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Abstract

The bisection method is shown to possess the nearly best rate of convergence for
infinitely differentiable functions having zeros of arbitrary multiplicity. If the
multiplicity of zeros is bounded, methods are known which have asymptotically
at least quadratic rate of convergence.



Summary

We seek an approximation to a zero of an infinitely differentiable function
f:[0,1] - ® such that f{0) < 0 and f(1) > 0. It is known that the error of
the bisection method using n function evaluations is 2(*+1), If the information
used are function values, then it is known that bisection information and the
bisection algorithm are optimal. Traub and WoZniakowski conjectured in [4]
that the bisection information and algorithm are optimal even if far more gen-
eral information is permitted. They permit adaptive (sequential) evaluations
of arbitrary linear functionals and arbitrary transformations of this information
as algorithms. This conjecture was established in [2]. That is for n fixed, the
bisection information and algorithm are optimal in the worst case setting. Thus
nothing is lost by restricting oneself to function values.

One may then ask whether bisection is nearly optimal in the asymptotic
worst case sense, that is, possesses asymptotically nearly the best rate of conver-
gence. Methods converging fast asymptotically, like Newton or secant type,
are of course, widely used in scientific computation. We prove that the an-
swer to this question is positive for the class F of functions having zeros of
infinite multiplicity and information consisting of evaluations of continuous lin-
ear functionals. Assuming that every fin F has zeroes with bounded multiplicity,
there are known hybrid methods which have at least quadratic rate of conver-
gence as n tends to infinity, see. e.g., Brent [1], Traub [3] and Section 1.

1. Formulation of the Problem.

Let G = C*[0,1] be the space of infinitely differentiable real-valued func-
tions on the interval I = [0,1] with the metric p given by

p(f, 9)=D_ 27| f—glli /Q+ || £ = g lls), VS, geG

=1

where

= 4)
Il £ lli= max sup | £(z) | .

Let S(f) = f~1(0) denote the set of all zeros of the function f. We seek an
approximation to a zero of a function which belongs to the class F:

(1.1)

F={feG: f(0)<0,f(1) > 0and S(f) is a singleton};



i.e. every function in F has exactly one zero. To solve this problem, we use
an adaptive information operator (briefly information) N : G — R defined as
follows:

Let feG and

(1.2)
N(f) = [Lo(f)s L2,g (), - - Ln g (), -] -

where

Lis(Y=Li( " ipygim1) :G— R

is an arbitrary linear functional and

yl:Ll(f)ﬁ yszj(f; yly"'yj—l) ’j=273)"'i_1‘

Observe that L; y(-) depends on the previously computed values y; , j =
1,.i—-1.

By Nn(f) we denote

(1.3)
Nn(f) = [Ll(f))L2,f(f)1~-~Ln,j(f)]'

Note that the vector Ny41(f) contains all components of No(f) ,
Npy1(f) = [Na(f)s Lntr,s ()]

That is increasing n we do use previously computed information. We may
assume without loss of generality that the functionals in N(-) are linearly inde-
pendent, i.e.,

(1.4) Ly Lay,... Lpny are linearly independent for every f ¢ G, n =
1,2,....

Let us denote by A the class of all information operators of the form (1.3).
Knowing Ny(f) we approximate S(f) by an algorithm. By the algorithm
¢ = {¢ n} we mean a sequence of arbitrary transformations, ¢, : Nn(G) —
I,n=1,2.... Let ¢(IN) be the class of all algorithms using information N.
The n- th error of ¢ for an element f is defined by

(1.5)

en(Nad’:f) =I S(f) - ¢n(Nn(f))I

In the asymptotic setting we wish to find ¢* and N* such that for any F in
f the error e,(N*, ¢*, f) goes to zero as fast as possible as n tends to infinity.



The information N* and algorithm ¢* are called nearly optimal iff
VNe N ,Véed(N)andV sequenceb,, ,

6n W 0 (6o strictly decreasing),

3f*e¢F suchthatVfeF :

(1.6)

. 8,,(N,¢,f')
hmeup e )

This means that an arbitrary algorithm ¢ does not converge essentially faster
for the function f* than the algorithm ¢* for any function f.

The bisection information N*® is defined by

(1.7) .
LY (f) = f(z:) ,i=1,2,...,
where
zi = (aj—1 + bi—1)/2
with

a, =0, bo=1 and

a-—{ a;i-y if f(z;)>0 b-—{ bicx i f(z:) <0
' z; if f(zi) <0 > T z; if f(zs) > 0.

The bisection algorithm ¢** = {¢?*} is given by

o (an+82)/2 if flan)- f(bs) <O,
(NP () =4 an if flan)=0,
bn if f(by)=0.

It is known that for every fin F

(1.8) o
en(N?, 6%, f) < 2701,

and that there exists functions f in F such that



(1.9) _ '
Cn(Nb“,de",f) >ec 2—(n+1)’

for some ¢>0, like for example f;(t) =t~ {;—, i=1,2,4,5. In fact there exists
an infinite number of such functions.

It was shown in [2] that for a fixed n

supen(N,¢,f) > sup en(N,'“"¢'“3f) > 2-(n+1),
feF feF

for every NeN and ¢ € ¢ (N) , ie., that the bisection information and
algorithm are optimal for the worst case model with a fixed number of functional
evaluations.

Here we show that the bisection information and algorithm are nearly op-
timal for the asymptotic worst case setting. More precisely, assume that the
information N is continuous, i.e.,

L; 4(gr)} — Li y(g) whenever p(gx g) —0
k — 0.

For an arbitrary sequence 8, 6, \, 0, any N ¢ N and any ¢ ¢ ¢ (N) define
the set B = B(N,¢,8,) of functions from F such that the error e (N, ¢, f) is
essentially at least &, - 27" | i.e.,

(1.10)
B = {feF: DmsupM)— > 0.}

neoo Op-2°7
To prove near optimality of the bisection method, it is enough to show that
the set B is not empty for any é,,, Nand ¢. Indeed, taking any f* ¢ B and any
f from F we have

. en(N, ¢, f*) . ea(N, ¢, f*)
1 —_—— > _— >0
1;1_1_‘501? 6n€n(N,b" d’?" = 1,1.1.1..S°\:p b - 277 >

We will show more by proving that the Lebesgue measure of the set S(B) of
zeros of all functions from B is unity. This in particular implies that the set B
is uncountable. Precisely, define the set S(B) by

(1.11)
S(B) = {z€[0,1) : 3feB : zeS(f)}



We prove
Theorem 1.1

For every continuous information N ¢ N, every algorithm ¢ ¢ ¢ (N) and any
sequence §, 6, \, 0, the Lebesgue measure u of the set S(B) is unity, i.e.,

H(S(B)) = 1.

‘We remark that if the multiplicity m of a zero of f is finite, then it is possible
to construct information N and algorithm ¢ which guarantee asymptotically
quadratic convergence, see [1] and [3]. We can calculate m by using a combina-
tion of bisection and Newton’s methods and applying Aitken’s §2 formula, see
(3, p.129, Appendix D]. Knowing m we may use the modified Newton’s method
(3, p. 127] Xi+1 = z; —m f(z;)/f'(z;) which converges quadratically for
i — 00 . For such information and algorithm, the set B contains functions with
zeros of infinite multiplicity. Therefore, we can not essentially beat the bisection
only for functions having infinite multiplicity zeros.

In the next section we present auxiliary lernmas and the proof of Theorem
1.1.

2. Auxiliary Lemmas.

In this section, we prove a few auxiliary lemmas needed in the proof of The-
orem 1.1. The first lemma 2.1, was proved in [2]. Namely, let I;, i=1,,...k,
be closed intervals in [0,1] and

k k
G L) = {feG : supp(f) c | J I;}.

=1 =1

Lemma 2.1

Let L; : G— R, i=1,...k be linearly independent linear funtionals. Then
for every positive & and any family of closed intervals I; C [0,1},i=1,...,k—1
such that L;,...,L;_; are linearly independent on GUf__fll I;) there exists a
closed interval I C [0,1] of length o, such that Ly ... Ly are linearly independent
on G(Uf:l I‘)

In the next lemma, we construct a family of functions from G needed in the
proof of Theorem 1.1.



Lemma 2.2

Foreverye> 0,0 < e < f—;, there exists a family of functions F¢ ,
F*={fineGn=0,1,.;ie1,3"]}

with the following properties:

(2.1) F* is tree structured, where f] ¢ is the root of the tree,

0 ze(e, 1 —¢),

—ezp(—(z —€e)"2)  z€l0,€],
fio= {
exp(—(z— 14 ¢€)72) ze[l —¢,1]),

and the functions on the n- th level, n = 1,2,.. , are constructed inductively
in what follows:

(2.2) Every function feF¢ satisfies

<0 :cc[O,a}) ,
f(z)= { =0 :ce[a},a"f‘] ,

>0 ze(a™,1],
for some [a}a"7] C [0,1].
(2.3)

For every f = f; n there exists closed intervals I, I» ... I, C [0,1] such that
the functionals Ly L y,..L, s see (1.3), are linearly independent on G(U"-'=1 I,
and the distance dist (I;,[a;,a‘f"]) > eni=1, ... n wheree, = €277

and dist (X,Y) = min|z—y]|
zeX
yeY

with the convention dist (®,Y) = + 0.

Proof. (Construction).
Let € be a small positive number, 0 < £ < &,€, = €-272" and let {6,,} be an
arbitrary sequence monotonically decreasing to 0,6, \, 0. Define a sequence of
indices {n;},k =1,2,... such that



(2.4)

bny, = o((%)"),as k — 0.

Let
(2.5)

. _J ezp(—(z - a)~*(z - b)=2) , zefa,b],
H(z;a,b) = { 0 , otherwise,
for any interval [a,b] C [0,1].

The family F¢ is tree structured. Namely, at the root we have the function
f1 o defined in (2.1). At the n- th level of the tree we have ¢, functions, where
¢n < 3-¢p-1 ifn=mng+1 for some k or ¢, < 2¢,_; otherwise. Thus, the
number ¢, < 3". We define the functions f; . inductively, i.e., construct f;
assuming that all f;; ,k=0,...n — 1, have already been constructed.
When n = 0 then f; ¢ is defined in (2.1). Obviously, a! = ¢ and aj =
1 — €. Since there exists no intervals I; in this case then d1st (¢> [e,1 - 5]) =
+00 > g, = €. Thus f) o satisfies the mductlon basis.

Assume now that all f;x, k£ = 0,...n — 1, have been constructed. Let k =
n—1and let f = f; o1 be any function on the n-1 -st level. The information
operator Ny, yields the functional L, ; , see (1.3). Due to assumption (1.4), the
functionals Ly, Ly 4,... Ly s are linearly independent on G. Thus, Lemma 2.1
with & = 2e,, and k = n—1 yields an interval I,, I,, = [m—€,, m+¢,] such that
Li,Lay,.Lny are linearly independent on G(U!_, I;), where I, ...I,_; are the
intervals from (2.3) for the function f. Now we construct the functions on the
n- th level which are successors in F* to f. Let * = a% and a** = o*;

If a** — a* < 6¢,, then we let f be a leaf of the tree and therefore the suc-
cessors are not defined.

If o** — a” > 6¢, then we define the successors f;) ., je{1,2,3} ,i;¢[1,3"]
depending on whether n = n; + 1 for some k or not.

Let M = (a* + «**)/2 and define the auxiliary functions Hj je{1,2,3} by:

(2.6)
Ifn#niy+1 foranyk then :
®

if a* +3e, <m<a* -3¢, then

Hy(z) = —H(z;a" — €., m+ 2¢,),



Hy(z)= H(z;m — 26,0 + €5);

if m<a®+ 3¢, then

Hi(z) = —H(z;a" — €n, maz(M,m + 2¢,))

Hy(z) = —H(z;a"—e,maz(a” —€,, m+2¢e,))+H(z; maz(M, m+2¢,), 0" +¢,))

(ii1) if m > o™ — 3¢ then
Hi(z)= H(z;min(M,m — 2¢e,). 0" +¢,),

Ho(z) = —H(z;a* — &,, min(M,m — 2¢,)) + H(z;min(m — 2¢, 0™ +
En), @™ + €4)) .

(2.7)
If n = n; + 1 for some k then suppose first that a** —a* < 10¢,.Then we define
the functions H; j = 1,2 as in (2.6).

If a** — a* > 10¢,, then we have three cases:
)
m<a® + 3¢, 0rm>a" — 3e,.
In both of these we define Hj j = 1,2 as in (2.6) (ii) and (iii) respectively.
(ii)
M—-2,<m<M+2,.
In this case H; j = 1,2 are defined as in (2.6) (i).
(iii)
a)a*+3c, <m<M-—2, or

by M + 2, <m< a® - 3e,.
In this case we define three functions Hj, j=1,2,3.

In the case a) we have

Hi(z) = —-H(z;a"—€n,m+2ep)+ H(z; M, 0™ + ¢€,),
Hy(z) = —-H(z;o"—¢€q,M) ,
Hs3(z) = H(z;m-—2e,,0™ +¢,) ;



In the case b) we have

Hy,,(z) = —-H(z;a*—¢€p, M)+ H(z;m—2¢e, 0™ +¢,),
Hy(z) = H(z;M,a* +e¢,),
H3z(z) = H(z;0"—¢€n,m+ 2e,)

The functions H,, H, and Hj are illustrated in Figure 2.1



Case 2.6(

Case 2.6 (ii)

Case 2.7 (iii) )



For any of the cases (2.6) or (2.7) let H;eG(U?=, Ii) be the solutions of
(2.8) 4
L,'J(Hj =+ Hj) =0te=l. .. .0~ 1,j€[1,2,3].
Such functions exist since the functionals L; y , i = 1,...n — 1, are linearly
independent on G( U7, ;). Let
(2.9) :
hjn(z) = c(Hj + Hj),

where c is a positive constant so small that

(2.10)
| Ajmlln £ 277,

and
(2.11)

Il Bjnllo £ 277 min | f(z) |

z[0,0* — €,]U [@** + €q,1]

We define
(2.12)

Jin=f+ln , §€1,2,8],
ijef1,3%].

Note that S(fi; ») = S(H;)N[e*,a**]. This, (2.11) and the choice of H;
imply that (2.2) and (2.3) are satisfied.
The next lemma 2.3 characterizes more properties of the functions in F* :

Lemma 2.3
Let f; n be an arbitrary function in F* as constructed in Lemma 2.2. Then:

(i) The length of the interval of zeros of f;  is at most (3)* for np < n <
Ng41 ,i.e.,

(2.13)
WSUin) < (F* for me <n<npss,

(ii) For every n the Lebesgue measure of the set J; S(fi n) is at least
1 - D; e, where

11



3
Dy =2and Dj,=Dp1+ 2'(Z)n ’
ie.

2.14
u(JS(fim)) 2 1= Do e, Vn.

This in particular implies that D, < 8,.e.,

that
(2.15)

wlUs(fin)) 2 1-8¢

(i11) There exist infinite branches in the tree F*.

(iv) The functions in every infinite branch in F'* form a Cauchy sequence in
G.

(v) If n > m and f; n is a predecessor of f; n in F* ,then Ny(fjm) =
Nm(fi,n)-

Proof:

The construction in Lemma 2.2 implies that for all n, if f; » is a successor

in F¢ to fj n-1 then p(S(fin)) € p(S(fjn-1)) and for n = nx +1 p(S(fin)) <
L 4 (S(fjn-1))- This yields (2.13).

Now we prove (2.14). Let f;, » be the successors of f; »1 in F¢ ,4;€[1,3"], je{1,2,3}.
Recall that any intersection of the sets S(f;, ») has measure zero and that
S(fi;m) C S(fi,n-1). The construction of F* yields

2.16

”( U S(fij,ﬂ)) = Z ﬂ(s(fi,',n)) 2> /-‘(S(fl,n—l)) — 6en, Vn.

je{1,2,3} je{1,2,3}

We show (2.14) by simple induction. If n=0 then S(f,,) = [¢,1 — €] and
N(S(fo,o)) =1-2¢2>1- Dse.

Assume now that (2.14) holds forn — 1,n > 1.
Then

sUS(fin)) = 2 m(Sfin)) 2 I (K(S(fin-1)) = Bn
[ 3 i

12



Z u(U S(fl’"_l)) - 3"‘1 - 6ep 2 1- Dn—l-s - 3n_16€n
1

3
=1=(Dp-1+2-(3)") -e=1-Du-e,

since €, = € - 4" and the total number of functions on the n-1 -st level is
at most 371,

This completes the proof.

By solving the recurrence relation for Dy, one obtains D, =8 — 6 - (3)",
le., D, < 8,Vn.

Now we show (iii). Suppose by contrary that all branches in F® are finite,
l.e., that F'® has at most n levels for some n. Then the tree F¢ has all leaves on
at most n-th level. Recall that f; , is a leaf, iff u(S(fin)) < 6en.

This yields that

3 6 -
u(LiJ S(fin)) 3" -6en =6 -¢(3)" S 6c <
But (2.15) implies p(|J; S(fi,n)) > 1—8c > 1 - £ = & which contradicts
our assumption.
Now we show (iv). Note first that if f; , is a successor to fj m ,n > m, in F¢
then the construction in Lemma 2.2 implies

(2.17)
n
fi,n = fj,m+ E h.,k .
k=m41

where h p are the functions defined in (2.9) and the summation is taken
along the branch of F¢ connecting f;m to fin.
Observe that (2.10) implies that || k. ; [[i< 27% for any 0 < I < k. Therefore

M M
| fin—fim S D Nhalhis Y 27%<2™m,
k=m+1 k=m41

for any 0 <! < m.

Consequently

13



P(fc',mfj,m) S 22—1 “ fl’,n - _fj,m ”’ + Z 2-k S

=1 k=m+1

m
< 2—m22-1 +27M <2 9-m = 2-(m—1)'
=1

Since 2-(m=1) is arbitrarily small for large m, the proof is completed.

The point (v) of Lemma is an immediate consequence of (2.8) and (2.17).
Indeed, letting f = f;m in the construction of Lemma 2.2, the formula (2.8)
implies that

L[J(h.,k) =0,l=1,....mk=m+1,...n,

where fin = fim + 2 izmys Bk » 3 in (2.17).
Thus

Ly (fin)= L1, (fim)
le.,

Ne(fin) = Nm(fj,"\)~
This finally completes the proof of Lemma 2.3
Since G is a Fréchet space, then every Cauchy sequence in G is convergent.

Therefore Lemma 2.3 implies that the following class of functions F, is well
defined:

(2.18)

F, = {f‘G: f= li,l_:nf.,mf.,antL

where f ,, constitute the infinite branches in F*, and the limit is taken with
respect to the p - metric in G.

In the next Lemma 2.4 we show that every function f in F, has exactly one
zero, and that f(0) < 0 and f(1) > 0. Moreover, we show that the set of zeros
of all I from F, has Lebesgue measure arbitrarily close to 1.

Lemma 2.4
The set F, is a subset of F, i.e.,
(i) F, CF;

14



The set of zeros of all functions { from Fo has almost full measure for € — 0.
More precisely,

(i)
B( US(f)=1-8-¢.
feF,
Proof:

We first show (i). Note that if feF,, i.e., f = lim, f. n , then
o0
ay =[] S(f.n) C S(f):
n=0

We will show that a; is the only zero of f. This, combined with f ,(0) <0,
and f n(1) > 0 implies (i).

Indeed, take any a # ay,ac[0,1]. Since u(S(f. n)) — 0 as n — oo, see
(2.13), then there exists an index m > 1, such that aﬂa}m —€n, a}."n + &y), for
n>m.

Using (2.11) and (2.17) with f; , = f, and fj m = f m(n = +oc) we get
| (@) 1= fom(@) + Y hop(e) |2
k=m+1

2 fm(@) = D [ha(e) |2

k=m+1

> fum(@) = | fme)]- > 275>

k=m+1

2| fim(@) [(1=277) >0,
which completes the proof of (i).

Now we show (ii). Define

Sn = U S(fj,n).
J
Then the set of zeros of all functions from F, is :

15



U st =[5

1eFe n=0

Observe that Sp41 C Sy

This and 2.15 yield:

#(UJ () = w([) Sa) 2 liminf u(Sn) 21 -8 ¢,

JeFo - n=0

which proves (ii).
Proof of the Theorem 1.1

To complete the proof of Theorem 1.1 we will show that for every €,0 < € <
le, every sequence &, \, 0, any NeA and any ¢ed(N) the measure
p(S(BYNS(F,)) 21— 8¢, i,

(2.19)
12> u(S(B)) 2 u(S(B)NS(Fo)) 2 1- 8,

where S(A) denotes the set of zeros of all functions from A and B is defined
as in (1.10).
The proof is completed by taking ¢ — 0 in (2.19).

To show (2.19) we need only to prove that u(7T") = 0,where T = |J(S(f) :
feFo and en(N, ¢, f) =0(6, -277)).

Indeed: p(T) = 0 and Lemma 2.4 (ii) imply that u ( S(B) NS(F,)) =
WU(S(f) : feF, and limsup,_ o 55580 > 0) = p(US(f) : feFo)> 1— 8e.

Now we concentrate on the proof" of:

(2.20)
/J(T) =0.

Let i n = ¢n(Nn(fin)))t =1,--- ¢4, forany function f;n on the n-th level
of F'¢ from Lemma 2.2. Since the functionals in Ny, are continuous, then Lemma
2.3 implies that z; , = ¢4(Na(f)), for any feF, such that f;, belongs to the
branch {f n} of F¢ with f = lim, f .

Let 6! = 27 "¢, - 6,. Observe that the definition (2.4) of the sequence n;
implies that for ny < n < niyy we have

63 <TG 2 b= o)

16



i.e., §,} converges to zero, §,] — 0.

Let M be a positive interger and

1
VM(z; ) = {ze0,1]: |z —2in |< M - ii =M 8, -27"}).

n

Define .
V,{w = U VM(::;.,,) ’
=1
o0
e}V,
n=m
and
o0 oo
To = U T,},‘,l .
M=1m=1
Observe that
(2.21)
Ts = {z€[0,1) | z =z, n |= 0(6,277")}
where

Tkon = ¢n(Nn(fk,‘,n)) and fk,.‘n forms

an arbitrary infinite branch in F*¢.

Indeed, let
A= {ze[0,1):| z — x4, n |= 0(6n27")}.

Take any zeTs. Then IM and m such that zeTM . Thus, ze(or,, V;M;ie. Vn >

nem n )

m,| z—z3, n |< M-6,27", for some sequence zj, 5, along a branch of F¢. Thus
zeA. Conversely, if zeA then 3 m, M, such that |z — 2, » |[< M6,27" Vn > m
and some zg, n. This implies that zeVM(zx, ) for Vn > m, ice., zeor,, V.M
which yields zeTM and z¢T; , and completes the proof of (2.21).

Observe now that

B(VM(z;0)) = 2M6) [cn.
Therefore
cﬂ
p(VM) < ST u(VM(2in)) = 2+ ca - MBL - fcn = 2M8),

f=1

17



and
p(TM) < inf (VM) =0, since 6% — 0.
n>m

This yields u(T5) = 0, since Tj is a countable union of sets of measure zero.

Finally,since T' = U(S(f) : feF, and | zi, » — S(f) |= 0(62277")),
where
Tk, n = ¢n(Nn(fk.,n))

for some infinite branch f, , of ¢, then T is a subset of T5. Thus u(T) =0,
which completes the proof of (2.20).

18
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