an Array and an integer; the map. 0 is detailed in

figure 2-3.

It is straightforward to extend the domain of 0 from F ^ ^ to

U F^,V] , X in {TOI} U G: variables of sort TOI are mapped to

variables of sort TT, while variables (and functions) of all other sorts

remain unchanged. Then, if t - f (t . t) , we define

I., ft(t) = 0 (fT d l) (9 (t j , . . ,e (t n)) .

Definition 6: A map 0 defines a correct implementation of TOI in

terms of TT if .

• (for all g in G)(for all tg in Wg [FT01) [9 (tg> =gtg] .

Theorem 7 shows that this interpretation of an implementation coincides

with one defining a sur^ ective homomorphism from the extraction equivalence

classes of dTT to the extraction equivalence classes of TOI. 1 ’

Theorem 7:

An implementation' map 0 such that

9

(for all g in G)(for all tg in W ^ F 101]) = tg] (I)

implies the existence of a surj ective homomorphism

8 ' : WdTT/ E* -> WT0I / ET

where (respectively W^q j / E ^ * ,) denotes the extraction

equivalence classes induced by the runctions E ^ (respectively E^® *).

Proof: See Appendix I .

‘2_»A. Kernel Functions

The first phase of constructing the formal specifications for a problem

involves specifying an appropriate syntax that embodies the visible "syntactic

interface" requirements of the problem, i .e . enumerating a set of functions

F associated with appropriate arities . The second phase of the specirication

process involves specifying the semantics of the functions in F . In this

later phase, it is convenient to first tentatively identify a minimal set of

base constructors and constructors that serve to generate all representative

instances of the type, such as {NEWSTACK, PUSH) for a Stack; we will refer to

such a set of functions as a kernel set and denote it K^. If the semantics of

the remaining functions can be completely specified by defining their action

only on the instances of the type generated by the postulated kernel set, then

- T
the initial identification or K fu lfills the formal requirements of a set of

kernel functions [11).

T "
More formally, a set of kernel functions K is characterized by the fact

T
that every term in Wj[F] is equivalent (under the set of defining equations)

T T
to at ieast one term in W^[K]. Invariably, such a set K is identical to a

syntactic version of a kernel set, defined to be the union of the functions

that appear in the arguments on the left hand sides of the defining equations

of the non-kernel functions; an algorithm to identify such a set can be found

2 „
Or course, this phase or constructing formal specifications may undergo

several iterations before a final set of specifications is settled upon, since

the initial (and intermediate). specifications may provide an "unsatisfactory"

interface for the user.

10

The map 0 defining an implementation of a Stack using

an Indexed Array is defined below. Let 0(s) « <a,i> .

0 (NEWSTACK) = <NEWARRAY, ZER0>

0 (PU SH (s ,x)) - <ASSIGN(a, SUCC(i),x) , SUCC(i)>

0 (POP (s)) * <a, PRED(i)>

0 (TOP(s)) - DATA(a,i)

0 (ISEMPTY(s)) - [i = ZERO]

i is an Integer Index, SUCC(i) is the Successor of the integer i

(■ i+1), PRED(i) is the Predecessor of the integer i (with the

semantics for monus) . Appendix III

details the definitions of the types Array and Integer.

Figure 2-3: THE IMPLEMENTATION OF A STACK USING AN INDEXED ARRAY

11

in [12] .^ In other words, the equations that define the semantics of

non-kernel functions refer explicitly only to terms generated by syntactic

kernel functions; henceforth, we shall use to denote the syntactic kernel

set obtained from a given specification of the type T. We now proceed to

elaborate on the relevance of this observation to the proof method.

3 . On proving the correctness of an implementation

Recall from Definition 6 that a proof of the correctness of an

implementation specified by a map 0 involves showing that the following holds

(for all g in G)(ror all tR in Wg [FT0Il) t? - 0 (t) . -- (P)

Now, every such term t is either of the form e (v j , . . . , v n) (for some

TOT
extraction runction e in EiU i, where e : X j, . . . , Xn -> X, and v i in Vx ,)

e .g . TOP(s) , or is obtained by instantiating the variables in e (v ^ , . . . ,vQ)

e .g . TOP (NEWSTACK), TOP (POP (s ')) , etc. Thus, if we consider the set of

(uninstantiated) terms S of the form e (v j , . . . , v n) and prove that e (v j , . . . , v)

■ 0 (e (v j , . . . ,v)) for every such term in S, then we shall have proved that. 0

defines a correct implementation. However, it may not be possible to carry

through all .of the required proofs directly, because of the lack of the

appropriate forms of the defining equations. For example, there is no

defining equation of the form TOP(s) * . . . , that is' normally specified for a

stack.

As a consequence, in order to use the defining equations of TOI and TT in

proving equivalences, it may be required to instantiate the variables in

e (v j , . . . , v n) with some specific terms. For example, if the variable s in

TOP(s) is instantiated to either NEWSTACK or P U S H (s ',x), it becomes possible

to use the defining equations of TOP. It i s ,""however, imperative to guarantee

3 ■
The notion of a syntactic kernel set is introduced only to circumvent the

pathological undecidabilities that can arise in computing a "semantic" version

of the kernel set. -

12

that the generality of the overall proof procedure is not compromised by any

such (set of) sp ecializatio ns) . The most obvious way to ensure this •

generality is to use induction on the syntactic structure of the terms in the

word algebra generated by F^. For example, this would require considering the

terms TOP(NEWSTACK), TOP(PUSH(s,x)) , TOP(POP(s)), etc.

Unfortunately, even the specializations ensuing from such a set of

.instantiated terms may not be adequate to enable a completion of the required

proofs. This will be the case if the type is not freely generated by the

constructors, i . e . , if the set of non-kernel constructors (is

non-empty. Thus, in the case of the type Stack, POP is a non-kernel

constructor, and there is no explicit equation of the form TOP(POP(s)) ■ . . .

Nonetheless, it is possible to develop a proof procedure that uses

induction only on the terms generated by a set of kernel functions, by

recognizing (proving) the extraction equivalence of certain terms in the

derived algebra. Proofs of extraction equivalence of terms in the derived

aigebra must in turn rely primarily on an induction on the structure of terms

in but this often turns out to be feasible in practice. The resulting

proof procedure is quite general; what is of greater relevance, however, is

that it is more amenable to automation. Concluding this prologue, we now

outline the proof procedure in greater detail.

We denote by “ ^TT extraction equivalence in the derived algebra dTT.

Theorem 8 : Let R denote the set of defining equations of TOI. For

each defining equation t^ - t2 in R, where tj , t2 are not in W^.gj, if

t^ = t2 *> 9 (t j) “ dTT c2) — (A)
and if ’

(for all g in G) (for all tg in Wg [KT01 U ET0T]) tg -g6 (t g) — (B)

then 0 defines a correct implementation.

Proof: See Appendix I I . -

It is crucial to note that the equation (B) above considers only Wg U

ET01 and not Wg [FT0T] .]

13

In order to prove tj =dxT c2* necessarT to prove that

(for all g in G) (for all tg in W^[Fdrr])

tg [v in VdTT|t1r - g tg [v in VdTT|t2].

This proof may again be based upon induction on the structure of the terms in

the word algebra wdj j , and consists of the following steps:

Base case Prove

" (for all g in G) (for all t in [F**^-]

tg [v in vdTT|tjn - t [v in VdTT|t2l

Assume (as the induction hypothesis)

(for all g in G) (for all tg in [F ^^]

tg [v in Vd r r |t11 - tg [v in vdTTl t2]

Induction step Prove

(for all g in G) (for all t in W^n+^ [F^^T)

tg [v in - tg [v in vdTTI t2l

The proof of part (B) of Theorem 8 is again obtained by an induction on the

terms of W , ^ [K101 U ET01) .

We now illustrate the proof method based on Theorem 8 by proving the

correctness of the Stack, implementation given in figure 2-3.

4 . Illustrations of the Proof Method -

4 .1 . Proof of an Implementation of a Stack

To prove the given implementation 9 correct (see figure 2-3), it is

necessary to prove that . '

TOP(s) - 9 (T 0 P (s)) for all s in WStack --(SI)

and -

ISEMPTY(s) =■ 9(ISEMPTY(s)) for all s in WStack. --(S2)

We wilL discuss only the proof of (S I) here. The proof of (S2) is almost

identical.. .

Proof of (S I) The most natural form of a proof of (S I) relies on induction

14

on the structure of the terms in wgtack [F^tack] , but involves the following

proof:

(for all s in W ^ ck) TOP(POP(s)) - 9 (T0P(P0P(s)) — (T-POP)

Note however, that the defining equations for TOP apply only to terms of the

form NEWSTACK or PUSH(s,x). Thus, (T-POP) cannot be proved directly. In

general, equations that involve non-kernel functions cannot be proved directly

by using the defining equations. Consequently, any syntactic equivalences

that are implied by the defining equations for non-kernel functions (on Stack)

must be proven to carry over as extraction equivalences in the (derived)

implementation algebra. That is , we need to show that

POP(NEWSTACK) - NEWSTACK

-> 0 (POP(NEWSTACK)) -dAI e(NEWSTACK) ~ (A 1)

and

POP(PUSH(s,x)) - s . .

«> 9 (P0P (PUSH (s ,x))) -dAI 9 (s) . — (A2)

In such a case, by virtue of Theorem 2, it is sufficient to show that

. TOP(s) = 9 (T 0 P (s)) for all s in WStack[Kstack] ,

where the kernel set for Stack is {NEWSTACK,PUSH). This in turn can be

proved by induction on the structure of terms in Wgtack[K^tack] , and consists

of the following steps:

Base Case Prove

TOP(NEWSTACK) - 9 (TOP(NEWSTACK)) — (Bl)

Assume as the induction hypothesis that

(for all s in w^ c k [KStackl) TOP(s) - 9(T0P(s))

Induction Step Prove

for all s in £[KStack])TOP(PUSH(s ,x) * 9(T0P(PUSH(s,x))) — (B2)

We now detail some of these proofs.

Proof of (Al) _

(LHS) * 9 (POP(NEWSTACK))

- 9 (POP)(9 (NEWSTACK)) - '

- 9 (POP) (<NEWARRAY,ZERO>)

- <NEWARRAY, PRED(ZERO)>

= <NEWARRAY, ZERO by the defining equation of PRED.

RHS - 9 (NEWSTACK)

- <NEWARRAY, ZERO>

15

- LHS

Since syntactic equivalence implies extraction equivalence, the proof of

(Al) is complete.

Proof of (A2) By the definition of 0, we have,

LHS - e(POP) (9 (PU SH (s ,x)))

= 0 (POP) (0 (PUSH) (<a-,i> ,x))

= e(POP) (<ASSIGN(a,SUCC(i),x),SUCC(i)>)

= <ASSIGN (a ,SUCC(i),x), PRED(SUCC(I))>

= <ASSIGN(a, SU CC(i) ,x) ,i> (by using PRED(SUCC(i)) - i)

RHS = 0 (s) = <a,i>

a

Thus, we need to prove that the terms <ASSIGN(a, SUCC(i),x),i> and <a,i> are

extraction equivalent in the derived target type algebra. These terms are not

syntactically equivalent. Consequently, to prove the extraction equivalence

of these two terras, we again need to resort to the basic definition and use

induction on the structure of the terras in the derived algebra where we

denote by dAI the derived Array-Index algebra. Observe that

w (> (FS‘ ack)] = <N EWARRAY, Z ERO>

w 3 K n te<FStack>l - • .
{ <ASSIGN(a, SUCC(i),x),SUCC(i)> , ,

<a,PRED(i)> I <a,i> in [0 (FStack)] >

and that 0 (E Stack) = {0(TOP), 0(ISEMPTY)>

A proof of (A2) by induction therefore consists of the following steps:

Base case .

6 (TOP) (<NEWARRAY, Z E R O)) [<a, i> | <ASSIGN (a , SUCC(i) ,x l) , i>]

= 9(T0P) (<NEWARRAY, ZERO) [<a,i> |<a,i>] — (A2-1)

Induction hypothesis Assume

(for all <a,i> in

9 (TOP) (<a , i>) [<a, i> | <ASSIGN (a, SUCC(i) , x l) , i>]

= 9(T0P) (<a,i>) [<a ,i>|<a,i>].

Induction step Prove

(for ail <a,i> in

9 (TOP) (< A S S IG N (a ,s f i) ,x) ,s (i)>) [<a,i>|<ASSIGN(a, SUCC(i) ,xl) ,i>]

16

- e(TOP) (<A SS IG N (a ,s (i) ,x) ,SU C C (i)> |< a ,i>) — (A2-2)

(for all <a,i> in ^)

0(TOP) (<a,PRED(i)>) [<a,i>|<ASSIGN(a,SUCC(i),xl),i>]

- 0 (TOP) (<a,PRED(i)>) [<a,i> |<a,i>] — (A2-3)

In addition, proofs with 0(ISEMPTY) substituted for 0(TOP) must also be

carried out. We illustrate only the proofs for 0 (T O P) , since the proof for

0 (ISE11PTY) . is similar. The proof of (A2-1) is trivial, since both the LHS and

RHS are identical.

Proof of (A2-2)

LHS = 0 (TOP) (<ASSIGN(ASSIGN(a, SUCC(i),x),SUCC(i)>)

- DATA(ASSIGN(ASSIGN(a,SUCC(i),xl) ,SU CC(i) ,x) ,SUCC(i))

■ x (by the defining equations of DATA)

RHS - 0(TOP) (<ASSIGN(a ,SUCC(i),x), SUCC(i)>)
- DATA(ASSIGN(a, SUCC(i),x),SUCC(i))

■ x (by the defining equations of DATA)

- LHS

Proof of (A2-3)

LHS - 0(TOP) (<a,PRED(i)>) [<a,i>I<ASSIGN(a, SU C C(i) ,x l) , i>]

- 0(TOP) (<ASSIGN(a,SUCC(i),xl) , PRED(i)>)

= DATA(ASSIGN(a , SUCC(i) ,xl) , PRED(i)) - ■'

- DATA(A,PRED(i)) .

RHS = DATA(a, PRED(i)) - LHS

In conj unction with the proofs for &(ISEMPTY), this completes the proof of

(A2), and therefore of part (A) .

Proof of (Bl)

LHS - TOP(NEWSTACK) - UNDEFINED.

RHS - 0 (TOP(NEWSTACK))

- 0(TOP) (0 (NEWSTACK))

= 0 (TOP) (<NEWARRAY, ZERO)

- DATA(NEWARRAY, ZERO) „

- UNDEFINED

- LHS

Proof of (B2)

Let 0(s) * <a,i> -

LHS - TOP(PUSH(s , x))

■ x (by the defining equations for TOP)
RHS = 0 (TOP(PUSH(s , x)))

- 0 (TOP) (0 (PUSH (s , x)))

= 0(TOP) (0 (PUSH) (< a ,i> ,x))

= 0(TOP) (<ASSIGN(a, S U C C (i) ,x) , SUCC(i)>) -

17

- DATA(ASSIGN(a ,SUCC(i),x), SUCC(i))
= x (by the defining equations for DATA).

= LHS .

By Theorem 2, the above proofs of Part (A) and (B) together imply that 0

defines a correct implementation of Stack.

5. Some comparisons with other proof methods

‘ _ The conventional notion of a proof of the correctness of an implementation

map 0 involves proving the existence of a surj ective homomorphism 0 ' from

TT TOT
onto W^q ^ /E . Most of the proof methods that have been employed

thus far are based primarily on this definition of correctness, and follow

essentially either one of following two procedures:

(1) an "abstraction function" A: -> is specified, which serves as

a postulated map 0 ' . The correctness proof then involves showing that A does

indeed define a surjective homomorphism. This method is basically due to Hoare

[7]. The rep function used in the ALPHARD verification methodology serves a

similar purpose [15].

(ii) an equality relation * (called an "equality interpretation" in [5])

is specified on the terms in The existence of the required homomorphic

map 0 ' is then proved by making use of this equality interpretation. This

method is a slight generalization of (i) , since an abstraction function can be

used to impose an equaLity interpretation on dTT, whereas the converse is not

true. Specifically, the equality interpretation induced by an abstraction

function A is :

A (ttl) - A(tt2) => ttl =eq tt2.

Strictly speaking, however, in order to prove the correctness of an

implementation of a type of interest TOI in terms of a target type TT, it

should only be necessary to provide the following information:

1. a specification of the type being implemented TOI;

2. a specification of the representation type TT;

18

It therefore detracts from the generality of a proof method if it is

required to augment the specifications (1)—(3) above with some additional

information in order to carry through a correctness proof. The existing

methods, of which we have given some examples above, suffer from this

drawback. In both of the above proof methods, it is necessary to supply some

extra information— in the form of an abstraction function in (i) , or an

equality interpretation in (i i) . This is also true of a recent proposal of

Flon and Misra [2] .

In contrast, the method we have outlined in this paper does not require any

additional information augmenting the specifications (l)- (3) . To make a

specific comparison, if the proof techniques of [GHM78] are used, the proof of

an implementation of a Stack identical to the one discussed in section 4.1

needs the following equality interpretation to be specified:

0 ' (< a ,i>) - 0 ' (< al , i l >) -

if i*il and (for all k) [1 <_ k <_ i = DATA(a,i) ■ DATA(al,i)]

As we indicated in section 1, the added generality of our proof procedure

is quite important, since it facilitates automation. (For example, all of the

proofs presented in this paper have been automated using the simplifier that

forms part of the Stanford Verifier [9].) Of course, it is possible that in

the course of a particular proof, some specific step cannot be carried through

automatically, i ust as it is possible that in the course of attempting a

correctness proof of a program using, say, Floyd-Hoare proof methods (cf .

[3], [6] ,) it may prove to be difficult (or infeasible) in practice to

demonstrate the invariance of certain assertions. However, our initial

empirical, explorations with an automated system have certainly served to

indicate that the method can be used to carry out non-trivial proofs, thereby

lending credibility to its pragmatic utility .

3. a s p e c i f i c a t i o n of the implementa t ion map 6.

19

We restate the theorem below.

Theorem 7 An implementation map 0 such that

(for all g in G)(for ail tg in Wg [FT0 1]) [9 (tg) « t] (I)

implies the existence of & surj ective homomorphism

. 0 ' : WdTT/ £TT -> WTQI / ET01

where (respectively WTQj /E ,) denotes the extraction equivalence

TT TOT
classes induced by the functions E (respectively E) .

The proof of this theorem rests on lemma 9 below. Let [t] denote the

equivalence class of the term t. '

Lemma 9 : Let 0 (t) * t, t in W^0 ^. Define 9 ' : wdTT -> WT 0I ’

where 0 ' ([t]) = [t] . Then 9 ' is a well defined map.

Proof. In order for 9 ' to be well defined, it needs to be shown that

(a) If t is such that

9(t) - t (1)

then there must not exist t' c such that

. 6 (t ') - t (2)

(b) 9 ' is defined for all [t] in W ^ ^ / E ^ ^ .

Proof of part (a) Assume that there exists a t' t such that 9 (t ') =

t. Then, by the definition of extraction equivalence, there must exist t in
* O

W [FT®*] such that _ _

tg [v in VT Q I|t] t? [v in VI 0I |t'] (3)

Intuitively, this implies the existence of a sequence of function

applications, terminating in the application of an extraction function, that

yieids inequivaient resuLts when applied to t and t' . But, by the definition

of 9 and constraint (I) of the theorem,

tg [v in Vt o j U] -g 9 (t g [v in VTQI |t]) (A)

and __ __ .

tg [v in VTQI|t'] -g 9 (t g [v in VT Q II t']) (5)

I . Proof of Theorem 7

20

By the definition of 0, _ _

9 (tg [v in | t]) _ g 0 (tg) [v in | 0 (t)]

and __ __

0 (tg [v VT0I |t']) « g 0 (tg)[v in VTT |e(t')]

(3) , (4) and (5) imply _ _

- 6 (tg) [v in VTT |©(t)] i*g 0(tg) [v in VTT|e (t ')] . (6)

where 0(t) is in Wg [FdTT U F ^ V ^] .

But (1) and (2) together imply

0 (t) 0 (t)

and consequently, we have

(for all g in G) (for all t in_ W [FdTT U FG,Vj T]) ^

tgtv in VTfl0 (t)l -g tg [v in VTT|0 (t ')] (7)

which contradicts (6) . Hence the assumption that there exists a t' ^TOI t

and such that 0 (t ') = t cannot be true. End of Proof.

Proof of Part (b_) .

By virtue of definition 4, the only terms in dTT are those that images

under 0 of some term in W^q ^. There must therefore exist at least one term t

in Ŵ .qj [F^®* U F^] which the pre-image of t under 0. That is , 0 ' is defined

for every term t in dTT. Tnis completes the proof of the Lemma.

. End of Proof.

Proof of the theorem '

Consider the map 0 ' defined in lemma 9. In order to prove the theorem, it

needs to be shown that *

(A) 0 ' is onto wto i/Et o i ,

(B) 0 ' is a homomorphism.

Proof of Part (A) To prove that 0 ' is onto, we have to show that for every

[t] in W.J.QJ/E^^, there is a term in W^j j / E ^ ^ that maps onto [t].

Since, for every term t in W^.qj, 0(t) is in W ^ x * by definition of 0 ' , we

must have, _ _

„ 0 (I 0 (t)]) =,poi .

The proof of part (A) follows immediately.

- End of Proof.

Proof of Part (B) We need to show that

. 0 ' ([f (t /)]) * T0I e ' ([f ']) (e (U '])) (8)

where f ' is a function in dTT, and _t' represents a tuple of terms.

Let f ' , t/ be such that ' ' -

e(f ') =TT f ' .

and __

0 (1 ') ^ t' .

(Because of the reasons given in the proof of part (b) of the lemma, such a

pair f ' , t/ must exist .) By definition of 0',__we have,

0 (I f]) =toi ̂ ^

and ; - : ‘ ‘ y v

0 ([_t]) =tqi [_t' 1

Thus,

e ' ([f ' i) (e ' (U '])) -t o i [i ' l l ')] (9)

Again, by definition of 0,

0 (f ' (t /)) =TT 9 (f ') (8 (t ')) * TT r ' U ')

Thus, by definition of 0 ' , .

0 ' ([r ' (t /)]) =TOi t f ' U ')] (1 0)

Together, (9) and (10) imply that 0 ' satisfies the homomorphism condition

(8) , thus proving the theorem. ' • "*

End of Proof.

• 21

22

We restate the theorem below.

Theorem 8 : Let R denote the set of defining equations of TOI. For each

defining equation t^ - t£ in R, where t j , t£ are not in wjoi*

tj “ t£ 0 (t j) “ ^TT 0(t2) — (A)

and if

(for all g in G> (for all tg in Wg [KT01]) U ET01]) tg - g Q ^g) —

then & defines a correct implementation.

We first prove four lemmas which formalize some fairly intuitive facts, and

which are needed in the proof of Theorem 8 . .

About the lemma 10. This lemma states that

- if a term t2 is obtained by instantiating a term t by substituting

t' for the variables of sort T, where

- t' itself has been obtained by instantiating t" by substituting tj

for the variables of sort T, then

- t2 can also be obtained directly by substituting t^ for variables of

sort T in some t^; the terra t£ is actually constructed in the proof

of the lemma.

Lemma 10:

Consider t, tj in Wj. If t2 * (v in V j|t '] and t '=t "[v in V j|tj] ,

then there exists t^ such that t 2 * [v in VT |tj].

Proof. The proof is by induction on the structure of t.

(a) Base Case. Let t be in W^®^.

t in W^®^ => t * v or t * f , where f is in BC^.

t * v => t2 ■ t' ■ t " [v in V jlt j] . _

Hence t£ * t " . If t 2 * f then ££ * f.

(b) Induction Step Assume that the proposition holds for all t in W.£n“ ^ .

Consider t in w£n) . Then t must be of the form t * f (x p . . . , xm) where f :

(X j , . . . , Xm) -> T, and x^ in W^n” ^ (and such that at least one x^ is not in

I I . Proof of Theorem 8 .

23

) • Variables of sort T can then occur in X j , xm.

t 2 = t [v in V*p 1 1 ']

= f (xj[v in VT | t '] , . . . ,xm[v in VT |t '])

= f (x j ' [v in VT | t j] , . . . ,xm' [v in VT 11])

. (by hypothesis)

= f (x j ' . , xm') [v in VT |t1]

Hence t^ = f (x ^ ' , . . . ,xm') , which completes the proof.

. End of Proof.

Lemma 11 states that the terms t-j, t^ obtained from a common term' by

instantiating variables with extraction equivalent terms are themselves

extraction equivalent (although they might be syntactically d ist inct) . This is

illustrated in Figure 5-1.

Ml

Figure 5-1: Figure illustrating Lemma 11

Lemma 11: Consider tj, t 2 in WT . Let t 3 = t '[v in VT |t1], and t4 =

24

t' [v in 112)- Then tj *•£ c2 “ > c3 =T c4 ^ŵ ere =t denotes extraction
equivalence).

Proof.

C3 “ T C4

<=> (for all g in G) (for all tg in Wg)

tg [v in VT 113] =g tg [v in VT 114] .

_ By lemma 10, there is some t " in W such that te [v in V-r-lto] » t_"[v in
_ 0 6 f e 1 -3 © ©

VT |tj] , and tg [v in VT 11 ^] - tg"[v in VT 11 2_] .

Since tj t2 , it follows that t3 c4 * . End of Proof.

Lemma 12: Consider t p t 2 in WT . Then tĵ = t2 ■> tg [v in VT 11 ̂1 =g

tg[v in V j|t2], where tg is in Wg .

Proof: Immediate, from lemma 11, since syntactic equivalence

implies extraction equivalence.

. End of Proof.

Lemma 13: For all tg in W [F^], there is a term t in W^fFTI, and a

term tg' in Wg [ET], such that tg » t ' [v in VT |t].

Proof. Every term tg is of the form e(t j , . , t n) where e is in E^,

e i X ^ , . . . ,) ^ -> g, and t^ is in W^£F^] . Consider the term tg ' = e (v j , . . . ,vn) ,

Vj_ in . Then tg ' is in Wg [ET) , and

"g Cg V̂ 1 ^C1 ^ ’ v̂n I cn ^ *

• End of Froof.

Proof of the Theorem.

By virtue of the definition of for every t in [F ^ *] there exists

some tj in WTQI[KT01], such that t « tj.

By Lemma 12, it follows that

tg [v|t, t in WToX] -g tgTvltp t 1 in WT0I [KT01]] (1)

Also ,

9 (t g [v|t]) -g 9 (tg)[0 (v)|9 (t)] (2)

25

Consequently, (2) =>

0 (t g [v|t, t in WT0I [FT01]])

- 9 (tg) [0 (v) I & (t) , t in wT0 I [fT01]]

= 0(tg) [9(v) | 0 (t^) , t 1 in Wt o i [KT01], t = t (3)

' Again, by virtue of (B) , we have

(for all g in G) (for all t in W [KT®* U)

^ V - 1- ’ I in wt o i ^ T0I]] ^ V - 1- ’ 1 in WTo i [KT01]]) (A)

From (1) , (2) , (3) and (4) , we obtain

(for all g in G) (for all t in W [KT®* U ET®^])
rt §

cg [l J l ’ 1 in ^TOI ffT 0 1 J1

“ cg M l i > I i in Wt o i [KT01], £ - _tj] by (1)

* © (t g M t ,! * i .1 in Wt o i [KT01]]) by (4)

* 0 (t g [v|_t, t_ in Wt o i [FT01]]) by (2) and (3)

i . e . ,

(for all g in G) (for all t in W [KT01 U ET01])

cg [t_ in WT0I [FT0In

= 9 (t g [v|t, t in Wt o i [FT01]]) (5)

TO T
But by lemma 13, tg can be expressed as tg ' [v | t ' , t' in Ŵ .qj [F]] where

tR' is in W [E^®*] (and hence in W g[K ^* U E^®*]). Consequently, (5) implies

that

(for all g in G) (for all t in W [FTOI])
O ©

tg [v|_t, _t in W^^j-JF101]] - £ in W ^ t F 101]]) (6)

But (6) is precisely the condition required for correctness of the

implementation specified by 0 . (Note that the key difference lies in the

quantification of the terms t -) This proves the theorem.

End of Proof.

By v i r t u e of (A) , we have

t “ t j ■> 0 (t) 0 (t j)

26

I I I . D e f i n i t i o n s of the t ypes Array and I n t e g e r

Type Integer

Syntax

ZERO : () -> Integer

SUCC : (Integer) -> Integer

PRED : (Integer) -> Integer

ISZERO : (Integer) -> Boolean

Semantics

for ail i in Integer

ISZERO(ZERO()) = TRUE

ISZERO(SUCC(i)) = FALSE

PRED(ZERO()) = ZERO

PRED(SUCC(i)) = i

End Integer

Figure 5-2: Definition of the type Integer

Type Array

Generic type parameter : item

Syntax

NEWARRAY : () -> Array '

ASSIGN : (Array,Integer,Item) -> Array

DATA : (Array, Integer) -> Item U {UNDEFINED)

Semantics ’ .
’ ' " * ; . ■’ •'

s

DATA(NEWARRAY,!) = UNDEFINED

DATA(ASSIGN(a, i , x)) = i f i=j then x else DATA(a,i)

end Array

Figure 5-3: D e f i n i t i o n of the type Array

27

Consider the implementation of the type Queue (see figure 5-4,) using a

target type consisting of the triple <Array, Integer, Integer>. Intuitively,

the first integer component points to the front of the Queue, while the second

integer component points to the tail of the Queue. Tne implementation map 0

for the functions on type Queue is given in figure 5-5.

We note that

B c Q u e u e = < N E W q } . .

CQueue = {ADDQ, DELETEQ).

EQueue = { FROn t q , ISEMPTYQ). '

IV. The Proof of a Queue Implementa t ion

Tne correctness proof consists of two parts.

(A) The syntactic equivalence induced on the terms of type Queue by the

defining equations must be shown to produce extraction equivalent terms in the

implementation algebra dAII under the map 0. That is ,

DELETEQ(NEWQ) * NEWQ => 9 (DELETEQ (NEWQ)) -d A n 0(NEWQ) ~ (A 1)

DELETE(ADDQ(q,x)) = if ISEMPTYQ(q)

then NEWQ .

else ADDQ(DELETEQ(q),x)

=> 9(DELETEQ(ADDQ(q,x))) -d A n

9 (if ISEMPTYQ(q)

then NEWQ

else ADDQ(DELETEQ(q),x)) — (A2)

(B) By induction on W^, it must be proved that

(for ail g in G)

(for all t in W [{NEWQ,ADDQ,ISEMPTYQ,FRONTQ} U FG ,V])

6 (tg) — (B)

This involves the following proofs:

Base Case

FRONTQ(NEWQ) * 0 (FRONTQ(NEWQ)) --(FI)

ISEMPTYQ(NEWQ) = ©(ISEMPTYQ(NEWQ)) --(II)

Induction Step

(f o r a l l q in [(KQueue u EQu e ue , V])

28

Type Queue

Syntax

NEWQ : () -> Queue

ADDQ : (Queue, Item) -> Queue

* „ DELETEQ : (Queue) -> Queue •

FRONTQ : (Queue) -> Item

ISEMPTYQ : (Queue) -> Boolean

Semantics

for all q, ql in Queue, x in Item;

DELETEQ(NEWQ) - NEWQ .

DELETEQ(ADDQ(q,x)) - if q - NEWQ

then NEWQ

else ADDQ(DELETEQ(q),x)

ISEMPTYQ(NEWQ) - TRUE

ISEMPTYQ(ADDQ(q,x)) = FALSE

FRONTQ(NEWQ) = UNDEFINED -

FRONTQ(ADDQ(q,x)) - if q - NEWQ .

then x

else FRONTQ(q)

End Queue

Figure 5-4: Definition of the Type Queue

We write 9(q) * <a,l,h>

6 (NEWQ) = <NEWARRAY, ZERO, ZERO

8 (ADDQ(q,x)) - <ASSIGN(a, SUCC(h), x) , 1 , SUCC(h)>

9(DELETEQ(q)) - if 1 - h

then <NEWARRAY, ZERO, ZERO>

else <a, SUCC(l)*, h>

0 (FRONTQ(q)) - if 1 - h

then UNDEFINED

else DATA(a, SUCC(l))

9(ISEMPTYQ(q)) - (1-h)

Figure 5-5 : An Implementa t ion of t he Type Queue

29

FRONTQ(ADDQ(q,x)) = 6 (FRONTQ(ADDQ(q ,x))) — (F2)

ISEMPTYQ(ADDQ(q,x)) * ©(ISEMPTYQ(ADDQ(q,x))) --(12)

Proof of (Al)

LHS - = ©(DELETEQ(NEWQ))

= ©(DELETEQ)(©(NEWQ))

= ©(DELETEQ) (<NEWARRAY, ZERO, ZERO)

* if ZERO * ZERO

then <NEWARRAY,ZERO,ZERO

eise <NEWARRAY,SUCC(ZERO),ZERO>

= <NEWARRAY, ZERO, ZERO

RHS » <NEWARRAY,ZERO,‘ZE R O

- LHS

Since syntactic equivalence implies extraction equivalence, this completes

the proof of (A l) . .

Proof of (A2)

LHS = ©(D ELET EQ(ADDQ(q ,x))

= ©(DELETEQ) (<ASSIGN(a, SU CC(h),x) , 1 , SUCC(h)>)

- if l=SUCC(h) '

then <NEWARRAY,ZERO,ZERO

else <ASSIGN(a,SUCC(h),x),SUCC(1),SUCC(h)>

- <ASSIGN(a, SUCC(h),x),SUCC(1),SUCC(h)>

(where we use the fact that 1 < h is true in _

any term <a,l,h> in This is proved below.)

RHS = if ISEMPTYQ(q) then ©(NEWQ)

else ©(ADDQ)(©(DELETEQ (q) ,x)) '

= if l=h

then <NEWARRAY, ZERO,ZERO "

else ©(ADDQ(if l=h then <NEWARRAY,ZERO,ZERO> ,

else <a,SUCC(1) ,h >) ,x))

= if l*h then <NEWARRAY, ZERO, ZE R O -

‘ else if l=h then ©(ADDQ)(<NEWARRAY,ZERO,ZERO,x)

else ©(ADDQ)(<a,SUCC(l),h>,x)

= if 1-h then <NEWARRAY,ZERO,ZERO>

else ©(ADDQ) (<a,SUCC(1) ,h>,x)

= if 1-h then <NEWARRAY, ZERO, ZERO

else <ASSIGN(a, SUCC(h),x),SUCC(1),SUCC(h)>

The proof of (A2) involves a proof by induction.

Base Case

©(FRONTQ) (<NEWARRAY,ZERO,ZERO>) -

©(FRONTQ) (<NEWARRAY,ZERO,ZERO)

©(ISEMPTYQ) (<NEWARRAY, ZERO, ZE R O) - -

©(ISEMPTYQ) (<NEWARRAY,ZERO,ZERO)

30

e(FRONTQ) (<a , 1 ,h>) [<a,l,h>|

<ASSIGN(a , SUCC(h),xl) ,SUCC(1) ,SUCC(h)>]
= 9 (FRONTQ)(<a, 1 ,h>)

[<a, 1 ,h> |

if l=h

then <NEWARRAY,ZERO,ZERO>

else <ASSIGN(a, SUCC(h),xl),SUCC(1),SUCC(h)>]

9 (ISEMPTYQ) (<a ,l ,h>) [<a,l,h>|

<ASSIGN(a, SUCC(h),xl),SUCC(1),SUCC(h)>]

= 9 (ISEMPTYQ)(<a,l,h>)

[<a,l,h> |

if l=h

then <NEWARRAY,ZERO, ZERO>

else <ASSIGN(a,SUCC(h),xl),SUCC(1),SUCC(h)>]

I nduc t i on h y po t he s i s

Induction step

Prove

8 (FRONTQ) (<ASSIGN(a, SUCC(h),x),l ,SUCC(h)>)

[<a, 1 ,h>|<ASSIGN(a ,SUCC(h),xl) , SUCC(l),SUCC(h)>l

- 0 (FRONTQ) (<ASSIGN (a , SUCC(h) ,x) ,l,SUCC(h)>)

[<a,l,h>|

if l*h

then <NEWARRAY, ZERO, ZERO

else <ASSIGN(a, SUCC(h),xl),SUCC(1),SUCC(h)>]

and -

9 (FRONTQ) (i f l=h

then <NEWARRAY,ZERO,ZER0> .

else <a,SUCC(l) ,h)>)

[<a, 1 ,h>|<ASSIGN(a, SUCC(h),xl) , SUCC(l) ,SUCC(h)>]

- 9 (FRONTQ)(if 1-h

then <NEWARRAY, ZERO, ZERO

else <a,SUCC(1) ,h>) '

[<a, 1 ,h> |

if l=h

then <NEWARRAY, ZERO, ZERO

• else <ASSIGN(a,SUCC(h),xl),SUCC(1),SUCC(h)>]

LHS * 9 (FRONTQ) (<ASSIGN(ASSIGN(a, SUCC(h) ,xl) ,

SUCC(SUCC(h)) ,

x r ,

SUCC(l),

SUCC(SUCC(h))>)

= if SUCC(l) = SUCC(SUCC(h))

then UNDEFINED

— (A2-1)

— (A2-2)

31

else DATA(ASSIGN(ASSIGN(a,SUCC(h),xl),

. SUCC(SUCC(h)) ,

x) ,

SUCC(SUCC(1)))

- if SUCC(SUCC(1)) = SUCC(SUCC(h))

then x

else if SUCC(h) = SUCC(SUCC(1))

then xl

else DATA(a, SUCC(SUCC(1)))

(using the invariant 1 <_ h)

RHS = if (l=h)

then ©(FRONTQ) (<ASSIGN(NEWARRAY,SUCC(ZERO),x),

ZERO,SUCC(ZERO)>)

else ©(FRONTQ) (<ASSIGN(ASSIGN(a, SUCC(h),xl) ,

SUCC(SUCC(h),x) ,

SUCC(l), SUCC(SUCC(h))>)

=if (1 -h)

then if ZERO=SUCC(ZERO)

then UNDEFINED

else (DATA(ASSIGN(NEWARRAY,SUCC(ZERO),X),

SUCC(ZERO)) '

else if SUCC(l) = SUCC(SUCC(h))

then UNDEFINED

else DATA (ASSIGN (ASSIGN (-a, SUCC(h) ,xl) ,,

SUCC(SUCC(h)) ,x) , '

SUCC(SUCC(1)))

Using the fact that ZERO is not equal to SUCC(ZERO), the definition of

DATA, and 1 £ h => SUCC(i) 4 SUCC(SUCC(h)) , we get

RHS '

= if l=h

then x

else DATA(ASSIGN(ASSIGN(a, SU C C (h) ,x l) , SUCC(SUCC(h)>,x) ,

SUCC(SUCCd)))

= if l=h then x

else if l=h then x

else if SUCC(h) * SUCC(SUCC(1)) then xl . .

else DATA(a, SUCC(SUCC(1)))

= if l=h then x

else if SUCC(h) = SUCC(SUCC(1)) .

then xl

else DATA(a, SUCC(SUCC(1)))

Thus LHS = RHS. -

This completes the proof of (A2-1). The proof of (A2-2) can be carried

through similarly. -

Proof of (FI) : FRONTQ(NEWQ) = 0 (FRONTQ(NEWQ))

LHS = FRONTQ(NEWQ) = UNDEFINED.

32

RHS - DATA(NEWARRAY, SUCC(ZERO)) - UNDEFINED -RHS

Proof of (F2) FRONTQ(ADDQ ((q , x)) - 9 (FRONTQ(ADDQ(q ,x)))

LHS - FRONTQ(ADDQ(q,x)) = if ISEMPTYQ(q)

then x

else FRONTQ(q).

RHS - 9 (FRONTQ(ADDQ(q,x)))

= 9 (FRONTQ)(<ASSIGN(a, SUCC(h),x),l ,SUCC(h)>)

- if l-SUCC(h) then UNDEFINED

else DATA(ASSIGN(a,SUCC(h),x),SUCC(1))) .

This proof needs a case analysis. The two cases on the LHS are

ISEMPTYQ(q) : x; — (F2-L1)

not ISEMPTYQ(q) : FRONTQ(q) — (F2-L2)

On the RHS, there are again two cases

l-SUCC(h) : UNDEFINED; — (F2-R1)
not i=SUCC(h) : DATA(ASSIGN(a, SUCC(h),x) , SUCC(1))) ; — (F2-R2)

In order to complete the proof, we can assume the following as induction

hypotheses:

FRONTQ(q) = 9 (FRONTQ(q)) - DATA(a, SUCC(1))

ISEMPTYQ(NEWQ) = 9 (ISEMPTYQ(NEWQ)) = TRUE -

ISEMPTYQ(q) = 9 (ISEMPTYQ(q)) - (1-h) .

By definition of 9(ISEMPTYQ(q)) , and the induction hypothesis,

LHS of (F2-L1) * ISEMPTYQ(q) -> (1-h) => not (l-SUCC(h)),

hence the second case (F2-R2) on the RHS applies. -

Further, (1-h) -> DATA(ASSIGN(a, SU C C(h) ,x) , SUCC(1)) - x; -

Thus ,

ISEMPTYQ(q) => FRONTQ(ADDQ(s , x)) - x, and --(1)

ISEMPTYQ(q) -> not (l-SUCC(h)) 4 . (1-h)

-> 9 (FRONTQ(ADDQ(q,x))) - x — (2)

Again, not ISEMPTYQ(q) -> not (1-h), and

not ISEMPTYQ(q) => FRONTQ(ADDQ(q ,x)) - FRONTQ(q)

By the induction hypothesis,

FRONTQ(q) - 9 (FRONTQ(q)) - DATA(a,SUCC(1)) . --(3)

If we use the fact that 1 < h is an invariant in the derived alg..ebra (see

33

beiow), the it can never be the case that 1 ■ SUCC(h) . Hence, we have

(1 4 SUCC(h)) & (1 4 h) =>

RHS of (F2-R2) - DATA(ASSIGN(a, SUC C(h) ,x) , SUCC(1)

= if SUCC(h) = SUCC(l)

then x

else DATA(a,SUCC(1))

= DATA(a, SUCC(1)) . — (4)

The proof of (F2) Follows by virtue of (1) and (3) and (4) .

Proof of the invariance of _1 <_ h^

The proof is by induction on the structure of the terms of the derived

algebra. ‘

Base case The base constructors form the set of terms in

 ̂Queue
[pQueue ^ ^ The

invariant must be verified for each base constructor

(there is only one). We have

8 (NEWQ) = <NEWARRAY, ZERO, Z E R O .

1 « ZERO <_ ZERO - h.

Induction step If 9(q) - <a,l,h> then assume as the induction hypothesis 1

<_ h, if q is in , and is obtained by applying a constructor function to

terms in [FQueue, V] . " .

0 (ADDQ(q,x)) = <ASSIGN(a,SUCC(h) ,x) ,1 , SUCC(h)>

1 1 h => 1 1 SUCC(h)

9(DELETEQ(q)) = if l=h '

. then <a,ZER0, ZERO> -

else <a, SUCC(1) ,h>

1 <_ h & l=h «> ZERO <_ ZERO

1 <_ h & not l=h => 1 < h *> SUCC(l) £ h

Tnus, in both cases, the condition (1 <_ h) is preserved,

concluding the proof. „ '

Proof of (I I)

ISEMPTYQ(NEWQ) - 8 (ISEMPTYQ(NEWQ)) --(II)

LHS = true.

RHS = (ZERO * ZERO) “ true. ‘ *

Proof of (12) ‘

ISEMPTYQ(ADDQ(q,x)) = 8 (ISEMPTYQ(ADDQ(q ,x))) — (12)

LHS ■ false.

RHS = 8 (ISEMPTYQ)(<ASSIGN(a,SUCC(h),x),1 , SUCC(h)>) ’ ’ »

34

= (i = SUCC(h))

*.fai se
(Using the fact that (1 < h))

35

[1] 'O . J . D a h i , E .W .D ijkstra , C.A.R .Hoare.

Structured Programming.

Academic Press, New York, 1972.

[2] L .Flon , J .Misra.

A Unified Approach to the Specification and Verification of Abstract

Data Types.

In Proceedings of £ Conference on Specifications of Reliable Software,

pages 162-169. IEEE Computer Society, April, 1979.

[3] R.W.Floyd.

Assigning Meanings to Programs.

In J .T .Schwartz, editor, Proceedings of a Symposium in Applied

Mathematics, Vol. 19, pages 19-32. American Mathematical Society,

1967.

[4] J.Goguen, J.Thatcher, E.Wagner.

An In it ia l Algebra Approach to the Specification, Correctness, and

Implementation of Abstract Data Types.

Prentice-Hall, N .J , 1979, pages 30-149.

[5] J.Guttag, E.Horowitz, D.Musser.

Abstract Data Types and Software Validation.

CACM 21:1048-64, 1978.

[6] C .A .R .Hoare.

An axiomatic Basis for Computer Programming.

Communications of the ACM 12(10):576-580, 583 , October, 1969.

[7] C .A .R .Hoare.

Proof of Correctness of Data Representations.

Acta Inforrnatica 1:271-281, 1972.

[8] 5 .H .L iskov , A.Snyder, R.Atkinson, C .Schaffert.

Abstraction mechanisms in CLU.

Technical Report Computation Structures Group Memo 144-1, MIT-LCS, Jan,

1 977-. •

[9] D.C.Luckham et a l .

Stanford Pascal Verifier User Manual, Edition _1_.

Technical Report, Stanford University, April, 1979.

[1 0] P .A.Subrahmanyam.

Towards Automatic Program Synthesis: Obtaining Implementations from

Formal Specifications.

Technical Report, State University of New York at Stony Brook, October,

1977.

[11] P.A.Subrahmanyam.

Perspectives on the use of Abstract Data Types in Programming

Methodology.

November 1978, Unpublished Memo, Dept, of Computer Science, SUNY at

Stony Brook.

[1 2] P . A.Subrahmanyam. ,

Towards a_ Theory of Program Synthesis: Automating Implementations of

REFERENCES

Abstract Data Types.

PhD thesis, Department of Computer Science, State University of New York

at Stony Brook, August, 1979.

36

[13] J.Thatcher,E.Wagner, J .W right.

Data Type Specifications: Parameterization and the Power of

Specification Techniques.

In Proceedings, Tenth SIGACT Symp. , pages 119-132. ACM.SIGACT, April

1978, 1978.

[14] W .A .Wulf, R.L.London, M.Shaw.

Abstraction and Verification in ALPHARD.

Technical Report, CMU, IS I , August, 1976.

[15] W .A .Wulf, R.L.London, M.Shaw.

An Introduction to the construction and verification of Alphard

Programs.

IEEE Transactions on Software Engineering SE-2(4):253-265, December,

’ " 1976. '

