
UPE: Utah Prototyping Environment for Robot Manipulators 

Mohamed Dekhil, Tarek M. Sobh, Thomas C. Henderson, and Robert Mecklenburg 1 

UUCS-94-024 

Department of Computer Science 

University of Utah 

Salt Lake City, UT 84112, USA 

August 31, 1994 

Abstract 

Developing an environment that enables optimal and flexible design of robot manipulators using 

reconfigurable links, joints, actuators, and sensors is an essential step for efficient robot design and 

prototyping. Such an environment should have the right "mix" of software and hardware components 

for designing the physical parts and the controllers, and for the algorithmic control of the robot 

modules (kinematics, inverse kinematics, dynamics, trajectory planning, analog control and digital 

computer control). Specifying object-based communications and catalog mechanisms between the 
software modules, controllers, physical parts, CAD designs, and actuator and sensor components 

is a necessary step in the prototyping activities. In this paper, we propose a flexible prototyping 

environment for robot manipulators with the required subsystems and interfaces between the different 

components of this environment. 

IThis work was supported by ARPA grant N00014-91-J-4123, NSF grant CDA 9024721, and a University of Utah 
Research Committee grant. All opinions, findings, conclusions or recommendations expressed in this document are 
those of the authors and do not necessarily reflect the views of the sponsoring agencies. This report was submitted as 
a paper to the 1995 IEEE International Conference on Robotics and Automation. 



UPE: Utah Prototyping Environment for Robot Manipulators 

Mohamed Dekhil, Tarek M. Sobh, Thomas C. Henderson, and Robert Mecklenburg* 

Department of Computer Science 
University of Utah 

Salt Lake City, Utah 84112 

Abstract 

Developing an environment that enables optimal 
andflexible design of robot manipulators using re­
configurable links , joints, actuators, and sensors 
is an essential step for efficient robot design and 
prototyping. Such an environment should have 
the right "mix" of software and hardware com­
ponents for designing the physical parts and the 
controllers, andfor the algorithmic control of the 
robot modules (kinematics, inverse kinematics, dy­
namics, trajectory planning, analog control and 
digital computer control). Specifying object-based 
communications and catalog mechanisms between 
the software modules, controllers, physical parts, 
CAD designs, and actuator and sensor components 
is a necessary step in the prototyping activities. 
In this paper, we propose a flexible prototyping 
environment for robot manipulators with the re­
quired subsystems and interfaces between the dif­
ferent components of this environment. 

1 Introduction 

Prototyping is an important activity in engineering. Proto­
type development is a good test for checking the viability of 
a proposed system. Prototypes can also help in determining 
system parameters, ranges, or in designing better systems. 
The interaction between several modules (e.g., S(W, VLSI, 
CAD, CAM, Robotics, and Control) illustrates an interdisci­
plinary prototyping environment that includes radically dif­
ferent types of information, combined in a coordinated way. 

The goal of this research project is to build a framework 
for optimal and flexible design of robot manipulators with 
the necessary software and hardware systems and modules. 
This framework is composed of several subsystems such as: 
optimal design, simulation, control, monitoring, CAD/CAM 
modeling, part ordering, and physical assembly and test­
ing. Each subsystem has its own structure, data represen­
tation, and reasoning strategy. On the other hand, much of 

*l1lis work was supported in palt by DARPA grant N00014-91-J-4123, 
NSF grant CDA 9024721 , and a University of Utah Research Committee 
grant. All opinions, findings , conclusions or recommendations expressed in 
this document are those of the author and do not necessarily reflect the views 
of tile sponsoring agencies. 

the information is shared among these subsystems. To main­
tain the consistency of the whole system, an interface layer 
is proposed to facilitate the communication between these 
subsystems, and set the protocols that enable the interac­
tion between the subsystems to take place. Figure 1 shows 
a schematic view of the proposed prototyping environment 
with its subsystems and interface. 

Figure 1: The prototyping environment. 

2 Background 

To integrate the work among different teams and sites work­
ing in such a large project, there must be some kind of syn­
chronization to facilitate the communication and coopera­
tion between them. A concurrent engineering infrastruc­
ture that encompasses multiple sites and subsystems, called 
Palo Alto Collaborative Testbed (PAC1), was proposed in 
[2]. The issues discussed in that work were: cooperative de­
velopment of interfaces, protocols, and architecture, sharing 
of knowledge among heterogeneous systems, and computer­
aided support for negotiation and decision-making. 



An execution environment for heterogeneous systems 
called "InterBase" was proposed in [1]. It integrates preex­
isting systems over a distributed, autonomous, and heteroge­
neous environment via a tool-based interface. In this envi­
ronment each system is associated with a Remote System In­
terface (RSI) that enables the tnmsition from the local hetero­
geneity of each system to a unifonn system-level interface. 

Object orientation and its applications to integrate hetero­
geneous, autonomous, ,md distributed systems are discussed 
in [7]. The argument in this work is that object-oriented dis­
tributed computing is a natural step forward from the client­
server systems of today. Automated, flexible and intelligent 
Immufacturing based on object-oriented design and analysis 
techniques is discussed in [6], and a system for design, pro­
cess planning and inspection is presented. 

A management system for the generation and control of 
documentation flow throughout a whole manufacturing pro­
cess is presented in [5]. The method of quality assurance 
is used to develop this system that covers cooperative work 
hetween different departments for documentation manipula­
tion. 

A computer-based architecture program called the Dis­
tributed and Integrated Environment for Computer-Aided 
Engineering (Dice), which addresses the coordination ,md 
communication problems in engineering, was developed at 
the MIT Intelligent Engineering Systems Laboratory [8]. 

In the environment we are proposing, several subsystems 
are communicating through a central interface layer (CI), 
Nld each subsystem has a subsystem interface (SSI) respon­
sible for data transformation between the subsystem and the 
CI. Adding new subsystem can be achieved by writing an SSI 
for this new subsystem, adding it to the list of the subsystems 
in the CI, and no changes required to the other SSIs. Remov­
ing a subsystem only requires removing its name from the 
subsystems list in the CI. 

3 The Prototyping Environment 

The proposed environment consists of several subsystems 
each of which carry out certain tasks to build the prototype 
robot. These subsystems share many parameters and infor­
mation. To maintain the integrity and consistency of the 
whole system, a central interface (CI) is proposed with the 
required rules and protocols for passing information. This in­
terface is the layer between the robot prototype and the sub­
systems, ,md it also serves as a communication channel be­
tween the different suhsystems. 

3.1 Overall Design 

The Prototyping Environment (PE) consists of a central in­
terface (CI) ,md subsystem intelfaces (SSI). The tasks of the 
central interface are to: 

• Maintain a global database of all the infonnation needed 
for the design process. 

• Communicate with the subsystems to update any 
changes in the system. This requires the central 
interface to know which subsystems need to know 
these changes and send messages to these subsystems 
informing them of the required changes. 

• Receive messages and reports from the subsystems 
when any changes are required, or when any action has 
been taken (e.g., update complete). 

• Transfer data between the subsystems upon request. 

• Check constraints and apply some of the update rules. 

• Maintain a design history containing the changes and 
actions that have been taken during each design process 
with date and time stamps. 

• Deliver reports to the user with the current status and 
any changes in the system. 

The subsystem interfaces are the interface layers between 
the CI and the subsystems. This makes the design more flex­
ihle and enables us to change any of the subsystems without 
much change in the CI - only the corresponding SSI need 
to be changed. The role of the SSIs are: 

• Report any changes to the CI. 

• Receive messages from the CI with required updates. 

• Perfonn the necessary updates in the actual files of the 
subsystem. 

• Send acknowledgments or error messages to the CI. 

The assumption is that there is a user at each subsystem (by 
a user here we mean one or more skilled persons who under­
stand this subsystem), and there is a user operating the central 
interface as a general director and coordinator for the design 
process. In other words, the CI is to assist in the coordina­
tion of the job and to help communicate with all subsystems. 
Figure 2 shows an overall view of the suggested design. 

In the first phase of implementing the PE, the users have 
more work to do. The CI and SSls maintain the information 
routing between the subsystems by sending messages to the 
corresponding user at each subsystem, then the action itself 
(e.g., update a file) is accomplished by the user. Later on, the 
system will be automated to perfonn most of these actions it­
self and the user will simply be infonned of the actions taken. 

3.2 Communication Protocols 

The main purposc of this environment is to keep all the sub­
systems informed of any changes in the design parameters. 
Therefore, passing infonnation between the subsystems is 
the most important part of this environment. To be able to 
control the information flow, some protocols were developed 
to enable the communication between these subsystems in an 
org,mized manner. In our design, all subsystems communi­
cate through the CI which is responsible for passing the in­
fonnation to the subsystems that need to know. 

There are two types of events that can occur in this system: 



Figure 2: Overall design of the prototyping environment. 

1. Change reported from one of the subsystems. 

2. Request for data from one subsystem to another. 

Figure 3 shows the protocol used for the first event repre­
sented by a finite state machine (FSM). The states of this 
FSMare: 

1. Steady state: Do nothing. 

2. Change has been reported: send lock message to all sub­
systems. Apply relations and check constraints. If con­
straints are satisfied, go to state 3. If constraints are not 
satisfied, report these to sender and go to steady state. 

3. Constraints are satisfied: Notify the subsystems with the 
changes and wait for acknowledgments. 

4. Acknowledgments received from all subsystems: Send 
the final acknowledgment to the subsystems and go to 
steady state. 

5. Acknowledgments not Ok: Send a "change-back" com­
mand to the subsystems and go to steady state. 

Figure 4 shows the protocol for the second event. The 
states in this FSM are: 

1. Steady state: Do nothing. 

2. Request for SS2 received from SS 1. Send the request to 
SS2. 

3. Required data found at SS2. Send data to SS 1 and go to 
steady state. 

4. Required data not found at SS2. Send report to SS 1 and 
go to steady state. 

Negative Ack. 

Figure 3: The change-parameter protocol. 

Report 
toSSI 

Request from SS 1 to SS2 

Data not 
found 

Figure 4: Data request protocol. 



3.3 Prototyping Environment Database 

A database for the system components and the design param­
eters is necessary to enable the CI to check the constraints, to 
apply the update rules, to identify the subsystems that should 
be informed when ,my change happens in the system, and to 
maintain a design history and supply the required reports, 

This database contains the following: 

• Robot configuration. 

• Design parameters. 

• Available platforms. 

• Design constraints. 

• Subsystems information. 

• Update rules. 

Now the problem is to maintain this database. One solu­
tion is to use a database management system (DBMS) and in­
tegrate it in the prototyping environment. This requires writ­
ing an interface to transform the data from and to this DBMS, 
and this interface might be quite complicated. The other so­
lution is to write our own DBMS. This sounds difficult. but 
we made it very simple since the amount of data we have is 
limited and does not need sophisticated mechanisms to han­
dle it. A relational database model is used in our design, 
,md a user interface has been implemented to maintain this 
database. For the current design, by making a one-to-one cor­
respondence between the classes and the files, reading and 
writing a file can be accomplished by adding member func­
tions to each class. 

3.4 Constraints and Update Rules Compiler 

A compiler is provided to generate C++ code for the con­
straints and the update rules. First. the syntax of the language 
that is used to describe the constraints and the update rules is 
described. Second, the generated code is determined. Using 
a compiler instead of generic on-line evaluator for the con­
straints and the update rules has the following advantages: 

• All constraints are saved in one text file (likewise the up­
date rules). This makes the data entry very easy. We can 
add, update, and delete any constraint or update rule us­
ing any text editor. 

• Complicated data structures are not required for evalu­
ation. 

• The database is very simple, which facilitates maintain­
ing the design history. 

• Format changes, or changes in the generated code re­
quire only changes to the compiier, and no changes in 
the system are required. 

On the other hand, it has the following disadvantages: 

• The generated code has to be included in the system and 
the whole system must be recompiled. 

• A compiler needs to be implemented. 

By analyzing the design constraints and the update rules, 
we constructed a simple description of the language to be in­
put to the compiler. There are two options in this design, 
either to have one compiler for both the constraints and the 
rules, or to build two compilers, one for each. From the anal­
ysis of the constraints and the rules we found that there are 
many similarities between them; thus building one compiler 
for both is the logical option in this case. 

A complete language definition in Backus Naur Form 
(BNF) along with some examples can be found in [3]. 

3.5 The Generated Code 

As mentioned before, this compiler generates C++ code 
which is integrated with the CI system to check the constraint 
or apply the update rule. Each variable in the input to the 
compiler corresponds to one design parameter. For example, 
"linklJength" corresponds to the variable in the CI system 
that represents the length of link number one in the robot con­
figuration. The code generator uses a lookup table to find the 
corresponding variable name, and this table is part of the CI 
database. 

To update the constraints or the update rules the file con­
taining the old definition will be displayed and the user can 
add, delete, or update any of the old definitions. Then the new 
file will be compiled and integrated with the system. 

4 Implementation 

In the following subsections some implementation issues are 
investigated, and the different components in our design and 
how we implemented each of them are described. 

4.1 The Central Interface 

The central interface (Cl) is the core program that handles 
the communication between the subsystems, and maintains 
a global database for the current design and a history of pre­
vious designs. 

The CI is the implementation of the communication pro­
tocols described in Section 3.2. Some features and enhance­
ment to the protocols have been added to the CI. For exam­
ple, when the CI receives a change message from an SSI, it 
directly sends lock messages to the other subsystems so that 
no more changes can be sent from any SSI until they receive 
a steady message. This solves the concurrency problem if 
more than one system send changes to the CI at the same 
time. The first message received by the CI will be handled 
and the others will be ignored. If an SSI receives a lock mes­
sage after it sent a change message, that means its message 
was ignored. Another feature added to the CI is the ability to 
detect if an SSI is working or not by tracing the SSI Start and 
SSIStop messages. 



4.2 The PE Control System 

The CI as described above has no user interface. To be able 
to control and manage the coordination between the subsys­
tems, the PE control system (PECS) was implemented with 
some functionalities that enable the user to have some control 
over the CI. 

The PECS is built on top of a simple DBMS and a simple 
compiler for the update rules and the constraints. The user 
specifies the constraints and/or the update rules using a cer­
tain fonnat (a language), then the compiler transforms this to 
C code that is integrated with the system for constraint check­
ing, and for applying the update rules. The compiler consists 
of two parts, a parser and a code generator. In the first phase 
the complexity of the compiler was reduced by making the 
user h:mguage less sophisticated. 

4.3 Initial Implementation of the SSIs 

In the first phase of implementation, the SSIs serve as a sim­
ple interface layer between the CI and the user at each sub­
system. They receive messages from theCI and display them 
to the user who takes any necessary actions. They also report 
any changes to the CI, and this is done by sending a message 
to the CI with the changes. 

In the next implementation phase, some of the actions will 
be automated l:md the user at each subsystem will be notified 
with any action taken. For example, updating a data file that 
is used by the subsystem can be automatically done by the 
SSI, given that it has the necessary information about the file 
format and the location of the changed data. 

4.4 The Central Interface Monitor 

The central interface monitor (CIM) enables the user to mon­
itor the actions and the messages passing between the CI and 
the SSIs with a graphical interface. This interface shows the 
CI in the middle and the SSIs as small boxes surrounding the 
CI. The CIM also has a small text window at the bottom. This 
text window displays a text describing the current action. The 
messages are represented by an arrow from the sender to the 
receiver. 

5 Results 

One of the test cases for the prototyping environment is 
shown in Figure 5. In this case, the optimal design subsys­
tem sent a data-change message to the CI. The CI in turn 
sent lock messages to all other subsystems notifying them 
that no chcmges will be accepted until they receive a final ac­
knowledgment message. Then, the CI applied the relations 
and checked the design constraints. In this test case the con­
straints were satisfied, so the CI sent these changes to the sub­
systems that needed to be notified. After that, the CI waited 
for acknowledgments from the subsystems. In this case it re­
ceived positive acknowledgments from the specified subsys­
tems. Finally, the CI updated the database and sent final ac-

knowledgment messages to all subsystems. More results and 
test cases can be found in [4]. 

6 Conclusion 

The design basis for building a prototyping environment for 
robot manipulators was investigated and the design options 
were explained. An initial implementation of a central in­
terface and some of the subsystem interfaces was done to 
demonstrate the functionality of the proposed environment. 
The design constraints and the update rules are expressed us­
ing simple syntax and are saved as part of the environment 
database. A graphical user interface to control and monitor 
the activities of the environment was implemented. A three­
link robot manipulator was built to explore the basis of build­
ing this environment. This prototype robot will be used as an 
educational tool in control and robotics classes. We believe 
this framework will facilitate and speed the design process of 
robot manipulators. 

References 

[1] BUKHRES, O. A., CHEN, 1., Du, W., AND ELMA­
GARMID, A. K. Interbase: An execution environment 
for heterogeneous software systems. IEEE Computer 
Magazine (Aug. 1993),57-69. 

[2] CUTKOSKY, M. R., ENGELMORE, R. S., FIKES, R. E., 
GENESERETH, M. R., GRUBER, T. R., MARK, W. S., 
TENENBAUM, J. M., AND WEBER, J. C. PACT: An ex­
periment in integrating concurrent engineering systems. 
IEEE Computer Magazine (Jan. 1993),28-37. 

[3] DEKHIL, M. Prototyping environment for robot manip­
ulators. Master's thesis, University of Utah, Salt Lake 
City, UT 84112, Mar. 1994. 

[4] DEKHIL, M., SOBH, T. M., HENDERSON, T. C., AND 
MECKLENBURG, R. Robotic prototyping environment 
(progress report). Tech. Rep. UUCS-94-004, University 
of Utah, Feb. 1994. 

[5] DUHOVNIK, J., TAVCAR, 1., AND KOPOREC, J. Project 
manager with quality assurance. Computer-Aided De­
sign 25, 5 (May 1993),311-319. 

[6] MAREFAT, M., MALHORTA, S., AND KASHYAP, R. L. 
Object-oriented intelligent computer-integrated design, 
process planning, and inspection. IEEE Computer Mag­
azine (Mar. 1993),54-65. 

[7] NICOL, J. R., WILKES, C. T., AND MANOLA, F. A. 
Object orientation in heterogeneous distributed comput­
ing systems. IEEE Computer Magazine (June 1993), 57-
67. 

[8] SRIRAM, D., AND LOGCHER, R. The MIT dice project. 
IEEE Computer Magazine (Jan. 1993),64-71. 



(1 ) Central InIerface Monitor (2) Central InIerface Monitor 

AU<mb1y Simulation 

Pan:-Ordering Mooia 

CAD/CAM 

Change reported from Optimal Design subsystem Send wek message to the other subsysU!ms 

(3) Central InIerface Monitor (4) Central InIerface Monitor 

AU<mbIy Smmlation AU<mb1y 

Part-Ordering 

CAD/CAM 

Apply relation and check constraints. ConstrainJs saJisrU!d ... send changes to subsystems. 

(5) Central InIerface Monitor (6) Central InIerface Monitor 

OptimalOe..ign 

Receive positive acknowliulgnu!IIlS from subsystems. VpdaU dalabase and send/inal acknowkdgnuni. 

Figure 5: CI test case, success case for data change. 


