
Supporting Persistent C++ Objects in a Distributed Storage System
Anand Ranganathan, Yury Izrailevsky, Sai Susarla, John Carter, and Gary Lindstrom

Department o f Computer Science, University o f Utah

Abstract

We have designed and implemented a C++ object layer for Khazana, a distributed persistent storage system that exports a
flat shared address space as its basic abstraction. The C++ layer described herein lets programmers use familiar C++ idioms
to allocate, manipulate, and deallocate persistent shared data structures. It handles the tedious details involved in accessing
this shared data, replicating it, maintaining consistency, converting data representations between persistent and in-memory
representations, associating type information including methods with objects, etc. To support the C++ object layer on top
of Khazana’s flat storage abstraction, we have developed a language-specific preprocessor that generates support code to
manage the user-specified persistent C++ structures. We describe the design of the C++ object layer and the compiler and
runtime mechanisms needed to support it.

1 Introduction
The goal o f our research is to develop language, compiler, and runtime mechanisms that make it easy for programmers to
develop complex distributed systems. The primary abstraction that we propose using is shared persistent data. Over the
past two years, we have gained experience with Khazana, a distributed persistent storage system that exports a flat shared
address space as its basic abstraction [2, 17]. While Khazana’s flat shared storage abstraction works well for some services
(e.g., file systems and directory services), it is a poor match for applications that use “ reference-rich” data structures or
legacy applications written in object-oriented languages. We believe that programmers should be able to write programs
in their preferred programming language (e.g., C, C++, or Java) and be provided with mechanisms that make it easy to
store objects persistently and share objects between different programs or different instances o f the same program. We
use the term “ object” here in the generic sense, rather than any specific language’s notion o f an object. For example, a C
programmer may wish to manipulate arbitrary C data structures, which are not “objects” in the OO sense. Towards this
goal, we have designed and implemented the Khazana Object Layer (K O LA), which provides an object abstraction on top
o f Khazana’s page-based shared address abstraction. In this paper, we describe the design o f a K O LA C++ object layer and
the compiler and runtime mechanisms that support it.

Our goals for the object layer include:

• object-based consistency at arbitrary granularity rather than fixed pages;

• memory management on a persistent heap, including transparent retrieval, caching, and update o f persistent objects;

• object-grained synchronization (locking and unlocking);

• automatic object loading on access; and

• object polymorphism and run-time type checking.

K O LA consists o f two parts, a language-independent layer and a C ++ language-specific layer, as illustrated in Fig
ure 1. The language-independent layer supports basic operations to manipulate arbitrary-sized (not just page-sized) data
objects. These operations include mechanisms to allocate/free persistent objects, retrieve objects into virtual memory in a
synchronized way, store them persistently, convert persistent references from/to in-memory virtual addresses, and manage
an in-memory cache o f objects.

By placing the language-independent object manipulation routines in a separate layer, it should be fairly easy to provide
support for other object-oriented languages, such as Java. Specifically, the language-independent layer does not address
such vital issues as dynamic type identification and checking, object access detection and loading, class inheritance, or
transparent concurrency control (via locking). Instead, these issues are handled by each language-specific layer. Our
requirements for a language-specific layer include:

email: {a n a n d , i z r a i l e v , s a i , r e t r a c , g a r y }@ c s .u t a h . e d u

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

KOLA Language
Specific Layer

KOLA Language
Independent Layer

Khazana Client
Library

C++
Apps

C++
Layer J

Simple
Object Apps

(x f i g)

f e t c h / r e le a s e (o id)
lo c k / u n lo c k (o id)

m a l lo c / fr e e ()
_______ s w i z z l e ()_______

Page Based
Apps

(KFS, KNS)

fe tc h / r e le a s e (p a g e)

lo c k / u n lo ck (p a g e)

Figure 1: Layered Design o f the Khazana Object LAyer (K O LA)

• support for fetching and releasing objects from/to the persistent distributed store;

• the ability to convert an object from its flat form in the persistent store into an in-memory form with references, virtual
function tables, etc., and

• support for remote method invocation (RM I) facilities.

We report herein our experience implementing one such layer for C++.
At the core o f our current C++ version o f K O LA is a language-specific preprocessor. This preprocessor parses con

ventional class declarations and augments them with overloaded new and d e l e t e operators, special constructors, and
synchronization methods. Objects created from these augmented classes can then be stored and retrieved transparently
to/from Khazana’s shared storage facility. Unlike some previous efforts to develop persistent C++ systems [16,13], we took
great pains not to force programmers to describe their persistent objects using a special data definition language (DDL);
instead, we chose to use C++ itself as our DDL. However, the current C++ object layer implementation does not support
RMI, and we may be forced to add several keywords to the DDL as part o f that effort.

The outline o f the rest o f the paper is as follows. Section 2 gives a more thorough description o f the C++ language-
specific layer o f KOLA, concentrating on the compiler support utilized by the layer. A qualitative discussion o f K O LA in
the context o f related work is presented in Section 3. We conclude in Section 4.

2 The C++ Language-Specific Layer of KOLA

The primary motivation behind K O LA is to create a system that makes it efficient to manage persistent objects in distributed
applications. The idea is not new, and a number o f attempts to solve this problem in the past have resulted in implementations
that often require the use o f a special programming language as the Data Definition Language (D D L) for defining persistent
classes. This approach, favored by Shore [1] and COOL [9], requires a significant effort on the part o f the user to learn the
DDL, apply it consistently, and coordinate its compilation and execution with other program modules written in standard
programming languages like C++. Needless to say, porting existing applications on top o f such systems can be very tedious.

We have adopted a different approach, also used in Objectstore [8] and Goofie [10], that allows the use o f a standard
programming language as the DDL. We then utilize a special-purpose preprocessor that parses through the class declarations
and converts them into a persistable format. Various language-specific layers can be developed to provide bindings for
different object-oriented languages; currently we have implemented a binding for C++ only. Another essential feature
o f our implementation is compiler independence, since the declaration code and the supporting code generated by the
preprocessor are fully compliant with standard C++. The rest o f this section discusses how the C++ binding utilizes the
preprocessor and interfaces exposed by the language-independent layer to enable C++ programmers to write programs that
use familiar object-oriented idioms.

There are two sets o f requirements for a language-specific layer. The first set o f requirements ensure that a programmer
can continue to use familiar C++ idioms. To this end, we wanted a language-specific layer that:

• provided familiar hooks for a programmer to create and initialize objects in the shared Khazana space,

2

• supported familiar means o f access to objects stored in Khazana, in particular the ability to follow pointers and
references to objects in Khazana as i f they were really in local memory,

• provided a means for concurrency-control between objects,

• provided a means to implement Remote Method Invocation (RM I), and

• required few changes to with legacy code to work.

The second set pertains to the expectations concerning the language-independent layer. Essentially, this refers to that
component o f object-support that has been deferred by the language-independent layer to a higher layer for want o f complete
knowledge at the lower layers. This includes facilities to convert objects between their Khazana representation and their
in-memory representation (e.g., with vtbl pointers) and transmit locking information to the independent layer so that the
language-independent layer can lock the objects in the appropriate mode.

To meet these requirements, the language-specific layer must have access to the definitions o f the classes and objects that
it is expected to load. In addition, it must be able to insert hooks in these classes and objects so that it is able to provide
transparent access to the objects. In fact, in our design, the programmer is oblivious to whether the object with which they
are dealing is a local object or one obtained from the shared, distributed Khazana space.

To write a C++ program that uses KOLA, a programmer first declares the classes whose objects will be stored and
manipulated by Khazana. Running this header file through our C++ pre-processor produces a set o f header and C++ files
that are used to support these classes. In addition, the pre-processor adds several non-virtual methods to the classes that
have been declared. Some o f these functions will be transparent to the programmer. Some others, like the lo c k and
u n lo c k methods, are provided for programmers to insert in their code to implement concurrency control, when and where
appropriate. Our C++ language-specific layer is essentially the C++ preprocessor supplemented by the supporting class
methods and other code that it generates.

The set o f support files produced by the preprocessor extends a number o f object-oriented features o f C++ to the persistent
distributed environment o f Khazana. It supports automatic class loading, which is accomplished at compile time. Persistent
object creation and management is done transparently by utilizing special constructors, overloaded new and reimplemented
d e l e t e operators. The C++ layer appends a special type information tag to each instance o f an object stored in Khazana,
and uses it for object loading and dynamic type checking. Persistent references (Object IDs, or oids) are generally hidden
from the programmer and are swizzled and unswizzled automatically through the use o f smart pointers. Concurrency control
handlers are generated by the preprocessor for each class. Finally, the preprocessor will generate additional code to support
RM I in Khazana, which has been designed but is currently not supported. The rest o f this section discusses how the C++
layer provides the various features mentioned above. It also presents a more elaborate description o f the C++ preprocessor.

2.1 Class Loading

In our implementation, class usage detection and loading occurs at compile time. Instead o f storing the class metadata
(including the member and reference layout, method information, and class type and hierarchy information) as a separate
persistent schema object, classes are linked at compile time. The C++ pre-processor parses user-specified class declarations
and adds several methods that allow transparent object loading and synchronization. However, such changes do not alter the
class hierarchy, so the programmer does not see any semantic difference in the way that the classes behave. This approach
requires that the application retrieving an object has all class information linked into the application. There have been
solutions that load objects belonging to classes about which incomplete information is available [3], but we do not currently
provide any such mechanism.

I f class metadata were platform-independent, we could store class information in KOLA, and thus dynamically load the
class on demand. Indeed, this scheme will work for a Java binding, but it will not work for C++ due to the fact that the C++
classes have different formats on different platforms or when generated by different compilers.

2.2 Object Loading

The Khazana representation o f an object, currently, is the same as its in-memory representation. This is, however, only
an implementation choice o f convenience, and not one dictated by the design. Our design does allow for the Khazana
representation to be different from the in-memory representation.

3

obj_fetch(kh_addr, &obj);
(* re in it_ c a llb a c k)(o b j) ;

/ / C++ layer code
O bjectR e in it(vo id *mem)
{

//F in d type o f the object.
KhDummyClass _kh;
sw itch(type) {

case TYPE_CLASS_A:
obj = new (obj) ClassA(_kh); re tu rn ;

}
}

vo id* ClassA::operator new(size_t size, vo id *mem) { re tu rn mem; }

ClassA: : ClassA (KhDummyClassSc _kh) :
Componentl(_kh), Component2(_kh) { }

Figure 2: Example Use of Callback Mechanism

Objects are brought in from Khazana to virtual memory at the time of first access. Objects in Khazana are addressed by
a unique Object-ID (oid). Currently, an oid is the same as the 128 bit Khazana address where the object has been stored.
However, the language-independent layer may choose to bring in more objects than the one requested, e.g., to derive caching
benefits. A ll objects that are brought in to local memory must be reinitialized, which is done via a callback mechanism. The
language-specific layer registers a callback that is called any time a new object is mapped into local memory. This function
reinitializes the object (e.g., setting up vtbl pointers) so that it resembles an object of the same class that has been created
locally. Similarly, the C ++ layer provides a callback that is called every time an object is flushed to Khazana. This design
allows any conversion between the in-memory representation and the persistent (unswizzled) Khazana representation to

be made as lazily as possible. As an optimization, objects can be fetched and converted before they are referenced if the
programmer (or compiler) determines that access to a particular object is highly likely. Currently, we do not convert objects
to/from a canonical Khazana form, a design decision made to simplify the implementation.

2.2.1 Object Reinitialization

Every object in Khazana is identified by an object ID (O ID) and associated with a typeid. In our current design, typeids
are 32-bit integers allocated on a per-application basis by the pre-processor, which means that different applications using
the same class library may be unable to interoperate. Future versions of the C ++ layer will make typeids unique across the
entire Khazana space to eliminate this problem. The typeid is stored in Khazana at the time the object is created as part of
the object’s metadata, along with other supporting data as the object’s size.

When the language-independent layer invokes the callback function supplied by the C ++ layer, the callback function
checks the typeid to determine the type of the object and reinitializes it appropriately. This reinitialization is performed
using a new operator with placement syntax on the memory area occupied by the object, as shown in Figure 2. In this
example, o b j represents an object that has been fetched from Khazana. The language-independent layer invokes the
callback function for reinitialization o f the object that has been fetched from Khazana’s persistent store. The C ++ layer
callback function O b je c t R e in i t finds the type of the object and invokes a special version of new on that area of memory.
This invocation of new does nothing to the object’s data values, but it has the side effect of setting up compiler-dependent
pointers (e.g., the vtbl) in the object. It also calls a benign constructor on the object and all o f the embedded objects in this
object. Both the overloaded new operator and the special constructors are generated by the C ++ pre-processor.

// Language-independent layer code

4

extern __KhDummyClass __kh; //Declared in a standard place.
class Foo {

p u b lic :
/* Persistent new * /
vo id* operator new (s ize_t size, __KhDummyClass __kh) { . . . }
/ * Regular new * /
vo id* operator new (s ize_t size) (re tu rn : :new(size);}
vo id operator delete (void* lo ca l_ re f) {

i f (lo c a l_ re f is known) dea lloca te (lo c a l_ re f) ;
else : : delete lo c a l_ re f;

}

} ;

in t main() {
Foo *loca l_ foo = new Foo; //A llo c a te a regu lar Foo.
Ref<Foo> shared_foo = new (_kh) Foo; //A llo c a te a shared Foo.

delete loca l_ foo ;
delete shared_foo;

)

Figure 3: New and Delete Operators for Objects to be Stored in K O LA

2.3 Object Creation

Any program built on top of Khazana is likely to use persistent objects stored in the shared address space, as well as purely
local objects. However, doing all heap allocation in Khazana, even for temporary data structures, would have a prohibitive
performance overhead. Thus, the programmer is given the choice of designating certain object references as instances of
persistent Khazana objects, while others can be instantiated and treated as traditional C ++ objects residing exclusively in
the local virtual memory of the application, and only for the application’s lifetime.

To do this, a programmer needs some means of distinguishing between local instantiations and “shared instantiations,”
preferably with as few changes to the code as possible. In our design, persistence is designated by declaration (i.e., fixed at
object creation time). We achieve this by overloading the new operator to handle instantiations in Khazana space. These
operators are added to the class by the C ++ pre-processor. C ++ does not permit overloading o f the d e l e t e operator, but
we can implement it to discriminate between local instantiations and shared ones and act appropriately. Figure 3 gives an
example of a class that has been declared for storage in K O LA and has been processed by the C ++ preprocessor.

2.4 Pointer Swizzling

Each object in K O LA is addressed by a unique oid. Objects might hold references to other objects via their oids. The C ++
layer is responsible for transparently converting oids into virtual memory pointers, which it achieves using smart pointers.

We implement smart pointers using a template class, called Ref<T>, where T is the type of the object to which the
reference points. Smart pointers have been discussed previously, so we will not go into the details of the implementation

here [4]. The overloaded dereference operators enable us to trap object access and thereby transparently convert the oid into
a local memory reference. This may involve fetching and reinitializing the object.

While smart pointers ensure that programmers can use pointers to K O LA objects just as they would use pointers to regular
objects, there is some performance overhead. In particular, every pointer access involves a table lookup. Programmers can
alleviate this problem by caching the pointer to the local copy of the object, rather than always accessing the object’s
contents via its persistent reference (smart pointer). While an object is locked, it is guaranteed not to move in local memory,
so during this time the pointer value may be cached and a per-access table lookup can be avoided.

5

2.5 Support for Remote Method Invocation

The basic programming abstraction of Khazana/KOLA is that of shared data/objects. The “natural” way for different
instances of a program (or different programs) to manipulate a shared object is to lock it, which has the side effect of
retrieving the most up to date version o f the object’s contents, access it locally, and then unlock, which has the side effect
of making the local modifications visible to other applications accessing the object. There are, however, instances where a
programmer might prefer to access an object wherever it currently resides, e.g., because the object is large and moving it
is inefficient or because there are security concerns that restrict an object’s ability to move. For such instances, K O LA is
designed to allow programmers to specify that a particular object’s methods should be invoked remotely, so-called remote
method invocation (RM I). Note that RM I is not currently implemented, so this section reports on our RM I design only.

K O LA builds on the underlying Khazana coherence management hooks to implement RMI. In particular, we extended
Khazana’s notion o f coherence to include a coherence policy whereby nodes could send “update” messages to remote nodes
with copies of a particular object. These messages are propagated to the “coherence manager” registered for a particular
object. To implement RMI, K O LA passes a marshaled version of the method parameters to one or more remote coherence
managers for the object, which interpret these “update” messages as RM I invocations. The result o f the method invocation is
return to the invoking application via a similar mechanism. A description of Khazana’s coherence management mechanisms
sufficient to explain adequately the nuances o f how the RM I mechanism works is beyond the scope of this paper, but is
described elsewhere [17]. However, our C ++ preprocessor does play a role in our RM I implementation. Specifically, for
each class that has been annotated to be “immobile,” the preprocessor generates two classes: “stubs” and “real classes,”
similar to a normal RPC stub generator. Which sets o f routines (stub or real classes) gets linked to an application depends
on whether or not it indicated that the objects were immobile (stubs) or normal (real classes).

2.6 The C++ Pre-Processor

The C++ preprocessor is the centerpiece of the language-specific layer. While it was clear that a D D L was required for
defining persistent classes, we chose C ++ as our D D L for two reasons. First, we wanted to be able to convert legacy

applications to persistent distributed versions of those applications with little source code change, and without having to
reverse-engineer D D L declarations from the existing source. Second, we wanted programmers to have the convenience of
expressing themselves in the language that they were going to program in rather than a new DDL. The C++ preprocessor
parses class declarations and augments them with an overloaded new operator and a new d e l e t e operation, the special
constructors, and synchronization methods, as described above.

To implement the preprocessor, we used a modified version of Jim Roskind’s C ++ acceptor [14]. Given regular C++
class declarations (usually in a header file), the preprocessor generates a new set o f declarations that are compatible with
KOLA, and may be used by the programmer for further application development. A set of routines containing internal
swizzling and type-identification and checking routines are also generated by the preprocessor based on the class hierarchy
specified by the programmer.

We are able to process most standard C ++ declarations, with a few exceptions such as anonymous classes/structs/unions.
Also, our implementation is unable to deal with classes that have static data members. This is due to what we consider to

be the unclean semantics of C ++ static data members that does not lend itself to persistence. However, we do not believe
this is a significant problem, because programmers can create static data members by creating objects of singleton classes.
In addition, our in-memory representation o f object is the same as the persistent one in our current implementation, which
means that all applications that wish to access a particular object in Khazana should use compilers that agree on object
layout. This limitation arises due to the absence of an object layout standard for different C ++ compilers. K O LA does
not impose any specific object layout. However, we could work around this layout limitation in future versions of the C++
layer by storing type descriptor objects in K O LA instead of simply a typeid. Finally, although we attempt to minimize the
amount of source code that needs to be modified in legacy applications, we require that declarations for references to shared
or persistent objects be converted to smart pointers, which can be tedious in large legacy codes.

3 Related Work

There is a long history o f support for object-oriented languages built upon persistent storage platforms. This work can be
divided into essentially three categories: (i) object oriented database systems, (ii) generic persistent stores, and (iii) dis

6

tributed object systems. Since generic persistent stores are currently o f little interest in large scale application development,
albeit making somewhat of a comeback in the Java world, we will focus on the first and last category of related work. We
focus on several typical examples of each category of related work, rather than attempting a comprehensive survey.

The ObjectStore OODBM S by ObjectDesign, Inc. is our representative object-oriented database [8]. Since it is a true
DBM S, it has functionality outside the design goals of Khazana, such as recovery and features deriving from logging (e.g.,
versioning and multi-valued concurrency control). In areas where direct comparison is appropriate, Khazana shares many
of ObjectStore architectural features, such as coherent client caching and gathering of class (“schema”) information by
preprocessing. Like Khazana, ObjectStore makes extensive use of C ++ extensibility features, such as smart pointers for
address space expansion and dereferencing of inter-segment pointers. Like Khazana, ObjectStore presumes a closed world
where all persistent object classes must be known at compile time. Persistent references are stored in virtual memory
(32-bit) format, with segment-based relocation tables to support swizzling.

The Esprit Project’s PerDiS system is an excellent comparison with Khazana in the distributed object arena [5]. Unlike
Khazana and ObjectStore, PerDiS obtains type information by compiler modification (gcc). Unlike both, persistence in
PerDiS is by reachability rather than declaration — a requirement with profound design and implementation consequences,
including distributed garbage collection. The latter is achieved by means of the Stub/Scion Pair technique developed by
the Projet SOR at INRIA , which logs exported references as roots for local GC, and supports a distributed GC algorithm
for deleting these roots when safe. PerDiS provides two concurrency control modes: explicit locking and locking by
touch (the “compatibility interface”), and anticipates customizable concurrency control modes. PerDis provides precise
type information with every reference - an obvious requirement for safe and thorough GC. Both pessimistic and optimistic
concurrency control are provided.

Distributed object systems (e.g., Clouds [12], Emerald[7], Monads [6], and CORBA [11]) provide uniform location-
transparent naming and access to heterogeneous networked objects. In these systems, services can export a well-typed set
of object interfaces to clients, which can invoke operations on service objects by binding to a particular instance of a service
interface and invoking said service. The addition o f object brokers, such as are present in CORBA [11], provided a degree of
location transparency, and the addition o f an object veneer made it easier for servers to change their internal implementation
without impacting their clients. However, these systems proved to be effective primarily when used to support the same
type and granularity of services previously supported by ad hoc client-server systems: large servers exporting coarse grained
operations on large datasets (e.g., mail daemons and file servers). These are too heavyweight for fine- to medium-grained
language objects.

CO O L [9] provides support for medium- to coarse-grained objects with a similar layering to that of K O LA namely
generic and language-specific runtimes. In COOL, the generic run-time obtains object layout information from the language
runtime through an upcall mechanism. Also it eagerly swizzles all embedded references inside the object at loading time.
In contrast, KOLA’s language-independent layer provides swizzling routines and lets the language-specific layer choose
lazy vs eager swizzling. Our current C ++ implementation does lazy swizzling using smart pointers and does not need to
locate embedded references at initialization time. In COOL, all method invocations on an object, including local references
go through its interface object, which may be costly for fine-grained objects. Lastly, CO O L object loading/unloading
mechanism is closely tied to Chorus virtual memory mechanisms, while we tried to avoid making K O LA rely on virtual
memory mechanisms for portability reasons.

Texas [16] provides persistence to C ++ objects by explicit request. It extracts objects’ type information (such as location
of embedded references, including vtable pointers) from the compiler-generated debugging information in the application’s
executable code. They use this information to perform object-reinitialization (setting up vtable pointers) and other pointer
swizzling. In contrast, we use a special constructor for object-reinitialization at loading time and language-level smart
pointers instead o f virtual memory techniques for pointer swizzling.

4 Conclusions

As has been demonstrated in this paper, special purpose compilers can be successful in supporting persistent and shareable
objects in distributed shared storage environments. We have described the design and implementation of a C ++ preprocessor
used by the C ++ object layer of Khazana, a distributed persistent storage system that exports a flat shared address space
as its basic abstraction. The object layer handles the tedious details required to manipulate non-page-grained data objects
on top of Khazana, as well as language-specific issues such as initializing vtbl entries when objects are fetched from
the persistent store or from across the network. With this support and the underlying Khazana distributed shared storage

7

facilities, programmers are able to program using their preferred language abstractions while at the same time being relieved
from many o f the most difficult tasks associated with programming distributed systems.

At the core of our current C ++ version o f K O LA is a language-specific preprocessor that parses conventional C ++ class
declarations and augments them with overloaded new and d e l e t e operators, special constructors, and synchronization
methods. The preprocessor also generates support routines that implement transparent pointer and object swizzling and
unswizzling, class loading, and type checking. Objects created from these augmented classes can then be stored and re
trieved transparently to/from Khazana’s shared storage facility, and will soon be able to be invoked remotely using built-in
RM I facilities. We believe this combination o f an easy-to-use preprocessor that uses C ++ itself as the data description
language and a distributed persistent storage facility that handles distribution, replication, and security issues gives pro
grammers a powerful tool with which to develop applications.

Work is continuing on several fronts. As mentioned above, RM I is not yet supported, and may require us to augment
the preprocessor’s D D L with additional keywords. We are implementing several C ++ applications, in particular an IM AP
server, a version o f Mozilla (the public Netscape browser) in which client HTTP caches are shared, and a groupware ver
sion o f x f i g . We are also making improvements to the underlying Khazana infrastructure with an eye towards improving
performance (e.g., we recently added support for “update” messages in Khazana’s coherence module, which we plan to
leverage to implement RMI). Finally, adding support for other object-oriented languages has the potential o f greatly in
creasing the range of applications that can take advantage o f Khazana’s distributed persistent capabilities, and thus we are
in the process of designing a Java layer for KOLA.

References
[1] M. Carey, D. Dewitt, D. Naughton, J. Solomon, et al. Shoring up persistent applications. In Proceedings, o f the 1994 ACM SIGMOD

Conf, May 1994.

[2] J. Carter, A. Ranganathan, and S. Susarla. Khazana: An infrastructure for building distributed services. In Proceedings of The
Eighteenth International Conference on Distributed Computing Systems, pages 562-571, May 1998.

[3] C. F. Clark. The Dynamic Expansion of Class Hierarchy. PhD thesis, University of Utah, 1995.

[4] M. Ellis and B. Stroustrop. The Annotated C++ Reference Manual. Addison Wesley, 1990.

[5] P. F. et al. PerDis: Design, implementation, and use of a PERsistent Distributed Store. Technical Report RR 3525, INRIA, Oct.
1998.

[6] D. Henskens, P. Brossler, J. Keedy, and J. Rosenberg. Coarse and fine grain objects in a distributed persistent store. In International
Workshop on Object-Oriented Operating Systems, pages 116-1123, 1993.

[7] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility in the Emerald system. ACM Transactions on Computer
Systems, 6(1):109-133, Feb. 1988.

[8] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore database system. Communications o f the ACM, 34(10):50-63,
Oct. 1991.

[9] R. Lea, C. Jacquemot, and E. Pillevesse. COOL: system support for distributed object-oriented programming. Technical Report
CS-TR-93-68, Chorus Systfemes, 1993.

[10] R. Mecklenburg, C. Clark, G. Lindstrom, and B. Yih. A dossier driven persistent objects facility. In Userux C++ Conference
Proceedings, Apr. 1994.

[11] Object Management Group. The Common Object Request Broker: Architecture and Specification, 1996.

[12] P. Dasgupta et al. Distributed programming with objects and threads in the Clouds system. Computing Systems Journal, 3(4), 1991.

[13] T. Printexis, M. Atkinson, L. Daynes, S. Spence, and P. Bailey. The design of a new persistent object store for PJama. In International
Workshop on Persistence for Java, Aug. 1997.

[14] J. Roskind. A YACC-able C++grammar and the resulting ambiguities, http://www.empathy.com/pccts/roskind.tar.gz, Aug. 1991.

[15] M. Shapiro, P. Gautron, and L. Mosseri. Persistence and migration for C++ objects. In Proceedings of the European Conference on
Object-Oriented Programming, July 1989.

[16] K. Singhal, S. Kakkad, and P. Wilson. Texas: An efficient, portable persistent store. In Proceedings of the Fifth International
Workshop on Persistent Object Systems Design, Implementation, and Use, pages 13-28, Sept. 1992.

[17] S. Susarla, A. Ranganathan, and J. Carter. Experience using a globally shared state abstraction to support distributed applications.
Technical Report UU-CS-98-016, University of Utah, Department of Computer Science, Aug. 1998.

8

http://www.empathy.com/pccts/roskind.tar.gz

