
Robust Boolean set operations for manifold solids 
bounded by planar and natural quadric surfaces. 

Xiaohong Zhu, Shiaofen Fang, Beat D. Bruderlin 

UUCS-92-020 

Department of Computer Science 
University of Utah 

Salt Lake City, UT 84112 USA 

October 16, 1992 

Abstract 
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of robustness in geometric modeling, that dependent relations are handled inconsistently by 
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the operations, and redundant data can be eliminated in the set operation algorithm, so that 
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This paper describes our latest effort in robust solid modeling. An algorithm for set 

operations on solids bounded by planar and natural quadric surfaces, that handles all geo

metrically degenerate cases robustly, is described. We identify as the main reason for the lack 

of robustness in geometric modeling, that dependent relations are handled inconsistently by 

disregarding the dependencies. Instead of using explicit reasoning to make dependent deci

sions consistent, we show that redundant computation can be avoided by correctly ordering 

the operations, and redundant data can be eliminated in the set operation algorithm, so that 

the result is guaranteed to be a valid two-manifold solid. 

1 Introduction 
, 

It is generally acknowledged that geometric algorithms often fail in some degenerate cases 

such as coplanar planes, co-cylindrical cylinders and cylinders tangent to planes, etc. These 

cases occur a lot in engineering design, and it is important that they are handled robustly. 

Geometric objects are conceptually continuous, yet the computation we use is always 

discrete (for instance, floating point numbers are used to approximate real numbers). A 

geometric representation includes both geometric information and topological information. 

In a geometric algorithm, the topological information is often constructed by computing 

relations from the geometric information. Because these relations are often interdependent, 

an algorithm can easily create inconsistencies in the topological data, when the computation 

is not precise. Algorithms with inconsistent topological data will either fail or generate 

non-sense results as shown with some examples in [6] and [13]. 

A number of recent publications attempt to perform precise computations by using exact 

numbers [10][25][32][33]. The authors made the assumption that geometric shapes can be 

represented by exact numbers, which is true, only for a limited domain (e.g. polyhedra). 
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The approaches in [5] and [35] use geometric perturbations to avoid positional degeneracy. 

However, avoiding degeneracies is not always acceptable in geometric modeling because they 

are usually intentional. Applying symbolic reasoning to guarantee the consistency of the 

geometric relations has been done by some researchers[15][20][31J. However, due to the 

complexity of the symbolic reasoning problem, they can only solve problems with limited 

implications or incompletely. 

Tolerance-based approaches have been studied in [1][2][7][8][6][29]. These methods use 

tolerances to keep certain information of the algorithm's decision-'making history. When 

making a new decision, the algorithm will check the tolerances to make the decision consistent 

with all the previous ones, and update the tolerances to reflect the new decision. While the 

results of tolerance-based approaches are generally satisfactory, significant extra computation 

is needed for all the tolerance operations. Also, inconsistencies cannot be completely avoided 

but only detected, and then resolved, usually by rerunning parts of the algorithm. 

We believe that robustness can be achieved for a specific algorithm by carefully order

ing the primitive operations of the algorithm with no or very little extra computation. We 

observe that robustness problem is mainly caused by a contradiction of redundant and im

precise computation. Imprecise computation does not generate inconsistencies if there is 

no redundancy in the data representation. In this paper we present an approach of remov

ing all the redundancies in a Boolean set operation algorithm for two-manifold 3D objects. 

The algorithm is robust, and at the same time efficient, because there is basically no extra 

computation required for achieving robustness. 

2 Derivation of Robustness 

To remove redundancies, we should first identify them, and then remove them properly. 

2.1 What is a redundancy 

\Ne distinguish two types of redundancies: 

1. Direct redundant data computation. For instance, when we intersect two planes f1 and 

f2, and later on intersect f2 with £1, this means that we compute the intersection of £1 

and f2 twice, but possibly with a different result. We call the redundancy caused by 

this direct redundant data computation a direct redundancy. This type of redundancy 
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can be easily avoided. The idea of removing direct redundancy has been represented 

in [15]. 

2. Indirect redundant data computation. 

For three planes, denoted by £1, f2 and f3 (as shown in figure 1), we first compute the 

intersection line e of £1 and f2. After this, we compute the relation of line e and the 

plane f3. If we find line e is on the plane f3, then the following implications apply. 

e . = /1 n /2 } ::::} { e = /1 n /3 ' 
e IS on /3 e = /2 n /3 

The intersection of £1 and f3, and the intersection of f2 and f3 are both coincident 

with e. In other words, the decision that e is on f3, in fact, implicitly computes the 

intersection of f1 and f2, and f2 and f3. Explicitly computing the other intersections in 

other parts of an algorithm would therefore create redundant data. The enlargement in 

figure 1 shows that, due to numerical imprecision there are actually 3 intersection lines. 

U sing a tolerance to decide the relations might determine that e is on f3 (the distance 

between e and f3 is smaller than that tolerance) but that the three intersections are 

not coincident (because their relative distance is slightly larger than the tolerance), 

which is contradictory, according to the above finding. 

Vve call the redundancy caused by such indirect, redundant data computation an in

direct redundancy. 

Totally removing redundancies in geometric algorithms would require geometric theorem 

proving, which is too complicated to be realized practically. In special cases, such as regu

larized boolean set operation, under the assumption that objects are two manifolds, we can 

attempt to eliminate redundancies. 

2.2 A hybrid data representation 

A hybrid data representation has been used in this algorithm to represent objects, which 

combines the half-space representation and boundary representation to obtain direct access 

to both boundary and volume information. 

The half-space representation of a solid can be expressed in the following normal 

form: 

unp+· 
I,) 

1 j 
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f1 , 
enlarge e 

Figure 1: three surfaces intersecting in one line 
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where the union and intersection operations are regularized set operations [12]. And Fi,j 

is an implicit surface, represented by implicit equation: 

P: f(x,y,z) = D 

F subdivides the 3D space into three regions: P+, pO and P-, namely the positive half 

space, the surface and the negative half space, where: 

p+ = {p: f(p) > D.D} 

pO = {p: f(p) = D.D} 

P- = {p : f(p) < D.D} 

Each term Bi = nj~;; in the half space representation is called a generalized convex 

body, denoted as GCB. A GCB is convex when all its bounding half spaces are convex 

(which is the case for the planes and natural quadrics used in our implementation). In 

general, however, a GCB is not a 3D convex set because not all half spaces are convex. The 

half space representation of a solid can then be described as a union of GCBs. 

The boundary representation has two parts, a topological description of the connec

tivity and orientation of vertices, edges, and faces, and a geometric description for embedding 

these elements in space[12]. 

The boundary representation we used in this algorithm is slightly different fr0m the well 

known half-edge representation described in the literature. The object has a list of bounding 

faces. Each face is bounded by a set of disjointed edge cycles which we call rings. One of 

the rings is the outside boundary of the face, the others (if exist) are bounding holes. Each 

vertex is the intersection of two edges that are on the same face (rather than in 3D). Each 

edge contains the following information : 

• incident vertices 

• neighbor half-edge 

• the face it belongs to 

• successive edge 

• direction of the edge (The convention is that the interior of the face is to the left, 

looking from outside) 
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Figure 2: The boundary representation 

The edge is oriented by distinguishing the two incident vertices by their order, one is 

defined as from vertex, and the other is defined as to vertex. The schema is shown in 

figure 2. 

2.3 Regularized boolean operations on hybrid representation 

Regularized boolean · set operations are an important tool used in constructing objects in 

geometric modeling. The operations are regularized union; regularized intersection, and 

regularized difference. They differ from the corresponding set theoretic operations in that 

the result is the closure of the interior of the solid, which eliminates "dangling" edges and 

faces, and isolated vertices. 

In the half space representation, 3D boolean operations are extremely simple. We 

only need the following set of rewrite rules for Boolean union (+), intersection (*) and 

difference (-). 
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(u n Fij) + (U n Gt,l) => (U n Fij) u (U n Gt.l) 
ij kl ij kl 

(un Fij) * (un Gt,l) => UU[(nFij) n (nGt,I)] 
ij kl ikj 1 

(U n Fij) - (U n Gt.l) => (U n F:j) * un Gt,l 
ij kl ij kl 

where an overline denotes the complement set. 

The geometric data of the representations are half spaces. The potential redundancies of 

this representation are the coincident identical surfaces (Null objects [Tilove] are not consid

ered redundant, but superfluous and will also be deleted; they don't affect the consistency). 

For the boundary representation, Boolean operations are fairly involved. The basic 

steps are: 

• Compute the membership classifications of the boundaries of one solid versus the other 

solid. This involves computing the intersection between boundaries of different solids 

and carrying out the inside/outside/on tests for a boundary against a solid. 

• Collect boundaries of the new solid by selecting parts of the boundaries (depending on 

the Boolean operations) after the membership classification. 

• Build the topological relationships and boundary hierarchy of the new solid. 

From the above we can see, that there are two kinds of computations: "direct" intersection 

computation (face vs. face, or edge vs. edge), and "indirect" intersection computation 

by computing geometric relations (incidence, coincidence). The latter one may lead to 

redundancy and inconsistency. 

2.4 Avoiding and Removing Redundancies 

In a previous section, we analyzed redundancies occurring in regularized boolean set opera

tions, next we want to either avoid the redundancy, or remove it when it is detected. 
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For the half space representation, to remove the redundancies, we will merge all 

the surfaces that are considered coincident within the specified tolerance. Afterwards, such 

identical half spaces may still occur in different places of the Boolean expression, but they 

will point to the same surface equation. 

For the boundary representation, to remove the redundancies, we need to do the 

following operations: 

For the direct intersection computation, including the face-face, ~dge-edge intersections, 

we use a similar approach, as mentioned in[15]. The direct redundancies, only depend on 

the algorithm, not on the geometry or relations, therefore, it is easy to rearrange the order 

of the algorithm to avoid these redundancies. 

For the indirect intersection computation (incidence), we cannot avoid all the redundan

cies ahead of time. Fortunately, we can detect redundant data, and delete it, when necessary. 

Relations between edges and faces can be intersecting, parallel, and on. 

The incidence relation of an edge with a face means that three faces intersect in one 

common edge. If we can assume that the object resulting from a Boolean set operation is a 2 

manifold, then we know that each edge must be the intersection of exactly two faces. However, 

temporarily we may obtain such an, incident edge-face relation leading to a redundancy that 

we need to detect and remove (during the computation of set operations such incidence 

relations occur relatively often). 

For example, as shown in figure 3, e is the intersection edge of face fl and face f2. Face 

fl, and face f2 are faces of the same GCB el, and face f3 belongs to GCB c2. We determine 

that e is on the face f3. From the topological relations we can decide that in the union of the 

two GCBs the final boundary edge e will be deleted and replaced by the intersection edge of 

fl and f3, and f2 should not intersect f3 and f1. Because edge e is the intersection edge of fl 

and f2 it will be deleted from both surfaces. 

Vertices, in our approach are computed by intersecting two edges that belong to the same 

face. Each edge is the intersection of 2 surfaces, but one of the surfaces is shared by the two 

intersecting edges, therefore, a vertex is incident to exactly 3 surfaces. 

Similarly to above, we assume that each face has I-manifold topology. Therefore, we can 

apply the same rule, namely that a vertex is only a intersection of two edges, and if it is 

incident with a third edge in that face we can delete part of the redundant data and ensure 

consistency. 
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f1 

f3 

f2 

Figure 3: The example of removing indirect redundancy 

In contrast to conventional boundary representation vertices are not shared among faces. 

For instance, for an n-sided pyramid, the top 'vertex' is actually not represented by one, but 

by n: vertices, each is geometrically incident to three faces (the face it belongs to, and the 

two adjacent faces). These vertices are not considered coincident in 3 space, so redundancy 

is essentially avoided. 

2.5 The robustness 

The reason why most correctly designed geometric algorithms fail is that the decisions upon 

approximated data are arbitrary. When dependencies between such decisions are unrecog

nized and the decisions are made independently, dependent information may contain con

tradictions. 

To eliminate inconsistencies in data generated by an algorithm, based on approximated 

data, we rely on the following lemma: 

Lemma 1 If an algorithm creates consistent and accurate results for correct input} on the 

grounds that all the computations are done with infinite precision} the same algorithm also 

produces consistent results} even with approximated data} if redundant data is eliminated 

before it affects any decision in the algorithm. 

The argument for proving the lemma is that, if we can avoid or remove redundant data 
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Figure 4: Degenerate cases: FP and F~ are parallel 

we avoid making dependent decisions. All decisions are therefore independent, and thus 

cannot be inconsistent. 

To eliminate redundant data in the Boolean set operation algorithm we eliminate all 

coincident surfaces (by merging them). Curves incident on surfaces are limited to intersection 

curves between 2 surfaces, and vertices are intersections of three surfaces which is achieved 

by limiting the solids to 2 manifold topology, with each face having I-manifold topology. 

No coincident curves, and points will be generated in the representation (non-manifold 

objects are simply represented by a pseudo 2-manifold, disregarding coincidences). 

3 Algorithms 

The algorithm presented here will evaluate the elements of the boundary representation 

(vertices, edges and faces) from a solid object defined in half-space representation. First 

we compute the half space representation: We first check through all the faces, and merge 

them if they are coincident within the tolerance. The Boolean expression is brought to a 

disjunctive normal form (union of intersections of half spaces), as described above. 

After this, we evaluate the boundary representations from it. 

First, we evaluate the generalized convex bodies. A face is topological structure which 

is bounded by the edges. To compute all the faces, we just need to compute the edges that 

create the boundary of each face. The procedure "Faces", described below, computes the 

boundaries of all faces of a generalized convex body B. 

Procedure Faces(B: GeneralizedConvexBody) 

Begin; 

for each fl(j) in B do 
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for each f2(k) in B where (k < j) do 

(* indices j,k are used to avoid directly redundant computation *) 

case spatial_relation(f1(j), f2(k) ) of 

(* two 

ad; 

od; 

intersecting: e := PrimitiveEdge(B,f1(j), f2(k)); 

I 
f2_in_f1 delete f1(j) I 
fLin_f2 delete f2(k) I 
equal delete f1(j) I (* delete one of the two *) 

face_to_face: I 
disjoint delete B; exit 

back_to_back: delete B· • exit 

half-spaces are equal or back to back if, they point 

to the same surface, after identical surfaces were merged 

during the previous evaluation of the half-space representation. 

*) 

end; 

end Face; 

We check the relationship of two half-spaces, which is either intersecting, parallel, or 

coincident (with equal or opposite orientation). Based on the condition that the body B is 

a convex body, we can delete superfluous faces (if they are completely outside B) or find 

out that B is actually an empty set. Only if the two half-spaces intersect each other, an 

intersection curve of the two half-spaces is created by the procedure "PrimitiveEdge". 

After finding out the intersection curve e of the two half-spaces, we need to prune it 

by intersecting this curve with other half-spaces in this body. Either e intersects with a 

half-space so that we can compute an end point of the curve e, or e is parallel to or on the 

half-space, in which case a further evaluation of their spatial relation must be made (see 

figure 5). The relationship between the curve and the half-space will be provided by the 

procedure "curveSurfaceRelation(fl, f2, S, angle)". Faces f1 and f2 are intersecting in e, and 
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S is the third half-space. 

Procedure PrimitiveEdge(B: ConvexBody; fl, f2: Face) :Edge; 

Begin; 

e := intersectionCurve( f1, f2 ); 

add e to f1(j); add e to f2(k) 

for each (* face *) S in B where ( S != fl & S != f2 ) do 

case curveSurfaceRelation(f1,f2,S, angle) of 

intersecting: (* vertices are computed later by pair-wise 

intersection of the edges within each face *) 

on: 

case angle of 

2,3,4 

6,7,8 

1 

5 

end; 

outside: 

delete e 

delete B; exit 

delete S 

delete e; delete 

delete e; delete 

case angle of 

2,3,4 

8,1 

5,6 

else end; 

else end; 

od; 

return e; 

end PrimitiveEdge; 

delete B; exit 

delete f1 

delete f2 

I 

f1 

f2 

Based on different angle position cases, shown in figure 5, we will remove all the redundant 

and superfluous half-spaces, along with their edges, as explained in the previous section. 

Next, after computing the edges and faces of the GCBs we need to evaluate the union 

operations between them. We first compute the intersection edges between the faces of 2 
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Figure 5: Classifying angle of S with respect to Fl & F2 (section .perpendicular to the e 
shown) 

GCBs and then compute their relations with the boundaries of both solids. The primitive 

edges need to be related only to the boundaries of the other solid. This operation will prune 

the edges and eliminate redundant ones. Faces whose edges have been completely eliminated 

will be deleted as well. 

The result of the union of two CGBs is again a 2-manifold object which, however, is 

no longer necessarily convex. We take the result of the union and compute another union 

between it and the next CGB, and so on, until all CGBs are united. 

The degenerate cases that can occur in this phase of the union operation are: An edge 

can be incident with one face, or, an edge can be coincident with another edge. No more than 

two edges can be coincident, since both input arguments always have 2-manifold topology. 

The following two examples show how such degenerate cases are handled. (there are only 

very few possibilities that can occur). Figure 6 shows some typical cases in the pruning 

stage. In (a) the primitive edge e is the intersection of the faces f1 and f2 from the same 

convex body. Face f3 is a face from the other GeB. We solve this case by eliminating the 

edge e, and creating two edges f and g. Edge f is the intersection of face f1 and face f3, and 

edge g is the intersection of face f2 and f3. Note that this example would actually lead to 

non-manifold topology. We create a "pseudo" 2-manifold topology and regard the two edges 

as non coincident, such that they can be handled independently, later. 

In (b) edge e is the intersection of face f1 and face f2 in one sojd, and edge f is the 

intersection of face f3 and face f4 in the other solid. We solve this union by eliminating both 

edges, f and e. and create a new edge g which is the intersection of f1 vs. f~. 

After the edges have been computed without redundancy, we compute the vertices on 

each face by pair-wise intersection of the edges. The topological decisions made in this phase 

are almost identical to the decisions made for computing the edges, but one dimension lower 
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Figure 6: Two typical case happen in the pruning stage (section perpendicular to e shown) 
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(in a 2-dimensional hyperspace). The operations can be described like the ones for edges, 

above, by replacing "edges" with "vertices", and "faces" with "edges" in the text and the 

illustrations. 

After computing the vertices, we can simply travel along the edges, and link them into 

rings. We consider only the case of I-manifold face topology, therefore, each vertex will have 

exactly two oriented edges connected to it. 

4 Conclusion 

The algorithm for Boolean set operations presented in this paper computes the boundary 

representation of regularized Boolean expressions over half-spaces, represented by planar and 

natural quadric surfaces. All special (degenerate) cases are handled properly and robustly 

despite the fact that floating point arithmetic is used for which incidence decisions have to 

be made with some tolerance). 

Robustness is achieved, here, by elimination of redundancy in the data representation 

which is possible for objects resulting in a 2-manifold topology. 

The approach taken here has the advantage over previous approaches, that no explicit 

reasoning by the algorithm is necessary, and no ambiguities, which need to be resolved, can 

occur. This makes the approach simpler and easier to understand, and more efficient at the 

same time. 
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