
Asynchronous Systems Research Group
University of Utah� Department of Computer Science

The NSR Processor Prototype

WILLIAM F� RICHARDSON �willrich�cs�utah�edu�
ERIK L� BRUNVAND �brunvand�cs�utah�edu�

Computer Science Department
���� Merrill Engineering Building
University of Utah

Salt Lake City� Utah �����

Keywords� Self�Timed Systems� Asynchronous Systems� Micropipelines� FPGAs

Abstract� The NSR �Non�Synchronous RISC� processor is a general purpose processor
structured as a collection of self�timed units that operate concurrently and communicate over
bundled data channels in the style of micropipelines� These units correspond to standard
synchronous pipeline stages such as Instruction Fetch� Instruction Decode� Execute� Memory
Interface� and Register File� but each operates concurrently as a separate self�timed process�
In addition to being internally self�timed� the units are decoupled through self�timed FIFO
queues between each of the units which allows a high degree of overlap in instruction execu�
tion� Branches� jumps� and memory accesses are also decoupled through the use of additional
FIFO queues which can hide the execution latency of these instructions� The prototype im�
plementation of the NSR has been constructed using Actel FPGAs �Field Programmable
Gate Arrays��

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

THE NSR PROCESSOR PROTOTYPE �

� Introduction

As computer systems continue to grow in size and complexity� the challenges
inherent simply in assembling the system pieces in a way that allows them to
work together also grow� A major cause of the problems lies in the traditional
synchronous design style in which all the system components are synchronized
to a global clock signal� For example� simply distributing the clock signal
throughout a large synchronous system can be a major source of complication�
Clock skew is a serious concern in a large system� and is becoming signi�cant
even within a single chip� At the chip level� more and more of the power
budget is being used to distribute the clock signal� while designing the clock
distribution network can take a signi�cant portion of the design time� One
solution is to use non�clocked asynchronous techniques or restricted versions
of asynchrony known as self�timed ����

��� Self�Timed Systems

Self�timed circuits are a subset of a broad class of asynchronous circuits�
General asynchronous circuits do not use a global clock for synchronization�
but instead rely on the behavior and arrangement of the circuits to keep the
signals proceeding in the correct sequence� In general these circuits are very
di�cult to design and debug without some additional structure to help the
designer deal with the complexity� Traditional clocked synchronous systems
are an example of one particular structure applied to circuit design to facilitate
design and debugging� Important signals are latched into various registers on
a particular edge of a special clock signal� Between clock signals information
�ows between the latches and must be stable at the input to the latches before
the next clock signal� This structure allows the designer to rely on data values
being asserted at a particular time in relation to this global clock signal�

Self�timed circuits apply a di	erent type of structure to circuit design� Rather
than let signals �ow through the circuit whenever they are able as with an
unstructured asynchronous circuit� or require that the entire system be syn�
chronized to a single global timing signal as with clocked systems� self�timed
circuits avoid clock�related timing problems by enforcing a simple communica�
tion protocol between circuit elements� This is quite di	erent from traditional
synchronous signaling conventions where signal events occur at speci�c times
and may remain asserted for speci�c time intervals� In self�timed systems it is
important only that the correct sequence of signals be maintained� The timing
of these signals is an issue of performance that can be handled separately�

��� Communication Protocol

Self�timed protocols are often de�ned in terms of a pair of signals that request
an action� and acknowledge that the requested action has been completed� One
module� the sender� sends a request event to another module� the receiver�
Once the receiver has completed the requested action� it sends an acknowledge
event back to the sender to complete the transaction�

THE NSR PROCESSOR PROTOTYPE �

Sender Receiver

Req

Ack

Data

Figure
� A Bundled Data Interface

Data

Req

Ack

One
Transaction

Second
Transaction

Figure �� Two�Phase Bundled Transition Signaling

This procedure de�nes the operation of the modules which follows the com�
mon idea of passing a token of some sort back and forth between two partici�
pants� Imagine that a single token is owned by the sending module� To issue a
request event it passes that token to the receiver� When the receiver is �nished
with its processing it produces an acknowledge event by passing that token
back to the sender� The sequence of events in this communication transaction
is an alternating sequence of request and acknowledge events� The sequence
of events in a communication transaction is called the protocol� In this case
the protocol is simply for request and acknowledge to alternate� although in
general a protocol may be much more complicated and involve many interface
signals�

Although self�timed circuits can be designed in a variety of ways� the circuits
used to build the NSR processor use two�phase transition signalling for control
and a bundled protocol for data paths� Two�phase transition signalling ��� �
uses transitions on signal wires to communicate the request and acknowledge
events described previously� Only the transitions are meaningful� a transition
from low to high is the same as a transition from high to low and the particular
state� high or low� of each wire is not important�

A bundled data path uses a single set of control wires to indicate the validity
of a bundle of data wires� This requires that the data bundle and the control
wires be constructed such that the value on the data bundle is stable at the
receiver before a signal appears on the control wire� This condition is similar
to� but weaker than� the equipotential constraint ���� Two modules connected
with a bundled data path are shown in Figure
 and a timing diagram showing
the sequence of the signal transitions using two�phase transition signalling is
shown in Figure ��

THE NSR PROCESSOR PROTOTYPE �

ACKREQ

L
a
t
c
h

A
C
K

R
E
Q

Data-Out

Req-OutDelay

L
a
t
c
hA
C
K

R
E
Q L
a
t
c
hA
C
K

R
E
Q

C

C

Req-In

Ack-In

Data-In

Ack Out

L
a
t
c
h

A
C
K

R
E
Q

L
o
g
i
c

L
o
g
i
c

C

C

Figure �� A Micropipeline FIFO Bu	er

A self�timed FIFO bu	er has a particularly simple implementation using the
two�phase bundled protocol� The circuit in Figure � is an example of a FIFO
bu	er of this type with processing between two of the stages� If the processing
is not internally self�timed and able to generate a completion signal� a delay
must be added that models the delay of the data through that logic as shown
in the �gure� If no processing is present between the stages� as seen in the
right two stages in the �gure� the pipeline is a simple FIFO bu	er� This type
of FIFO is also known as a micropipeline ����

� NSR Architecture

The NSR �Non�Synchronous RISC�� processor prototype is structured as
a collection of self�timed units which operate concurrently and cooperate by
communicating with other units using self�timed communication protocols�

First�in �rst�out �FIFO� bu	ers play an extremely important role in the
implementation of the NSR� In fact� one way to look at the architecture of the
NSR processor is as a large FIFO bu	er that also modi�es the data passing
through it according to some rules� The overall architecture of the NSR is
inspired by the synchronous WM �
�� and PIPE ��� processors which also use
FIFO queues extensively�

The units that make up the NSR processor correspond to standard syn�
chronous pipeline stages� and consist of Instruction Fetch �IF�� Instruction De�
code �ID�� Execute �EX�� Register File �RF�� and Memory Interface �MEM�
as shown in Figure � Each unit operates concurrently as a separate self�timed
process� In addition to being internally self�timed� the units are decoupled

�Because the current implementation has no explicit HALT instruction and no interrupt
mechanism� NSR originally stood for �Nantucket Sleigh Ride��

THE NSR PROCESSOR PROTOTYPE �

16

16 14

16

16

16

16

16

16

DATA/ADDR

R/A

IMem

IF

R/A

R/A

R/A

JMPADDR

INST

INIT

DATA/ADDR

CLR

CC

R/A

ID
R/A

INST

R/A INST

CLR

RFADDR

R/A

EX
R/A-CC

CC

CLRINSTR/A

R/A-JMP

MEM-INFO

R/A-MEM

RESULT

SOURCES

R/A-RF

R/A

RF

CLR

R/A

ADDR

R/A

SOURCES

R/A

RESULT

R/A

LDQ
DMem

DATA

ADDR

R/W

R/A

MEM

DATA

ADDR

R/A

R/W DATA CLRMEM-INFO

R/A

R/A

LDQ

Figure � The NSR processor

through self�timed FIFO queues between each adjacent unit� which allows a
high degree of overlap in instruction execution�

The prototype implementation of the NSR is a
��bit pipelined RISC pro�
cessor� It has
� general purpose registers� uses a triadic register addressing
scheme� and provides decoupled branches and memory accesses� There are
separate busses for instructions and data� although the memory address space
is shared� The hardware consists of seven Actel �eld programmable gate arrays
�FPGAs� with each of the pipeline stages using one or two of the FPGA chips�

��� Instruction Set

There are several considerations which in�uence the choice of instruction set�
Largely due to space considerations and pin limitations� the NSR is limited to

��bit data paths� In order to facilitate the decoupling of functional units
within the NSR� a triadic register addressing method is used� To keep the
instruction pipelining as simple as possible� each complete instruction consists
of a single
��bit word� These factors limit the opcodes available to the NSR
to a small set� The sixteen instructions chosen are the minimum needed to
provide general purpose computations while maintaining some �exibility and
ease of use� An early proposal included additional opcodes for arithmetic carry
operations� immediate operands� byte addressing� and interrupt handling� but
was judged to be too complex for a �rst attempt� Figure � shows the current
instruction set of the NSR�

THE NSR PROCESSOR PROTOTYPE �

Encoding Mnemonic Action

���� �Rd� �Ra� �Rb� STA Rd�Ra�Rb Rd�AQ �Store� � Ra � Rb
���� �Rd� �Ra� �Rb� LDA Rd�Ra�Rb Rd�AQ �Load� � Ra � Rb
���� �Rd� �Ra� �Rb� SJMP Rd�Ra�Rb Rd�Jmp�Queue � Ra � Rb
���� �Rd� �Ra� �Rb� ADD Rd�Ra�Rb Rd � Ra � Rb
���� �Rd� �Ra� �Rb� XNOR Rd�Ra�Rb Rd � Ra XNOR Rb
���� �Rd� �Ra� �Rb� XOR Rd�Ra�Rb Rd � Ra XOR Rb
���� �Rd� �Ra� �Rb� OR Rd�Ra�Rb Rd � Ra OR Rb
���� �Rd� �Ra� �Rb� AND Rd�Ra�Rb Rd � Ra AND Rb
���� �Rd� �o�set� MVPC Rd�o�set Rd � PC � o�set
���� �Rd� ���� �Rb� SHRA Rd�Rb Rd � shift right arithmetic Rb
���� �Rd� ���� �Rb� SHRL Rd�Rb Rd � shift right logical Rb
���� �Rd� ���� �Rb� SHLL Rd�Rb Rd � shift left logical Rb
���� ��xx �Ra� �Rb� SNE Ra� Rb CC�Queue � �Ra �	 Rb�
���� ��xx �Ra� �Rb� SGE Ra� Rb CC�Queue � �Ra � Rb�
���� ��xx �Ra� �Rb� SGT Ra� Rb CC�Queue � �Ra � Rb�
���� ��xx �Ra� �Rb� SEQ Ra� Rb CC�Queue � �Ra 	 Rb�
���� �Rd� �Ra� �Rb� SUB Rd�Ra�Rb Rd � Ra � Rb
���� �Rd� �value� MVIL Rd�value Rd
h � ��� Rd
l � value
���� �Rd� �value� MVIH Rd�value Rd
h � value� Rd
l� ��
���� �o�set�� BCND o�set if CC�Queue then PC � PC � o�set
���� xxxx xxxx xxxx JMP PC � Jmp�Queue

Figure �� NSR Instruction Set

��� Control Flow

All control �ow decisions are made by the Instruction Fetch unit based on
conditions set up in advance by the Execution unit� Conditional branch �BCND�
instructions and jump �JMP� instructions are handled and consumed entirely
by the IF unit and do not proceed any further though the NSR pipeline� The
semantic convention used is that branches implement an o	set relative to the
program counter �PC� while jumps are made to a speci�c address�

BCND instructions are recognized by the Instruction Fetch unit and cause the
program counter to either be incremented by one �branch not taken�� or to be
updated by adding a signed constant present in the opcode �branch taken��
The decision to take the branch or not is made based on a condition code �CC�
bit� This CC bit is computed in advance by the Execute unit and stored in a
FIFO queue between the Execute unit and Instruction Fetch unit�

Note that the arithmetic instructions do not set the condition bit� These
CC bits are set only by the explicit condition code setting instructions� These
instructions compare the values contained in a pair of registers and set the
condition code based on the result of that comparison� The prototype NSR
processor implements EQ� NEQ� GT� and GE comparisons�

Each BCND instruction consumes one CC bit from the CC queue in order to
make the branch decision� Thus� the CC bits generated by the Execute unit and
used in the Instruction Fetch unit must obey a one�to�one producer�consumer
relationship�

THE NSR PROCESSOR PROTOTYPE �

Jump instructions are also handled in the Instruction Fetch unit� In this
case� the target address is computed by the Execute unit in advance by adding
the contents of two registers with the SJMP instruction and sending the result
to a FIFO queue� The Instruction Fetch stage� upon seeing a JMP instruction�
dequeues an address from the Jmp�Queue and uses it to update the value of
the PC� The jump addresses and JMP instructions must also obey the producer�
consumer relationship� One easy way to halt the NSR processor in a deadlock
is to issue a JMP instruction before any SJMP instruction� in which case the
Instruction Fetch unit will wait forever for the jump address to show up in the
queue�

The e	ect of the decoupling of the branch and jump instructions is similar to
the common idea of delay slots� However� rather than using a �xed number of
delay slots� the programmer is free to put any number of instructions between�
for example� the SNE instruction and the BCND that uses the generated condition
code� If many instructions are issued between these two then the condition code
will be waiting when the BCND is executed and there will be no stalling of the
pipeline and no delay� If� on the other hand� the SNE is followed directly by the
BCND� then the Instruction Fetch stage will simply wait for the condition code to
be produced before proceeding with the branch� Note that since all the stages
are self�timed� no explicit control of the pipeline is required to implement this
possible stall and no NO�OP instructions are required to �ll the delay slots�

��� Memory Access

The memory address space consists of �����
��bit words� addressed se�
quentially from �x���� to �xFFFF� For this prototype version of the NSR� the
smallest �and indeed only� addressable memory element of the NSR is a
��bit
word�

Memory access on the NSR is decoupled through FIFO queues� There are�
in fact� no standard load and store instructions in the NSR instruction set�
Instead� memory addresses are computed and sent to the Memory Interface
which processes the requests and queues up the results� An LDA instruction
is exactly like an ADD instruction with the result also sent to the Memory
Interface as an address to load from� The result of an STA instruction is likewise
considered an address in which to store data�

The programmer transfers data between the NSR and memory by accessing
register R
� a special register which is actually connected to queues to and
from the memory� When the program reads from register R
 �R
 is the source
register for some operation� the result is data from memory out of the Load
Data Queue �LDQ�� and when the program stores into register R
 �R
 is the
destination register of some operation�� that data gets queued up to be stored
into memory through the Store Data Queue �SDQ�� Neither operation takes
place until the corresponding address has been placed into the Address Queue
�AQ� The memory access queues are shown in Figure ��

The Memory Interface uses the information in these queues to perform mem�
ory cycles� When a load address is at the head of the AQ� a read cycle is initi�

THE NSR PROCESSOR PROTOTYPE �

Memory

Data

MEM unit

R1 Register

File

Unit

Execute
Address Queue

Store Data Queue

Load Data Queue

Figure �� NSR Memory Queues

ated and the resulting data are placed in the LDQ� When a store address is at
the head of the AQ� and there are data at the head of the SDQ� a store cycle
is initiated and those data are stored to memory� Because the memory oper�
ations are decoupled� several requests may be queued before they are needed�
For example� by placing an LDA instruction several instructions in advance of
the instruction that requires the memory contents� the memory access latency
is hidden� Again� this is similar to delayed loads with the advantage that any
number �including zero� instructions may be executed between the initiation
of the load and the use of the loaded data� As with control �ow operations� no
explicit control of the pipeline is needed to generate possible stall cycles�

Note that each time an instruction uses register R
 as a source� it dequeues
one word from the LDQ� This means that a di	erent value may be received
each time R
 is accessed� For example� if two LDA instructions have been issued
previously� then the instruction ADD r��r��r� will add the two values loaded
from memory and store the result in R�� In fact� if an address has also been
queued with an STA instruction� the instruction ADD r��r��r� will add two
values from memory and store the result back to another memory location�

Interleaved STA and LDA instructions may be used without concern� Although
the LDQ and SDQ are independent� there is only one Address Queue� In
addition to enqueuing the address� a bit is enqueued which indicates whether
the address is for a write or read operation� By sharing the AQ� read�after�write
hazards are avoided� However� the unwary programmer can easily deadlock the
NSR processor by issuing an instruction that uses R
 as a source before queuing
up an address using an LDA instruction� The processor will stop and wait for
the result from memory that will never arrive� Note that it is a simple matter
for compilers to avoid this problem�

THE NSR PROCESSOR PROTOTYPE �

System Unit Chips Used Logic Modules Utilization

Instruction Fetch
 Actel
���A ��
���
Instruction Decode
 Actel
�
�A ��� ���
Execute
 Actel
���A �
� ���
Register File � Actel
���A ��� each ���
Memory Interface � Actel
�
�A ��� each ��

Figure �� NSR FPGA Implementation

2

Rd

RF

CLR

ADDR

LDQ

R/A

RESULT

SOURCES

R/A

R/A

R/A

INIT

CC

CLR INITINST

R/A

R/A-JMP

R/A-MEM

R/A-RFRESULT

SOURCES

R/A-CC

R/A

EX

MEM-INFO

1

2

1

1

2
2

2

CLR INIT

INSTR/A

RFADDRINST

R/A R/A

ID

1

2

8

R/A

R/A

IF

R/A

JMPADDR

INST

INIT

DATAACK

DATA/ADDR

CLR
CC

ADDRREQ

ADDRACK

1

IMem

DATAACK

DATA/ADDR

ADDRACK

ADDRREQ

DMem

R/W

R/A

ADDR

DATA

16

16 14

16

16

16

16

16

16

4

4

DATA

ADDR

R/A

R/W CLRDATA INITMEM-INFO

LDQ

R/A

R/A

MEM4

Figure �� FIFO Queue Lengths

� Prototype Implementation

The separate functional units of the prototype NSR processor are each im�
plemented using Actel FPGAs� The two�phase transition control modules and
bundled data modules have been assembled from a library of macros designed
to be used with the Actel parts ��� ��� The individual units of the NSR are
designed to behave as pipeline stages that also process the information that
�ows through them ��� �� These parts were designed and implemented by
students in a graduate seminar on VLSI architecture using the Workview suite
of schematic capture and simulation tools from ViewLogic�

The resulting FPGAs have been assembled as a wire�wrapped prototype for
testing and evaluation� The number of Actel FPGA chips used to implement
each of the parts of the NSR and the utilization of those chips are shown in
Figure �� The NSR processor is connected to a standard PC clone to allow
programs to be loaded into the NSR�s memory and data to be retrieved to the
PC for analysis�

THE NSR PROCESSOR PROTOTYPE 	

The individual units of the NSR are connected with self�timed FIFO pipelines
to provide a higher degree of overlap in instruction execution� The length
of each FIFO is not a factor in insuring correct operation� but may become
signi�cant in improving the throughput of the processor� The actual length of
each FIFO was determined by the amount of space left over on each FPGA
after the essential functions were implemented� The block diagram of the NSR
functional units along with the length and location of the connecting FIFOs is
shown in Figure ��

��� Instruction Fetch

The Instruction Fetch unit is responsible for maintaining the program counter
�PC�� fetching instructions from memory� and passing executable instructions
on to the next stage of the NSR to be decoded and executed� As described
earlier� the IF unit detects and handles all control �ow instructions directly�
The IF unit reads instructions from the NSR memory� There are then several
actions which may be taken by the IF unit� If the opcode corresponds to a
jump instruction� an address is taken from the Jmp�Queue and the program
counter is loaded with that address� If the opcode is a conditional branch� a
bit is taken from the CC�Queue� and if the bit indicates that a branch should
occur a
��bit signed o	set obtained from the opcode is added to the program
counter� Otherwise� the program counter is incremented by one to fetch the
next sequential instruction� The jump and branch instructions go no further
through the NSR� All other opcodes are passed on unchanged to the Instruc�
tion Decode unit for further action� This action is similar to the concept of
�squashing� instructions� often found in synchronous processors� However� the
NSR does not convert the branch and jump instructions into NO�OPs� but
instead removes them completely from the main processor pipeline�

There is one additional opcode which is recognized by the IF unit for special
handling� Since the program counter is only stored in the IF unit� and all
other units operate independently� there would normally be no way to obtain
a �current� instruction address for use as a return address in a subroutine�
To deal with this case� the MVPC instruction causes the IF unit to send the
Program Counter value to the next stage� Before passing the PC value on�
an ��bit signed o	set is extracted from the MVPC opcode and added to the
current PC value� The MVPC instruction is passed on to the ID unit� and is
followed immediately afterwards by the modi�ed PC value� The current PC
value held in the IF unit is then incremented normally� The MVPC instruction
does not alter the program counter value used to fetch the next instruction�
but allows the programmer to obtain the modi�ed address to be placed in a
register for later use� It is the responsibility of the ID unit to recognize the
MVPC instruction and handle the subsequent address accordingly�

The prototype board on which the NSR is built has only a single memory
address space� but the NSR has separate logical paths for instructions and
data� In order to share the access to the memory� a simple round�robin arbiter
is used� The IF unit must take turns with the MEM unit when accessing the
memory� In addition� due to pin restrictions� the interface to the instruction

THE NSR PROCESSOR PROTOTYPE 		

Bits�
�
�

� � � � � � � �
 �
Usage� Destination Source A V Source B V

Figure �� Register Usage Encoding

S
T
A

L
D
A

S
J
M
P

A
D
D

X
N
O
R

X
O
R

O
R

A
N
D

M
V
P
C

S
h
i
f
t

S
e
t
C
C

S
U
B

M
V
I
L

M
V
I
H

R
1

R
0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Program Counter Value

Immediate Operand

Shift Code

Cond

Figure
�� Execution Unit Operation Encoding

memory uses a
��bit multiplexed bus� which carries both the address and the
opcodes� The Instruction Fetch unit must provide the proper signals to fetch
instructions from memory� and must obey the protocols established to ensure
that the data memory unit can also access the system memory� Details on the
memory arbitration will be found in section ����

��� Instruction Decode

The ID unit has two responsibilities� It takes executable instructions from
the IF unit and informs both the Execute unit and the Register File of what
actions they must take� The Register File may provide two� one� or no register
contents to the Execution unit for consumption� It must also be told whether
to expect a result from the EX unit and to what register it should route that
result� There are multistage FIFO queues between the ID� RF� and EX units�
It is not necessary that all instructions be synchronized� but each unit must
know how many operands and results are needed� and what to do with them
when they arrive�

The source and destination information is encoded and sent to the Register
File using the format shown in Figure �� Since register R� cannot be overwrit�
ten� it is often used as a destination when the result of an instruction does not
need to be saved� The destination �eld is therefore all zeros when the result
is not to be placed in a register� The source registers cannot be encoded in
this way� since register R� is a valid source� so they are encoded with a bit
indicating their validity�

The EX unit knows how many operands each instruction requires� but it
must be told what instruction to perform and where to send the results� The
results may be sent to the Register File� to the Memory unit as an address or

THE NSR PROCESSOR PROTOTYPE 	�

as data� placed in the Jmp�Queue� or simply discarded� It is also possible to
route the results to more than one of these destinations� In the case of a MVPC

instruction� the subsequent PC address is passed unchanged through the ID
and EX units and routed to the Register File�

There are sixteen possible opcodes in the NSR instruction set� so we can
indicate the instruction to the EX unit by dedicating one bit of the
��bit
ID�EX communication path to each opcode class� There are two bits left over
corresponding to the JMP and BCND instructions� which are never seen by the
ID unit� These two bits are used to indicate whether the result is to be sent to
the MEM unit �R
�� or discarded �R��� This encoding is shown in Figure
��

��� Execute Unit

The Execute unit is told what operation to perform by the ID unit� accepts
the correct number of operands from either the Register File or�in the case of
a MVPC instruction�from the ID unit� performs the operation� and routes the
results to the correct places� The actual operations are standard mathematical
and logical operations �see Figure ��� Zero� one� or two operands are provided
by the Register File as instructed by the ID unit� but the EX unit doesn�t know
or care from which registers the operands come� There is only a single
��bit
path for source operands� so if two operands are required� they are presented in
sequence� This decision was made due to the limited pin count of the FPGAs�

The ID unit also tells the EX unit how to route the result� The result may
be presented to the RF unit to be written into a register� or it may be sent
to the MEM unit as an address or as data� The result may also be discarded�
as is common when the operand has a side�e	ect� This is often the case with
the SJMP instruction� for example� which loads a value into the Jmp�Queue�
With side�e	ects� it is possible that the results may be distributed to more
than one destination� For example� the instruction STA r��r��r� would add
the contents of registers R� and R�� and put the result in both the Store
Address Queue �as a side e	ect of the STA� and the Store Data Queue �because
the destination register is R
� and would thereby initiate a memory write
operation�

��� Register File

There are sixteen
��bit registers available for use� numbered R� through
R
�� Any of these registers may be used as source or destination for any
instruction� There are three classes of registers� however� Registers R�� R
�
and R
� are hardwired to the constant values of zero� one� and negative one�
respectively� Writing to these registers has no e	ect on their contents� Registers
R� through R
� are normal general purpose registers� In the original design�
R
 and R
� were also general purpose registers� but due to space restrictions
they were hardwired to contant values for the NSR prototype� Register R

is not a register at all� but is actually the access point for the memory FIFO
queues�

The Register File unit is implemented in two FPGAs because of space and

THE NSR PROCESSOR PROTOTYPE 	�

ID

EX

MEM

Register File

Register R1

Clears bits after result

bits to clear before

Waits for Scoreboard

Source Process

sending operands to EX

Result Process

Dest Queue

Dest Source Source

Sets Scoreboard bits on

receipt of destination.

is written back.
S
c
o
r
e
b
o
a
r
d

b
i
t
s

R
e
g
i
s
t
e
r
s

Figure

� Register File Unit Processes

pin limitations� Both FPGAs are identical� and each contains an eight�bit
slice of each of the registers� There is a mode pin which is used to designate
one of the parts as the Master section to insure that both units will operate
together� Logically� the Register File consists of two parallel processes� The
�source� process provides source operands to the EX unit� while the �result�
process writes the EX unit results back to the appropriate registers� The two
processes coordinate their actions with the use of a FIFO queue containing the
register number of the destination and with a scoreboard bit for each register�
The scoreboard bit ensures that a register which has already been named as a
destination is not used as a source until the results are available�

The source process begins operation when the usage information is received
from the ID unit �see section ����� Three operations are performed in sequence
to provide two sources and a destination� If the �rst source is a valid register
address then a mux selects the appropriate register contents and scoreboard
bit for examination� If the scoreboard bit is set� the output transition sig�
nal is delayed until the scoreboard bit is cleared� When the scoreboard bit
is cleared� the register contents are provided to the EX unit� However� if the
source register is R
� then the scoreboard bit is not checked� the source re�
quest is sent directly to the MEM unit� and the process waits until the MEM
results are provided� then passes them on to the EX unit� When the source
has been acknowledged by the EX unit� the same process is repeated for the

THE NSR PROCESSOR PROTOTYPE 	�

second source register� If either source register is not required� the requesting
process is skipped� When all sources have been provided and acknowledged�
the destination is dealt with�

If the destination is R�� no action is needed and the next register usage
information is requested from the ID unit� Otherwise� the scoreboard bit for
the destination register is set� unless it is already set in which case the process
waits until it is cleared before setting it� The destination register number is
enqueued in a FIFO to await future results from the EX unit� and the next
register usage information is requested�

If an operand is requested from a register which is already being used for a
destination �as indicated by the scoreboard bit�� the operand is not provided
until the results have been written back� FIFO queues bu	ering the ID usage
information� the destination register� and the EX results help to hide varations
in execution times�

The result process begins when a destination register address is placed in the
destination FIFO� The process waits for results to be sent from the EX unit�
When they arrive� the destination register number is popped o	 the destination
FIFO� the results are written to the appropriate register and the corresponding
scoreboard bit is cleared�

There is no direct correspondence between the number of source operands
provided by the RF unit and the number of results written back� The ID unit
coordinates the sourcing and disposition of data between the RF unit and the
EX unit� In addition� results from the EX unit which are destined for R
 go
directly to the MEM unit� without passing through the register �le� Only when
R
 is used as a source does data from memory pass through the RF unit� and
even then the address must be sent from the EX unit directly to the MEM unit
to initiate the read cycle� Figure

 shows the structure of the Register File�

��� Memory Interface

The data memory �MEM� unit handles requests to read and write from
the system memory� This unit contains the three queues needed to handle
memory interfaces �see �gure ��� Since there is only one Address Queue� all
memory accesses are sequential� allowing decoupled memory access to take
place without the possibility of read�after�write errors�

When a LDA or STA instruction is executed� an address is composed and then
placed in the Address Queue �AQ�� along with a bit indicating whether the
address corresponds to a load or store operation� Load addresses which reach
the front of the AQ initiate a load operation� The address is placed on the
external bus� and the appropriate control signals are generated to fetch the
memory contents� The MEM unit must convert the two�phase transitions that
the NSR uses into the four�phase level�sensitive signals expected by the system
SRAM� A simple external delay line is used to provide the request�acknowledge
handshaking expected by the NSR� When the memory contents arrive on the
data bus following the read signal� they are enqueued in the Load Data Queue�
the FIFO queue which is used by the register �le to satisfy read requests from

THE NSR PROCESSOR PROTOTYPE 	�

register R
�

Memory writes operate in a similar fashion� They are initiated when both
a store address and a store data value reach the head of the Address Queue
and the Store Data Queue� respectively� At that point� both the address and
data are placed on the external busses� and the correct signals are generated to
produce a write cycle on the system memory� Although the programmer uses
register R
 as a destination in order to write to memory� the data to be written
never actually passes through the register �le� but instead comes directly from
the EX unit� Recognizing that R
 is a destination and producing the correct
routing signals is one of the functions of the ID unit�

The MEM unit is implemented in two FPGAs� consisting of both a master
and a slave chip� These chips are very similar� but the master coordinates
the actions of the two� and handles the interface to the memory arbiter� Each
chip contains eight bits of the
��bit data queues� with the master chip also
containing the Load�Store bit of the Address Queue�

��� Memory Arbitration

The IF unit and the MEM unit must take turns accessing the single system
memory� To accomplish this� a round�robin arbiter is built into parts of both
units� This arbiter passes a token between the two units� and only the unit
which has the token is allowed to access the memory� Usually� the IF stage
performs most of the memory accesses� Between each instruction fetch� the
token is passed to the MEM unit� If there are no pending data reads or
writes� the token is simply returned to the IF unit� If the MEM unit wishes to
access memory� it keeps the token until one read or write operation has been
completed� The design of the arbiter is shown in Figure
��

The arbiter starts when a single transition occurs on the INIT line thereby
inserting a token into the loop� The token circulates until one of the processes
requests it with a transition on its REQ�MEM�PROC line� This causes the token
to be diverted until the memory process is �nished� Notice that because of
the way the Q�select module samples its probe input� the token may pass by
twice before the request is recognized� The �rst pass samples the probe input�
and the token is diverted on the second pass� This arbiter design is not very
e�cient� but it uses only two pins on each chip� and it is fair�

� Performance and Evaluation

The Protozonetm prototype board produced by Standford University con�
tains memory� logic� and connections to communicate with a standard PC
clone� The NSR occupies the development space on this board� using wirewrap�
ping sockets for the FPGAs� The NSR prototype is shown in Figure
��

Debugging the NSR was remarkably simple� Each chip was thoroughly sim�
ulated with unit delays as part of the design process� Once the functionality
was correct� the design was placed and routed on the Actel parts� the more
realistic delays back�annotated� and the simulations were repeated� The main

THE NSR PROCESSOR PROTOTYPE 	�

B A

X
O
R

Y

PROBE

SMPL

TOUT

REQ

FOUT

CLR

Q-Select

INIT

CLR

or writes memory

possibly data) and reads

Process sets address (and

IF chip

Process

ACKREQ

Chip Boundry

Mem chip

REQ-MEM-PROC
PROBE

SMPL

TOUT

REQ

FOUT

CLR

Q-Select

Process

ACKREQ

ACK-MEM-PROC

ACK-MEM-PROC

ARB-BARB-A

REQ-MEM-PROC

CLR

INIT

Process sets address

and reads from memory

B A

X
O
R

Y

B A

X
O
R

Y

B

A

XOR
Y

B A

X
O
R

Y

B

A

XOR
Y

B A

X
O
R

Y

Figure
�� Round�Robin Arbiter

problem with this method was that the Actel tools do not provide a way to
specify the bundling constraint in the routing process� and so delays had to be
added by hand in some cases by inserting bu	ers in the control paths� To fur�
ther complicate matters� the delay changes each time another place�and�route
is performed because of the relatively high resistance of the Actel antifuses� It
would be very useful if routing tools were available which allowed the designer
to specify that the delay of a request line be greater than the delay of the
associated data lines�

Some circuitry was added to each chip for debugging purposes� Each unit
has an extra gate attached to the main incoming request signal which can
inde�nitely delay the request transitions from the connected units� These gates
are controlled by switches installed on the protoboard along with the rest of
the NSR� allowing instructions to be stepped through the pipeline one by one�
In addition� several LEDs are used to monitor the state of the request and
acknowledge lines between chips� so that when the NSR is deadlocked� there is
some indication as to which unit is causing the problem� Since the request and
acknowledge transitions occur in pairs� starting from a zero level� any mismatch
of requests and acknowledges can be easily detected� Additional lights are used
to monitor the state of the memory arbiter�

THE NSR PROCESSOR PROTOTYPE 	�

NSR

FPGAs

DISPLAY

DRIVER MEMORY

PROTOZONE LOGIC

DEBUGGING SWITCHES AND LIGHTS

Figure
�� The NSR Prototype

THE NSR PROCESSOR PROTOTYPE 	�

Another useful debugging aid is a bus monitor� Since the NSR can be stopped
temporarily by holding up the request signals between chips� the data placed
on the inter�chip buses can be examined� A driver and encoder for a set of four
seven�segment LEDs was built into an FPGA� and a ribbon cable and plug was
used to monitor the bus contents� This is very useful in determining whether
the correct data was being transmitted between units�

These switches and lights are useful in getting the NSR to communicate
among its component parts� To insure correct operation� traces of the inter�
chip buses can be made using a standard logic analyzer� Although the NSR
uses transitions instead of levels to indicate when the data is valid� by using
two channels of the logic analyzer on the same bus and triggering one on the
rising edge of the request line and the other on the falling edge� a complete
trace of the bus activity can be obtained�

��� Software tools

Communicating with the NSR is fairly simple� The protoboard memory
is mapped directly into unused memory space on the PC� as byte addresses
D�������� to D����FFFF�This addresses only � Kbytes� but another � Kbytes
is available by changing a bit on a speci�c I�O port� The NSR sees the two
bytes with the same PC address as a single
��bit word� Either the NSR or the
PC can access the protoboard memory� but not both� Access is moderated by
a toggle switch� Several simple programs have been written to transfer data
between the NSR memory and the PC� A load utility takes a simple text �le
describing the address and contents of the NSR memory and loads the memory
with the appropriate values� An unload utility reverses the process�

����� Assembler

A simple assembler has been written to convert the NSR assembly language
instructions into data which can be loaded into the NSR memory and executed�
The assembler allows for labels� symbols� data constants and relative o	sets�
but does not produce object �les which can be linked with others� The output
of the assembler is a text �le containing the address and data of each a	ected
NSR memory location� The NSR always begins execution at location �x�����

A nice ability of the assembler is to add some additional opcodes for instruc�
tions not implemented directly by the NSR� The NSR only tests for GT� GE�
EQ� and NE conditions� The LE and LT conditions are implemented by the
assembler as GE and GT tests� with the operands reversed� For example� the
instruction SLE r��r� would be implemented as SGE r��r� instead� In the
same way� the NOT r��r� instruction is assembled as XNOR r��r��r��

One of the �rst programs to be run on the NSR was a simple test to generate
Fibbonacci numbers� The source is shown in Figure
� which provides a good
example of the assembly language for the NSR�

THE NSR PROCESSOR PROTOTYPE 	�

� this is a test to generate Fibbonacci numbers

text �EQU �x����

data �EQU �x���� � write results here

limit �EQU �� � only do �� of em

start� seq r��r� � jump to main

bcnd main

�ORG text

main� mvih r��hi��data	

mvil r
�lo��data	

or r��r��r
 � r� points to output place

mvil r
��x� � we�ll repeat r� r� � r

mvil r���x� � and shift �em down�

mvil r���lo��limit	 � just do a few

xor r��r��r� � init count register

sta r��r��r� � gonna write one

or r��r
�r� � write r

add r��r��r�� � increment r�

sta r��r��r� � gonna write one

or r��r��r� � write r�

add r��r��r�� � increment r�

loop� add r��r��r
 � r� r� � r

sta r��r��r� � gonna write one

or r��r��r� � write r�

add r��r��r�� � increment r�

or r
�r��r� � copy r� to r

or r��r��r� � copy r� to r�

add r��r��r�� � r���

sle r��r�� � branch if r� � r��

bcnd loop � take branch

jmp � die

Figure
� Fibbonacci Program Source

THE NSR PROCESSOR PROTOTYPE �

����� Simulator

To aid in the development of test programs for the NSR while the prototype
was still being developed� a simulator was written� In addition to speeding
program development� the simulator was also useful in suggesting changes to
the instruction set� At �rst� the MVPC instruction did not add anything to
the program counter value� requiring the programmer to dedicate a register
to �xing up the PC value before using it� After writing a few programs and
running them on the simulator� it was realized that this was awkward� and the
modi�cation to the instruction set was made�

The simulator is based on an implementation of the C�Threads library rou�
tines ���� and has been built on both Sun SPARC and Hewlett�Packard work�
stations� The simulator consists of C�Threads libraries which are machine�
dependent� plus the actual NSR simulation code written in C� Separate threads
are used for each functional unit of the NSR� with two threads required for the
Register File� The functional units of the simulator communicate over pipelines
implemented with semaphores�

Although the simulator is accurate in that it produces the same results as
the NSR when running the same programs� it does not attempt to model the
performance of the NSR� Some discussion is underway to determine whether
modifying the simulator to do so would be worthwhile�

��� Speed

The speed of the NSR varies depending on the program it is running� but
the best performance to date has fallen between
�
� and
�� MIPS� This is
relatively slow� but is not surprising since the Actel devices are relatively slow
and all design decisions were made to minimize the number of gates and�or
pins needed from the FPGAs� Speed optimizations were not considered for the
prototype�

Performance was measured by placing a series of exactly
��� instructions in
a large loop and then executing that loop ����� times� after which the NSR was
deadlocked� Execution time was measured by placing an oscilloscope probe on
the request signal between the IF and ID� and measuring the duration of the
active signal with a stopwatch� Typical execution times were on the order of
one minute� with repeatability within half a second� for an accuracy of within

 percent� A variety of test programs have been run with the results listed in
Figure
��

��� Power Consumption

To measure power consumption� the power supply traces on the prototype
printed cicuit board were cut and rerouted to isolate the NSR FPGAs from the
rest of the protoboard� An ammeter was place in series with the FPGA power
supply� and current drain was measured while various programs were running�
and also while the NSR was idle or deadlocked �Figure
��� All measurements
were made with the LED bus display and driver removed� although it made

THE NSR PROCESSOR PROTOTYPE �	

NSR State Current Drain

CLR � �� RESET � � ��� mA
Deadlocked on JMP� Arb ON ���� mA
Deadlocked on JMP� Arb OFF ��� mA
Running BCND loop ���
 mA
Running SJMP loop ��� mA

Figure
�� NSR Current Drain

very little di	erence�

As expected� the current drain was higher when data memory was accessed�
since the MEM unit draws less current when idle� Correspondingly� programs
which only branched and did not use any registers used less current� A heavier
drain was also noted when the operands of instructions had a larger number
of ones in their binary representation�

The standby current for a typical Actel Act�
 series FPGA should be around
� mA with a maximum of
� mA �
�� if all outputs are unloaded� The mea�
sured standby current for the seven FPGAs comprising the NSR was ��� mA�
Surprisingly� the current drain was actually less while running some particular
programs than when deadlocked� We currently have no explanation for this
behavior� except to note that the perversity of the universe tends toward a
maximum�

� Conclusions and thoughts on Fred

Plans are being made for the development of a ���bit self�timed processor
which would incorporate several architectural changes and improvements when
compared with the NSR� For obscure reasons� this processor will be called
Fred� With Fred� we hope to develop a processor capable of acting as the main
component of a standalone computer system� If time and resources permit� we
would like to be able to build a Unix platform with it�

Accordingly� there must be several architectural changes� We plan to provide
for ���
��� and ���bit memory accesses� I�O ports� hardware and software
interrupts� and increased parallelism with additional arithmetic or logical units�
It might also be desirable to separate loads from stores� allowing out�of�order
memory access if needed� Much time will need to be devoted to speed issues�

From a programming standpoint� there are many improvements to the in�
struction set which would be desirable in a ���bit version of the NSR� These
include adding a carry bit for multiple precision arithmetic� providing for im�
mediate operands in several instructions� allowing for additional classes of in�
structions� and providing software exceptions� The addition of a protected
mode of operation for system security would be useful also�

Of course� we may do something completely di	erent�

�Apparently� Erik just likes the name�

THE NSR PROCESSOR PROTOTYPE ��

Program Contents Seconds MIPS milliAmps

ADD�
S add r��r��r� � �
�� ��
�
ADD�
S add r��r���r� � �
�� ��
�
ADD�
S add r��r��r� � �
�� �
�

add r���r��r�
add r���r��r�
add r���r��r�

ADD�
S add r��r��r� � �
�� �
�
ADD�
S add r��r��r� � �
�� �
�
ADD
S add r��r��r� � �
�� ���
�
OR�
S or r��r��r� � �
�� �

OR�
S or r��r��r� � �
�� ��
�
SEQ�
S seq r��r� � �
�� �
�

bcnd ��
SEQ�
S seq r��r� � �
�� �
�

bcnd ��
JMP�
S sjmp r��r��r� �� �
�� ��
�
r� � PC jmp
MVPCJMP
S mvpc r���� � �
�� ��
�

sjmp r��r��r�
jmp

LDA�
S lda r��r��r� � �
�� ��
�
or r��r��r�

STA�
S sta r��r��r� �� �
�� ��
�
STA�
S sta r��r��r� �
�� ���
�

or r��r��r�
LDASTA�
S lda r��r��r� � �
�� ���
�

sta r��r��r�
LDASTA�
S lda r��r��r� �
�� ���
�

or r��r��r�
sta r��r��r�

MEM�
S lda r���r��r� � �
�� ��
�
r� � ��� r� � � lda r���r��r�

sta r���r��r�
add r��r��r�

MEM�A
S lda r���r���r� �
�� ���
�
lda r���r����
sta r���r����
add r��r��r�

MEM�
S lda r���r��r� � �
�� �
�
r� � r� � � lda r���r��r�

sta r���r��r�
add r��r��r�

MEM�A
S lda r���r��r� � �
�� ��
�
lda r���r��r�
sta r���r��r�
add r��r��r�

Figure
�� Performance and Current Drain

THE NSR PROCESSOR PROTOTYPE ��

References

� Actel Corporation� ACT Family Field Programmable Gate Array Data�
book� March
��
�

�� Erik Brunvand� A cell set for self�timed design using actel FPGAs� Tech�
nical Report UUCS��
��
�� University of Utah�
��
�

�� Erik Brunvand� Implementing self�timed systems with FPGAs� In W� R�
Moore and W� Luk� editors� FPGAs� chapter ���� pages �
������ Abingdon
EE�CS Books�
��
�

� Erik Brunvand� Translating Concurrent Communicating Programs into
Asynchronous Circuits� PhD thesis� Carnegie Mellon University�
��
�
Available as Technical Report CMU�CS��
�
���

�� Erik Brunvand and Robert F� Sproull� Translating concurrent pro�
grams into delay�insensitive circuits� In ICCAD���� pages �������� IEEE�
November
����

�� Eric C� Cooper and Richard P� Draves� C threads� Department of Com�
puter Science� Carnegie Mellon University� September
����

�� J� R� Goodman� J� Hsieh� K� Liou� A� R� Pleszkun� P� B� Schechter� and
H� C� Young� PIPE� A VLSI decoupled architecture� In ��th Annual
International Symposium on Computer Architecture� pages ������ IEEE
Computer Society� June
����

�� C� L� Seitz� System timing� In Mead and Conway� Introduction to VLSI
Systems� chapter �� Addison�Wesley�
����

�� Ivan Sutherland� Micropipelines� CACM� ������
����

�� Wm� A� Wulf� The WM computer architecture� Computer Architecture
News�
��
�� March
����

