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1, Introduction

$1.1. Motivating Function Graphs

1.1.1. Funotion graphs represent spplicative programs and systems. .

Funotion graphs are graphical representations of systems based on function
aspplication. We inolude programs within the scope of “systems", Programs ’
based on function application sre usually called ®applicative”, "functional®,
or "data flow® programs, slthough it may be seen that other types of prograns

can also be mathematically represented as function graphs.

1.1.2. Applicative languages simplify prograssing.

Some more important sdvantages of applicative progremming langusges h‘mlude:

1. Greater system modularfity

2. Ease in debugging

3. Natural exploitation of concurrency

8, Watural representation of communicetion

S. Ease in humsn comprehension
The features generally imply reduced progrsmming ocosts. Additionally, ainoce
mschines whioch direotly execute applicative languages are being proposed
(IDennis and Hisunas T4), (Plas 76], (Guzman and Segovia 76), f[Arvind and
Gostelow 77), {Gurd and Watson 77), (Rumbaugh 77), (Davis 78a), (Mudge 78],
(Xeller, Lindstrom, and Patil 79), [Cornish 79, 80), {Johnson, et al. 80), and
others), the attendent reduction in number of software layers can further

highlight the features 1isted sbove.

1.1.3. Graphloal representations sre often olearer.
As with other wuses of grephs, funoction graphs are mathematioslly
interchangeable with one-dimensional representations of the ssme system.

Howsver, they often serve to illustrate concepts more oclearly snd succinctly

than their one-dimensional counterparts.

Furthermore, graphs ocan obviate the use of names for establishing



relstionships between entitles, which is wusually necesssry when s
one-dlmenslonel repressntetlon is used for a basically graphical opnoept. For
exsaple, the lsabda-calculus (Church 31}, which has long been touted as a
baslo wodel for underatsnding of certaln ocomputstionsl phenomens, requires a
“re-namlng” rule for 1ta general aspplication., With an appropriste grasphicsl

model, such 83 thet presented herein, such rulss sre umneceassry.

As another exsmpls, the sequentisl 1listing of statements in » program text
ususlly lmplies, or at 1least suggests, a corresponding sequentislity of
control, much of which {s inessentisl. A greph may ueed to illuetrate only
the eesential aequentiellty and, dually, the availasble oconcurrenoy. In
contrast, many one-dimeneionel representetions must be reprocessed to deteot

potentially concurrent operations (cf, [Keller 73, 75a, T5b)).

The present paper uses graphs to slmilarly expose other aspects of concurrent
computation, such as the relstionship between parsllellsm and choice of data

types, and the comperison of progremming atyles for data-driven va.

4

d-driven putetlon. It elso uses graphs to demonstrste other aspects
less related to concurrency, such as communication, binding, transformationa
of programe, end verificetion. We suggest that comprehensibllity of asuoch

concepts msy often be improved through the use of graphs.

t.1.4, Funotion grsphs sre a counterpart to flowcharts.

Functlon graphs bzar s relestionship to spplicative programs similar to that of
flowcharts to asaignment-baeed programs. However, whereas flowcharta are
ususlly thought to be informsl representstions of an slgoritha yet tc be coded
snd requiring further formalizetion prior to execution or analysis, fumcticn
graphs rely only on the underatanding of their constituent functions to ba

formally mesningful.

Like flowcharta, function grsphs cen be used informally to exhibit and develop
basic interrelationships between system parts. However, this informsl use can
become a formal one if a programmling language based on function grapha 18

aveilable. 1In this case, there is no discontinuity involving the "coding® of



the aystem specification in s given language, since the sapecification {is
elready in s lenguage which represents code. Thus the continuity provided by_
both developing @ system specificstion end {implementing it in terms of
function grasphs provides s more relisble design procedure than one involving s

trensition from specificetion domain to coding domsin.

It is poa_albh to enter funotion graphs directly into s programming system )
given & suitable graphical input device. Another possibility ias to use o
textusl lsnguage which sllows expression of funotion grephs in a menner in
which the correspondence between the text end the graph is fsirly direct.

Indeed, combinations of textusl snd graphical entry cen be profitable.

1.1.5. Funotion graphs form s basis for programming language semantios.

Additionslly, function grsphs may be used ss s formsl base for semantics of
textusl languages, even when the correspondence is not direct. The advantage
of this form of base is that it provides a cosmon means of progrsm comparison
snd translation for different textusl lsnguages. In this sense, semantics of
function graphs 13 related to other work on “denotationsl®™ semsntics of

programming langusges (of. [Stoy 771).

A prototype lsnguage based on function graphs has been developed and is
included a8 part of this presentation for sske of concreteness and
fllustration. While not sll features of the language, oslled FGL (Function
Graph Language), can be presented here, it is hope that the flavor of the’

graphicsl presentstion and conceptualization csn be conveyed.

1.1.6. FGL is both generic and specific.
FCL is related to s number of other language ideas which have sppesred in the
literature, in some cases in disjoint threads of investigstion. As such, we
hope thst in sddition to being s programming langusge, it provides s mesns of
understanding these ideas, which inoclude:

1. A large assortment of "dats-flow"™ languages which are being
proposed for other highly-concurrent machine architectures.
Examples may be found in [Dennis 74}, (Plas, et al. 76}, [Arvind,
et al. 77), (Davis 78b], (Weng 79).



2. Languages based on function spplicstion ([Churoh 81), [McCarthy, st
sl. 62), [Landin 68), (Kahn TA), (Burgs 75), (Backus 78]) and on
systems of equations ([Kleene 52), [Kshn TA), [O°’Donnell 771).

3. Dsts structuring operstions from the Lisp famlly {MoCarthy 60).
Although such operations fit nasturslly into FGL, we nesd not stop
with Just the conventionsl set of operstlons. The use of FGL
graphs for representing datas structures csn replace the more
machine-oriented "box disgrasms®™ often found in texts desling with
dats structuring. Further structurlng idess osn also be found in
[(Keller 80b) ™

4, Languages which provide for programming with infinite structures,
such ss stresms and trees ([Lsndin 68), [Kehn 74), [Burgs 75),
[(Friedmsn and Wiss 76)). Such structures ars extremely powerful
devices for wodeling various msthemstiosl structures and for
representing comsunicatlon asmong sub-systems. It has slsoc been
noted thst they nsturslly provide many sites for the exploitstion
of concurrency in s highly-concurrent asystems ([Friedmen and Wlas
78), (Keller, Lindstrom, and Patil 79)).

In summary, slthough we have s psrticulsr lsnguage FGL in mind, the reader msy
view FGL 83 1f it represented s generic member of » fanlly of lsngusges based

upon function graphs.
1.1.7. The following features further motlivate the lnvestigation of FGL:

1. FGL is an “spplicative” language, in ths sense thst it is based on
function spplicstion snd therefore enjoys the festures of auch
languages as expressed above,

2. FCL overcomes 3soma of the swkward festures of previous dsts-flow
languages through a suggested implementstion using "demsnd-driven®
evaluation. FGL avoids the notlon of "asssignment®™. Rather than
being cslled by the euphemism "single sssignment” language (cf.
[(Tesler and Enes 68), [Chamberlin T1], (Arvind, st sl. 77)) it is
properly a "zero assignment® language.

3. FGL msy be easily adspted to suit & lerge number of engineering and
scientific spplicstions. For exsaple, signsl-flow graphs used in
digital signal processing (cf. [Rabiner and Rader 72]) and systea
dynsmics models used for wmodeling snd simulstion of sooioeconomis
systems (cf. [Forrester 61)) can be naturslly represented in FGL.
It 13 sttractive to have a genersl purpose, sodulsrizable, language
st hand to enhsnce such wodeling spprosches,

N. The graphicsl sspect of FGL has uses in softwsre snd hsrdwsre
development by reflnement. The use of graphicsl tools for software
development hss been mentioned before (cf. [Ross 77), [Weinberg
78). (Yourdon and Constantine 79), (Hebslksr and Iilles 79), and
others). When similar tools srs expressed in FGL, sn sdditionsl
sdventsge accrues: The grephs hsve s well-defined functional
meaning, rsthar than simply representing procedure nesting, loop



nesting, cslling sequences, eto, This mesning is a specifiocstion
of the system under development.

5. The refinement of en FGL specificstion from e cosrse
interconnection of functiona may proceed by further specifying
those functions in the ssme langusge. There i3 no need to heve
different lsnguages for "programaing-in-the-~large® vs,
"progremuing-in-the-smell® (DeRemer and Kron 76]. This 18
desirasble, sinoe often what initislly appesrs to be a simple atomic
tesk turns out to expand into something more formidsble. Thus a
transition made too early from a module interconnection language to
s conventional programming lenguage may result in substentisl
backing up in the design process. With the uniforms langusge
spprosch, when the level of stomic functions 13 reached, the
spacification is complete snd the result is a runnsble program.

6. FGL oallows persons with 1ittle treaining to get sterted (in
progrsmming. This 13 duve to the few concepts {involved and the
absence of a need to acquire knowledge asbout s linesr ayntax,
Given an adequate input device, ®» naive user need only know how to
connect boxes and to interpret them as mathemsticsl functions.

7. FGL allows the visuslization of dsta struoturing operstions without
using storage disgrams and references. As such, it exhibits the
‘underlying concepts with a high degree of machine independence. 1t
seems particulerly wuseful {n conceptuslizing mathematically
infinite data structures and representing the operstions on such
structures,

8. FGL i3 the base of directly-executable mechine lsnguage, nsmely
that for the system proposed in (Keller, Lindstrom, and Patil 79].
As such, 1t sllows exploitstion of concurrency without major
concern from the programmer oand nerrows the gsp between o
high-level prograsmming lsngusge and its machine implementation.

9. FGL. sllows (intuitive representstions of “functionsls® or
®“higher-order functions” which ere ususlly explained wsing the
lembda celculus (Church At]. We hope to show that FGL provides a
better base for understanding the subtleties of theae ideass.

10. FGL allows progrems to be ocleanly interfaced with file systeam
files, in the spirit of (Balzer 71), [(Ritchie and Thompson 75],
(Friedman and Wise 77].

1.1.8. Funotion graphs mssy be exzeoutable or otherwise.

This paper presents idess asbout function graphs on two levels. One level is
that corresponding to exeoutable programs. The other is s more .unerll
concaptusl lavel, for whioh there may be no known effioient execution means.

When it {8 nscassery to contrast these levels, we shall refer to the former as



specisl funotion grephs and the lastter sas Aenersl function graphs. The

ressons for the desire to consider the genersl level at sll sre: -

1. Understanding the genersl level ocan often provide a olesrer
understanding of the specisl level.

2, Some idess can be conceptuslized only st the genersl level.

3. It 1s desirable to widen the specisl level as much ss possible,
i1.e. to express more concepts in the form of executable programs.
Tha general level provides s target for thia widening.

1.2. How to snd Why Read the Remainder of the Paper

The ressons for this paper are seversl:

7. To 1introduce the reader to graphicsl forms of spplicative
programing through a reasonably unifying modal.

2. To provide s theoretical framework for those interested in such
mstters.

3. To survey the few key ideas present in an sppsrently importent, but
embryonic, sres of computer prograsmming, including pointsrs to the
litersture for results which csnnot be included here.

The section entitled Preliminery Discussion is intended to introduce some
types of dasts objects snd systems which can be explicsted with grsphicsl
models and srguments, The section entitled Theoretical Basie may be resd for
those wanting s tutorisl introduction to ths theory behind such models, ({t
nay be skipped on first reading, or taken on fsith., The section entitled
Hachine Evslustion of Computationa Represented by Graphs further develops the
function grsph model, desoribes a simple language based on the model, and
discusses s means of oomputing within the model. The section entitled Uses of
tha Graphiosl Formalism desoribes concapts whioh osn be understood using the
model, snd manipulstions and proofs within the v-odel. Except for the
sub-section on Loop Remsoval, this asection may be skipped by thoae interested
only in programaing sspects., The Poatluds mentlons some of the hlstorlesl

sapects raleted to the idees presented here, end susmarizss the oonolusions.



2. Preliminary Discuasion

2.1. Computing with Infinite Objects and Equations

Several of the examples presented in this psper {involve computing with
infinite Bbjaou. By this, we mesn that the program can manipulate as & whole
objeots which sre conceptually infinite, even though the user may st any given
run only wish to cause a finite truncation of the object to be menifest. 1In
prinoiple, the user could ask for the manifestation of an entire infinite
object, whereupon if there were sufficient computing resources and he waited
sufficiently long, any finite portion of the 1infinite objo;t would be
sanifest, Since conventional theory of computation has shunned {nfinite
objects, other than funotions, In favor of working only with their finite

truncations, s brief introduction to this style of computing is merited.

2.1.1. Infinite objects provide new ways of presenting slgorithas,

There are several reasons for wanting to consider such odjecta:

1. Some systems, e.g. computer operating systems, treat their finput
and output (streams of requests and responses) as if they were
infinite, since the point of termination of these stresms {3
unknown and irrelevant.

2. Programming with infinite objeots ia often simpler than programming
with finite objects, since {t relieves the programmer of many
concerns of “boundsry conditions® which often sre the cause of
errors. For example, instead of writing a progrem to compute a
finite set of values of a funotion

(1), €6(2), 1(3), ...., f(n),

the programmer might write a siapler program whioh computes the
infinite set of values,

(1), r(2), £(3), ...

and then use a pre-defined selection function to select the finite
subset in which he i3 interested. Properly implemented, only the
necessasry values of f are really computed, but the progremser
msanipulates the aeries of values as though it were infinite.

3. ¥ith respect to this paper, one of the prime uses of function
grsphs 1s to display progrsa satructures which represent an
efficient ond applicetive method for computing such infinite data



structures,

2.1.2. An example of computing with infinite objecta: N
Let us give & simple example of defining sn infinite structure. Suppose we

wished to define the (infinite) sequence of sl)l odd natural numbers,

1357 ...

(Here, end throughout the psper, three dots indicates s sequence which
continues sd infinitum, wheress four dots (ndicstes s sequence with s last
coaponent.) We may do 30 by producing a genersl function odd_from which with

srgusent n produces
N ne2 nel ...

then spplying thst function to argument 1, To define odd_froa, we aimply note

that it satisfies the equation
odd_froa(n) s n followed_by odd_froa(ns2)

where followed by is & binary function which produces s sequence consisting of
the item on its left followed by the item on its right. Our sequence is then
given by the result of odd from(1).

To apell out in detail,

odd_froa(1)

= 1 followed_by odd_from(3)

= | followed by 3 followed by odd_from(S)

= 1 followed by 3 followed by 5 followed by odd_from(7)
.

For readability and convenience, we henceforth omlt the followed by in writing

such sequences, preferring to write
135 ...
1nstead of the last line above.

We also use the expression cons(x, y) in place of x followed by y, aince a

minor extension of the oons (constructor) function from Lisp is just what we



need to jmplement (ollowed by.

2.1.3. More examples involving infinite objeots.

Yo give » further example of operating on infinite objects, we know that the
sum of the first n odd numbers 13 equal to the square of n. We could therefore
ocompute ihn stream of squares by a function whioch produced suocessively the
sum of the ocomponents of its input streasm. Let us oall such s funotion
sum_stream. The (irst component of sum streaa(x) is just the first component

of 2. Using heed(x) to refer to this component, we see the basic forms
sun_stresa(x) s cons(head(x), ....)

where the dots must yet be filled in to give us a complete definition, .

We now observe that i{f we knew sum_stresam(x), then we could add its components
pair-wise to the tail of the input (i.e. the components which are follo«ed by
the head) and end up with exactly sum_stream(x).! In other words, we have an

equation
sum_stresa(x) = cons(head(x), add streams(tail(x), sum stresm(n)))

Here we have used add streams to nsme the function whioch adds two stresms

coaponent-wise. For exmsmple,
add_streams(3 57 9..., 1 89 16...) = 8 9 16 25...

To see that equation for sum stream gives us ensotly the information needed,
we try to discover what it tells us about sum stresa(l! 3 5 ...). Using the
definition,

sun stream{(1 35 ...) »

oons(1, ndd_ltrui.(il S ..., sSum stream(1 35 ...))) =

‘Uo svold using the Lisp oar and odr for heed and tail for two reasons: Ome
18 that these terms are not suggestive of their measning, and the other is that

ve have in mind a later extension of cons for which head and teil fit more
nicely, ’



ocons(1, s«dd_stresms{(} 5 ..., oons(1, add_stresms(3 ..., sum_stresm(1 ...)))))
» cona(1, oons(d, cons(9, ...))) )

While this type of ressoning msy appear foreign to the resder at first, with a

little practice, it 1s sssy to becoms oonvinced thst It is an extremely
powerful deffinitionsl and progresming tool.

Incidentslly, we could go further and provide s definition of add_stresms:
add_stresas(x, y) = ocons(head(x)ehesd(y), odd_stresas(tail(a), ﬁll(y))).

wvhere + representa the ususl addition operstor on two nuabers.

2.2. Graphical Models

0dd_stresns

Figure 2-1: A graph for Funation sum_strass
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2.2.1. Graphiosl models clarify complex ideas.

We sre interested in graphiosl expression of computational specifications or-
the typs apecified in the previous seotion. For exasmple, the function
sum_stream oould be represented by the graph shown fn Figure 2-1. This greph
11lustrates the input and output of the funotion, as well as the es.ent{nls of

its internal structure.

2.2.2. Aro pames are irrelevant {n fumotion graphs.

In most cases we shall avoid giving names to the arcos of a graph, Instead, we
shall rely on the orientation of the arcs to determine the position of the
ocorresponding argusent to a funotion, That is, viewing the node 3o that input
aros enter a node at 1its bottom, the left-to-right orientation 1;1' arcs
corresponds to the order of argument listing. Where ambiguity or confusion

aight arise, we can return to the use of naming.

2.2.3. Flelds outside Computer Science esploy formalizable graphs.

It is claimed that for certain examples, the graphiocsl eipression csn land to
better comprehension of structures. Similer representations have occurred in
related application sreas. For exmaple, in digital signal processing, digital
filters sre often represented graphically. Unfortunately, the behavior of
Such filters 1is often explained using notions such as olocks, unit time
delays, and other jargon, instead of asppesling to their intrinsic meaning in

terms of functions on sequences. The legend accompanying Figure 2-2

illustrates how the basic filter operations can be viewed as functions on
streams defined in the previous section. By making this connection, it is

possible for Computer Science to contribute to digital filter design by:

1. Providing a language {in which the {dess of flltering can be
expressed direotly, instead of having to revert to Fortran coding,
which is often a lengthy prooess.

2. Allowing the digital filter researcher to embed his filters

directly into a general purpose computational system (i.e. a
Function Graph Language).

The langusge Lucid ([Ashoroft and Wadge 77) is a textusl one based entirely

upon recurrence equations of the type used in defining stream functions as
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Y (x.y) = sdd_stresms(x.y)
D) = cons(0.x)

I‘(l) . cnx(l“hnd(l). l|(taII(n)))

Figure 2-2: Graphical representstion of s digital filter having a transfer
function with z2-transfora (no.."“)/(I—b‘g“—bzz-z)

used above.

Another applloation area of interest ia that of System Simulation. Here one
is often concerned with physical processes which osn be modeied as
intercommunicating via stresms of discrete values. An example is Forrester's

aystem dynsmics (Forrester 61), which employs graphs of the type shown {n
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species A species 8
. birthrate birthrate
2\ [ L
o
tlm'tl_‘ < — tw«ln_l —
L SN2 . S22
*
constant constant() = cons(c, constant())
rate
valve ‘volve(rate, fnflow) = cons(k*head(rate)*hesd(infiom).
valve(tafli(rate), tati(infiow)))
inflow
. Tevel Tevel(a,y) = cons(initial_level,
LI e 80d_streams(sub_streams(x,y).
L Yevel(n.y)))

Figure 2-3: Grephicel representation of s system dynamics model
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Figure 2-3. As with digital filters, the nodes in this graph can he defined
83 stream functions, as presented in the legend. A language, Dynamo [Pugh
70], slready exists which allows such models to be input to ocomputers.
Although Pynamo 1s indeed an applicative language (perhaps ths flrst such),
its textual elprcgslon rather resembles a monolithic Fortran program, which
does little to help ita user visuslize relstionshlps between sub-systems. By
using a textual language (a3 we deacrlbe later) which is 1somorphlo to the
graphioal model, one asttains s new degree of lodullr-lt.y. at the ssme time
retaining the possibility of having one's models embedded in s genersl purpose
coaputstional system. Some other simulstion methods, e.g. [Pritsker and
Pegden 79), employ s grasphical notation, but these grasphs do not have the

formal properties of functlionslity fn which we are interested.

Other {solated instances of function grasphs havs ocourred from within computer
science, such as in (Saith and Chang 75), who employ graph transformations to

i{1lustrste query optimjzstions for relstionsl databases.

2.2.8, Stresm components need not be almple.

One should not infer from the sbove examples thst FGL desls only with streams
of atomic (i.e. indecomposable) values. The components of a stream might well
be srbitrery structures (including possibly streams) themselves. For example,
in Figure 2-4 an argument tree becomes the first of s stresm of trees, the

rest of whioch {3 obtained by splitting its non-stomlec members into sub-trees.

This exsaple exhibits an cyclic errangement of “processes® which communicete
vis streams snd perform appropriaste atressm functions such aa filtering of
stoms or non-stoms., The figure shous the basle communicstion scheme, but the
functions inside the boxes may be desoribed by simple conditionsl expressions

corresponding to aoyclio graphs:
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Tesves of {aput
tree in dreadth-first

order

ATONS

- ! NOMATOMS
streams g
ot slender
trees

CONS [
SPLIT
input tree

Figure 2-A: A function which strips the lesves from a tree in breadth-first
order.
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atome(x) s
if null(x)
then nil()
else 1If atom(head(x))

then oons(head(x), atoms(tail(x)))
else atoms(tall(x))

nonstoms(x) =
if null(x)
then ol1()
else if stom(hesd(x))
then nonstoms(tafl(x))
else cons(head(x), nonatoms(tail(x)))

split(x) =
if null(x)
then nil()
else oons(head(head(x)), eons(tsil(head(x)), aplit(tsil(x))))

in the sbove exaaple, nil is a l‘unct.h_m whlch producea a terminated empty
stresm, whereas null i3 » predicste which tests whether its argusant is thet
stresa. stom tests whether its srgument 13 sn stom. head and tsil, ecting on

trees which are not stoms, extract the left and right subtrees, respectively.

2.3. Semantics of Function Graphs

2.3.1. Function graphs have a simple basio form.

The msis finterest here 1a in systems of computstion which can be represented
as 3 certain form of directed grsph, which we are csliing s ®function graph®.
The name derives from the Interpretstion of the nodes of the graph as
functions. The arca of s functlon greph represent variables ranging over data
structures (including vasrfous degenerate forms of this oonoept). Aros
directed from one node to snother therefore represent the phenomenon of the

first node cresating s data structure which 1s sn input to the second.

It is poasible for an arc to "fan-out®, {.e. split into two or mora ares,
indicating that the ssme structure is to be made available to more than one
node a8 input, as shown in Figure 2-5. ¥No meaning 18 sssigned to two or more
arcs converging together. Other than this restriction, sny interconnection of

nodes can be sscribed a mesning, 83 shall be seen.



Figure 2-5: lllustrastion of fanout

The following festures will bs seen to fit into this genersl model:
(1) Creating data structurea by seversl funotions concurrently.

(11) Opereting upon dsta structures st the same time that they are
being created.

(111) Representstion of communication protocols.

(1v) Representation of infinite graphs by finite means.
(v) Representing "history-dependent®™ funotions.

(vi) Resolving smbiguity in the representation of recureively-defined

funotions.

Figuwre 2-6: Concurrent crestion of dests structures by f, g, snd h



18

Item (1) suggests that such a dats structure should somehow be rqpreaented as
seversl funotion nodes sharing s single output sro. Although this possibility
wsa excluded sbove, we csn represent this sharing by including another node,
the output of which §s the dsts structure snd the input arcs are directed from

seversl funotion nodes, ss in Figure 2-6.

Concerning item (ii1), our formallss does not require that the entire dats
structure at the output of » function node be completsly present at sny

instant. Instead, the structure appears during the putation, poasibly a

piece at a time. It {is even proper, and often convenient, that we consider
computstions of infinite durstion which produce data struotures of infinite

extent.

Regarding 1item (1i1), at some levels of detail, (amilisr notions of
communication protocol msy be completely sbatracted from view. However, when

such issues sre of concern, they may often be represented in our formelisa.

Regarding item (1v), the three primsry techniques for representing infinite
objects, either dsta structures or function graphs, are the ;100 of cycles in
graphs, the uae of grsph productions, and allowing dsta objects which ocan
thessclves be function graphs, These techniques shsll be explained snd

interrelated in the subsequent development.

Figure 2-1; Recoding » history dependent funotion

Regarding item (v), there 1s really no need to 1lntroduce a speoiasl notion of &



"history-dependent® funotion, since our model sllows the cl_lcodln( of en,
arbitrary history as a dste structure. Any function with a form of staste mey
be represented by s node with a self loop whioh feeds the previous history of
the Mc;lon basck to xudr at each computationsl step, as deploted in Figure
2-1.

Finally, regarding (vi), we shall see in subsequent seotions thst there sre
two ways of interpreting sn equation such ss that whioch definea mi_nru-.
The cholce of interpretstion has besring on storsge snd execution efficliency,
so it will be useful to resort to s graphiocsl representstion of the function,
whioh resolves the smbiguity.

2.8, Representing Syatems ss Grhphl

Given thet one sccepts the besic premises of function graphs as presented thus
for, we now wish to further stipulste the nsture of node functions end arc’
data structures. For this purposes we shall use streams a3 our dsts
structures, slthough the bssic idees will leter be seen to generslize. Begin
by imagining thst we observe the output of a funotion node over 8
semi-infinita computetion period, thet i3, one which hes s definite start but
no finish. v

2.8,.1. The null struoture contsins no informstion.
Assume that the dats structure starts out initislly ee s specisd null

ltructurc; vhich we denote

?

After some slepsed time, the node funotion produces some output, changing the

Structure to sy, After more elspsed time, it gets changed to 82, then 33, end
80 on. Over the observed period we therefore see '

T, 8y, 3, 83, ....



Teft right

Figure 2-8: Handshaking example

2.84.2. Handshaking illuatrates a simple fores of communicstlon.

Consider two devices communiceting via a simple “handshasking® protocol, as in
Figure 2-8. Assume that the left node initiates communicatlon by sending s
signal b on the top line. iWhen the signal 1s received by the right node, the
latter responds by sending a signal c on the bottom line. When the left node

receives this signal, the whole process starts over sgain,

If we record the sccumulated signals in » string on esch lins in » state, we
get the following state-transition picture:
? b b bd bd bbb

-—) -—d - -— - -> .ee
? ? (] [] ] ce

One wey of expressing the above behavior is to give a sst of productions which
characterizes the transitions between states. From an understanding of this

behavior, the following productions sufffice:

| bx

-2 1f length{x) « length(y)
y ¥ . ’
] H

—d 1f length(x) ¢ length(y)
y cy

Here x and y represent arbitrary finite strings snd length(x) 1s the length of

A second way of representing the behevior is to present the left snd right
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nodes as functions, in the fors
left(y) = cons(b, invert(y))

right(x) = iavert(x)

where favert(x) fs the string obtained by replacing each b in x with o and
esch o in x with b, ’

Taken 4individually, the functions defined do not capture the lhoﬂ. term
hand-shaking behavior of the systea, However, taken together, with the
understanding that the system when in stete (x,y) tends towsrd the state

(left(y), right(x)), they do quite well. For example,

left(?) b.
s
right(?) ?
left(?) b
L ]
right(d) e
leftloc) bd
[ ]
right(b) L]
left(o) bd
2
right(bd) oc

and so forth,

2.8.3. Solving equations expresses long-range system behavior.

The (functionsl description {is able to express one aspeoct of the system
succinotly which the stste-transition behavior cannot, namely that there will
be no deadlock in the sense that some node eventually stops sending signals to
the other. To see this, we first submit thst the long-range behsviotr of the

systea ia & solution (or fized-point) (x, y) of the system of equatfons
z = left(y)

y = right(x)



From the discussion regarding astate-transition behavior, it 1s intuitive that
the solution should de
X = bbd...

y s coa,..

Indeed, this is a solution, since

left(ccc...) = b fnvert(cce...) = bbbb..:

right(bbb...) s javert(bbd,..) = cco...

We hsve not demonatrsted thet the abovs solution is unigue, nor how that fa
the proper choice smong several possibilities. This will be sddrsssed in the

following sections.

2.5. Reoursion

It is useful to extend our concept of graphs to graphs which are specified by
graph grammars. This extension sllows ua to represent infinite graphs by
finite presentations, which will give us s convenient weans of defining

functions by possibly recursive qppllen'.lona of productions.

Suppose that we sllow the nodea oi’ a graph to be labelled with two typea of
synbols: terminal symbols, which denote pre-defined functions, snd suxlllsry
symbols. For esch suxilisry syabol, there is to be exactly one production
which has the node labelled with the suxilisry symbol as antecedent, and sn
sccompsnying graph as the consequent. The set of productions oolleotively
will sometimes be eslled a graph grammar,

Nodes 1sbelled with terminal and asuxilisry symbols will be called terminsl

nodes and suxilisry nodes respectively. We assume a one-to-one correspondence

betwaen the sros of sny node lsbelled with an suxilisry symbol snd ted
srcs in the consequent of the production. The meaning asscribed to o
production is thst whanever there is an suxilisry node in the graph, it msy de
replaced with the oconsequent of its correaponding produotion to determine {ts

meaning.

R NPM
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For enhsnced readability, we shall adopt the practice or_nldng nodes

oontsining terminal symbola circuler or elliptical, snd nodes containing

suxiliary symbols rectangulsr.

Furt-hor-oro. we shall use heu.onn nodea to symbolize an arbitrary lubgraph,

auch ea the consequent of » produeuon.

add_stresms

Figura 2-9: A production for the add astreams function

2.5.1. Exsmple:
Consider the add _streams function used earlier. We osn represent this

function in terma of a mora primitive function add which adds only a aingle
pair of integera, using the production in Figure 2-9.

As further exemplea of recwrsion, we show below two different exemples, both
of which generste sll odd prime numbers. The modus opersndi of t:heu two
exsmples is suggested in Figures 2-11 and 2-13. The detailed definitions of
some of the operators contained therein are presented in the Evslustion

section which appears later.



FL]

t !

* FliLTeR

=] T

!

(2]

(4{8{(]
NEAD
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Figure 2-11: Expansion of the First Odd-primes Example (odd_from §s deffned in
Section 2.1.2).
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Figure 2-13: Expansion of the Second Odd-primes Exsaple



2.6. Splitting Transformation

Figure 2-18: Splitting trensformstion

The discussion of recursion in the previous section described wsys of
trensforming o graph by spplying productions. Another type of transformation
of intercst involves local modificetions to the graph based on the fect thet
‘lhc nodes represent functions. Such transformetions are wuseful {n
understanding the functions represented by graphs. However, these
transformetions are not necessary to provide meaning for the graphs. That can
be done on a purely functional basis, as described in the section on

Theoreticsl Basis.

Because nodes of s graph represent functions, it is easy to see the validity

of the splitting trsnsformstion, es demonstreted in the disgrem of Figure

2-10. Because the values on the top ercs each represent f(l|......ln). where
each x; » gy(....), wo con split f into seversl copies of itself in place of
l._ho split output arc of f. One reason for wenting to do this might dbe that we
wish to mske further transformestions 1n§olving Just one of the copies of f.
The oeplitting transformation exemplifies the notion of vreferential

transperency (cf. {Quine 60), [Landin 68)), in that a functionsl expression
has the ssme mesning independent of its context.

Notice that to say thst the splitting rule is applied does not remove the
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amblguity of where in the grasph it is applied. We shall adopt the practice of
placing sn ssterisk nesr the nods being split to so indicste.

Applying the splitting transformation to the exsmple in Figure 2-1, we get the
sequence shown in Figure 2-15. The infinite graph 1s asgain seen to be
embedded in the limit of an infinite succession of such transforsations.

It can be noted in Figure 2-15 how function graphs subsume the tuuil “box
disgrams® (cf. [Allen 78]) used to represent dats structures in Lisp-1ike
lsnguages. The cons nodes replsce the role of boxes contsining “dotted
pairs®. The srrows are reversed in going from one representation .to the
other, in the sense thst they represent references in box dlsgrams, but dats
flow in Function grsphs. Furthermore, in function graphs, such dsts structure
nodes blend well with functions other than cons, whereas no blending suggests

itself with box disgraams.

The inverse of splitting, which will be cslled folding, will elso have 1ts

uses {in discovering certain equivslences later on.

apoly

Figure 2-16: The mesning of apply
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» cons => ... cons

cons cons

g)

tafl

Figure 2-15: Rapested spplication of the splitting trensformstion



2.7. Funotions ss Velues .

In order to present s semsntics of productions, snd aiso to repreaent »
powerful definitionsl mechsnism in graphicsl terms, we {introduce » specisl
function ceiled aspply. In ite simplest form, spply is s function of two
argumenta, one of which ia 8 function snd the other of which 18 sn srgument to
thet funation. Functions which teke ome or more functions ss srguments sras
sometimes cslled "functionals®. (Anslogously, the correaponding grespha might
bs called "graphicsla”.)

2.7.1. Enveloping shows the crestion of function veslues.
Ve might sasume that there asre some primitive funotion objects whioh ocan be
used o3 the firat argument to apply. Howsver, it 1a slso deairable to ba able

to creste function objecta ouraseives,

In FGL, a function which can be used as an argument to another will be shown
by enveioping the former inside a node of a graph. Thet ia, the envelope ia o
conatsnt function which producea the enveloped function of ita vajue. The
meaning of apply cen then be expreased by the rule shown in Figure 2-16. It
13 not difficuit to see thet if the domain of the [irst srgument to spply ls
Dy —-> D2, the set of functiona from Dy into D2, snd the domsin of the second
srgument 13 Dy, then spply 18 a function from (Dy —> D2) x Dy into D2.

2.7.2. Import aros provide extra flesibility.
It 1s importent that we sllov import sres to pass (rom the outside to the
inside of sn envelope., Thia sllowa the graph inaide of the envelope to get

values from the outside in ona of two ways:

1. By mesna of arguments which are bound to the free input sros inaide
the anvelope when the latter ia spplied.

2. By means of import arca which psas into the envelope. These srcs
are present either in the initisl greph, or reaidusl from priar
spplioationa.

Funotion values which have their {import srca connected to the outside world
sre often celled cloaures [Landin 68}, As an exasmple, suppose that we wish to

define a function serial comp of two srguments, esch of which is a function
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Figure 2-17: Illustration of function envelopes

itself, such thet the result of serisl comp(f, g) is e function, say h, such
thet hix) = f(g{xn)). 1In other words, h is the serisl composition of functions
f and g. A graphical presentation of serial comp is shown in Figure 2-17. The
envelope shown as the consequent of the production for serial_comp has the

functions f and g as imports. VWhen this envelope i3 presented to the apply
operator, the envelope i3 stripped off and the free input sro inside is bound
to the second argument of the apply. Funotions suoh as serial_comp whioh sre

designed to take functions as arguments are sometimes called "combinators®.

For sake of further illustration, we direct the reader to Figure z-is, which
fllustrates the concept commonly called "Currying®. Here a binary function is
represented as unary function, the value of which ia another unary function.

Applying the binary function to (x, y) is the same as spplying the unsry



»pply

Figure 2-18: Illustretion of Currying

function to y, then applying its value to x.

We contend that the enveloped representation of functions ss described in this
section is useful for understanding lexical binding in progrsmming lsnguages,

snd the sccompanying issues, e.g. the "funsrg® problem [Moses 70).

2.7.3. Productiona cen be eliminsted.

We now wish to show how the enveloping device can be used to eliminete the
need for productions. Although productions are s useful nprAeunuuon for
geining intuitive underatanding, they are awkward for representing the idea of
imported values, since all such values would presumsbiy have to come from »
single contest. 1In our "block-structured® implementation of FGL (Keller, et
sl. 80) we have found it convenient to sbsndon the implementation which
corresponds sost closely to productions, in fsvor of one which trests sl
programmer-defined functions uniformly, whether or not they are returned as

velues.

Consider s graph grammar production of the form shown in Figure 2-19. We can

view the consequent of the sbove production ss an ebbrevistion for the



Figure 2-19: Typicel recursive production

Flgure 2-20: Equivalent of the consequent of the production of Figure 2-19
using apply
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subgraph shown in Figure 2-20, where R' is 1like H, except that G has been -
replaced with the apply as shown.

In other words, H' 1s a “functional®™ which tskes sn srgument which ocan be

supplied ss G, whereas H has G built {n. Thus, we could write
A= H'(G).

This equation will find sdditionsl uses later.

Figure 2-21: A second graph equivalent to the G of Figure 2-19

Since the greph of Figure 2-20 is equivslent to the funation G, we may
substitute the entire graph for G, ss shown in Figure 2-21. By folding the
graph in this figure, effectively using the equation

G = H'(G),

we get sn equivalent but more compsct version, as shown in Figure 2-22, as

well as a further simpliffed version in Figure 2-23. The lstter cen alwaye de
used in place of G itself.
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Figure 2-22: Folded version of G
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Figure 2-23: Siwplified folded version of G
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3. Theoretiocel Basis )

3.1, Function Grapha and Equations

We now c_lul with the problem of determining the long-range behavior of a
general network. We have not yet provided any reason to believe that this
behsvior ia unique in sny sense, psrticulerly in the context of ssynchromous -
concurrent computation. Sufficient conditions for this uniqueness _\dll be
provided in the course of the presentation, which is at the general function

greph level.

As mentioned earlier, a greph consists of a set of node functions which act on
arc desta structures. It has already been seen how such e greph could be
chsrascterized by a system of equations involving the arcs 83 veriebles. We
now wish to represent all node funotions collectively es one function F acting
on 3 tuple of detes structures. Correspondingly, the system of equations will
be reduced to a single equstion.

3.1.1. One function and one equation suffioe.

We cell F the system function of the greph. l'.' intuitively gives thet segment
of the oversll behavior corresponding to one step of all node functions scting
in concert without feedbeck. The components of the tuple on which F acts
correspond to the "internsl® and “"output® srcs of the grsph, with the "input
arcs® of the grsph es "parameters” of F. By input arc, we mean one which is
not directed owt of sny node in the graph, and by output erc, we mesn one
wvhich i3 not direoted into sny node. A&n internel erc is one wvhich is neither

an input nor an output srec.

3.1.2. Kzample:
Consider the graph of Figurs 3-1. Here the output src y is slraady identified
with sn internal src 2y, xy and x2 sre the two input ercs. We express the
systeam function F in termws of £, g, and h by

F(zy, 25, 23) o (£(xg, 23), 8(x3. 23), h(zy, 23))
As mentioned, F implicitly depends on the inputs xy gnd x2. Tne solution of



Figure 3-1: Function greph exsmple

3.2. Dets Types

We now present conditions under which the system function determines most of
the relevent aspects of the graph's long-term behavior. We first reguire o
means of chsracterizing how dats structures sre bufit up over an intervsl of
observstion. Formelly, this ssounts to requiring thst our dsts structures be
members of the "domsin®™ of » "dsts type®. (Although the phrase "dsts type”
may sppesr contradictory to the populer term “abstrect datas type®, we shall
use it to have s mesning in the sense of [Scott 70), which 1s still the

prevalent use of the term in the sres of tios of putstion.) Although

the generality in this section may sppesr to be overkill, it has genuine value
in understsnding the scope of the theory behind concurrent execution of
function graphs snd whst can be proved with them.

Definition R dats type consists of:
(1) @ set D, celled the domain of the dats type,

(11) on informetion ordering < on D,
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(111) an undefined element ? in D, and

(1v) a 1imit operation lim.
More specifically, the information ordering is a partial order on the domain

D, 1.e. ' binsry relation which hes the following properties:
(1) enti-symmetrio: For sll x, y in D, '

x ¢y fmplies not y ¢ x
(11) transitive: For all x, y, 2 in D,

(x Cyand y ¢ 2) implies x ¢ 2

Vhen we say thet 7 i3 an undefined element, we mean thast it is the unique
element suoh that
For @1l x in D-{?),

<

3.2.1. Data types charaoterize informastion ocontent.

The informstion ordering provides a wsy of compering the information in two

data structures. Thus, if x end y sre two possible structures, z ¢ y means
that y contains more informstfon than x. 7 i3 sometimes cslled bottom. It

represents s structure sbout which there is no tnformatfon.

For notstionsl convenience, we extend our notation for the ordering ¢ to ¢, in

the sense that
1 (ymeans x { yor x a y
Conversely, given suoh an ordering <, we can recover < by defining x < y to

mesn x C yond x ¢ y.

Finally, we define the notion of s 1imit operation. If C i{s s sudset of D and
d en element of D, we write

c¢d
if for all x in C, x < d. In this case, we ssy that d 13 an upper bound on C.

If 4 {3 such that C < & end for every d*



C ¢ d' fmpliea d ¢ d*

then we say that d 13 the least upper bound of C, or limit of C. That {a, d is
an upper bound on C which 1a < every upper bound of C.

When such » limit exists, we shall denote it as s funotion of C by
1is C

In s data type, we require that 1im C exist whenever C is s "chain®, whieh
mesns

For all x, y in C,

1 {yory(x

In other words, s chain 1s a set wherein sny two distinct members csn be
ordered with respect to the amount Informstion in them. The 1limlt of the
chain corresponds to the informstion contsined in sll of the members of the

chein, snd no more.

3.2.2. Limits epitomize successive approximations.

It makes sense to require that the dats atructures asppearing on arcs bde
members of the domain of data types essociated with those arcs. The
informstion ordering determines uMeV; dste vslues csn sppear conseocutively on

sn arc; 1.e. we require x < y whenever y sppesrs after x. In s asense, this

says thst x ia sn spproximstion to y.

Furthermore, we can identify the ultimste structure appearing on an src ss the
limit of the set of successive approximstions appesring there. This provides
8 convenient way of characterizing behavior even in the case where such

behavior 1a non-terainating.

3.2.). Example of s dsta type:

The handshsking example in Section 2.8.2 deals with dsta types having domains
of sets of strings over some slphadet, including infinite strings. We cell
these strings one-level streans, to contrast with » more comprehensive type of

stream to be disoussed subsequently. The undefined element in the domain
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corresponds to the null string. The informestion ordering eoinoides with the
prefix ordering. The limit of e ohein of strings Is just the shortest string
having ell strings in the ehain as prefizes. Por exasmple,

iim (7, b, bb, bbb, ...} = bbb...

bbbd bebe... ccec. ..

1
Figure 3-2: Ordering disgrem for a one-ievel stresm data type

The information ordering in s dsts type can be depicted by an ordering disgram
which shows how typical members reiate to one snother. 1In such s disgram, 1if
_ there 1s an srrow from x to y, then 2 ¢ y in ths {nformation ordering.
Transitive srrows sre not shown expliocitly. In other words, x < y slso {if
there is s sequence of arrows directed from x to y. The ordering for one-level

streams over the slphsbet (b, o} is shown in Figure 3-2.
3.2.8, Examples of dats types:

1. Let S be any set. Then P(S), the set of sll subsets of S, is the
domelin of a data type having least element @ (the empty aset),
information ordering ¢ (set inclusion), and 1imit operstion U
(unton), Shown in Figure 3-3 1a the ordering disgraa for P(3)
shere S ia the set of sll natursl numbers, [0, 1, 2, 3, ...}.

2. Let S be any set, Then B(S), the set of all bags, 1.e. “"sets with
poasibly repested elementa®™, of members of S, with inclusion and
union es in (1), forms s data type. Shown in Figure 3-8 1s the
ordering diagram for B(S) where S 1a the set of two stoma (s, b).

3. Let S be sny set. Let ? be on element not in S. Let the domein of
the date type de S U (7] with ordering < defined by
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§ =

Figure 3-3: P(S) ordering
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Figure 3-A: B(S) ordering
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4

Figurs 3-5: Flet ordering of the natural numbers

ECyiff (x=2and y4 ?)

This is called the flat data type over S. Notice that each chain in
such a data type has st most two membera and the limit i3 just the
grester of the two. Shown in Figure 3-5 ia the flat dates type on
the natural numbers.

e e __--l_—.-o—*—l—-....

Figure 3-6: numeric ordering

Let 2 be the set of all integers. Then Z U (00, -w) is the domein
of a data type with the Information ordering of numeric inequality
(<) and esximm a3 the 1imit operation. This ordering {3
demonstrated in Figure 3-6.

5. Let S be a set, called the set of atoms. Ve define a datas type
whose domain is the set of binary trees over 3. Begin by defining
the finfte binary trees:

(1) The null tree, 7, 1o & finite binary tree.

(11) Any member of S is » finite binary tree.

(111) If tq and ts sre finite binary trees. then so is the tree
(ty, t2) having ty as its left subtree and ty as its right
subtree.



The ordering < on finite binsry trees is defined by:
(1) 2 <Ct, for esch t ¢ ?

(11) (ty, t3) ¢ (t3, ty) 11f tq < t3 and t2 < ta.

Me then define the infinite binary trees to be limits of infinite
chains of finfte binary trees. Thus a binary tree ia efither s
finite binary tree or an infinite binary tree.

For exsaple, the rules above tell us that
<@, D C(r, D), D
Extending this construction, we have
- !o(t‘(tzt...

where tg e 7 and for each 1, ty,q = ((7, tg), ).

?
—
1
l
?
]
?
|
1

Figure 3-7: Limit of the tree sequence t,; ¢ t, < tz € vae

Tnhe limit of this infinite sequence i3 the infinite tree depioted
in Figure 3-7.
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We shell observe an important application of the binary tree d_lu type in a
forthcoming section. It can be noted at this point that the binary tree data

type can also be viewed as a multi-lavel stream data type over a set of atoms,

wherein we define
(1) The null stream ? i3 a stream.

(11) Each atom is a streasm.

(111) Any finite or infinite sequence of stresas is a stream.

The corresponding ordering is
(1) 2 C x for all x ¢ ?

(11) x < y Aff x §5 not longer than y and each component of 2 18 < the
corresponding component of y.

Figure 3-8: The tree equivalent to the stresms LU L LR

The connection with binary trees is that the stream
Tge Tqe Bpe eee

is equivalent to the tree shown in Figure 3-8. This conneotion i3 used in
lenguages such ss Lisp, whioh sometimes use o special etoma 'nil' as the leaf
of a tree to findicate the end of a finite atream which csnnot be further
extended. It is importent not to econfuse *nil' with the null stresm 7.
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3.2.5. Data types combine to get new date types,

(a. b)

. b
t X T - . b)< >(.. )
? ? (7. 7)

Figure 3-9: Product date types

It 1s importsnt to notice that {f we have a collection of dats types, D;, ?;,
<y, 1imy, then we may form their product dsta type ‘
1.D= XDy,
2.1 = (7, 72, ....),
3. € {8 defined dy
(dys 0y, ...0) € (dy', 4yt ool)

ier
for each 1, dy <4 d;°

snd extending the limit operation so that
liml(dy, d3, ....), (61'. dz'. ceedd, (4,7, 62'. S TR |

s (Mmyidy, a;'0 ;" ..., Umypdy, 63", 05, .00 L0
We illustrate product dasta types in Figure 3-9.

To summarize our finterest in the notion of dsts types, we require that the
data structurea representing the history of sn aro in s graph be menders of »
dsta type. The information ordering of a'd-u type constrains the trasnsitions
between hiastories of any arc. That s, » dats structure x oan be later
followed by & structure y only if x € y. The limit requirement of a data type
provides for the existence of a unique (possibly Iinfinits) “ultimeste®

structure on sny arc of a function graph.
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3.3. Behaviorsl Descriptions . .
Returning to the hendshaking example of Figure 2-8, we further olarify the
disoussion by pointing out that there are two viewpoints for the behavioral
desoription given. First, we reduce the discussion to one equation. We had

x o left(y)
s b invert(y)
s b invert(right(x))
s b invert(invert(x))
s b x, ainoe invert(invert(x)) = x.

There sre two essential ways of viewing en equation such ss
X e bx

The first 13 the view that the behavior at sny step is given by following the
behavior 30 far by b snd continuing. This is suggested by the repested
substitution for x, viz.
s e bx
s bbx
s bbbx
a .

The second is the view that the ultimste behevior x is obtained by successive

approximations, sterting with the undefined behavior, as in

?
b?
bb?

To more ecourately describe the method of successive approximstions for
determining system beshavior, we represent the node funotions of the grsph by
the system funotion F on the product of the dete types st each internal aro.
Recall that the input sro dats values ere implicit parsmeters of F.

Assume for now thet the sros of » given greph sre initielized so thet the
input aros contein the ultimate values to be placed on those ercs by the

environment and the internal srcs sre initislized to contain the ‘undefined’



struoture, 7. It turns out that no generality is lost in these essumptions.

3.3.1. Restriotions ere y for ssive spprosimations to work,
In order to insure the efficacy of the successive spproximstion spprosch, we
shall place some requirementa on F. The firat requirement 1is that of

monotonicity. To say that F is monotone means

For sll1 d, d',
1f d < d' then F(d) < F(d').

In psrticular, from the “seed” relstionship

T <D

we may spply monotonlcity repeatediy to get

F(7) < F(F(D)
FIF(7)) < F(F(F(D))

In short, we have a chain

(?, F(D), FIF(D), ...]

By our asssumptions about dats types, this ohain hss s limit, which we
henceforth denote by

o
Wotice that the chain sbove corresponds to the “simulation® of only one of
what might be many possibly computstions, Ko assumptions hsve been stated

about relative eomputstion times of the node funotions, but this one

simulation sssumes that they complete esch step synchronously.



3.3.2. Monotonicity insures speed-independence in an ssynchronous environment..
Fortunately, the monotonioity property {nsures that ' 1 always the
result, independent of the manner of simulation. It is only required that
each node eventually reslizes the veslue specified by {ts function applied to
its ultimate {nput data structure. In this case, each step of an
erbitrarily-timed computstion will eventually be subsumed in the limit value.
In other words, the result lor the ocomputation 1s determinate or
speed-independent. (This fs also related to the "Church-Roasser® property, of.
(Rosen 73).)

An sdditional restriotion must be imposed to insure that F"(?) “"makes sense®

as sn ultimate behavior. The following section elaborastes on this point.

3.8, Continuity
Although F'(7) 13 interpretable as the unique behavior of the function graph,
it does not necessarily follow from the properties desoribed so far that ()

18 a fixed point, 1.e. it satisfies the system equation,

FE' (M) « F(1)
The fnequality
(M < FFh M)
follows from monotonicity, but' the converse inequality -
FF(N)) <KD

does not.

In other words, there is no guarsntee that F"(?) is "stable®, fn the sense
that it indeed represents the ultimate value which the funotion F is “"trying
to produce®™. One can easily construct exsmples consistent with all properties
introduced so far which show that the sbove fixed point property does not

hold. For instance, let

cons(a, x) if x is » finite stream
h(x) =

aons(d, 1) if x 15 an {nfinite stresm
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Then h i3 wonotone, since if x 18 e prefix of y then cons(s, 1) 15 a prefis of

oons(a, y), and similarly with s replaced by b. However, h does not setisfy
the system equation, since

h*(7) = cons(a, oons(s, oons(s, ...)))

but
h(h®(?)) = cons(b, ocons(a, oons(a, ...)))

Although there is no grest mathematicsl harm in not having the sbove system
equation hoid, without it we would hsve thst the snomaly that our system
function F could be applied to the limit of the chain (i.e. the ultimsts
behavior) to get new information not present in the chsin itself, vhich seems
counter-intuitive to physicsl reality. A aufficisnt ocondition on F which
results in the stadility of F'(?) s thet of continuity.

The function F:D —> D is cslled continuous provided that it is monotone snd
for sny chsin C o D,
F(1im C) = 1im { F(4) | @ in C}

3

(Notice that monotonicity insures that the set on the right is s chsin, =0
that {t mekes to ider its limit.) By identifying

(7. F(1), F(F(?)), ...}
with C and noting that
1im 12, F(?), F(F(D)), ...]1 = 1= "“),' F(FK(D)), ...),

we get E(1) a8 a fixed point,

For example, it ls essy to see that the funotions left and right from the
hendshsking exsmple sre both continuous, so thst the derived 1imit s the
lesst fixed point.
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3.8.1. Ezxample! i

Consider the binary tree dats type introduced earlier. It 18 easy to see that

the funotions head, tail, and oons, defined as follows, are all continuous:

ocoas{x,y) = (x, y)

head((x,y)) & 2
head(?) « ?
head(s) = error, if a 15 an atom

tell((x,y)) = y
tefl(?) = ?
tail(a) = error, if a is an atom

Here error is » special valus which i3 distinguished from sll other values and
indicates that a "non-sensicel® application of a function has been sttempted.
Notice that error is quite distinct from ?, the latter being the mathematical
value indicating the result of a divergent or incomplete computation. WNotice
that under the stresms interpretation of trees, head corresponds to the _lﬂs_t
sember of the stresm, while tail corresponds to the rest of the stresm after
deleting the first member.

3.8.2, Determinacy Theoream

We now encspsulate the essence of the above discussion in a theorem.

Determinacy Theorem If G 18 any function graph composed of nodes which
represent continuous functions on their connecting erc data types,
then G determines a unique function from the dats types of its input
arcs to those of its output arcs. Moreover, if each node function
ultimately realfzes ita output value on its ultimste input values,
then G also will realize its output value,

The subtlety of this theorem is that the input to a given node may well by a
*mov ing -hrlet'. i.e. its input mey be changing, since that input value might
be in the process of being produced by some other node, whose input may be
changing, etc. Continuity insures that despite such wmobility of velues, a
least (with respeot to the {informstion ordering) tuple of ll‘l; values
consistent with the specified funotions exists. This tuple is the least fixed

point of the system of equations. It corresponds to the solution of the
system which requires introduction of no additionsl {information except that
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exhidited in the functions and equations themselves (e.g. no. informstion °
oconcerning the method of evsluation). Successive approximations give us one

way of sscertaining thst tuple.

3.8.3. Exsaple:
Using the binary tree dats type, consider the equation

z s oons(x, z)
We have slready mentioned that ocons {9 continuous on this data type. For
successive spproximetions to z we get

cons(x, 7)
cons(x, cons(x, 7))
cons(x, cons(x, cons(x, 7)))

The least fixed point is apparently the infinite structure

2z = oons(x, cons(x, cons(x,...)))

Clesrly, the equation is sutisfied whan this structure is substituted for z in

!

2 = cons(x, z).

Figure 3-10: Grsph resulting in the Fibonacci stresa



53

3.0.8, Exsmple:
The graph in Figure 3-10 produces the stream of Fibonacol numbers. To see
this, we may use the auccessive spproximation technique.

The system function is given by
F(x, y, 2) = (add_streams(y, z), cons(1, 2), cons(l, y))
80 that we have the following mcoosnn_ approximations to (x, y, 2)¢ ’
, 172,17
(2, 17, 11 D)
(22,1272, 1117
231,127, 1127
(2372,12372, 1121
(2357, 1237, 112317
(2357,123517, 112317
(235817 123517, 112317

The 1imtt 1s £°(D) o
(23581321 30..., 1235081321..., 11235813...)

Another way to motivate the ohofce of F'(?7) as the behavior 1s to use the
sforementioned notion of repeated substitution in the equation x = F(x). That
is, by repeastedly substituting the right-hand side for the left, we get

1 = F(P(F(...)))

This solution sgrees with the successive approximstion solution.
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3.0.5, Continuity insures coaposabllity. .

An additional advantage which scorues from assuming that the node functions of
s network sre continuous is that s closure property is essy to demonstrate. A
useful technique in system structuring is to trest s system 83 1f it were
composed of sub-systems, rather than of stomio node functions. It would then
be useful to know that such sub-systems behaved essentially as if they were

stomic nodes. We can show that continuous functions sre closed under

functionsl composition, 80 that continuity of individusl node functions

insures continuity of the system function. Such a property is important in

hiersrchical snd modular development of software snd hardware systems.

Note that arbitrarily meny identity functions msy be inserted on sny erc of a
function grsph composed of continuous functions, without affecting the
ultimate function computed. Therefore, these graphs exhibit what is cslled

delsy-insensitivity ([Keller 78], in that the {identity functions sct es

arbitrary inserted delsys. When delay-insensitivity holds for a distributed

system, it tends to be much essier to snalyze than in the more genersl ocase.

A further remification of continujty is discussed in Section 3.6.

3.5. Deterainsoy of Systems involving Productions
We now wish to extend the closure property disoussed sbove to sllow suxiliary
nodes as well. That 1is, glven & graph grammar, if each tersinal node

represents a continuous functien, then so does an srbitrery graph.

3.5.1. A set of funotiona may be a deta type.
Some preliminary observetions will aid us. First, let Dy __) Dy denote the

set of continuous functions from Dy f{nto Dy, where Dy and D2 sre the domasina

of two dasta typea. Then Dy —> Dy itself 1s the domsin of a dastas type, the
ordering of which {s defined by
F <G if, and only if,

for each x in Dy, F(x) < G(x).
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The least element ? of this type is the function whose value is always the.
least element of D3, The limit operation is defined so that for any chain Fy,
F2, F3, ... in Dy —> D2,

for ssch x in Dy,
(14m (Fy, F, F3, ...0)(2) s Mm (Fy(x), F2(x), F3(x), ...}

Referring to the greph of Figure 2-23, which represents the definition of e
function G sccording to G(x) = H'(G)(x), as disoussed in Seotion 2.7.3, we may
use splitting to unfold the graph into numerous i{nfinite forms, three of which
are shown in Figure 3-1t. The point of these foldings and unfoldings, besides
being an exercise in graph manipulstions, is thst the infinite form Figure
3-11b shows that the recursively-defined funotion G represents the function

H'o(7) « 2m (2, H'(D), B (H' (D)), H(H'(R'(D))), ...)

vhere H' i3 the funotion represented by the consequent in Figure 2-20 snd ?
represents the funotion whose value i3 totally undefined. The Inf_lnlte form
of Figure 3-11c {s the equivalent of repeated substitution and gives another

representation, namely

H(?) = HO(H'(H'(...)))

It is not difficult to show that the limit funotion asbove is continuous,
thereby allowing us to conclude the following extension of the determinsoy

theorem:

Recursion Theorem Any function graph with continuous atomic funotions,
including one with suxiliary nodes defined by productions, itself
represents a continuous function. This function i{s determined by the

gruph formed by repested substitutions of antecedent nodes by their
corresponding consequents.

It 18 noted that the limit concept in ouwr notion of date type is essential in
making the sbove statement meaningful, since this concept gives lennlni to the

function represented by an {nfinite graph.
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(b)

Figure 3-11: Infinite unfolded versions of G
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3.6. Finite Support .

Continuity hea snother interesting impliostion. Conaider the output date
struoture generated by s node funotion. This structure may, in the limit, be
infinite. However, we expect that it will slways be generated incrementslly,
by @ succession of finite spproximstions. Correspondingly, we would expeot
that easch finite spproximstion be the result of the node function's eotion on
s finite spprozimstion to its fnput, rather than en infinite amount of input.
This suggests that the set of date structures D which comprise s dets type be
dichotomized finto the set of “finite® structures Dpy, and the “infinite"
structures Dy, and that we have the following finite support conditlon:

For each d in D, {f F(d) 18 in Dpyp,

then for some d' in Dgyp,

d' < d and F(d') « Fla).

1

The distinction of Dy, vs. Dypp depends on the dats type under oonsiderstion.
It 1s cleasr for strings snd trees, but perhaps not so clesr 1n genersl. One
proposed definition for genersl dats types (which places asn edditionsl
constraint on the ordering <) 13 suggested in [Stoy 77), pages 106-111, but to
explore this suggestion would exceed the scope of thias paper.

Here we shall be content with sn exsmple, showing thst the finite-support
property holda for continuous funotions on strings. Suppose thet d is o
(possidly-infinite) string such that F(d) is finite. Let us write d a3 the
limit of the finite strings
dye 930 .o

By continuity, F(d) is the limit of

r(d])o r(dz). cea
But since F(d) 13 a finite string, there must be an 1 such thst

F(d) « ”‘l)

80 choose d' = d;, Tha finite support property therefore holds.
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8. Machine evelustion of Computetions Represented by Graphs

Having presented examples of the use of graphs for specification, it is now
time to discuss the evsluetion of functions specified by them. That is, given
s funotion greph with dete objeots specified on each of its input eros, by
evaluation we mesn the procedure to be used to csuse ultimste production of

the data objects on the output arcs of the graph.

8.1. A Rudimentery fors of FGL

As we heve presented 8 rsther sbstrsot formulstion of the semantics of
funoction grasphs, the notion of evelustion will clesrly be dependent on the
choice of underlying dets types snd stomic operstors. Hence, we cen st best
hope to present an evsluetion method for an exemplery choice of the lstter.
This cholce will be a simple language which we osll FGL.

8.1.1. The data types of FGL
In this presentetion, the set of data objects of FGL will be

Objects = Atoms U Tuples U Graphs U (7]
vhere

1. Atoms » Integers U Stringa U (error}, wvhere Integers i3 the set of
integers and Strings ia the set of character strings over some
slphabet. We sssume that Strings includes the string 'nil’' which
will plesy the role of the Booleen value false. Any stom other then
*nil' end (error) mey play the role of the Boolean vaslua true.

2. Tuples: A tuple is a sequence of W Objeots, (In Lisp, W = 2 is
typicelly required.)

3. Graphs: We sllow the enveloping of a graph, as desoribed in
Section 2.5, snd its use ss s function olosure dsta objeot.
As we wish these objects to compriae the domain of » dete type, we must supply
ordering end limit information asocordingly. First, there is s lesst element

7, representing » velua which hes not yet been determined. For e.leh data
object x / 7, we have ? ¢ x.

Second, esch stom is unordered with respect to every other. Third, the

ordering between two tuples is given by
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1ff for each 1, x; < y;.
Finally, Af G and K ars grephs, then G C K 1ff H i3 1ike G, except that socae
auh.nmt.h:m! have been masde for suxiliaries in G to odbtain H.

8.1.2. Baslo Operators of FGL

We now describe s basio set of FCL operators. The expected types of srguments
are 1ndicated by the following names.

odbJ an object of any type

tup s tuple

int an integer

bool 8 string which is either 't' or 'nll’

fun an enveloped graph, representing s function closurs

The logical functions snd snd or consider ‘nil' to be false and everything
else to be true. The following descriptions use the words true snd felse in

place of the strings ‘t' snd 'nil'.

The forms in the following descriptions indicate the expected argument types,
followed by s ocolon, followed by the resuvlt type, for single argument
functions, psrentheses may be omitted. Violations of the expacted type of an
argument will result in the speclsl vaive error. It {s assumed that if a
function has error as the value of one of ite required arguments, then the

result of thst function will be error.

fName form and meaning
add inty o inty: int
Adde two numerlc arguments.
snd objy and objy: bool
mo‘lulcnl"zconjunct.lon of its erguments. and is sequentisl,
evaluating the second srgument only if the firat ia false.
apply f }(objz. 0bJ3, ...., 0bJ,): ODJ,
“"; :: [ nrloblo (not & ;onern; expression), "
or epply(funy v seese ODJn): oObJ generslly.
Appliesa first srgmmt ﬂ rn:l;\lng arguments.
stom atom (objy): oby

true unless argument is & tuple.
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bead hesd(tupy): obj
First component of a tuple argument.

tall tail(tupy): oby
Last component of » tuple argument.

ocond < if objJy then obj, else obj3: obJ
Evaluates objy, If the result is not false, then the second
srgument {s returned, otherwvise the third asrgument la_

returned.

oons oons(odly, oby2, ...., obip): tup
forms a tuple of its srguments, of which there msy be any
number .

eq obJy ¢ obj2: bool

true if arguments are atoms and have the seme value.

lessp inty < tnty:dbool
Returns true if the numeric first argument 1is less than
second, and false otherwise.

sod int, mod fnty: int

First integer ergument modulo second.
mult inty ® fnty: fnt

Product of two numeric arguments.
avll null(odjy): dool

Returns true if srgument s fslse, returns false otherwise.
(Use this for logicsl negation.)

numberp numberp(objy): bool
Returns true if argument {s numeric, false otherwise.

or obJy or objy: bool
Logical disjunction of {ts arguments, evaluating second
srgueent only if first is felse.

select select(inty, tupy): o:i
: Gives the component indexed left to right by inty of the tuple

objeat tupy, The components are indexed 1, 2, ...., n. If
inty 49 ne‘luvo. then indexing is right to left by -1, -2,
eeees =(n-1), -n. An error results {f inty 35 0 or out of

bounds. (head and tafl correspond to seleot(l, ...) and
seleot(-1, ...), respectively.)

8.1.3. Internal representation of FGL

Ve present a form of scceptable for storsge in computer memory. For sake of
conoreteness, sssume a conventional 1inesrly-sddresssble memory. We

concentrate on the representation of s aingle graph within this memory.

Assume for simplioity thst the memory has s word-size lsrge enough to store
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all the informstion required about a single FGL node. 1If this is not the
cese, multiple word encodings may be used. The informstion stored inoludes an
encoding of the name of the function, and the references to arguments to the
funotion. : Since nodes are stored one per word, we identify the sddress of the
word ocontaining the node with the arc leaving that node. Therefore the
references to the esrguments of a node sre just the addresses of the nodes

whioh produce those srguments as their result.

All of the address information described above can be made relative to a block
of words which conteins the encoding of sll nodes for a single greaph, normslly
the consequent of & production or the contents of an envelope. The base
address of this blook can then be identified with this graph, and used as the
srgument to an apply. To be more precise, a closure must be sccompenied by a
tuple of import vslues, a3 well as the base sddress of the block, for those

imports may be different for each instantistion of the enveloped graph.

DEF SUMSTREAM

RESULT ARC_ N

ARGUMENTS X

IMPORTS ADD_STREANS

ARC_1 CAR X~

ARC_2 COR X

ARC_3 APPLY ADD_STREAMS ARC_2 ARC_N
ARC™N CONS ARC_T ARC_3 - -
ENDDEF

Figure 8-1: Assembly language encoding of an FGL production, thet of Figure
2-1,

We could then proceed to give sn "assembly language®™ version of FGL. A blook
of code is represented by a sequence of “"lines", where each line encodes one
node of the blook. A line ocontains s symbolic 1lsbel for the ocorresponding
node, followed by the name of the function, and the lsbels of the srguments to
the the funotion., Shown in Figure 8-1 {s the sssembly code for a simple FGL
graph.
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8.2. Evalustion .
We shall describe a destructive form of evaluation, in which the nodes of the
graph are replaced with their values. This mesns that for each use of an
apply, the block which encodes the closure will have to be copied afresh.
This copying supplants the ususl initialfization which must accompeny procedure

entry, ete.

We have aslready explained how each graph with objects specified on its input
arcs determines a unique tuple of objects on its output aros. We must now
describe sn evalustion mechsnisa vhich insures that the

mathematicslly-determined values do get produced.

Since objects are sbstract, i.e. we have not really defined what it mesns to
produce an object, we can content ourselves with a primitive which produces a
single astom, ssy by printing it on a line printer. We ocan then use this
primitive to display generasl objects in whatever image of their abstrect forms
we feel appropriste, by displaying the atoms which comprise these objects.
For exsmple, if we want to print s tuple in the form with parentheses and
coamas, then we could do so by applying our print primitive to strings
consisting of parentheses, coamass, and the atoms which comprise the tuple.
Since the result objects might well bde infinite, it seems prudent that we

produce parts of objects by demand.

To continue with our discussions of demand production of objeots, assume that
there i3 en abstraot entity known as "demsnd® whioh osn be present on eny aro
of a function graph. This entity remains on the aro until it is satisfied by
the presence of a predetermined portion of the object. For the ourrent
lenguage, we convene that this portion must be either en atom, a graph, or s
lkeleulu tuple, 1.e. a tuple having the nusber of its components, but not

necessarily the components themselves, specified.

Prior to the demand being satisfied, the aro value is 7, at which it may
remain forever if the demand i3 never satisfied. We intend for the latter to

happen only {f the ultimate functionally-determined value is ?.
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N.2.1. Desoription of demsnd propagstion

To complete the apecification of the evslustion process, we sust specify how
the demand 13 propagsted through each of the atomio operators.

cons . When the result of a oons is demanded, the demand is
immedistely satisfied by msking the result s skeletsl tuple,
the length of whioh is the number of input srca to the cons.
It suffices to have the cons nods ftself play the rols of ths
skeletal tuple, 30 no sctual replscement ia nscesssry. Demand
does not propagste to the components themselves until as
speclfied in selsot below.

select

CORN=
G

Filgure N-2: Demsnd evalustion of select

ssleoct When the result of seleot(i, x) {s demsnded, demand propagstes
to both arguments. When both of the latter demends ars
satisfied, if n {8 the b of P ts of x end 1 ({1
»n, then the .".1:“' is deleted, its output arc being oonnected
directly the 1 skeletal srguwent. Demsnd remains, and ia
propagated to thst argument. The diagrem of Figure 8-2 {a
meant to be suggestive.

stom The demand propsgates to the argument. When the argument
demand 1is satisfied, the output src gets ths appropriste
logical value.

oond The denmand propagates to the first argument. When that demand
is satisfied, the output arc ias connected to the second or
third input arc, depending on whether or not the value of the
first argument is ‘nil', then demand propegetes to the chosen
srguaent .

eq Demand propagates to both arguwents. When dboth ars sastiasfied,
the function is evaluated and the result sppears on the output
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src of the node. "

opply(G, x) Demand propagetes to aergument G. When that demand 1s
satisfied, @ copy of graph G is mede, with the free input arec
connected to the argument x. The output arc of the ocopy
replaces the apply node, end demand propagstes to the output
erc of the oopy. Thua the apply rula of Figure 2-16 1s
mimicked.

Binery arithmetio operstore propagate demand like eq. The propagetion or-
demend in other operstors not lieted asbove may be inferred from the
propagstion for those listed. Flgure 08-3 {llustrestes the propagstion of
demand through s complete, but very simple, example.

8.2.2. Correctness of sn FGL evaluator
The correctness of sn evaluator csn bs steted informelly es follows:
For eny ero st which s demand presents itself, if the value determined
by the function ia en stom, then the velue ultimetely sppeers on that
are, .
Wow consider eny eveluator having the property that for eny ero on which »
demand eventuslly aeppesrs, the evalustor eventuslly treats the ero sccording
to the specificetions for demand/velue propagstion. This property may be
insured, for sxasmple, Dy a combination of tesk-11st snd notifier structures

{Xeller and Lindstrom 80).

We olsim that such en evalustor is correct es steted above. We do not go into
further formslization or proof of this claim here, except to say that it is
nsturally conduoted by induction, bssed on the depth of » demsnded sub-object
within the overall result object. A& more completa proof appears in (Keller
and Lindstrom 60). Proof asketohes for related models mey be found in
(Friedman and Wise 76) and [Henderson end Morrie 76].

8.2.3. Parsimonious sveluation
Another property attributable to the mode of ocomputstion dnorlbed_hcro is

porsimonious evelustion, 1.e. that s vslue appesring on sn eroc which fans out

only need be computed once. This is sccomplished by simply keeping track of
whether an arc's value has been demanded and not propagsting any but the first

demand. VWhen and if » valus finally arrives at that sro, it is aveiladle to
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Illustration of demand propsgstion (showm by dashed 1ines).

Figure 8-3:

odd _from is defined in Section 2.1.2.
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all operators which had demanded {t, as well as those which ull} demand {t ln_
the future. This iamplementation technique has found use in linking mechanisas
in opersting systems, e.g. Multios [Organiok 72). It has been called by the
term “suicidal suspension® {in ([Friedmsn and WNise 76), because the
'mponoions' ({.e. the encodings of node funotions) kill theaselves by
replacing there code with the value of the funotion.

8.3. A Bigher Level FGL

As desoribed esrlier, an FGL graph may be encoded in a form of “assembly
language®. However it would be quite tedious to progrem end read extensive
exemples in such a language. For this reason, it is worth wrluh;. higher
level textual representations of FGL. One candidate representation, called
Textusl FGL, which hss been i{mplemented by the author and colleagues (Keller,
et sl. 80)], is descrided here. It s of interest because despite the greater
resdadbility, there is still espperent s reasonsbly direct correspondence vn.h'
the graphical form. Textual FGL has a syntsx adopted from that of [Hearn 74].

For explanatory purposes, we shall use upper case for 1iteral tokens and lower
cese to represent the nemes of syntaotic entities. We use [{...) to designate
@& sequence of one or more of the entity enclosed and [...) to designate
optional syntectic entities. 1t follows that [{...}] denotes zero or more of
the enclosed entity. Ve can then proceed with our definitions of progrea
syntax by the following productions:



prograa --> (block-definition} .
blook-definition --> FUNCTION function-name [ argument-1liet )
{ IMPORTS fmports-1ist )
{ LET abbreviation-1ist }
RESULT result-expression

{ WHERE (block-definition} EWD }

function-nsme --> identifier
srgument-1ist --> identifier-1ist
imports-1ist --> identifier-11st

sbbrevistion-11st --> abbrevistion [( , sbbrevistion)]
sbbrevistion --> identiffier BE expression

result-expression --> expression

An identifier 1list is defined as follows, where the symbol | denotes s choice
of ajiternatives:

identifier-1ist --> identifier
| ( tdentifier { ( , identifier ) ) )

In FGL, an identifier ia any sequence of letters, digita, or underscores (_)

which begins with s letter or underscore.

One of the blook definitions must have the function neme main. It is this

funotion whloh 1s eveluated by the system to osuse the evaluation of sli other

functions.

As one ocan see, the only things that sre not optionsl in s block definition

are the funotion name and the result expression. In most cases, we will also

have the first identifier 1ist, which gives the of srg ts to the
funotion being defined. ’

An expression is either a constant, an identifier, or one of the following:
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IF expression THEN expression ELSE expression
n-sry-funotion (expression-1ist)
unery-function expression

nullary-function ()

expresaion espression
vhere

expression-1ist —> expreasion [ { , expression ) }

Functions, either unsry, nullery, or n-ary, can be either atomic or
progremmer-defined. An stomic funotion is one bullt into the languege. A
progresmmer defined funotion is whet {s being defined in s blook.

As exceptions to the above syntax, some functions, e.g. dinary srithaetic and

logical, are represented in infix form.

An identifier used in a block definition must be known within the definition.

There ere five ways in which an identifier becomes known within e given block:

1. It is the function neme.
2. It appears in the srgument 1isat,
3. It appears in the imports 1ist.

N. It 13 defined in sn addreviation.

S. It {3 defined in the WHERE section of the blook.

8.3.1. FGL has "block® structure.

The syntex rules impart a kind of "block structure®™ to textual FGL which is
similar to the block structure of Algol, except that IMPORTS is used for
making velues known in an inner blook, whereas in Algol these values are known
implicitly. The nesting present in such dlook structure corresponds exasctly
to the nesting of envelopes which would occour if each block were treated as s
function which is the ergument to sn epply vherever its name i3 used. In some
respects, this nesting ia similer to the "oontour model® representation of an
Algol-1like prograam (Johnston 69, T71]).
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It 1s 8 matter of value judgment whether the expliocit or faplioit form of .
imports is preferred. The {implicit form is more oconvenient when entering a
program’s text, but the explicit form is more useful when debugging a prograa.
Given that the latter ususlly takes longer, we choose the explicit form.

Even with a compiler which recognizes ocommon sub-expressions, it s
occesionally tedious to write these sub-expressions multiple times in the
code. For this resson, sbbrevistions are provided. The nmlu‘or an
sbbreviation {s that whenever the fidentifier occurs, it is equated with the
expression. WNotice that we do not preclude oiroularity in abbreviations.
That 1s, A could be defined in terms of B, and vice versa. This is one way of

textually representing the cyolic graph structures.

8,3.2. Example of textual FGL: _
The O-ary funotion which generstes the stream of Fibonscci numbers could be
coded as

FUNCTION Fibonacci
IMPORTS add_streams
RESULT oona(1, cons(t, add_streams(Fibonacoi(), hesd Fibonacci())))

or alternately, using sn sbbreviation as

FUNCTION Fibonaocol
LET x BE oons(1, add streams(x, Fibonacel))
RESULT cons(1, x)

8.3.3. Another textusl FGL exasmple:
Here 13 how the serisl_comp combinator (defined in Seotion 2.7.2) could be
ooded:

FUNCTION serial comp(f, g)

RESULT h

WHERE
FUNCTION h(x)
IMPORTS(f, g)
RESULT f(g(x))
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8.3.0. Exemple: )

Another exsaple is motivated by the presentation of » function REDUCE in

[Iverson 79]), which applies a binery function op to & non-empty 1ist; i.e.
r_oduee(op)(x,. Noe seess Xp) » OpP(xg, oplny, op(...., xp)...l))

The FGL v.crl!on may be coded a8

FUNCTION reduce(op)
RESULY [
WHERE
FUNCTION f(x)
IMPORTS op
RESULT 4f null x
then nil()
else if null teil x
then hesd 2
else op(head x, f(tall z2))
END
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S. Uses of the Graphical Formslise

S.1. Loop Resovel

In ocontrasting the two odd-primes exsaples, one noteworthy point 1s thst the
first sntailas a graph with a loop (i.e. oyole) whereas the second does not.
It is worth ssking whether loops sre in any sense neceassry. In answer, we
shou that any loop ean bs removed, replscing it by sn sppropriaste recursion.
Hence loops are not essential, slthough there sre implicstions which loops
have on {implementstion whioch may meke them useful for more efficlent
realizstions. To wit, loops csn bs implemented ss cyciic date structures and
avoid a recursion. The following theorem illustrstes the connectloln between
loops and recursion.

Loop Removal Theoream (Keller 77): For every function graph, there is
an acyclio greph (possibly with additional suziliery nodes)
representing the seme function. .

To_prove tha sbove, we first loocste within the grsph some cutset Y of aros,

1.e. a set of aros, the removsl of uhich mskea the grsph acyolio.

|

Y (cutset)

Figure 5-1: A graph showing the chosen cutset \

Having chosen such s Y, deplot the graph as in Figure S-1. Here [ represents
the composite function of the scyclic portion of the network. f in turn is
divided into fy representing the function which determines the vslues of the

non-cutaet sros, and f, representing the function whloh determines the values

of the outset aros,



fL)

=

o

Filgure 5-2: Acylic graph bssed upon the cutset in Figure 5-1,

We then introduce s new suxilisry, say g, and observe that the soyolic graph
of Figure 5-2 is equivslent to the original, in that it hss ths same output

function.

Tho validity of this construction ia best explained by ohnrvl.ng that the

original network hes
s f'(l. Y)
T s lz(l. 1)
while the new network has

2. £(X, g(X)

g(X) = £5(x, g(X))

By tdentifying Y with g(X), the squivalence of the two is established.
If the cutset consists of fanned-out equivalents of the output sros, then fg s
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'2' In thls cese, we can simplify the first equation to
2 = g(X)

Q)

cut

Figure S-3: Exsaple of cutset snd simplified scyclic graph

Example: Figurs 5-3 shows the chofce of a cutset and result of loop removsl in

Figure 2-1., This 1llustrates the simplificstion mentioned above.

The converse of loop-removal is, of course, loop introduction. In the context
of the execution model discussed esrlier, loops make better use of storege
than the corresponding recursive versions, as loops sre not unrolled snd do

not require additional storage slloocation. Technigues for loop introduction
are still under investigstion.
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5.1.1. Tail reouresion represents loops in oconventionsal rlovahnrt.-:

Thare is s deceptive similerity between the loop removsl theorem and s resuit
sppearing in ([MoCarthy 63s]. The letter demonstrstes how aeny “flowohert
progrem® o&sn be converted into s recursive progrsm. The ides is to replace
iterstions 1in the flowchart program with what asre usually oslled "tail
recursions®, This technique 1is {important, sa it shows that any flowohart
progrem has sn squivelent representstion in our graph formslism,

Tail Reoursion Theorem [McCarthy 63a]: For sny flowchart progrea,
there is an equivalent greph gremmar, in the sense that there is sn
auxiliary node in the latter which oomputes the saws function ss the
program.

We sttempt to convey the basic ides of the proof without entering irto e
formal presentation of what is meant by s flowchart program. Such s progrsa
consists of statements which operste on “prograa vnrhbln:'. Let x be the
vector of such variasbles. We create from our program a aet of productions,
the underlying functions of which operate on the product dsts type of velues

which x may sssume,

For esch "control point® p in the flowohart, we introduce sn auxilisry symbol
Fp. The idea ia that l‘p(x) represents the trensformation undergone by x 1if
the program la..urud st point p. It will turn out that the funotion Fy
corresponding to the initial (i.e. entry) ocontrol point 1is the function

computed by the flowchart, for arbitrary initial program varisble velues.

It auffices to demonstrste what productions are introduced for each flowchart
box. Here wa trest only sssignaent ststement boxes snd test boxes. An
sasignment, in full generslity, appears as in Figure 5-83. The corresponding
graph grammar production is also shown there. A test appears as in Figure
$5-8b, with 1its corresponding production. Here we have used a terminal
funotion cond, defined earlier. Finally, the production of Figure 5.-lo is

introduced for each exit point.

Of course, simplifications sre possible. For instsnce, by oomposing functions

in a falriy obvious way, we only need one auxiiifary for esch loop in the
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: ()
8. Assignment statemsat .

5. Conditions)

- |

Figure $-8: Productions equivalent to flowshart constructs

c. Laft
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{x.y) « 6(x.y)

&

(n.y) « Fix W)

Figure 5-5: Factorisl Flowmchart

Q

, ~

Figure 5-6: Factorial Production
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flowchert. Also, recognizing that the functions in the flowchart don't
usually operate on all of the program verisbles, opu-luuoh 18 possible

which produces more "independent® arcs (see Section 5.3).

5.1.2, Exsmple:
Applying the tail recursion transformation to Figure 5-5, we have the
equivelent production in Figure 5-6. We call the progrems in these two

figures “"Factorisl®, since if we interpret P, F, and G as
P(x): z

Flx, y): (z=-1, y)

G(x, y): (x, 2 ® y)
and if y 1s initislly 1, then we have progrsms for computing z Factorial.

It has been shown in [Paterson and Hewitt 70) that, berring the sddition of
new functions to the program, the reverse transformstion (from s production
form to 8 flowchart) s not generally possidle. A consequence of the
following section {s that the transformstion is possible if we are allowed to

use additional functions.

5.2. Production Removal and Explication of "Paradoxical®” Combinators

Our graphical formalism possesses several potentially pedagogical uses,
fncluding the ability to understand “paradoxical®™ ocombinators, or *YI"
operstors. These are various arcane ways of schieving the effect of recursion

vithout the explicit use thereof.

One method of removing recuraion is to extend the function enveloping device
described in the Sectfon 2.5. Suppose that we have s recursive production of
the form of Figure 2-19. There we used the symbol H to denote the graph which
is the consequent of the production. We stated url!o} that H ecould bde
re-expressed as N' in Figure 2-22, where we have replaced the occurrence of G

inside ¥ with en apply operstor.

But since G is supposed to be replaceadble by W, we have another folded version



Figure 5-7: Folded version of Figure 3-11b

es shown in Figure 5-7, which §a slso frea of the suxiliary G. To reassure
ourselves of the equivalence of this gresph and ths G in Figure 3-11b with
which we started, use the spply rule of Figure 2-16.

5.2.1. A1l loops snd productions oen be removed.

We now investigate the possibility of eliminsting sll loops and productions,
The preceding discussion shows how to get rid of productions., The resulting
graph, of the form shown in Figure 5-7, has a loop. But i this loop can be
eliminated without introducing other 1ocops or productions, then we shall have
found s way to eliminete sll loops snd productions, since this loop 18 used to
achieve the effact of a prototypical production. Experience suggests s wvay of
achieving this gosl.

Consider the subgraph Y of Figure 5-7, as shown in Flgure 5-8. VWe notice that
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Figure 5-8: Subgreph Y of Figure 5-7

1f 7 is present on the input ero of Y, then the output aro z must have the
property

2 = F(2)

In other words, the function Y represented by the graph is such that for any
function F, Y(F) is a function such that ‘

Y(F) = F(Y(F))

That is, Y produces a fixed point of F. The adove only makes sense, of
course, if F 18 a function-producing function, e.g. B’ in the ourrent exsmple.
Since Y(A') = N'(Y(H')), we useqd repeated substitution to observe

Y(H®) « HY(Y(H')) = HO(H'(T(H*))) « H'(H(N'(Y(H'))))
the 1imit of which gives us

Y(H') = BU(H (R (N'(...))))

vhich §s exsotly what we get by repested substitution of N for G when
expanding productions.

Fortunstely, s loop-free operator Y' equivalent to Y §s known, and 18 shown in
Figure 5-9.



Figure 5-9: Loop-free operetor Y' equivalent to Y

Figure 5-10: Showing the equivalence of Y snd T*
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Ye present in Figure 5-10 an enlightening graphicsl .r.mon'._ to show the- '
equivalence of Y' and Y. The limit of the sequence in Figure 5-10, 1if en
enveloped H' is provided ss sn argument, is the same ss thst in the subgraph
of Figure 3-11b, which represents the lesst fized point of H'.

@D
)

Figure S-11: Applicstion of the operetor Y°.

In sumsary, Y' i3 8 loop-free equivalent of Y, which sllows G, defined by an
equivalent loop-free gruph, 88 shown in Figure 5-10. Readers femilisr with
the lsmbds csloulus [Church A1) will recognize the lambds calculus expression

of Y' se
Af.((Ag.gg)(Ax.f(xx))))

although we feel that the grsphicsl version is much cleasrer. Since lambds
aslculus expressions are essentislly loop-free, there sppears to be no direct

way to represent the Y in Figure 5-8.

In summary, we heve used a graphicsl technique to demonstrate why the

*peradoxicsl oombinator® (Curry snd Feys 58] is usable to sttsin the lesst
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Figure 5-12: A distinguished sub-structure of Figure 5-9

fizxed point H'°(7). In retrospect, we see thet the sub-graph of Y' shown 1in
Figure 5-12 which appears at esch stage in the expansion of Y', {s somewvhat
arditrary, It 1s not present at sll in the limit graph. Indeed, its use
appesrs to be malnly to force the infinite expunsion. With this in aind, it
13 probsbly no surprise that there ere many other such structures which will
suffice for this purpose, with no two being inter-convertible by simple
transforastions such as split snd spply. Ve offer this as a reason for the

existence of such functions, as mentioned for exsmple in (Wadsworth 76).

5.3. Parallelism

One fmportant use of function graphs is in the exhibition of opportunities for
concurrent (or parsllel) evaluation. Perallelisa shows up naturslly in »
function graph in the form of two or more independent arcs, i.e. ercs not
lying on s common chain of srcs. The nodes which have those aros as their

outputs indicete funotions whose computation cen proceed conourrently.

In the sub-graph of Figure 5-13 for exssple, aroa 1, y, and g may receive

values concurrently.



Figure 5-13t Independent aros which sre evalusble conourrently

Oraph gremmsr productions may be used for genarating ocomputations with
arbitrary smounts of parsllelisa, depending on the input data. Consider, for
etsmple, the problem of acomputing the number ofl leaves of » tree dats
structure. We ocan initfate erbitrarily-many sub-computstions which coapute
the number of leaves of selected sub-trees, then proceed to add the resulting

values.

The production of Figure 5-18 defines such s function. We show in Figure 5-15
the result of the partisl evalustion of the funotion after it has deen applied
to a tree having 256 leaves.

$.3.1. Parsllelisam ocours in different granularities.

VWe would conjecture that most ways of exploiting parsllelisa in progreas sre
all {nstances of this ¥independent arc® phenomenon. For example, the
processing unit of s ®look-shesd® processor (cf. [Keller 75)) dynamicely
oonstructs such o graph from e @sequentisl program to deteraine
concwrentl y-executable functions. Although it 1s tempting to differentiate
between "look-ahead®, “pipelining®, and other forms of parsllelism, l:nh

differences sre essentially a matter of the granulerity of the parsllelise
rather than being distinct conceptually.



LEAF COUNT

.

Figure 5-18: Produotion for the leafcount funation
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Figure 5-15: Leafcount evaluation

loop l:>

Figure 5-18: Production transformed fros that of Figure $-6



Figure 5-17: Unwound graph corresponding to the production of Figure 5-6

Figure 5-18: An instance of the graph in Figure 5-17 with Ps evaluated

We now fllustrate in the function graph model how this look-ahead phenomenon
ocours in computing operations from several different iterations of a loop.
Reocall the flowchart of Figure 5-5 which was transformed to the reoursive
production in Figurs 5-6. 1In Figure 5-16, we have further transformed the
production by separating the varjables to make independent arc perallelisa
more evident. In principle, this production represents the finfinite graph
shown in Figure 5-17.

For sake of clarifiocation, suppose the first several Ps in this greph eveluste



to 'all' (faise). Ve then effectively have the graph of Fl.w_o 5-18. Ve seé
‘ from the sbove that sny 1th instance of G, oounting from lsft to right, oan be
exeouted concuwrrently with sny j"‘ fnstence of F, a3 long a3 { < §. A siailer
fect was used in [Keller 73] to show that no finite amount of control storasge
genarally suffices to schisva maximsl parallalise. In this exsmple, we ses
that no finite smount of intermedlete dsta storsge auffices either, sinca if G
is much slower than P, arbitrerily many of the intermedieta results of

different Fs must be ssved to compute future Ga.

$.3.2. Auxiliary nodas ocan temporarily mssk psrallalisa.

Tha graph model seems to be capsble of displaying much of the parallelism
inherent in a prograa. One caution should po tsken, however, in ssasigning
sras to be dependent simply becsuse they lie on a common ohain. This caution

smounts to the fect that sros entering end leaving s node sre not necessarily

1 ‘;B
' => SIC
T

Figure 5-19: The sntecedent and consequent graphs are equivslent only when
evaluated with sn appropriste evaluation rule

oonnsoted in principle.

For example, suppose we have s node f which {s defined by the equation
f(x, y, 2) = (i4f x then z else y, {f x then y eisne z)
Thie funotion might be represented by the production of Figure $-19.

However, whether this production 1s en accurste representetion of the equstion
depends heavily on the substitution mechanisa used in effecting productions.
If the mechanism uses the demand-driven scheme auggeated in Section 8.2 to

effect the replacement suggested, there 1is no difference. However, some



methods of evslustion, variously known ss “dsta-driven” or “osll-by-velue*
would require dets to bs present on sll thrss sros in ordsr for the expension
to ocour, Ths pioturs represented in the production is then not sooursts,
Instsed, ws havs s funotion f' dsfined by
f(u, y, 2) 1f 2 42, yd 2, sndzd?
f'(x,y,z) s
7 othsrviss

whioch 185 olssrly undsfined on some erguments whers f is defined,.

Put snother way, f* has » synchronizing sffect in having to uait on sll of its
veluss, wharsss f does not. Synchronization is contrsry to parsllslisa, sincs

it introduces sxtrs dependencies bstwesn operations.

Ths ssme phsnomenon is observsble in ths oholocs of our definition of tha
operstor oons in the Evalustion ssction. Our oons follows the spirit of
(Friedman snd Wise 76) and (Handsrson and Morris T76) im being s cons which
®does not avsluats its srguments”, or ons which is implemented by “leny
evsluation®. Mors precisely, the squstions

oons(1n,y) s (u,y)

hesd(oons(x,y)) = &

tasil(oons(n,y)) s y

ssleot(1, conslxny, ...., 2 M s ny
sll hold without quslificstion on x snd y. In contrsst, oons in convsationsl
Lisp and languages designed for deta-driven sxecution 1is strict, i.s. rsquirss
all erguments to bs “complete™ prior to yielding sny result, thus producing s
strong form of synchronization. By s coaplsts srgument, we mean one which is
s finite tree with no undefined leaves. Our cone is lenient, in that it doess
not require any srgument to be complete to yleld s mesningful result. Lenient
oons provides no synohwonization st sll, but simply hsa the effect of making s
valus fros s tuple of values. This valus can bs treated as s single entity,

lster to be decompossd by select funotions.



5.3.3. Leajent operstors simplify understending and proofs. )
Another feature of the lenient form of operator is that for ascertaining the
correctness of s progrem, we wish to be concerned as little #3 possible with

stipulstions such as "1f x # 7", With lenient opsrstors, there are no auch

Figure 5-20: Wiring analogies to the cona operetor: In the left pair,
corresponding to lenient oons, the component wires asre paired, and either wire
can be pulled without pulling on the other. In the right psir. corresponding

to strict cons, the wires are bound, snd pulling either wire effectively pulls
both.

Figure -5-20 illustrates the difference betwsen lenient snd non-lenient cons
through a wiring analogy. If we view the arcs on which values flow as wires,
then in the non-lenient version, the two wires sre wrspped together. ’ Pulling
on either output wire pulls both of the finput wires, and the output wire
doesn't respond unless both input wires are free. In the lenient version,

pulling on an output wire pulls the corresponding input wire, independent of
the other input wire's connection.



5.3.4. Date type ordering sffsots degree of comourrency. .

The greeter asynchrony, snd hence conowrrenoy, svsiiable with lsnient cons
manifsats itseif in snother way. It silous us to use the trss ordering for
our dete type (sss 3ection 3.2), as opposed to a fist ordering. Ths trass
ordering implles s finsr grein of observabie stsp in the production of date
objects than does ths flat ordsring of the same objects. With the flat
ordering, thers is an sli-or-nothing behavior of sach funotion, 1.s. the only
sllowable progrsssion of o velue le fros totslly undefined to oompistsly
defined in ons step. In contrsst, the trss ordering silows an infinity of
gradstions, including ths possibility of an infinits serias of spprozimstions,
nons of whioch sver arrives st s completeiy defined object, but saoch of whioh
1s itsslf usaful. Hencs the dets type ordering sarves s s vslusbie indiostor

of the granulerity and hence the degres of sttainabls oonowrrency.

5.3.5. Lenisnt oons snhsnces esynchrony.

¥e mention thet lsnisnt ocoas asutomsticslly {ncludas ths ospadllity of
schieving grsstsr esynohrony in stresm-oriented computstions thsn do strsam
operstors whioh sre restrioted to process stress items {n striot order. This
ssynohrony in turn lessens the constrsints on the oomputation, theredy
producing wore opportunities for ooncurrent evaluation. Suoh differences in
wodes of {interpretstion have been observed, for example, in [Arvind and
Gostslow 78) shich mentions sn “unraveling interpreter®. Suoh an interpreter
is, in fsct, implied by & ifanguage semantios which provides a lenient, rather

thsn strict, ococns operator.

Thers {3 s plessing conneotion between the lenisnt oons convention snd the
splicing effeot of grasph grasmer productions. It indiostss that we may
restriot ouwr ettention to suxilisry nodes with only one {nput and one output
aro, since sny numdber of srcs mey be coded and decoded using oons snd select.
As iong 83 lenient ocons is used, the sffect is the same. Ths disgram of

Figure 5-21 1llustretes.
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(o)

/f

N\a

(»)

b

select select

cs o

Figure 5-21: Replacing auxilisries with auxilieries having only one input and
one output arc: (a) Original production; (b) Replacement for antecedent; (o)
New production
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5.3.6. Transparent funotlona sllow programmar oontrol of concurrenoy.

Tha final discussion of this seotion concerns the exertion of greater oontrol
ovar the smount of conourrency actuslly reslized in evaluation. Let us sasuma
the demand-driven scheme discussed asrller. Assums further that we have ooded
the productions for some computation. A property of the d d-driven sch

1s that it will never begin evaluating some object until it has deterained
that the objeot 1a asctuslly needed. However, the programmer may well know
that certain objects asre ultimstely going to be needed prior to their need
being perceived by the evaluator. To sllow theas needs to ba injected aa
additional demands, we oan provide a speoial operstor, per. This will be »
generic operator with sny number of srgumenta. Its definition sllows it to be

rather tranaparent functionally:
porixy, up,...., ¥g) & Xy

However, its effect on the demand evalustor will be to propagate demand to sll
of its srguments immedisteiy. This will have tha effeot of anticipating the
need for thoss srgumente and forcing them to be recognized as oconcurrently

evaluable.

ceee

Figure 5-22: Use of par

A typicsl use of pasr, to evaluste the arguments for an euxilisry node



95

oonourrent with its expansion, is shown in Figure 5-22,

8 dual problem involves an observed “"time-space tradeoff™. It ':ll(OI memory

spsce to support concurrent sotivities, direotly proportionel to the number of
suoh sotivities. It might therefore be desirable to have an operstor whioh

reduces conourrency, thsredby reduwing memory requirements. This can be done
by intentionally sequenoing the evelustion of operstions which could otherwise
be evalusted conourrently. The definition of such sn operator is

Ea 121472, 524%..0., %417

80q(Xy, x23, .eouq Ep) =

: otherwise
For the demand evaluator, seq demands esch srgument in turn, somevhst like our
oond was specified to do. Only when sll demends heve been setisfled does (it
return its lasst vslue. A use of seq, depioted in Figure 5-23, is to pravent

expansion of a produotion until ell of itas arguments are ready.

Figure 5-23: Use of seq

Beither seq nor par is sppropriste in some situstions. For exsmple, if one
uanted all srguments to be ready before expanding a production, but wanted the

srguments to be evaluated conourrently, then an operetor such es sper (for
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strict psr) oould be used. The functional definition of spar is similar to

that of seq, but demands propagate to sll ergumenta ooncurrently.

Other similarly useful operators sre under current investigstion. A clesn
style of prograsming seems to result from initislly using lenient cperators ss
such.ss possibla, then “overlaying®™ on the program operstors such ss sasq snd
par for greater control. The varietiee of such operstors ssem to point to a
nsed for an opereticnsl semantics to "overlsy® the denotstionsl semsntios of

functionsl languages. This remeins a topic for future invaetigstion.

5.3.7. Varistions on opsrstors effect demsnd-driven ezeoution.
It is worth noting the similsrity between per snd operstors asuch ss the
perallel conditicnsl and parsllel or (Kleene 52), [Paterson and Hewitt 70).

For brevity, we discuss only the first of these.

Our cond operstor hss been defined in Section §.2. It is possible to devise a
different operstor, poond, which hss sn effesct similar to par in that it
demsnds sll of its srguments, plus sn additionel aepeot which givss defined

results in 3some csses where cond does not. The definition is

y if 2 ¢ 'ni)’
z if z = 'oil*
peond(x,y,z) =
y ifyss
if xs?Tond not ys z

Here = e some "wesk equelity® predicste. That s, it doee not test true
equality of its srgumente, but rether some weaker relstionship which impliee

equslity, such se being the same storsge structure.

A

Crmd  =>
'

Figure 5-28: , 4uction possible for poond but mot for oond
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Such s form of equality takes place, for example, in the graph reduction rule
shown in Figure 5-28, The resson why trus equality is not elected for = 1is )
that the former would generally be an uncomputable predicate.

As mentioned, poond will give more {nformation (in the sense of the data type
ordering) than ocond. It appears, howsver, that this benefit will be reaped
only rarely in practice. Since poond requires propagation to all argwuments,
yot will often be unable to make use of the value of one of them, it seems
that poond will generate more work than it saves, unless a superfluity of
otherwise idle processors is availeble. The use of poond-like operators for
gsining perallelisa is discussed in [Friedmsn and Wise 78).

To summarize this suthor's opinion, it is generally more efficient to rely on
striot operastors to introduce oonouwrent demands for values known to be
essential than to use poond-like operstors whioh will only yield benefits in s

small number of cases.

5.8. Anoillery Applications

We mention in this section an additional spplication of the funotion graph
concept, where by "applications®™ we mean other models which may be viewed as
instances of function grapha. These applications fall within the reslm of the
®“general® theory, in that they do not have a direot correspondence with an
execution model. The intended result of such a pursuit is that methods being
dculopadb for proving properties of function graphs are then applicable to
these spplications.

Figure 5-25: Funotion of a node of a graph operating on languages



5.8.1. Language theory uses funotion-graph ldess. .

One applicstion is to formal langusges (i.e. sets of strings over a finite
slphabet). In the languasge context, nodes of o function greph are viewed as
funotions on languages. Specificelly, each node with n input aros 1s the
union of n languages, each formed by concstenating to sach meaber of the input
language the string which labels the arc. Thus, the function of the node

shown in Figure 5-25 we have
flLy, Ly, L3) « Lya U Lyb U Lyo

It has long been understood thst finite-etaste languages can be represented by
labelled directed graphs without use of productions, or equivslently, by
"reguler expressions” ([Kleene 56). Similerly, oontext-fres languages can be
represented by a kind of graph grammar cslled a syntax graph (of. [Reeker 71],
[Hoare snd Wirth 73]1). Ve simply wish to point out thst such rsprasentations
can be viewed o3 function graphs 1f properly interpreted, snd that the
corresponding interpretetion of the determinecy theorem is that in which the
least (lzed-points asre just the languages generasted.

LY L

Figure 5-26: A functlon graph representsble by s regular esxpreasion

Consider ths labslled grsph representation of the non-determlnlstic
finite-state machine in Figure 5-26. To ses the oconnsction with lsagusges,
notico that in the interpretation of the node stets sbove, we have an equation

such ae
L =« G(L)
vhere

G(L) = Ly U La.
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But we have slready represented the solution of this equation as -

6"(® 2L, U (Lo U (Lo U ....08 )a da
whioh is usually denoted
Lo o’
in the notation of reguler expressions. By such reasoning, we ses that the

funotion desoribed by any graph is representable by a regular expression, a
result attriduted to [Kleene 56).

If we ellow productions in addition to the type of operator shoun in Figure
5-25, it 13 known (Reeker 71) that the funotion is not generally representable
by a reguler expression, dbut in faot requires the greater power of a syntax

greph (equivalently, a context-free grsamar).

5.5. Indeterminscy

We have observed the Determinscy Theorem for funotion graphs, whioh states
that esch greph determsines unique output veluss on each of its aros, glven
particular initisl vslues on its fnput srcs. However, it is known that there
sre perfeotly reasonsble oomputationsl systeams which do not enjoy such
determinacy properties. An often oited exsmple i3 that of an sirline
reservation system, wherein the net result, the set of passengers departing of
a given flight, might well be dependent on internal systes timings, even given
a fixed set of requests for seats.

The difference between indeterminacy and "non-determinisa®™ should be
mentioned. Non-determinisa refers to the system choosing one of several
actions in a menner “"locsl®™ to the behavior of the system. Such behavior
night well be prevalent in sll of the systems discussed in this paper. On the
other hand, indeterminacy is s globsl phencmenon which says that the overall

outcome of a system's execution msy be one of several or meny possibilities.

Although such indeterminate systems have been the result of some study (cf.
[Plotkin 76), (Sayth 78), [Keller 78s), (Xosinski 79)), no satisfactory
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general theory has been developed analogous to the one wcunnd.n far. Ths
operstional (i.e. state-trensition) dascriptlon of indeterminste operstors 1s
usually “sirly slmple, yot attempts st describing thems ss funotions over thair

ioput historiss havs been unsuccessful.

As an example, oconsider the merge operstor. It operstes on two incoaming

stresms of values and produces s stress which is a shuffle of the two input

streams. A given pair of input stresas msy well have many diffetent shuffles,
e.g. the sequence s b shuffled with o d ylelds

ocoms e
e® OO0
avaocs
caovoe
-

cdebd
Here then i3 an exsmple of indeterminacy.

5.5.1. Indeterainate operetors challenge conventionsl Intuition.

Figure 5-27: Splitting involving amd

Reinterpreted here in the context of function graphs, [Hennesay snd Ashcroft
77) 1llustrate thet referentisl transparency, as exemplified by the splitting

rule, is destroyed uhen indeterminete operstors sre sllowed. For asxemple,
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consider an operator amd [MoCarthy 63b) whioh 1s defined by
xif x4 7
sab(x,y) » {
yirtydoe
with sab(x,y) being indeterminstely x or y 1f both expressions hold. To sece

where referential transparency feils, consider the expression
aab(1,2) + ambd(1,2)

Depending on whether the left or the right greph in Figure 5-27 is used, the
possible results could either be in the set {2, 8] or in the set {2, 3, W).
[¥ard 78) oonsiders asdditionel ramificstions of smb-liks functions.
Similerly, [Giordsno 79) shows that the oyocls removal result described in

Section $.1 does not work with indeterminate operastors.

[Keller 78a) observed that grephs whioh incorporste merges oen axhibit
snomalies when we sttempt to define & functionsl sementics for werge. For
example, when 8 merge ocours in s cycle, it 1s possible to exhibit shuffles of
ite ultimate finputs which srs impoesible as ultimete outputs. From this
srgument, one .can further conclude that s mergs ocannot be described os o
function on eny product of eny two datas types. Instesd, @ functionsl
description of serge must teke into sccount reletionships between items in the

two streams which ocour becsuse of timing within the system.

5.5.2. Some indeterminscies sre benign.

4 class of systems intermediste between two extremes is thet in which there
ars loosl indsterminscies in stresms of cutput velues, yet a unique ultimate
velus - i3 alwsys produced on outputs of interest. A peredigs for handling such
ceses i3 to sttempt to modify the ordering pert of some of the dets types in
‘such s wsy that the opsrators beocome continuous functions with respect to the
modified ordering, then spply the detsrminacy theorem. When the determinscy
theorea cen bs spplied, the verifiostion of the system can be reduced to the

verificetion of selected sequentisl executions. An example of thia approach

sppesrs in [Keller 78b).
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$5.6. Proof Nethods .

Most existing methods of ocorrectness proving can be couched in terms of proofs
for funotion grapha. Likewise, for most known proof aethods appllosdle to
funotion graphs, there asre slso known instsncea of suoh methods whloh have
besn applied to more speclflo models. The ons thing we feel 18 to be galned
in stteapting to eipress s prograa graphioslly 1s thet the lstter viewpoint
asy suggest sdditlonal avenues of astteck for proofs. In this seatlon, we

present proof methods apeoifiocelly from the graph viewpoint,

5.6.1. Inductive proofs come in ssversl interrelsted forms.

Any general proof method which desls sucoessfully with infinite objeota, s.g.
general dsts types and functions represented by graph grsmmars, is going to
use some fora of lnduotion. There ere several oastensldly different formas of

fnduction, nsmely:

1. Induction on the dats objects which ere srgusents to funotiona,
2. Induction on ths astruoture of the prograa.

3. Induction on the sequence of steps teken in execution of the
prograa,
Despite thess apparant differences, the forms of induotion are often closely

relasted and socastlass ths dlffsrsnce le only one of viewpoint.

For exsaple, the oclses of deta objects of intersst is oftan represantadle
using s (perhaps non-dsterajnistic) production whioh generstes the clses. 3o
induction on ths structurs of s genersting prograa ajight bs used to gat the
ssms effect as induotion on dsta. Slallarly, if we ars allowed to trast ouwr
grsphs es» dsts, es has slrssdy bsen done to some extent in the dlscusslon of
envaloping, then we aight well find that induction on progrsas is easentlslly
induction on dats objects represanting programs. Finslly, we osn often model
the ;xooutlon sequences of n program ss s dsts-type in another closely-related
program, 3o thet induotion on esecution ssquences asy slso bs turned iato

induction on dsts.

The scope of thls paper does not permit an exhaustive aurvey of inductive
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methods and their olessificetion. Instead, we must be content with s few
ezemples of how inductive proofs osn be performed in the fumoction greph

context.

5.6.2. Information and proof orderings may differ.

Let us begin with @ discussion of {induction on dasta,. We have already
mentioned that the notion of » dets type includes an ordering on the membere
of its domain. To do induction, we ols0 need an ordering, but the two
orderings need not coinoide., More stringently, the type of ordering needed
for dats induction must be an inductive ordering, i.e. » partial ordering <

with no infinite descending chain,
g > Ny D 5y ...

This property is necessary becsuss of the way im which induction proceeds,

1.e. by masns of a basis and sn induction step.

If we are asttesmpting to prove e property P for sll members of a dats type,
then in the basis we prove P(x) for all minimal elements x, whers by minimsl
we mean that there i3 no y such that y < x. Such elementa must exiat, because
if we start with en arbitrary element end repeatedly choose “smaller®
elementa, forming s deacending chain, then the chain cannot descend forever
(dus to the ordering being inductive) and therefore must stop at s minimsl

element .

In the induction atep, we sssume that x 18 sn arbitrery non-minimal slement of

the dats type. Ws show that

If for esch y < z we have P(y),

then also P(x)

Here the first line ia ocslled the inductive hypothesis and the second is the

induotive conclusion. This particular veraion of thg induction etep aotuslly

enbodies the basis ses well, in that for s minimal element z, we must prove
P(x) directly. We separate the basia of the proof from the induction step in

order to decompose the discussion by treating only non-minimel elementa x in



the induction atep. Once the besis and {induoction astep sre shown, the
oconoclusion 1s that P(x) holds for every possibie x in the domsin,

The ostch in this form of proof 1s the genersiity of the induotion step. It
sust work for ali non-sinimal x. The esse with whioch this wmay be proved
governs the chofos of the induotive ordering, which may be quite umlfike the-
informstion ordering of the dasta type.
5.6.3. Exemple of Dsta Induction:
Consider the funotion sum stream defined in Figure 2-1. Suppose that the
input stresm to the function is

.l' lz. l3' secne
We want to show that the output streem

Y1, ¥2. Y30 -e.o
has the property

Yy s uy o %2 ¢ 53 ¢ ... ¢ Ry, Cor each J < §

Here we can use dsts induction, ochoosing ouwr inductive ordering ss the prefix

ordering on streams,

A3 a basia, we suppose that x 1a the null straas. The property clesrly holds
in this oase, as the output 1is aiso the null stresa, uoorhln. to the

definition of sum_stresms.

As the inductive step, suppose that a1 13 not the null stresa end the property
holds for all 3 shich wre proper prefizes of x. In particuler, x has some
non-gero ber of P ts, say i, and the property holds for the prefix of

fength 1 - 1. More preoisely,

Yio1 s Xy o X ¢ X3 ¢ c.o. + A
The §-1th component of the stresm output of the add streams will therefore be

Yi_y o 3y. But this component s slso the 1 ocomponent of the output
y. Hence
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Yl 2 x) ¢ 22 ¢ X3 ¢ c... ¢ XY

Combdining the sbove with the inductive hypothesis, we have the inductive

conclusion.

The inductive proof method sbove is only partislly ocomplete, as ws have
assumed thus far that the input stresa x is finite. To make it ocomplete, we
must observe thet the truth of the oonclusion for sn infinite x follows from
its truth for all its finite prefizes. In this example, the observation
indeed holds. To see why, suppose that the ststement is trus for all finite
X, but there 13 sn infinite x such that for some { it 1s not true that

Vi o 21 ¢ X2 ¢ 23 ¢ c..0 ¢ N}

Then clearly the oonolusion must slso fsil when the finite prefix of length i
of y is the input, which is a contradiotion.

5.6.8. Admissibility makes proofs work for infinits objects.

The quality of s predicste P, that the truth of P on infinite objects follows
fros its truth on mesller finite trunostions, 1s oslled admissibility. It is
s speoisl csse of the oonoept of oontinuity of functions on dets types as
discussed earlier. In partioulsr, If we view 3 predicste 83 s function into
the dats type with domain {trus, felase} which hes the ordering true < false,

then continuity with respeot to this type is the same a3 admissibility.

It 18 essy to construct exsmples of predicates which are not sdmissible in the
sbove sense. Consider, for ensmple, the nstursl numbers, with infinity sdded,
snd the numerio ordering. Let P(x) be "x is finite". Then the bssis P(0)
holds and the inductive step holds for finite x. Also the inductivs hypothesis
holds for infinity. However, the inductive conclusion most certalnly does not
hold for infinity. Hence this P is not admissibls.
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5.6.5. Proofs for sequentisl prograas ocan bs cast as funotion graph proofs.

Wa now discuss induction on execution sag . In particular, we dlscuss

sxecution of flowchart programs, and ahow how interpret thls fors of induction
83 induction on data in the function graph model. A typical and widely used
version of inductlon on execution ssquences 1s one used to prove that an
assertion asbout the values of program verisbles holds when the progrea
terminstes, sasssuming that another assertion asbout the vsluses of those
varisbles held when the progras started. Thia method ia widely sttributed to
{(Floyd 67), slthough its easence sppesred in (Gorn 59]. To apply the method,
it is often necessary to add other sassertions sbout the values of variables st

other points in the prograa.

To view the sbove method in the funotion graph model, we think of each
fiowchart statement ss s function on the 3set of asets of progrem varisble
states. For exsmple, if the varisblea sre (x, y, z), then the aro dats type
13 the set of ail sets of vslues which can ba assumed by the triple (x, y, 2).
Each statement corresponda to a function on this set of sets. For example,

corresponding to the statement
X isyez
we have the function F given by
F(S) ¢« I(x', y, 2) | (x, y,2) In S, x' & y ¢ z}

A similar viewpoint can be used to see that conventional *"flowuchart programs®
sre just apecisl types of function graphs. In this case, the data type le
that of sets of state veotors, i.e. vectors of values sasigned to variables of
the program. Tha ststement nodes of such a program sre just functions on

these sats. For exsmple, sn sssigrment statement
x :s Fix)
svhen viewed this way is s funotion G defined by

G(3) =« (F(x) | x in S}
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for any set 3 of stste vectors.

Similerly, the merge of two (lowchart srrows is the union of the two sets of

state vectors. An equivealent viewpoint is that of predicste transformers

(Dijkstra 76), since @ predicste in such 8 program is the asme as s set of

steste vectoras.

[Hosre 69) {introduced s wmethod for sxiometizing the introduction of
sssertions., He indicstad how exioms could be presented which generate etomic
stetements sccompanied by sssertions snd how rules of inference could de used
to genersta compound stetements acoompanied by sssartions. Thie method could
therefore be considered induction on program structurs. We wish to {ndicste
thet s sisiler spproesch cen be used for function grspha. This spprosch is e
generslizstion of Hosre's in thet it osn be applied to dats types other than

sets of seta of program stetes.

5.6.6. Assertional proof methods extend to fuanction graphe.

We may accompany sny function greph with sn sssertion aebout its input/output
relstion. This wmight bs decomposed into en implicastion which involves »
hypothesis sbout the ingoing value snd 8 conclusion sbout the outgoing velue,
but other forms of sssertions are posaibla. For stomic funotions, the
sllowable sssertions sre derived ad hoa from the semantics of those functions,
For non-stomic functions, composition rules must be developed which derive the

assertion for the function from the sssertions for its constitusnts.

An exsmple for s series interconnection of two graphs is showm in Figure 5-28.
In the csse that the sasertions sre decomposed into the type of implicstion
mentioned abovs, we have a simpler composition rule, as shown in Figure 5-29.

Similerly, when one operstor is s cond, we may use the rule in Figure 5-30.

5.6.7. Fized point induction proves properties of functions.
& very lmportant ruls is the fixed point induction rule, which gives us s way

of provlé. properties of roewuvily defined functions. The rule is shown in
Figure 5-31. BRecslling that H%(G) is the function computed by the recursive
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Figure 5-28: Composition rule for s series intsrconneotion
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infer

Figure 5-29: Special cese of the composition rule for series interconnection
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tafer

Figure 5-30: Composition rule for cond
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Figure 5-31: Fixed point induotion rule

production with antecedent G in Figure 2-19, the rule says that to prove some
property P for ll'(ﬂ). it suffices to prove

1. Besis: P(?7), vhere ? represents the funation which slways has the
valus undefined.

2. Induotion step: For‘.rbuury f, assuming P(f), show P(H(f)).

If we ware to view a recursive production as an applicstion of a graph to a
value, as discussed in Section 5.2, then fixed point induction becomes a case
of data induction, with the prograsa (i.e. funotion graph) as data.

Fized point {nductfon on funotions sometimes fails to prove defining
propsrties of funotions. For exsmple, if we were to attempt to use it on the
sum_stresm emsaple above, we would teke P(f) to be f(xy, y3, ....) = x1,
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R 4Ky, Ry4Ep¢X3,.c0.  Houmver, fized point induction would fail since the
basls, P(7) is falsa. (It s interesting to note, however, that the induction
step succeeds.)

On the other hand, fixed point induotion 1s often useful for proving
properties possessed by s (unotion other than the defining properties. Ve

conclude this section with en example.

Exsmple: Let AS abbreviste the funotion add_streams defined in Figure 2-9 snd
let 33 sbbreviste the function sum_stresm defined in Figure 2-1. Suppose we
wish to prove the following:

Theorea: For sll solid streaas x, ¥y,

SS(AS(x, y)) = AS(SS(x), 33(y))

By s 3011d stream, we mesn s one-ievel stresa in whioh no component oasn be ?.
For convenience, we re-define cons to be semi-striot, that is cons(?, x) is »
equsted with 7 for every x. The reason for doing so 1is that the
tranaformstions which follow feil without this re-definition. This does not
preclude the possibility of s stresm whlch is incomplete at the end, e.g.

cons(a, oons(b, 7)) 1is the 301id stream sbd...

1 1
AN
!

1T

Figure 5-32: Two grsphs to be shown equivalent

A graphical presentation of the theorem ia given by ssserting the equivslence
of the two graphs shown in Figure 5-32. Ve shall prove the theorea using
fixed point inductiom.
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A as

VAR /

1 TR

Figure 5-33: Two grsphs ssaumed to be egquivalent

During the course of the theorem, we shsll appesl to the equivslence of the
two graphs in Figure 5-33. The latter equivalence can be proved in & manner

snslogous to the theorem, but the proofl is much afmpler.

we(n) AS

AS w(1) we(1)
Figure 5-38: Grasphs to be shown equivalent by fixed point induction, where
H(g) 18 the consequent of g in Figure 5-3b,
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Figure 5-35: Basis of the fized point induction

AS ! ‘

I

Figure 5-36: Inductive hypothesis of the fizxed point fnduction
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head (71}] !

Figure 5-37: Inductive oconolusion of the flxed point {nduction. -;0 leads to
the treneformed greph in Figure 5-38.



Ve lpp.'n to the fixed point induction principle to prove the equivelence of
the graphs in Figure 5-34., The basis 13 the equivalence of the graphs 1in
Figure 5-35, where T 1s the constant funotion whose valus 1s the null stress.
The equivalence of these graphe follows from the definition of A4S, since

AS(7, 7) = ocons(?, 7) s 2, scoording to our re-definition of eons.

The induction step assumes the equivslence of the graphe ia Figura 5-36 and
proves the equivalence of those same graphs, exoept with [ replaced by M(f).

The resulte of these replsoemente ere shown in Figure 5-37.
Tha left grasph in Figure 5-37 ¢ ehown equivalent to the right one by the
series of trsnsformations in Figure 5-38. The justifioetione ere se follows:
s. Definition of AS.
b. Dsfinition of heed, tall.
o. Equivslence in Figure $-33..
d. Definition of AS,
¢. Inductive hypothun.'

f. Folding.

8. Definition of AS end folding.
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cons >

Figure 5-38: Trensformations wused in deriving the inductive conclusion
(continued neszt 2 pages)
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6. Postlude

6.1. Additionel Historiocel Material

The literature of engineering sciences, particularly electriosl engineering
and oontrol theory, has seen many uses of grephiocesl models for funotion-based
systems. See, for example, (Zedeh and Desoer 63), which disausses s version
of the determinsoy theorem for general aystems. Many grephicel models for
dete-fiow ((Constentine 68), [Adams 68), [Rodriguez 69), [Seror 70)) have been
described in the computer scienos literature, the originel of whioh seems to
be (Karp snd Miller 66). In most of these, the grephe have played a rether
stetio role, instead of being dynamioally structursble entities. ‘Many of
these etastio models are surveyed in (Baer 1ll_. A different ‘eutogory of model
ia besed on state-transition behevior. These models sre not surveyed here,
but sxamples mey be found in [Petri 66]), (Xarp and Miller 69], and (Keller
76).

[Church 81) introduced the lambda-celculus, on which many modele of .fu\otlonal
progremming are besed. 'lhlo graph model presented here is more genersl in that
it provides a looping astructure whioh ocsnnot be direotly rapresented in the
lasbde oslculus. ([Brown 62) prophesies the use of epplicative languages for
the sxploitetion of parsllel processing ospability. ([Bohm 66) discusses the
relationship betwesen & graphicsl model end reoursion equations. ([Pstil 67]

disousses parsllel evalustion in e graphicsl lambde csloulus model.

The fixed point theory is due to [Kleene 52) with subsequent generslizstion by
Scott, for example {Scott 70, 71, T6). (Patil 70) presents s determinescy
theorem for ons-level stresm-bassed systema whioh is similar to s relsted proof
fo [Zedeh and Desoer 63]. (Kshn 78) disausses fixed-point semsntics in o
model whioh oould be considered either graphicel or equational, but without
the richness of Liep operstora and dsta structures. The letter were
introduced into s graph model in {Keller 77). (Adams 68) presente s model
with Lisp-like oponion. but having a semantios much less rich than the one

presented here, Systems based on equations, without functiona ss dats
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objeots, are discussad in [O'Donnell 77). ([Turner 79) usee o releted graph

nodsl to represent reacursion.

The use of epplicetive languages to implement unbounded structures has been
described in [Landin 64], [Xshn 78), (Burge 75), [Friedman and Wise 761,
(Henderson and Morris 76]). The 1sst two give sketches of ocorreotness proofs
for their evaluators, which sre sequentisl. ([Vuillemin TA] discusees 1ssuss
of optimelity of evaluation rules for recursive fumotions. [Bunemsn, et el.
80) describes the use of a functionsl lenguage end 1azy evalustion in databsse
eppiicetions. Other aspects of spplicstive languages sre discussed, for
example, in [Landin 65], [Evans 68], [Backus 78], {Iverson 79), snd [Sleep
80).

As this manusoript was being revised, [Henderson 30] made its eppeersnce. It
is a highly-recommended book, with additionsl exampies of the use of
indeterminacy snd use of functions as values. Graphs sre usad to & limited
extent, but their evaluation is executed differently than we hsve suggested,

and the notfon of enveloping is not used.

Graph models have long held appeeal for representing computing systems in whioh
the processing losd is distributed among distinot physiosl units. The thrust
of most work on distributed processing has been in the direction of
process-based aystems, i.e. those involving the intercommunicetion of multiple
sequential processes [Conwsy 63], (Dijkstra 68), (Kahn and HaoQueen 77),
{Hoare 78], eto. Lately, there has been inoressed interest in what might be
termed task-besed systems. Instead of using ®"tssk"™ as s synonym for
"process®, we propose adopting s different sense of the former: a fundamentsl
wnit of work involving the computation of some stoamio funotion. Hence
task-based syatems generally lend theaselves to the expression of a finer

grain of concurrency that do process-bssed systess.

Task-based systems have been discussed [Dennis 69), [Friedmen and Wise 78).
(Hewitt 77), end [Hewitt and Baker 78], although more work seems to have been
done on high~level langusgea than st the implementation ievel. [Arvind and
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Gostelow 77), [Dsvis 78s), and [Dennis and Hisunss 78], describe some
implementstion sapeots of these systems. The converasion of conventional
programs to dats flow progrsms for the purposs of extrsoting psrallelism is
the subjeot of [Urschler 73). An iamplementstion of FGL hss been discussed in
[Keller, Lindstrom, and Petil 79).

[Greif 75) end [Frencez 79) discuss proof methods for tssk-based systems.
[Psrk 70), [(Menns 78), and [Stoy 77), among otheras, disouss proofs for general
models representsble by fized point semantios. A proof method besed on tail
recursion {s presented in {Mszurkiewioz T1!]. {Milner 72) desaribes s
mechsnizatinn of fixed-point {induction. {Boyer and Moore 75) discuss

mechanization of dsts induction in Lisp programs.

6.2. Conoclusions

Ve have presented s genersl graph model bssed on funotions over dets types snd
indiosted how the model ocsn be used to represent dynamicslly-structured
parsllel and recursive oomputetions, i{nocluding intercomamuniocation between
computing modules. Proof methods snd verjous types of trsnsformstions were
discussed. We 8130 indicated how the graphs themselvea cculd be used as dste

objeots.

Although this model has been found useful in developing sn execution model for
a highly oconourrent machine srohiteoture, we sre slso exploring veristions of
it es both a hardware and softuare development tool. Although other grsph
models hevs been proposed in these oontexts, we feel thet funotion besed
models sre partioculsrly relevant, since rather thsn just employing graphs ss s
syntsotic entity, our model csn slso sssign a semsntic interpretstion to esch
groph. This festurs is extremely useful in progressive refinement, since it

can avoid having to switoh models ss the level of desoription becomes more
detailed.

We have svoided advoosting the usa of s grephicsl medium as the sole means of

communication. A textual version of owr FGL hae been developed {Keller, et
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sl. B80] and eeems more usesble for oommunioating progrsms onoe they ars
developed. However, the usefulness of e |rnvphlcnl presantation ior initial
development and enhancing ptual understsndisg sannot be denied.

Preliminery work hss been dons in the use of a graphiocsl for-ull-‘ in proofs
of correctneas. Such s formalisa offers the advantage of better visuslization
over conventionsal lineer formuls representstions, whloh ars prone to errors.
For exasmple, we hops to epply the techniqua to proofs of storsge mansgement
algorithms. An initisl ettempt st formallzing this eppllostion sppesrs 1in
[Nort 79]).
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