
Timing Constraints for High Speed
Counterflow-Clocked Pipelining

Jae-tack Yoo, Ganesh Gopalakrishnan and Kent F. Smith

U U C S - 9 5 - 0 1 9 '

Department of Computer Science
MEB 3190, University of Utah

Salt Lake City, UT. 84112

October 30, 1995

A b s tr a c t

With the escalation of clock frequencies and the increasing ratio of wire- to gate-delays, clock skew
is a major problem, to be overcome in tomorrow’s high-speed VLSI chips. Also, with an increasing
number of stages switching simultaneously comes the pi'oblem of higher peak power consumption.
In our past work, we have proposed a novel scheme called Counterflow- Clocked(C2) Pipelining to
combat these problem, and discussed methods for composing C 2 pipelined stages. In this paper,
we analyze, in great detail, the timing constraints to be obeyed in designing basic C 2 pipelined
stages as well as in composing C 2 pipelined stages. C 2 pipelining is well suited for systems that
exhibit mostly uni-directional data flows as well as possess mostly nearest-neighbor connections.
We illustrate C 2 pipelining on such a design with several design examples. C 2 pipelining eases the
distribution of high speed clocks, shortens the clock period by eliminating global clock signals, allows
natural, use of level-sensitive dynamic latches, and generates less internal switching noise due to
the unifoi'mly distributed latch operation. By applying C 2 pipelining and its composition methods
to build a system, VLSI designers can substitute the global clock skew problem with many local
one-sided delay constraints.

1

With the escalation of clock frequencies and the increasing ratio of wire- to gate-delays, clock
skew is a major problem to be overcome in today’s high-speed VLSI chips, (-lock skew should
ideally be less than 5-10% of the system clock cycle time [1]; this is a difficult figure to attain in
many modern chips [2] and will become more so with the impending GHz rate of clocking [3]. The
effect of shrinking VLSI feature sizes will increase this disparity [4] in the future, especially in the
light of the fact that in submicron CMOS, interconnection delays are going to be larger than gate-
propagation delays [5]. Consequently, an increased percentage of the clock period will be devoted
to clock skew margins [6, 7]. The faster the clock and the bigger the die size, the worse the clock
skew effects will be.

A major concern when building high performance VLSI systems is to build an effective clock
distribution network. Many clock distribution methods for large high-speed VLSI chips have been
developed [1] to achieve rigid synchronization (tight skew control) over the chip. Clock distribution
networks of high-speed systems are normally comprised of binary trees of clock buffers [2, 8], which
are expensive to produce in terms of area and design time. Network implementations such as
H-tree methods [7] have been commonly exploited to reduce the clock skew. The effort to limit
skews has an unfortunate side-effect: it causes the latches to switch almost simultaneously, causing
ground-bounce and power-supply-droop, both of which can lead to chip malfunction. This often
necessitates on-chip and off-chip decoupling capacitors [1], both of which add to the design cost.

Rigidly clocked synchronous systems are often those that support a variety of data movements
between their computational blocks. These systems have embedded bus structures that permit
communication between physically distant modules. In these cases, the assumption that all the
modules are rigidly synchronized to a global clock makes design easier, and hence is almost always
made. However, for systems that have a VLSI realization with mostly uni-directional data flows
as well, as possessing mostly nearest-neighbor connections, the assumption of rigidly synchronized
clocking is not necessary, and can result in lost performance when enforced. Examples of such
chips are digital signal processing (DSP) chips, floating point units (FPU), graphics engines, asyn
chronous transfer mode (ATM) switches, etc. As we will show, higher performance and simpler
clock distribution will result in these systems if we stick to local clocking constraints, much the
same way the data dependencies in these systems are local. This is the main idea behind clock
distribution in C 2 pipelined realizations.

Another major concern when building high performance VLSI systems is to employ high per
formance pipelined structures in conjunction with high speed clocks. Pipelining is a technique for
reducing the clock period as well as increasing the amount of parallel circuit activity by splitting
deep logic structures into shallower structures that are. separated by pipelined latches. Although
design methods for conventionally pipelined systems are well known [9], serious problems due to
rigid clock synchronization may arise in very high speed pipelined designs. Strictly speaking, how
ever, pipelining and clocking are orthogonal concepts. One can build asynchronous pipelines known
as micropipelines [10] that do not employ clocks. However, the time penalty paid for generating
the completion signals, as well as for handshaking [11] has prevented micropipelines from finding
widespread use in high-performance VLSI systems. One can also implement wavepipelining [12]
where the “latches” can be realized by the inherent combinational delays of logic structures. De
spite their inherent performance advantages, wavepipelined systems require considerably more de
sign effort to balance combinational delays, and consequently have received only limited usage. C 2
pipelining is asynchronous design scheme that (as pointed out before) comes with clock-distribution
methods as well as pipeline design- and composition-methods.

I. I n t r o d u c t i o n t o a h ig h s p e e d s y s t e m

2

A feature of C 2 pipelining is that the clock signals travel opposite to the direction of data
movement. Back-propagating clock signals have been considered previously [2, 13], but never
widely used in actual circuits. These previous back-propagating circuits were rigidly clocked, and
hence offered no real advantages over H-tree distributed clocks; in fact, they actually increased
the clock period. Another clocking method is buffered clocking, mentioned in El-Amawy [14], and
originally described as pipelined clocking by Fisher et al. [7] (who does not assign any particular
direction to pipelined clocks). This method also suffers from an increased clock period.

In C 2 pipelined systems, every pipeline stage employs clock buffers, as shown in Figure 1 (a),
detailed explanation of which will be given in succeeding sections. These inverter buffers not only
deliberately skew the clock (the exact one-sided constraints will be presented later) but also restore
the clock-edge. This scheme achieves temporally distributed clocking. Clock amplification is also
carried out in a distributed fashion. Conventional two-pha.se clocked pipelining is also illustrated in
the figure for comparisons. The C 2 pipelining idea was first introduced in [15] where we presented
many actual uses in the context of a subband vector quantizer (SB/VQ) chip. In this paper, we
will focus on analyzing the timing constraints of C 2 pipelining. In Section V we will review the
results of a C 2 pipelining network for the SB filtering chip.

Another feature of C 2 pipelined systems is that it enables one to use simple and efficient dynamic
latches, which offer extremely low latch delays and areas, and avoids special latch designs [1, 2]. The
C 2 pipelining method also staggers the switching activities of the latches, thus reducing the peak
power consumption. This, in turn, reduces internal switching noise and also simplifies power-line
routing, making it ea-sier to distribute high speed clocks.

(a) Circuit C2 (b) Circuit Conventional

Figure 1: Circuit C2 and circuit Conventional

The pipeline interconnection methods to be described actually make the idea of C 2 pipelining
more useful than pipelines with only nearest neighbor connections. In [15], we introduced such
methods for 1) data forwarding, in which data skips a few pipeline stages in the direction of the
dataflow, 2) data backwarding, in which data skips a few pipeline stages backwards (commonly
used for iterative computations), 3) sequential connection of different pipelines, 4) pipeline fork
and join methods to combine pipeline functionality in parallel, and 5) synchronization methods to
synchronize incoming data and outgoing data to a clock signal. Timing constraints involved in
these methods will also be discussed in detail in this paper in Section III.

In Section II, basic C 2 pipelining architectures are described and analyzed. Basic composition
methods of data forwarding and data backwarding are analyzed in Section 111. Section IV shows
extended composition methods of sequential connection, pipeline fork and join and synchronization.
These methods are explained using the analysis results shown in Section III. Section V gives a
practical assessment of C 2 pipelining with a design and layout example. Conclusions are given in
the final section.

3

This section shows basic C 2 pipelining architectures with an analysis of timing constraints.

A. Principles of C 2 Pipelining Architecture

Figure 1 shows the difference between a C 2 pipelining and a conventional clock distribution for a
pipeline. Circuit C2 on Figure 1 (a) employs a chain of inverters to provide local clock signals. Local
buffers attached to the chain provide appropriate output power to control local latches.- Figure 1
(b) shows the conventional method in which a non-overlapping two-phase clock generator is located
at the center of the clock distribution network. This clock generator is designed to cope with clock
loads of the entire clock network. •

C 2 pipelining can be realized in several ways as shown in Figure 2. Figure 2 (a) shows the basic
architecture with back-propagating and inverting delays in a clock distribution line. Figure 2 (b)
shows a version with computational components in the data path. Figure 2 (c) shows an alternative
with noninverting buffers used in place of inverting buffers. Although they are illustrated differently,
Figure 2 (b) can represent all three cases for the purpose of timing' constraint analysis.

Figure 3 (a) shows a portion of the C 2 pipeline of Figure 2 (b), and Figure 3 (b) illustrates
clock waveforms for its level sensitive dynamic latches. These latches are transparent during high
clock signal and opaque during low clock signal. Latch i is controlled by a clock which is inverted
and delayed by a clock line delay (dc) from the clki+x for latch i+1. Similarly, latch i-1 receives an
inverted and delayed clock signal from c/fc;.

II. B a s i c C 2 P ip e l i n in g A r c h i t e c t u r e s

i+1 i+2 i+3 elk

TOT> I I I
(a) Basic architecture (b) General architecture

TJ I
elk

* A Latch with a bubble operates at different phase
(c) Alternate general architecture

* Remarks
«SE2>: inverting delay

: non-inverting delay
: latches
: data paths

Figure 2: C 2 pipelining architectures

Clock timing analysis pertaining to a particular latch i with respect to its neighboring latches
will now be discussed. First, the pipelining involves “go-throughs” during clock period I and III
shown in Figure 3 (b) (due to the fact that C2 pipelining implements overlapping clocks.) For
instance, during period 111, stage i-1 output can “go-through” to stage i+1 because the i-1 latch
is in hold while i and i+1 are transparent. Go-through should be avoided in a rigidly clocked
synchronous system with a non-overlapping clock. However, this go-through does not make stage
i+1 produce a wrong output in a C 2-pipelined system.

A possible scenario involving a go-through is the following:

latch i-1 latch i latch i+1 latch i+2

(a) Part of a C2 pipeline

elk i-1 —
elk i

elk i+1 r
elk i+2

=uj"

in iv
* Remarks
..... : Transparent window
— : Latch output window

Tl_

VI

(b) Clocks for latches

Figure 3: A part of a C 2 pipeline

• stage-latch i-1 stabilizes its output by period II; however stage i-1 delays this output which
reaches the input of latch i only during period III (note the distinction between stage and
stage-latch);

• the output of stage i (not stage-latch) can be generated early during period III and be sent
to stage-latch i+1 which is also transparent.

In this scenario, the output generated by latch i-1 gets processed by stages i-1 and i and is applied
to the input of stage i+1— all during period III. This go-through is not harmful because it causes
stage i+1 output to tend towards the same value as it will evaluate to in the absence of go-through
(much like chaining [16]). The go-through possible in period I can also be analyzed in the same
way. In fact, go-throughs can actually help shorten the clock period by allowing a stage to absorb
a fraction of the long-path delays associated with the stage preceding it. This can potentially be
an advantage if the stage delays are not exactly balanced. The other periods involved (II, IV, V
and VI) do not allow go-throughs to happen.

Figure 4 illustrates the overall latch operations for a C 2 pipeline. This figure shows staggered
latch operations, where each latch alternates between transparent and opaque states. The vertical
bold lines emanating from one period of the latch i operation marks a sending window, involving
a transparent state and the succeeding opaque state of a latch, and a matching receiving window
of the following latch. The latter latch i+1 is in the transparent state between the two bold lines.
This shows that the latches are operating as described in previous paragraphs.

The novelty of C 2 pipelining results from the use of intentionally inserted delays on clock lines.
These delays not only provide pipeline speed-up described above, but also partition the clock line
into many small pieces enabling one to avoid global clock skew problems. This leads to a locality
property of timing constraint to the whole pipeline: i. e. the whole pipeline works properly by
assuring local delay constraints for all stages.

n i v, (earliest! elk at latchi

elk at latchj_+1 (eariiest)

earliest next data validation time (ta)
cl d̂ ,-, .)/ . l̂atest next data validation time (t r

(latest)

J"

"L
,

r e

current data should be
elk at nodei+1 "1_

'I t r

r

$
next, data should be valid before here (td)

stable until here (t.j;> + H)

Remarks : Latch is transparent

Figure 6: Detail timing diagram for Figure 5

• ta should be greater than tb + H (H being the latch hold-time) to avoid violating the hold
time requirement for latch i + 1 (avoid changing the data being latched by latch i + 1 during
the hold-time period).

Thus, the condition for the local timing constraint is

dc + dj SW + d(is > ds Iw + H

which results in the smallest inserted-delay value, dC) of the clock line buffer(s) being:

dc > d$iyj -I- H dfSVJ drfs (I-)*

To calculate the minimum allowable clock-phase duration, P, assume a 50% duty-cycle clocks
which results in:

• the latest data validation time at the input of latch i+1 is when the incoming data to stage
i was validated late. This time instant (tc) will be dc + djiw + d^ after the rising edge of the
clock elk as shown in Figure 6.

• the earliest latch i+1 opening time (latch opened by the rise o f Clk) is dssw after the rising
edge. Therefore, the earliest latch i+1 closing time is dssw + P.

• tc should be before t̂ = dssw + P — S to satisfy the latch i+1 setup time.

This will result in the following inequality:

dc + dfiw + d^ < P — S + dSSVJ

which results in the clock phase duration lower-bound

P ^ dc df[w + d(u + S dssw (2).

The inequality in (2) can always be satisfied because the clock period is externally controllable as
in conventional synchronous clocking. The inequality in (1) is the cojiditioji that is most important.

7

Hence, C2 pipelining results in one-sided timing constraints. Also, notice that (2) is independent
of clock-skew, which confirms the observation that C 2 pipelining is an attractive method for GHz
clocked circuits where skew is expected to become a major problem using conventional rigid-clocking
methods.

III. B a s i c c o m p o s i t i o n m e t h o d s

During the composition of C 2 pipeline blocks, there will arise situations in which the data needs
to (1) move downstream (with respect to the data movement) to be consumed by a functional
block with typically several inputs (Figure 7 (a)), and/or (2) move upstream to be consumed by a
functional block with several inputs (typically in iteration structures) (Figure 7 (b)). As we expect
such “stage skipping” connections to be infrequent as well as skip only a srtiall number of stages, we
do not provide any special circuits to resynchronize the data; instead, we obtain timing constraints
to be obeyed. Skips over longer distances have to proceed as several short skips in sequence with
corresponding adjustments in the data timing. Timing constraints required for data forwarding
and backwarding are now analyzed in the sections to follow.

(a) Data forwarding (b) Data backwarding
where k is odd. where k is even.

Figure 7: Data forwarding and data backwarding

A. Data Forwarding

Figure 8 (a) shows data forwarding ignoring wire delays. The simplest form of data forwarding
is feeding data from latch i to latch i+1 with blank data path (waveforms (1) and (2) of Figure 8
(a) respectively). Notice that in this case latch i+1 is controlled by a clock that is inverted and
leading with respect to the latch i clock. This case of forwarding represents an empty C 2 pipeline
stage with zero data-path delays and was analyzed in the previous section.

When the destination is a latch with clki+2j+\ as shown in waveform (3), the clock for this latch
is inverted and leading by (2j+l)*dc where dc is a clock buffer delay. This leading duration can be
extended up to P — S as shown by waveform (4) (i.e., the latest data sent by latch i must fall before
the set-up time window, marked S, of a latch with clk{+2k+\ on waveform (4)). Note that data
forwarding by whole cycles is possible. However, such extended forwarding needs to be avoided
since the amount of delay in a long chain of inverters can significantly vary with temperature,
operating voltage and fabrication process parameters, and hence may not reliably track the cycle

Waveforms (1) and (5) give an example of an incorrect data go-through situation occurring from
latch i to latch i+2l+l. This resulted from a violation of the above-stated forwarding limit. In
this example, imagine that latch i presents incorrect data at the beginning of its transparent state
and correct data only at the end of its transparent state. By the time correct data is presented,
however, latch i+2l+l could become opaque, as can be seen in waveform (5).

8

dc
ITCl) elk j

(2) clkH]

(3) Clrv i+2j-tl

c 1 ̂ i+2k+l _____ Lj-i

_I"

!S; c11̂ i+21+1

" 'L

J"'

" L
goes opaque whi le

passes incorrect data latch i is transparent

elk at
node;
elk at
latch

inserted clock delay
(2m-r 1) Jg latest. data validation time

U '
(latest) &slw

... elk at
L_ nodeit2mti ■

elk at
latclln2ii»l (earliest)
* Remarks

: Data catching window
: Latch output window

data should be valid before this time

(a) ignoring wire delays ' LiaL'-11 UULtJu'- »muuw (b} including wire delays

Figure 8: Timing diagram for data forwarding

The timing constraint for data forwarding, ignoring wiring delays, is :

(2m + 1) * < P — S where m is a positive integer.

The timing constraint with wiring delays taken into account can be derived as follows (see Fig
ure 8 (b) also). (Note: this derivation may be skipped during initial reading.) Specifically, let
the shortest wire delay for the sending latch be dssw, the longest wire delay for the sending latch
be dsiw, the shortest wire delay for data sending be ddsw, the longest wire delay for data sending
be ddiw, the shortest wire delay for the receiving latch be drsw and the longest wire delay for the
receiving latch be driw. When our signal-and-data observation point is at latch i+2m +l, the worst
case scenario is: 1) the latest data validation time to the input of the latch is dsiw + ddiw after falling
edge of the elk at node i, and 2) the earliest clocking time for the latch is drsw after falling edge
of the elk at node i+2m +l. Timing of 1) should come before timing of 2) to meet latch i+2m +l
set-up time condition. This results in:

(2?71 -|- 1) =+= dc P dsiw P ddiw ^ P drsw .

Thus, the maximum forwarding limit is:

(2m -{- 1) * dc <c P S {dsiw ”1” ddiw') ”1” (3).

For example, taking dc = Ins for an inverter delay and P = 50ns for phase duration for a chip
in 2-/J, CMOS, the maximum number of stage skips can be about 50 since other delay values of
S, dsiw, ddiw and drsw are negligible. Comparing this limit with the previous case (with wire delays
ignored), we see that data forwarding limit is decreased by (dsiw + ddiw) — drsw, the value of which
is mostly positive. If long forwarding is needed, both of (2m + 1) * dc value on clock line and ddiw
value on connection wire between the two latches will restrict the number of stages to be forwarded.

Figure 9 shows overall latch operations for a data forwarding to send data directly from latch
i to latch i+3. Vertical bold lines on latch i operation shows a sending window and a transparent
state between the bold lines on latch i+3 operation shows a receiving window. If data from latch i
should be directly sent to latch i+n in the figure, it results in hazardous latch operation as discussed
above.

latch i-2k bold time condition. Note that data backwarding by whole cycles is possible. However,
such extended backwarding is to be avoided with the same reason for the case of extended data
forwarding.

[II elk

(2) elk

" j f

1-2

(4) elk

u :

(3) elk i_2) _j_

i-2k
(5) elk i_21 f l -

J I
JJT

_r
"□ j . j -

r jdata /passes incorrect
holds incorrect data

(a) ignoring wire delays

elk at
nude.

inserted clock delay
■*---- 2 n id,, ■"

elk at | f"
latch j T : '

(earliest) ŝsw

elk at
nodej_2ri I-----
elk at |

latch <

data is valid until tt\is time
______________r

1 i-2m (latest)
* Remarks

Data catching window
Latch output window

data should be valid until this time'— Vthis time'

(b) including wire delays

Figure 11: Timing diagram for data backwarding

Waveforms (1) and (5) give an example of an incorrect data go-through situation occurring
from latch i to latch i-2l, resulting from a violation of the above-stated backwarding limit. In
this example, imagine that latch i presents correct data, to be passed, during its opaque state and
incorrect data at the beginning of its succeeding transparent state. By the time incorrect data is
presented, latch i-2l could be transparent still as shown in waveform (5).

The timing constraint for data backwarding, ignoring wiring delays, is :

2m * dc < F’ - H .

The timing constraint with wiring delays taken in to account can be derived as follows (see
Figure 11 (b) also). (Note: this derivation may be skipped during initial reading.) The same wire
delay conventions used for data forwarding are used. When our signal-and-data observation point
is at latch i-2rn, the worst case scenario is: 1) the earliest data validation time to the input of the
latch is dssw + dj,sw after the falling edge elk at node i, and 2) latest clocking time for the latch is
dr[w after the falling edge of the clock at node i-2m. Timing of 1) should come after the timing of
2) to keep latch i-2m hold time condition. This results in:

2771 * dc -|- dssw 2 * P -|- ddsw ^ driyj -J- P -J- H .

Thus, the maximum backwarding limit is:

2771 * dc "C f H -|- (dssw -|- d({sw ̂ driw (4).

Comparing this limit with the previous case (with wire delays ignored), we see that the data
backwarding limit is increased by (dssw + ddsw) — driw, the value of which is mostly positive. Both
of 2m * dc value on clock line and driw value on connection wire between the two latches restrict
the number of stages to be backwarded.

Figure 12 visualizes overall latch operations for a data backwarding to send data directly from
latch i to latch i-Jh Vertical bold lines on latch i operation shows a sending window and a transparent

11

state between the bold lines on latch i~4 operation shows a receiving window. If data from latch i
should be directly sent to latch i-n on the figure, it results hazardous latch operation as discussed
above.

Output data

latch i

latch i-1

latch I-2

latch i-3

latch I-4

latch i-n

A concrete example of data backwarding is demonstrated in Figure 13 which shows a mul
tiplication and accumulation unit which frequently used in digital signal processing. The data
backwarding is need to iterative calculation since output data should be fed back to input. Figure
13 (a) shows data backwarding with direct implementation of data backwarding method with two
clock difference which is even. This needs extra latches at L2 position to latch the backwarding
data. Dynamic latches of L3 and L4 provides necessary data register function. The cost here is the
use of the extra latches to adjust latching timing. Figure 13 (b) shows a modified implementation
to remove the extra latches. Data backwarding delay (df,) was naturally implemented by a 2-MUX,
to choose reset or accumulation, and an inverter to restore its output to positive logic value. This
delay is enough to meet timing constraint when dt, > 2dc, ignoring wiring delays for simplicity
purpose of understanding. This means that backwarding data wave to the adders will arrive later
than the data wave from L2. This modified version is free of extra latches.

(a) Normal Data Backwarding (b) Modified Data Backwarding

Figure 13: A Multiplication-and-accumulation unit example

12

Although both data forwarding and data backwarding provide basic means to build a system,
it is better to have extended composition methods such as a pipeline fork and join, sequential
connections, and synchronization interface to build a C 2-pipelined system. Figure 14 (a) shows
pipeline fork and join to connect two or more pipelines in parallel when the functionality of the
pipelines are to be combined in parallel. Figure 14 (b) shows sequential pipeline connection to
connect pipelines directly sequentially Figure 14 (c) shows pipeline synchronization, illustrating
the incoming data and outgoing data of a C 2 pipelined block needed to be synchronized to a
particular clock. This is needed when a block or a pipeline should be synchronized to a particular
local or global clock signal. Use of this synchronization method provides a way to build a system
with hybrid clocking with counterflow-clocking and conventional clocking.' This can be valuable in
high performance processors that have dedicated DSP hardware for example. These three extended
composition methods, in addition to the two basic composition methods, provide a VLSI designer
means to build systems of non-trivial size using C 2 pipelining. This section analyzes those extended
methods.

IV . E x t e n d e d C o m p o s i t i o n M e t h o d s

A longer C -pipeline

(Data Forwarding) A C -pipeline
{clock terminated)

(a) Pipeline fork and join

Clk1

(b) Sequential Connection (cs) Synchronization interface

Figure 14: Connection methods

A. Pipeline Fork and Join

To connect pipelines in parallel, it is ideal to have same length (number of stages) of pipelines
sharing a clock distribution line. When the lengths are not the same, clock timing adjustment
should be made while sending or receiving data. Figure 14 (a) illustrates one of those two situations,
showing the timing adjustment to feed data. Since the outgoing clock from a shorter pipeline is
at the downstream of the data flow from the data to be fed, the data feeding should use the data
forwarding method to adjust clock timing associated with the data. The outgoing clock needs to be
terminated and another outgoing clock from the longer pipeline should be fed to preceding pipelines
since the other one has correct timing for incoming data. Then, all the local timing constraints
associated with input and output of the parallel-connected pipelines are satisfied.

B. Sequential Connection

The sequential connection method uses the same method as to connect two adjacent pipeline
stages. The output from the preceding pipeline on Figure 14 (b) is fed to its succeeding pipeline

13

in the figure using one inverting clock delay and wiring between latches to satisfy local wiring
constraints.

C. Synchronization Interfaces

Since the synchronization method uses a particular clock signal for its input and its output,
timing to the input or output of a C2 pipeline should be adjusted. Figure 14 (c) illustrates such
a method employing data backwarding for input data. Since the input data and the C 2 pipeline
share the particular clock elk, the outgoing clock signal from the pipeline is delayed by the amount
of its clock line delay. This necessitates data backwarding to adjust clock timing from the input
data and the pipeline input. The output data of the pipeline is okay to be consumed by a receiver
using the elk signal.

With this scheme, a physical layout issue pertaining to wiring arises. The fact that the output
data normally should move from the end of the pipeline to its front necessitates having a long
connection wire when both ends are physically separated far. In this case the timing constraint
is satisfied with the scheme that the clock clkl is delayed and inverted from the clock elk. Then,
timing constraints to the clock elk is satisfies for the input and the output. This interface provides
a way to implement a functional block in C 2 pipelining within a conventionally synchronous-clocked
system. Thus C 2 pipelining can also be used selectively in large VLSI chips.

V . A P R A C T IC A L ASSESSM ENT OF C 2 PIPELINING

This section describes a specific C 2 pipelining design and with its associated layout issues. Figure
15 shows the design and layout of a subband filtering chip (SB chip) for processing HDTV input
image data to four subband images [15, 17] The chip size was found to be 17.6mm X 15.8mm in 2-fi
CMOS technology with 4X3,000 transistors on it. The chip target clock speed, which is preliminary
(using 2-fi CMOS technology), is 4.5 MHz. The speed is reduced by a factor of four from 18 MHz,
which needed to process 72 MHz input pixel data, using 0.8-// CMOS technology. The chip, based
on Winzker et a/.’s subband filtering chip set design [18], implemented (1) a 2D FIFO unit to
provide two dimensional polyphase data for the filter stages [19], (2) two line memory units to
provide line-delayed pixel data (each unit provides 5 sets of data: zero line delay to four line delay
as shown previously in Figure 10), and (3) a filterbank unit to separate the incoming image into
high frequency component and low frequency component vertically first and then horizontally by
finite impulse response (FIR) filtering. The figure hides pads and testability circuits of the chip to
highlight data flow and clock distribution.

The units in Figure 15 are connected sequentially: the 2D-FIFO unit to the incoming pixel
data, two line memory units (unit I at left and unit II at right) in the middle in parallel, and the
filterbank unit to produce output data of subband images, as shown in the figure. The unidirectional
data flow is well suited to C 2 pipelining. The clocks counterflows the direction of the data flow as
shown in the figure. Each unit was designed using C 2 pipelining except the 2D-FIFO unit which
is designed by using conventionally rigid synchronization.

Regarding wiring lengths between the units, there are several things to mention. (1) The clock
cl line delay (to be included on clock delay, dc) and the longest delay on data bus dl provides
timing margin for its data forwarding between the two units, Using the inequality derived in (3)
of Section III. (2) Similarly, the data forwarding involved in clock c,3 line and data bus d2 has
more timing margin, due to longer wire-lengths, than that for previous cl and dl. (3) Between the
two clocks c2 and cJh c./t has a longer delay than c.2, due to longer physical wire for c3 which is
about half of the chip width; Thus c4 needs to be fed to the preceding unit and c2 is terminated,

14

8-bit
c2 (terminated)

Line
Memory
Unit II

8,25mm x 7.33mm

$ ĉl
dl

input
Wb 12'bit
* to and from <̂$77—o another phip

12-bit

9-bit 9-bit
LH-subband LL-eubband output outputelk

Figure 15: Subband filterbank chip layout

as previously described for pipeline fork and join connection method. (4) The data forwarding by
the d3 data bus and c4 clock (to the line memory unit I) has timing margin realized through wire
delays; The data forwarding by d3 data bus and c2 clock (to the line memory unit II) has more
timing margin than that due to temporally advanced clock c2.

There are two other noteworthy things about the dsign: the double frequency clock (2f elk)
feeding to a particular location of the chip and 12-bit connections to another chip. The 2f elk
needs timing adjustment to align the clock with the c5 clock. The adjustment can be done by an
adjustable delay element. The 12-bit connections involve data forwarding technique.

This section shows how a big chip for image processing can be designed and implemented in C 2
pipelining. Another big chip, a vector quantizer chip, which will process a subband image from the
SB chip, has also been designed and implemented in C 2 pipelining [17].

V I . C o n c l u s i o n s

The development of C 2 pipelining was motivated from the fact that the development of an effec
tive high speed clocking technique is essential for building high performance VLSI systems. It was
observed that rigid synchronization over a chip or a system makes design easier. However, for sys
tems that have VLSI realization with mostly uni-directional dataflows as well as possessing mostly
nearest-neighbor connections, the assumption of rigidly synchronized clocking is not necessary, and
can result in lost performance (including waste of clock period due to clock skews and less noise
margin due to simultaneous firing of latches) when enforced. C 2 pipelining was developed from
an observation that many high speed systems show mostly uni-directional data flows and mostly
nearest-neighbor connections. C 2 pipelining adopts back-propagating clock signals [2, 13], which
are known to be safe but the use of which is usually avoided (due to extended clock period), in
combination with pipelined clocking [7, 14]. A C 2-pipelined system can be built by using only
“local delay constraints” , which is a prominent feature to achieve very high speed clocking.

This paper introduced C 2 pipelining technology including 1) basic C 2 pipelining architectures,
2) the composition methods of data forwarding and data back warding, and 3) the extended com
position methods of pipeline fork and join, sequential connection and synchronization interfaces.

15

Those basic architectures and composition methods provide a VLSI designer a means to build a
system with many one-sided local delay constraints without concern about global clock distribution
problems and skew control. A C 2 pipelining design and layout example for a subband filtering chip
was reported in Section V. By building a system in C 2 pipelining, one can shorten clock period
significantly when interconnection delays are larger than gate-propagation delays [5]. The trade-off
is to use inverter chains and some extra latches for data forwarding or data backwarding (in case
that receiving windows do not match with their corresponding sending windows) versus to build
an elaborate clock distribution network to supply a global clock.

This paper concludes that by applying C 2 pipelining and its composition methods to build a
system, clock periods can be much shorter than the one with rigidly clocked synchronization when
interconnection delays are larger than gate propagation delays. In addition to this, power bump
peaks can be reduced by staggered operation of latches. These two factors are essential for building
large and very high speed clocked system.

R e f e r e n c e s

[11 H. B. Bakoglu, Circuits, Interconnections, and Packaqinq for VLSI, Addison-Wesley Publishing Com
pany, Inc. 1990, pp. 353-355 '

[2] I). W . Dobberpuhl, et, al., “A 200-M H z 64 -b dual-issue CM O S microprocessor,” IE E E J. o f Solid-State
Circuits, Vol. 27, No. 11, November 1992

[3] S. Yinger, et al., “H BT gate array for 5 GHz ASIC’s,” 15th Annual C a A s I C Sym . Technical Digest,
October 1993

[4] Santanu Dutta and Wayne W olf, “Asymptotic limits of video signal processing architectures,” IC C D
1994, 1994

[5] D. Conner, “Submicron technologies require floorplanning,” E D A , September 2, 1993

[6] J. Yuan, (J. Svensson, “Pushing the limits of standard C M O S,” IE E E Spectrum, February, 1991

[7] A . L. Fisher, H. T . Kung, “Synchronizing large VLSI processor arrays,” IE E E Trans, on Com puters,
August 1985

[8] W . J. Bowhill et al., “Circuit implementation of a 300-M Hz 64-bit second-generation CM OS Alpha
chip,” Digital Technical Journal, Vol. 7, N o .l, 1995, Digital Equipment Corporation.

[9] Karem A . Sakallah, st. al, “Synchronization of pipelines,” IE E E Trans, on C om puter-A ided Design o f
IC s and S ystem s, Vol. 12, No. 8, August 1993.

[10] 1. E. Sutherland, “Micropipelines,” C om m , o f the A C M , June 1989, Vol. 32, No. 6

[11] A . J. Martin, “Tomorrow’s digital hardware will be asynchronous and verified,” California Institute of
Technology, Tech. Report C S -T R -93-26 , 1993

[12] I). Fan, et al., “A CM O S parallel adder using wave pipelining,” Advanced Research in V LSI and Parallel
S ystem s, F’roc. o f the 1992 B r o w n /M IT Conference, 1992

[13] N. H. E. Weste, K. Eshraghian, Principles o f C M O S V LSI D esign : A S ystem s P erspective, 2nd Ed.,
Addison Wesley, 1993, pp. 239

[14] A . El-Amawy, “Clocking arbitrarily large computing structure under constant skew bound,” IE E E
Trails, on Parallel and Distributed System , March 1993

16

