
SEMANTICS AND APPLICATIONS Of
FUNCTION GRAPHS

by

Robert M. Keller
UUCS-00-112

October 1980

SEMANTICS HID APPLICATIONS OF FUNCTION GliPHS

Hobart h. Keller

Departaent of Goaputer Sclenoe

University of Utah

Salt Laka City, Utah 8*112

28 Ootobar I960

U S T U C T

Function grapha pro*Ida graphical aodala of prograas based on function

application. The uses of auoh aodels include provision of a aeaantlo

fraaework for functional prograaa, application of the atruotura of coaplei

systeas based on function application. Increasing proxlalty of prograas to

certain application doaalns, resolution of anblgultlaa in prograaa baaed upon

systeaa of aquations, and rapraaantatlon of aieoutabl* prograas In aaohlnas

based upon data flow execution. Application axaaplea and underlying theory of

function grapha are preaented.

Keywords and Phraaas: Applicative progressing. Asynchronous ayateaa.

Distributed aystaas. Functional prograaalng. Graph aodala. Concurrency, Data

flow. Laabda caloulua, Deaand-drlven ooaputatlon, Parallallsa, Multiprocessing

C a t e g o r i e s : 3 .2 , < .2 . 5 .2 , 5 .7 , 8.1

This aatarlal la based upon work supported by the National Solanos Foundation

under grant HC3 77-09369.

Table of Contents _

1. Introduction 1
1 .1 . Motivating Funotlon Graphs 1

1 .1 .1 . Function graphs represent sppllcatlva progrsas and ayataas. 1
1 .1 .2 . Applicative languages alapllfy prograaalng. 1

1 .1 .3 . Grsphlcsl representation* sra often olesrer. 1

1 .1 .4 . Funotlon grapha sre s oounterpart to flowchsrts. 2

1 .1 .5 . Funotlon graphs fora s basis for prograaalng language - 3
aaaantloa.

1 .1 .6 . FGL Is both ganerlo and speolflo. 3

1 .1 .7 . Iha foilowing festuras further aotlvata tha Investigation of 4

F a :

1 .1 .6 . Funotlon graphs aay be eiecutabla or otherwise. 5

1 .2 . How to and Why Read the laaalodar of the Paper i

2 . Preliminary Dlsouaalon 7

2 .1 . Coaputlng with Infinite Objects and Equations 7

2 .1 .1 . Infinite objeots provide new ways of presenting algorithms. 7

2 .1 .2 . An exaaple of coaputlng with Infinite objeots: 8

2 .1 .3 . More eiaaples Involving Infinite objeota. 9

2 .2 . Grephloal Models 10

2 .2 .1 . Graphical aodels olarlfy ooaplei Ideas. 11
2 .2 .2 . Iro naaes are Irrelevant In funotlon grapha. 11

2 .2 .3 . Fields outside Coaputer Sclenoe eaploy foraslliable graphs. 11

2 .2 .4 . Streaa coaponents need not be staple. 14

2 .3 . Seaantloe of Funotlon Grapha 16
2 .3 .1 . Function graphs have a staple baalo fora. 16

2 .4 . Representing Syateaa as Grapha • 19
2 .4 .1 . Ihe null structure contains no Inforaatlon. 19

2 .4 .2 . Handshaking Illustrates a staple fora of ooanunloetlon. 20

2 .4 .3 . Solving equatlona eipresses long-range systea behavior. 21
2 .5 . Baouralon 22

2 .5 .1 . Exaaple: 23
2 .6 . Splitting Transforaatlon 27

2 .7 . Funotlon* as Values 30

2 .7 .1 . Enveloping shows tha creation of function veluea. 30

2 .7 .2 . Iaport arcs provide extra flexibility. 30

2 .7 .3 . Produotlons csn be ellalnated. 32

3. Thaoretloal Basts 37

3 .1 . Function Grsphs snd Equations 3T

3 .1 .1 . One function and one equation aufflce. 3T

3 .1 .2 . Exaaple: 37

3 .2 . Data Typea 36

3 .2 .1 . Data types ohareotarlse Inforaatlon content. 39

3 .2 .2 . U a lt s epltoalze successive spproi last tons. 40

3 .2 .3 . Esanple of a data type: 40
3 .2 .4 . Eiaaples of dsts types: ■ 41

3 .2 .5 . Data typea ooablne to get new data types. . 46
3 .3 . Behavioral Daacrlptlons 47

3 .3 .1 . Restrictions srs neceassry for successive spproslastlons to 46
work.

3 .3 .2 . Monotonlolty Insures apeed-Independence In an asynchronous 49
envlronaent.

3 .4 . Continuity 49

3 .4 .1 . Eieaple: 51

11

3 .4 .2 . Deteralnacy Iheorta .

3 .^ .3 . Example:
3 .4 .4 . Ciaapli:

3 .4 .5 . Continuity Insures composablllty.

3*5* Detarmlnacy of Sy steu Involving Productions

3 .5 .1 . A set of lunations lay be a data type.
3 .6 . Finlts Support

4. Maohlne avalnation of Computations fcepreaanted by Graphs
4 .1 . A Rudimentary fora of FCL

4 .1 .1 . The data types of FGL

4 .1 .2 . Basic Operators of FGL
4 .1 .3 . Internal representation of FGL

4.2* Evaluation

4 .2 .1 * Description of deaand propagation

4 .2 .2 . Correctness of an FGL evaluator

4 .2 .3 . Paralaonious evaluation ■
4 .3 . A Higher Level FGL

4 .3 .1 . FGL has "block* structure.

- 4 .3 .2 . Example of textual FGL:

4 .3 .3 . Another textual FGL example:

4 .3 .4 . Exaaple:

5 . Uses of the Graphical Foraallia
5 .1* Loop Beaoval

5 .1 .1 . Tail recursion represents loops in conventional flowcharts.
5 .1 .2 . Example:

5 .2 . Production Bemoval and Explication of "Paradoxical” Coeiblnators

5 .2 .1 . All loops and productions can be removed.

5 .3 . Parallelism
* 5 .3*1* Parallellaa occurs in different granularities.

5 .3 .2 . Auxiliary nodes can teaporarily aask parallelIs m .

5 .3 *3 . Lenient operators slnpllfy understanding and proofa.

5 .3 *4 . Data type ordering effects degree of conourrenoy.

5*3*5. Lenient cons enhances asynchrony.

5 .3 *6 . Transparent functions allow programmer control of

concurrency.

5 .3 *7 . Variations on operatora effect demand-driven exeoution.

5 .4 . Ancillary Applications

5 .4 .1 . Language theory uses function-graph ideas.
5*5 . Indateraftnacy

5 .5 .1 . Indeteralnate operatora challenge conventional intuition.

5 .5 .2 . Some lndeteralnacles ara benign.

5 .6 . Proof Methods
5 .6 .1 . Inductive proofs coae in several Interrelated forms*

5 .6 .2 . Information and proof orderlnga may d iffer .

5 .6 .3 * Example of Data Induction:

5 .6 .4 . Admissibility aakes proofs work for lnfinlta objeots.

5 .6 .5 . Proofs for sequential programs can ba cast ss function graph

proofs.

5 .6 .6 . Assertlonal proof methods extend to function grapha.

5 .6 .7 . Fixed point Induction proves properties of functions.

51

52

53
54

54

54

57

59
59
59
60
61

63
64

65

65

67

69

70

70

71

73
73
76

79
79
60

64

85

69

91

92

92
94

96

97

98
99
100
101
102
102
103
104

105

106

107

107

V

List of Fl|ur«i a ‘

Figure 2-1: A graph for Funotlon ita ifcrMS * 10
Figure 2*2 : Graphical representation of a digital filter having • 11

transfer function with x-tranafora

Figure 2^3: Grephlosl representetlon of a i f a t n dynsnlos nodal 12
Flgura 2-4: A funotlon whloh atrlps tha leaves from a traa In 1H

breadth-first order.

Flgura 2-5: Illustration of fanout 16
Flgura 2-6: Concurrent eraatton of data atruoturaa by f , g , and h 17

Flgura 2-7: Jecodlng a history dapandant funotlon 18

Flgura 2-8: Handshaking eiemple 19

Flgura 2-9: A production for tha sdd__strosns funotlon 23

Flgura 2-10: Flrat Odd-Prlnaa Example 23

Flgura 2-11: Expansion of tha Flrat Odd-prlnes b a a p l i (odd_fron la 23

daflntd In Scctlon 2 .1 .2) .

Flgura 2-12: Second Odd-Primes Eismple 23

Flgura 2-13: Expansion of tha Second Odd-prlmes Eismple 23

Flgura 2-1H: Splitting transformation 27

Flgura 2-15: iepested application of tha splitting transformation 26

Flgura 2-16: Tha neanlng of apply 28

Flgura 2-17: Illustration of funotlon envolopea 30

Flgura 2-16: Illustration of Currying 31 .

Flgura 2-19: Typical recursive production 32
Figure 2-20: Equivalent of the oonaequent of the production of Figure 32

2-19 using apply

Flgura 2-21: A second graph equivalent to the G of Figure 2-19 3*
Figure 2-22: Folded version of G 34

Figure 2-23: Simplified folded version of G 3*

Figure 3-1: Function graph eianpla 37

Figure 3-2: Ordering diagram for a one-level atreaa data type *11

Flgura 3-3: PCS) ordering HI
Figure 3-H: 8 (3) ordering HI

Figure 3-5: Flat ordering of the natural niMbera Hi

Figure 3-6: nunerlo ordering H3

Figure 3-7: U n it of the tree aequo nee to < if < t2 < • • • HH
Figure 3-6: Die tree equivalent to the atrean x0# x j9 ig , . . . H5

Figure 3-9: Produot data types H6
Figure 3-10: Graph resulting In the Flbonaool stress 52

Figure 3-11: Infinite unfolded versions of G 55

Flgura H-1: Assembly lsnguage encoding of an FGL production, that of 62

Figure 2-1*

Figure H-2: Demand eveluetion of select 6H

Figure H-3l Illustration of demand propagation (ehown by daahad llnea). 65

odd_fron is defined in Seotlon 2 .1 .2 .

Figure 5-1: A graph showing the ohosen outset ■ 73

Figure 5-2: Acylie graph based upon the cutset In Figure 5-1. 73
Figure 5-3: Eianpla of outset end simplified aoyollo graph ' 75

Figure 5-H: Productions equivalent to flowchort oonatruota 76

Figure 5-5: Faotorlal Flowchart 76
Figure 5-6: Faotorlal Production 76
Figure 5-7: Folded version of Figure 3-11b 79

Figure 5-6: Subgraph I of Figure 5-7. 80
Figure 5-9: Loop-free operator Y' equivalent to T 81

vl

Figure
Figure
Figure

Figure
Figure

Figure

Figure

Figure

Figure

Figure

5-10:

5-11:
5-12:

5-13:

5 - « :

5-15:

5-16:

5-17:

5 - H :

5-19:

Figure 5-20:

Figure 5-21;

Figure 5-22:

Figure 5-23:

Figure 5-24:

Figure 5-25:

Figure 5-26:

Figure 5-27:

Figure 5-28:

Figure 5-29:

Figure 5-30:

Figure 5-3*:
Figure 5-32:
Figure 5-33:
Flgu-» 5-34:

Figure 5-35:

Figure 5-36:

Figure 5-37:

Figure 5-38:

Showing the equivalence of T end I ' 1
Application of the operator I * . *
A dlatlngulahed aub-atructure of Figure 5-9

Independent eroa which ere evaluable concurrently

Production for the leefoount function

Leafcount evaluation

Production tranaforaed froa that of Figure 5-6

Unwound graph corresponding to tha production of Figure 5-6

An lnatance of the graph In Figure 5-17 with Pa evaluated

The antecedent and oonaequent grapha are equivalent on If

when eveluated with an appropriate evaluation rule

Wiring analoglea to the oona operator: In the left pair,

correapondlng to lenient oona, the ooaponent wlrea are

paired, end either wire oan be pulled without pulling on
the other. In the right pair, corresponding to atriot
oons. the wlrea are bound, and pulling either wire
affectively pull* both. .

Replacing auilllerlea with auilllarlea having only on*
Input and one output aro: (a) Original production; (b)

Repleceaent for antecedent; (o) Mew production

Itae of par

Use of aeq

A reduction poaslbl* for poond but not for cond

Funotlon of a node of a graph operating on languages

A function greph representable by a regular eipreaalon

Splitting Involving aab

Composition rule for a series Interconnection

Speclel case of the ooaposltlon rule for series
Interconnection

Coaposltlon rule for oond

Fixed point lnduotloa rule
Two grephs to be ahown equivalent
Two graphs assuaed to be equivalent
Graphs to be shown equivalent by filed point Induction,

where H(g) la the consequent of g In Figure 5-3b.

Basis of the filed point Induction

Inductive hypothaala of the filed polet Induction

Inductive conclusion of the filed point Induction

Transforaatlona used In deriving the lnduotlve oonoluslon
(continued next 2 pagea)

81
83
•3
84

•5

85

87

87

87

•9

91

92

9«
95

96

97

98

100
107

107

107

107
112
112
113

113

113

113
116

1

1 .1 . Motivating Funotion Graphs

1 .1 .1 . Funotion graphs repreaent applicative programs and ayateas.

Funotion grsphs srs graphical representations of syattas based on funotion

spplioation. Us inolude programs within the scope of "systems1*. Programs

based on function application are ususlly celled "applicative*, "functional",

or "data flow" progress, sithough it may be seen thst other types of programs

oan also be nathenatioally represented ss funotion grsphs.

1 .1 .2 . Applicative languages simplify progrsmming. .

Some more important advantages of applicetlve programming langueges Include:

1. Greater system nodularity

2 . Ease in debugging

3. Nsturel exploitation of concurrency

I . Natural representetion of oommiailoation

5 . Eese in human comprehension

The festures generally imply reduced programing costs. Additionally, ainoe

machines uhioh direotly execute applicative languages are being proposed

((Dennis snd Hlsunss TH], (Piss 76], (Guzman and Segovia 76], (Arvlnd end

Goatelow 77], (Curd end Vetson 771. (Rusbsugh 77]. (Davis 78s), (Nudge 78).

(Keller, Llndstros, snd Patil 7 9) . (Cornish 79. 8 0) . (Johnson, et el. 80), and

others)« the attendant reduction in number of software leyers csn further

highlight the features listed sbove.

1 .1 .3 . Oraphloal representations are often oleerer.

As with other uses of grsphs, funotion grsphs sre mathematically

Interchangeable with one-dimensional representations of the same system.

However, they often serve to illustrste ooncepts more d early snd suoclnctly

than their one-dimensional oounterparta.

Furthermore, graphs oan obviate the use of names for establishing

1. Introduction

relationships batman entitles, which Is usually naoasssry whan s

one-dlaenalonel rapraaantatlon Is usad for a basically graphical oonoapt. For

eiaaple, tha laabda-oalculus (Churoh 41], which haa long baao tout ad as a

baslo aodel for underatandlng of oartaln ooaputstlonsl phenoaena, requires a

"re-naalng" rula for lta fenaral application. Vlth an approprlata graphical

■odal, such ss that presented herein, auch rulaa ara unneaeasary.

is another eiaapla, the sequential Hating of atateaents In a prograa tait

usually laplias, or at least suggests, a corresponding sequentiality of

control, auch of which la Inessential. A graph aay uaed to illuatrate only

the easentlal aequentlallty and, dually, the available ooncurrenoy. In

contrast, aany one-dlaenalonal representations aust be reprocessed to deteat

potentially concurrent operations (c f . (Keller T3, 75a, 75b]),

Tha present paper uses graphs to slallarly expose other aspects of concurrent

ooaputatlon, such as tha relationship between parallellaa and oholoe of data

types, and the coaparlson of prograaalng atyles for data-driven va.

deaand-drlven coaputetlon. it also uses graphs to deaonstrste other aspeots

less related to concurrency, such as ooaaunlcatlon, binding, transforaatlona

of prograaa, and verification. He auggest that ooaprehenslblllty of auoh

ooncepts aay often be laproved through tha use of grsphs.

1 .1 .4 . Funotlon grsphs sre a counterpart to flowcharts.

Funotlon graphs bear s relationship to applicative prograas slallar to that of

flowcharts to aaalgnaent-baaed prograas. However, whereas flowcharta ara

usually thought to be lnforaal repreaentstlona of an algorltha yet to be aoded

and requiring further foraallzatlon prior to eieoutlon or analysis, function

graphs rely only on tha underatanding of their constituent functions to ba

foraally aeanlngful.

Like flowcharta, function graphs can ba used Inforaally to exhibit and develop

baslo Interrelationships between systaa parts. However, this lnforasl use can

bacoae a foraal one If a prograaalng language based on funotlon grapha la

available. In this oase, there Is no discontinuity Involving tha 'coding* of

thl ayatea apeolfloatlon In ■ given lin|ut|t, alnce the specification la

already In a language which repreaenta code. Thus the continuity provided by

both developing a aystea apeclflcatlon and lapleaentlng It In teras of

function grapha provide* a aore reliable design procedure than one Involving a

tranaltlon froa apeclflcatlon doaaln to coding doaaln.

It la possible to enter function grapha directly Into a programing aystea

given a aultable graphical Input device. Another possibility la to use a

teitual language which allows eipreaslon of function graphs In a Manner In

which the correspondence between the text and the graph Is fairly direct.

Indeed, coablnatlona of textual and graphical entry can be profitable.

1 .1 .5 . Funotion grapha fora a basla for programing language levant lea.

Additionally, function graphs lay be used aa a foraal base for aeaantlcs of

teitual languages, even when the correspondence la not direct. The advantage

of thla fora of base la that It provldea a coanon Beans of prograa coaparlson

and tranalatlon for different textual languages. In thla sense, seaantlcs of

function graphs Is related to other work on "denotatlonal" seaantica of

programing languages (c f . [Stoy 771).

A prototype language based on function graphs has been developed and la

Included aa part of this presentation for aake of concreteness and

Illustration. While not all features of the language, called FGL (Function

Graph Language), oan be presented here. It Is hope that the flavor of the

graphical presentation and conceptualliatlon can be oonveyed.

1 .1 .6 . FGL la both generlo and apeclflo.

FGL la related to a niaiber of other language Ideas which have appeared In the

literature. In aoae caaes In dlajolnt threada of Investigation. Aa such, we

hope that In addition to being a programing language. It provides a aeans of

understanding these Ideas, which Inolude:

1. A large assortaent of "data-flow* languages which are being
proposed for other hlghly-concurrent aachlne architectures.

Exaaples Bay be found In [Dennis 7 ") . iPlas, et a l. 76], lArvlnd,
at al. 77], [Davla 78b), [Weng 791.

3

«

2 . Languages based on function application ([Churoh I I] , [HcCarthj, at

a l . 62], [Landln 64], [Kahn 71]. (Burga 75] . (Backus 78]) and on
aysteas of equations ([Kleene 52], [Kahn 71] , (O'Donnell 77 1).

3 . Data atructurlng operations froa the Llap faally [McCarthy 60],
Al though auch operations fit naturally Into FCL, we need not atop

with Just the conventional sat of operatlona. The use of FGL

graphs for representing data atructurea can replaoe the aore

■achlne-orlented "boi dlagraas" often found In texts dealing with

data structuring. Further atructurlng Ideas oan alao be found In
(Keller 60b] "i

4 . Languages riilch provide for programing with Infinite atructurea,

such as atreaas and trees ((Landln 61], (Kahn 7 *] . [Burga 75],
[Frledaan and Ulsa 7 6]) . Such structures ara eitreaely powerful

devices for aodellng various aatheaatloal atructurea and for

representing coaaunlcatlon aaong sub-systeaa. It haa alao been

noted that they naturally provide aany sites for the eiploltatlon

of concurrency In a hlghly-concurrent aystena ([Frledaan and Ulaa
78], [Keller, Undstroa. and Petll 7 9]).

In suamary, although we have a particular language FGL In alnd, the reader aay

view FGL as If It represented a generic aeaber of a faally of languages based

upon funotlon graphs.

1 .1 .7 . The following features further aotlvate the lnveatlgatlon of FGL:

1. FGL Is an "applicative" language. In tha sense that It Is based on

function application and therefore enjoys tha features of auch

languages as eipressed above.

2. FGL overcoaes soaa of the awkward features of previous data-flow

languages through a suggested lapleaentatlon using "deaand-drlven"
evaluation. FGL avoids the notion of "asslgnaent". Rather than

being called by the euphealsa "single asslgnaent" language (c f .

[Tesler and Enea 68], [Chaaberlln 71], [Irilnd , at a l . 77)) It Is

properly a "lero asslgnaent" language.

3. FGL aay be easily adapted to suit a large niaber of engineering and

scientific applications. For eiaaple, slgnal-flow graphs used In

digital signal processing (c f . [Rabiner and Rader 72]) and systea
dynamics aodela used for aodellng and alaulatlon of sooloeconoalo

systeas (c f . [Forrester 61]) can be naturally represented In FGL.

It Is attractive to have a general purpose, aodularlxable, language

at hand to enhanoe such aodellng approaohes.

4 . The graphical sspect of FGL has uses In software and hardware

development by reflneaent. The use of graphical tools for aoftware

development has been aentloned before (c f . [Ross 77], [Weinberg
78], (Yourdon and Constantine 79], (Hebalkar and Zlllea 79], and
others). When slallar toola ara ei pressed In FGL, sn additional

advantage accrues: The grephs hsve a well-defined functional
aeanlng, rather than alaply representing prooedtre nesting, loop

5

n«atln(, calling sequenoea, ato. Ihla meaning la a apeolfloatlon

of tha ayatem under developaaent.

5 . Die refinement of an FGL apeolfloatlon from a coarae

Interconnection of functlona aay proceed by further apeclfylng

those functlona In the aame language. Itiwi Is no need to heve

different languages for *programmlng-ln-the-lerge" vs.

"prograaalng- ln-the-saall* [Delemer and Kron 76]. Ihla la
desirable, alnoa often what Initially appeara to be a simple atoalo

taak turns out to expand Into something more formidable. Thus a

transition made too early fro* a module Interconnection language to
a conventional prograaalng language may result In substantial

beoklng up In the design process. With the uniform language

approach, whan the level of atomlo funotlons Is reached, the

apeolfloatlon Is coaaplate and the result la a runnable program.

6. FGL allows persons with little trelnlng to get atarted In

programing. m is la due to the few concepts Involved and the

absence of a need to acquire knowledge ebout a linear ayntax.

Given an adequate Input device, a naive user need only know how to

connect boxes and to Interpret them es mathematical funotlona.

7. FGL allows the vlsuellxatlon of data struoturlng operations without

using storage dlegrems and references. ha auch. It exhlblta tha

underlying concepts with a high degree of mechlne Independence. It

seems particularly useful In conceptuellxlng methematloally

Infinite deta structures end representing the operetlons on auch

atructures.

8. FGL Is the base of dlrectly-executeble machine language, namely

that for the aystem proposed In (Keller, Llndstroa, end Petll 79].
As suoh. It sllows exploltetton of oonourrenoy without mejor

concern from the progrenaer end nerrows the gep between e

high-level programing language and Its machine Implementation.

9. FGL allows Intuitive representetlons of *functlonels* or
•hlgher-order functions* whloh ere usuelly explelned using the

lambda calculus (Church 41]. We hope to show that FGL provides a

better bese for understanding the aubtletles of these ldeea.

10. FGL allows programs to be oleenly lnterfeced with file aystem

files . In the spirit of [Balzer 71] , (iltohle end Thompson 751,

(Friedman and Wise 77].

1 .1 .8 . Funotlon grapha say be executable or otharwlae.

Ihla paper present* Idee* ebout function grephs on two levels. One level la

that corresponding to executable programs. The other la a more general

conoeptuel level, for whloh there may be no known efflolent execution meens.

When It 1* neoeessry to oontrsst these levels, we shsll refer to the former es

t

apeclal funotion grapha and the latter aa general function trapha. Hi*

reasons for the desire to consider the general l n t l at all art: -

1. Understanding the general level oan often provide a olearer
underatandlng of the speolal level.

2 . Soae ldeaa can be conceptualized only at the general level.

3 . It la desirable to widen the special level as auoh aa possible.

I .e . to express aore concepts In the fora of executable prograaa.
Tha general level provides a target for thla widening.

1 .2 . How to and Why lead tha leaalnder of the Paper

The reasons for thla paper are aeveral:

1. To Introduce the reader to graphical foraa of applicative

programing through a reasonably unifying aodal.

2 . To provide a theoretical fraaework for those Interested In auoh
■attera.

3- To survey the few key ideas present In an apparently laportent, but
eabryonlc, area of coaputer programing. Including polntara to the
literature for results which cannot be Included here.

The section entitled Prellalnery Discussion la Intended to Introduce aoae

types of data objects and systeas which can be explicated with graphloal

aodeIs and arguments. The aeotlon entitled Theoretical Basle aay be read for

those wanting a tutorial Introduction to tha theory behind auoh aodels. It

aay be skipped on first reading, or taken on faith . The section entitled

Machine Evaluation of Coaputatlona lepreaentad by Graphs further develops the

function graph aodel, desorlbea a alaple language baaed on the aodel, and

dlacusses a aeans of ooaputlng within the aodel. The aeotlon entitled Uses of

tha Graphloal ForaalIsa deaorlbea sonoapta whlob oan be understood ualng tha

aodel, and Manipulations and proofs Hithin the aodel. Except for tha

aub-aeotlon on Loop leaoval. thla aeotlon aay be skipped by thoae Interested

only In progressing aspects. The Poatluda aentlona aoae of the hlstorloal

aspeota raleted to the ldees presented here, end auaaarlxaa the oonoluslona.

7

2 . Prtllilntry Dlicuaalon

2 .1 . Computing ir&tb Infinite Objaots u d Equations

Several of tha eiaaplas presented in this pspar involve coaputlng with

lnflnlta objeots. By this, wo aesn thst tha prograa osn aanlpulate as a whola

objaots whloh ara oonoeptually lnflnlta, even though tha usar aay at any given

run only wish to oausi a finlta truncation of tha objaot to ba Ban 1 fast* In

principle, tha usar eould ask for tha aanlfeatation of sn antlra lnflnlta

objaot, wharaupon if thara wcra sufflolant coaputlng rasourcas snd ha waited

i
aufficlently long, any finlta portion of tha lnflnlta objaot would ba

aanlfeat. Slnca conventional theory of coaputation has shunned infinite

objects, other than functions, In fsvor of working only with their finite

truncations, s brief Introduction to this style of coaputlng is aerited.

2 .1 .1 . Infinite objects provide new ways of presenting algorithms,

there are seversl ressons for wsntlng to consider such objects:

1. Soae systeas, e .g . ooaputer operstlng systeas, trest their input

and output (streaas of requests and responses) as if they were

infinite, since the point of teralnatlon of these streaas is

unknown snd irrelevant.

2. Programing with Infinite objeota la oft«n simpler than programing

with finlta objects, since it relieves the programmer of asny

concerns of "boundary conditions* which often are the cause of
errora. For example. Instead of writing a program to compute a

finite aet of values of a funotlon

f (1) , f (2) , f<3>............ fCn) ,

tha prograamer alght write a slapler progran whloh coaputes the

Infinite set of values,

f (1) . f(2> , f(3>

snd than use s pre-defined selection function to seleot the finite

subset in which he is Interested. Properly iaplenented, only tha

necessary vslues of f are really computed, but the programmer

aanlpulates the series of vslues ss though It were Infinite.

3. With respect to this paper, one of the prlae uses of function

grapha is to dlsplsy progrsa atructurea which represent an

efficient and applicative aothod for coaputlng auch infinite data

8

struoturts,

2 . 1 .2 . in « i « p l t of coaputlng with infinite objecta: *

Let us |lvt a slaple of defining an Infinite structure. Suppose wo

wished to define the (infinite) sequence of sll odd natural ntabers,

1 3 5 7 . . .

(Here, end throughout the psper9 three dots indiostes s sequence whloh

continues sd lnflnltua. wheress four dots lndicstes s sequence with a last

ooaponent.) We Bay do so by producing a general function odd_froa whloh with

srgment n produoes

n n+2 n^* . . .

then applying thst funotlon to arginent 1. To define odd_flroa, we aiaply note

that It satisfies the equation

odd_froa(n) « n followed_by odd_froa(n»2)

where followed_by is a binary function which produoes a sequence consisting of

the itea on its left followed by the ltea on its right. Our sequence Is then

given by the result of odd_fro«(1) .

To apell out in detail, '

odd_fro«(1)

* 1 rollowed__by odd_froa(3)

« 1 followedby 3 followed_by odd_froa(5)

■ 1 followed_by 3 followed_by b followed_by odd_froa(7)

• . . .

For readability and convenience, we henoeforth oalt the followed_by in writing

auch aequenoes, preferring to write

1 3 5 . . .

lnstesd of the last line above.

We also use the expression oons(x, y) in place of i followed_by y, aince a

■lnor extension of the oons (constructor) function froa Lisp is Just trtiat we

9

M «d to lnpleaent followed_by.

2 .1 .3 . Mora w « p l n involving infinite objeota. *

To |lv« i further ciaaplt of operating on Infinite objects, we knot# that the

eua of the flrat n odd nimbera la equal to the equate of n. Me could therefore

ooapute the atreaa of aquarea by a funotion whloh produced successively the

a us of the ooaponenta of ita input atrean. Let us call such a funotion

aun_atreaa. The flrat component of auB_atreaa(x) la Just the first ooaponent

of x. Using head(x) to refer to thla ooaponent, we aee the basio fons

•ua_atreaa(x) ■ oons(head(x)...........)

where the dota nust yet be filled in to give us a coaplete definition. ,

We now observe that if we knew sua_streaa(x), then we oould add Its ooaponents

pair-wise to the tsll of the Input (I .e . the ooaponents which sre followed by

the heed) snd end up with exectly sua_stresa(x) . 1 In other words, we hsve an

equation

sua_streaa(x) ■ oona(head(x), add_streaas(tall(x), aua_stresa(x)))

Here we have used add_streaas to nsae the funotion which adds two streaas

ooaponent-wlse. For exaaple,

add_streaas(3 5 7 9 1 4 9 16. . .) • 4 9 16 2 5 . . .

To see that equation for su»_streaa givea us exsotly the lnforaetlon needed,

we try to disoover what It tell a us about sua__streaa(1 3 5 . . .) . Using the

definition.

sua_streea(1 3 5 . . .) ■

oons(1 , add_atreaas(3 5 sua_streaa(1 3 5 . . .))) ■

'we avoid uaing the Lisp oar and odr for head and tail for two reasons: One
is thst these teras ere not suggestive of their aeanlng, and the other Is that

we have In alnd a later extension of oons for utiloh head and tall fit sore
nicely.

10

oonsd, «Jd_atreaas(3 5 oonsd, addjtreaaiO . . . f ...)))))

■ oonsd, oor»(̂ , «o m (9 , . . .)))

While this type of reasoning say ipptir foreign to the rtidtr at first , with m

llttla practice, It la aaay to baooaa oonvlnoed that It la an eitreaely

powerful definitional and prograaalng tool.

Incidentally, wa could go further and provide a definition of add_streaas:

add_strea«s(i, y) « oona(head(x)«heed(y)t add_strea«s(tail(i), t a l l (y))) ,

where ♦ repreaenta the usual addition operator on two nunbera.

2 .2 . Graphical Models ‘

Figure 2-1: A |riph for Function •ua_siras*

11

2.2.1. Griphlotl aodtli clarify eosplsi idiu.
We tr« lnitrtitid in graphloal « i|r «» lo D of coaputatlonal spec If lost ions or

th« type specified in the previous seotion. For example, the function

s u ^ s t r c u oould be represented by the trsph shown in Figure 2-1. This fraph

illustrstes the input snd output of the funotlon, ss well ss the essentials of

its lnternsl structure.

2 .2 .2 . Iro dmms are Irrelevant in function graphs. ■

In aost oasaa we shall avoid |ivin| nsaes to the sros of s graph. Instead, we

ahall rely on the orientation of the arcs to deteraine the position of the

corresponding argument to s funotlon. That la, viewing the node ao that input

aroa enter a node at its bottoa, the left-to-right orientation of sres

corresponds to the order of arguaent listing. Where aabiguity or confusion

sight arise, we osn return to the use of naalng.

2 .2 .3 . Fields outside Computer Solenoe eaploy foraalliable grsphs.

It is claiaed that for oertaln examples, the graphioal expression osn to

better coaprehenslon of structures. Slailar representations have occurred in

related application areas. For example, in digital signsl processing, dlgltsl

filters sre often represented grsphicslly. Unfortunttely, the behavior of

such filters is often explsined using notions such as clocks, unit tiae

delsys, and other Jargon, Instead of appealing to their Intrinsic aesnlng in

teras of functions on sequences. The legend socoapanylng Figure 2-2

illustrstes how the bsslo filter operstlons osn be viewed ss funotlons on

streaaa defined in the provloua aection. By aaklng this connection, it is

possible for Coaputer Sclenoe to contribute to digital filter design by:

1. Providing a language in whloh the Ideas of filtering can be

expreased direotly, instead of having to revert to Fortran coding,

which 1s often s lengthy prooess.

2. Allowing the digital filter researcher to eabed his filters

directly into s general purpose coaputstlonsl aystea (i .e . a
Function Graph Language).

The language Lucid [Ashoroft and Wadge 771 is a textual one based entirely

upon recurrence equations of the type used in defining stream functions as

- com(O.i)

• ((i) • coni(i|‘ltt»d(i)« ■|(UII(i)))

Figure 2-2: Graphical representation of a digital filter having a transfer

funotion with z~transfom

used above. .

Another applloatlon area of Interest la that of Systew Simulation. Here one

Is often eoncerned with physical processes which oan be aodeled as

lntercoaaunlcatlng via streams of discrete values. An exawple Is Forrester's

aystew dynamics (Forrester 61)* whloh eaploys graphs of the type shown In

13

if low) • COfift(k*ht«d(rftU)*ltt*d(lflfl0M)*
v«lv«(UM(raU). UU(Inflow)))

1«v«1

FIfur• 2-3: Graphical representation of a aystaa dynaalos aodal

14

Figure 2-3. As with digital filters, the nodea in thla graph oan he defined

as stream functions, as presented In the legend. A language, Dynamo (Pugh

70] , already exists which allows suoh Models to be input to computers.

Although Dynamo la Indeed an applicative language (perhaps tha flrat auoh),

its textual expression rsther resembles a Monolithic Fortran program, which

does little to help ita user visualize relatlonahlps between sub-ayatema. By

using a textual language (as we deacrlbe later) which ia laomorphlo to the

graphloal Model, one attains a new degree of Modularity, at the aame tlMe

retaining the possibility of having one's nodels embedded in a general purpose

computational system. Some other simulation Methods, e .g . [Pritsker and

Pegden 7 9) , employ a graphical notation, but these graphs do not have tha

formal properties of functlonsllty In whloh we are Interested.

Other Isolated instances of function grsphs hsva occurred from within ooMputer

science, such as in (Smith and Chang 7 5), who eMploy graph transforMations to

illustrate query optimizations for relstlonsl databases.

2 .2 .4 . StreaM components need not be alMple.

One should not Infer froM the above exsmples that FGL deala only with atreama

of atomic (i .e . Indecomposable) values. The components of a stream might well

be arbitrary atructures (Including possibly streams) themselves. For example,

in Figure 2-H an argument tree becomes the first of s stream of trees, the

rest of uhioh is obtained by splitting Its non-atomlo membera Into aub-trees.

Tills p i . cihlblts an cyclic .r r .n « « .n t of -proo.**.*- «hloh oo— unio .t .

via atreama and perform appropriate atream functiona auoh aa filtering of

atoms or non-a toms. The figure ahows the basle communication acheme, but the

functiona lnaide the boxea may be desoribed by simple conditional expreaaiona

corresponding to aoyolio graphs:

15

Fifura 2-4: A function which strips the leaves froa a tree
order.

breadth-first

16

fttoaa(x) t

if null(x) *

then n il()
else if atoa(head(x>)

. then oona(head(x), atoas(tail(x)))

elae atoaa(tall(i))

nonatoas(x) ■

If null(x)
then o l lO

elae if atoa(head(x>)

then nonatoas(ta|l(x))
elae oona(head(i)v nonatoas(tall(x)))

spllt(i) «

if null(t)

then nil<)

elae oons(head(head(x)), eona(tall(head(x)). aplitCtail(x))))

In the above exaaple, nil Is a function whloh produaea a tern In a ted n p ty

stress, whereas null Is a predloste whloh tests whether Its argisiant la that

stresa. ato* teats whether Its argtnent Is sn sto a .‘ head and tall, acting on

trees which are not atoms, extract the left and right subtrees, respectively*

2 .3 . Semantics of Funotlon Grapha

2 .3 .1 . Function grapha have a simple baalo fora.

The asia Interest here la in systems of computstion which csn be represented

as s certain fora of directed graph, which we are calling a "function graph” .

The naae derives froa the Interpretation of the nodes of the graph as

functions. The area of a funotlon graph represent variables ranging over data

atructures (including various degenerate foraa of thla oonoept). Aroa

directed froa one node to another therefore represent the phenoaenon of tha

firat node creating a data structure which la an input to the seoond.

It is possible for an arc to "fan-out", I .e . apllt into two or aora ares,

indicating that the saae structure is to be aade available to aore than one

node as input, as shown in Figure 2-5. No aesning la assigned to two or aore

arcs converging together. Other than this restriction, sny interconnection of

nodes can be ascribed a aesning, as ahall be seen.

17

Fl|ur« 2-5: Illustration of fanout

Tha following features will ba seen to fit into this general aodel!

(I) Creating data atructurea by several functions concurrently.

(11) Operating upon data structures at the aane tlae that they are

being created.

(I l l) Representation of comunlcatlon protocols.

(iv) Representation of Infinite grapha by finite aeana.

(v) Representing "history-dependent" funotions.

(vl) Resolving aabiguity In the representation of recurelvely-defined

funotions.

Figure 2-6: Concurrent creation of data atructurea by f , g . and h

II

Itea (1) suggests thst such ■ dats structure should aoaehow be represented ss

several function nodes sharing s single output aro. 111ho h thla possibility

waa excluded sbove, we esn represent this sharing by lnoludlng another node,

tha output of whloh la tha data etructure and the Input aroa are directed froa

aeveral funotion nodes, as in Figure 2-6. .

Concerning itea (i i) , our foraallsa does not require that tha entire data

atructure at the output of a funotion node be ooapletaly preaent at any

Instant. Instead, the structure appeara during the ooaputatlon, poaaibly a

piece at a tlae. It is even proper, and often oonvenlent, that wa consider

computations of infinite duration uhioh produce data atruoturea of infinite

extent.

Regarding itea (i i i) , at aoae levels of detail, faaillar notions of

coaaunication protocol asy be coapletely sbstraoted froa view. However, when

auch issues sre of ooncern, they asy often be represented in our foraelisa.

Regarding itea (lv) , the three prlasry techniques for representing infinite

objects, either dsts structures or function grapha, are the use of oyoles in

grsphs, the use of grsph productions, snd sllowing dsts objects which csn

themacIves be funotion grsphs. These techniques shsll be explslned snd

lnterrelsted in the subsequent developaent.

Figure 2*7 ; Recoding a hlatory dependent funotion

Regarding Itea (v) , there la really no need to lntroduoe a apeolal notion of a

19

'history-dependent* funotlon, sinoe our aodel allows tha encoding of an.

arbitrary hi a tor y aa a data atruotura. Any function Kith a fora of atata aay

ba rapraaantad by a noda with a aalf loop whloh faada tha previous hlatory of

tha function baok to ltaalf at aaoh ooaputatlonal atap, as daplotad In Flgura

2-T.

Finally, regarding (* 1) . we ahall sea In subsequent saotlons that thera ara

two waya of lntarpratlng an aquation such as that whloh daflnaa aia_straaa.

Tha oholca of Interpretation has bearing on atoraga and execution efficiency,

so It will ba useful to resort to s grsphlosl representation of tha function,

which resolves the aablgulty. '

2 .4 . Representing Syateaa as Graphs

Given that one accepta tha basic prealses of function grsphs ss presented thus

far, we now wish to further stlpulste the nature of noda functions and arc

data structures. For this purposes wa shall use atraaaa as our data

structures, although tha basic ldaas will later ba seen to generalise. Begin

by laaglnlng that we observe the output of a function noda over a

seal-lnflnlta coaputatlon period, that Is , one whloh has s definite stsrt but

no finish.

2 .4 .1 . The null struoture contains no lnforaatlon.

Assuaa that tha data atruature stsrts out Initially aa a speolal null

structure, whloh we denote

?

After aoaa elapsed tlae. the node function produces soae output, changing the

struoture to s j . After aore elapsed tlae, It gets ohanged to 82, then S3, and

ao on. Over tha obaerved period wa therefore see

*|i Sj, Sj......

20

X
----------------------►

left right

y

Figure 2-8: Handshaking naplt

2 .4 .? . Handshaking Illustrates a simple fora a t ooamiailostlon.

Consider two devices communlcetlng via a simple "handshsklng* protocol, is In

Figure 2-8. Assume that the left node Initiates coaaunlcatlon by sending a

signal b on the top line. When the signal Is reoelved by the right node, the

letter responds by sending s slgnsl c on the bottom line. When the left node

receives this signal, the rfwle process stsrts over sgsln.

If we record the sccumulsted signals In s string on esch 11ns In a state, ne

get the following state-trsnsltlon picture:

1 b b bb bb bbb
—> —> —> —> —> —> ...

t t 0 0 00 CO

One wey of expressing the sbove behavior Is to give a set of productions uhlch

chsracterlzea the transitions between ststes. Froa an understanding of this

behavior, the following produotlons suffloe:

I bx

—> If length(s) * length(y)
I I

I s

— > If length(s) * length(y)

y .

Here s end y represent srbltrsry finite strings snd length(s) Is the length of

i.

A second way of representing the behevlor Is to present the left snd right

21

nodn aa functiona. In tha fora . '

left(y) > oona(b, invert(y))

right(x) > Invert(x)

whore iavert(x) la tha atrlng obtained by replaoing aaoh b in i with o and

aach o In * with b.

Taken individually, the funotlona defined do not capture the abort tera

hand-ahaklng behavior of the ayatea. However, taken together, with the

underatandlng that the ayatea when in atate (i ,y) tend a toward the atate

(le ft (y), rlght(x)), they do quite wall. For eiaaple.

u r td) b
a

rlght(T) t

left(T) bm
right(b) c

left(o) bb
■

rlght(b) o

left(o) bb
■

rlght(bb) OC
and oo forth.

2 .4 .3 * Solving equationa eipreaaea long-range ayatea behavior.

The functional description la abla to expresa one aapeot of the aystea

auoclnotly which tho atato-tronaltion behavior oannot, naaoly that there will

be no deadlock In the aenae that aoae node eventually atopa aendlng aignala to

the other. To aee thla, we flrat aubait that the long-range behavior of the

aystea la a aolutlon (or fixed-point) (x , y) of the systca of equatlona

x - left(y)

y ■ rlght(x)

22

From the discussion regarding stste-trsnsltion behavior. It Is Intuitive that

the solution should be

I » b b b ...

y • c o o ...

Indeed, this Is s solution, sinoe

lo ft (c c c ...) > b Invert(oco.. .) * b b b b ..;

right(bbb.. .) a lnvert(bbb♦ . .) > o o o ...

We here not demonstrsted thet the sbovs solution is unique, nor how thst Is

the proper choice among several possibilities. This will be sddrsssed in the

following sections.

2 .5 . Recursion

It Is useful to extend our concept of grsphs to graphs which sre specified by

graph gra— ars. This extension sllows us to represent infinite grsphs by

finite presentations, which will give us s convenient Beans of defining

functions by possibly recursive sppllcstions of productions.

Suppose that we allow the nodes of a graph to be labelled with two types of

symbols: terminal s y b o ls , which denote pre-deflned functions, snd suilllsry

symbols. For each auxiliary symbol, there is to be exactly one production

which has the node lsbelled with the suxillsry symbol ss sntecedent, and sn

sccompsnylng graph ss the consequent> The set of productions oolleotively

will sometimes be eslled a grsph gra— ar.

Modes lsbelled with terminal snd auxiliary symbols will be called termlnsl

nodes snd suxillsry nodes respectively. We sssume a one-to-one correspondence

between the sros of sny node lsbelled with sn suxillsry symbol snd unconnected

srcs in the consequent of the production. The mesnlng sscribed to •

production is thst whenever there Is an auxiliary node in the graph, it may be

replaced with the oonaequent of its corresponding production to determine its

mesnlng. .

For enhanced readability, im ahall adopt tha practice or Baking nodes

oontalnlng teralnal ayabola circular or alllptlcal, and nodas oontalnlng

auxiliary ayabola raotaniular.

Furthermore, we shall uaa hexagonal nodea to ayabollze an arbitrary aubgraph,

auob aa tha eonaaquant of a production.

23

Figure 2-9: I production for tha add_atreaas function

2 .5 .1 . Exaapla:

Consldar tha add_atreams function used earlier. We can represent this

funotlon In terse of a a ora prlaltlve function add which adds only a atngle

pair of lntegera, using the production In Figure 2-9.

la further eiaaplea of recursion, we show below two different exaaples, both

of which generate all odd prlae nuabera. The aodus operand 1 of these two

eiaaplea la auggeated In Figures 2-11 snd 2-13. The detailed definitions of

soae of the operatora contained therein are presented In the Evaluation

section which appears later.

1
sin

ooo rmt

£

2«

1
sin

niTOt

T T

Flfur* 2-10: First Odd-Prlaes Eiaapl*

Figure 2-11: Eipanslon of the First Odd-prlaes Eiaapl* (odd_froa Is defined In

Section 2 .1 .2) .

rum

pr laclfroi

25

Fl|tar« 2-12: Sacond Odd- FrUn Eiaapl*

26

Figure 2*13: Expansion of tha Second Odd-prlacs Exaaple

27

2.4. Splitting frNifomtlM

M r1
• £ > ^

nk
Figure 2-14: Splitting transformation

The discussion of recursion In tha previous section described ways of

transforming s graph by applying productions. Another type of trsnsformatlon

of Interest Involves local modlflcatlona to the graph based on the fact that

the nodes represent functions. Such trsnsformstlons are useful In

understanding the functions represented by graphs. However, these

trsnsformatIona are not necessary to provide meaning for the grapha. That can

be done on a purely functional basis, as described In the aectlon on

Theoretical Basis.

Because nodes of s graph represent functions, it Is essy to see the validity

of the apltttlng trsnsformatlon. ss demonstrsted In the dlsgrsm of Figure

2-11. Bacsuse the values on the top area each repreaent f (i | «n) . where

each i| 9 g|(. . . .) , we csn split f Into seversl copies of Itself In pi see of

the spilt output are of f . One reason for wanting to do this might be that we

wish to make further trsnsformstlons Involving Just one of the copies of f .

The splitting tranaformation exempliflea the notion of referential

transparency (c f . tOulne 60], [Landln 6 4]) , in that a functional expression

has the same meaning Independent of lta context.

Botice that to say that the splitting rule is spplled does not remove the

28

aablgulty of where In the graph It la applied. He shall adopt the practice of

placing an asterisk near the noda being apllt to ao indicate.

Applying the splitting transforaation to the eiaaple In Figure 2-1. we get the

sequence ahown in Figure 2-15. The Infinite graph la again aeen to be

embedded In the H a lt of an Infinite aucoeaslon of auoh tranaforaationa.

It can be noted In Figure 2-15 how function grapha sub suae the uaual "boi

diagrams" (c f . [Allen 78]) used to represent data structures in Lisp-like

languages. The cona nodes replace the role of boiea containing "dotted

paira". The arrows are reveraed in going froa one repreaentatlon to the

other. In the aense that they represent references in boi dlagraaa, but data

flow In Function graphs. Furtheraore, in function graphs, such data atructure

nodes blend well with functions other than cona, whereas no blending auggesta

itself with boi diagraas. .

The Inverse of splitting, which will be called folding, will alao have lta

uses In discovering certain equivalences later on.

♦

Figure 2-16: The aeanlng of spply

29

Flgur* 2-15: h p iit id application of tlx •p uttin g tranaforaatlon

30

2 .7 . Funotlon* ■* Valu*a

In ordar to present a semantics of productlona, and al so to repreaent a

powerful definitional aechsnlsa In graphical teraa, wa introduce a special

function called apply. In lta slapleat fora, apply la a function of two

arguaents, one of whl ch is a function and the other of which la an argisaent to

that funotlon. Functions iriilch take one or aore functions as srguaents ara

aoaetlaea called 'functionals*. (Analogously, the oorreapondlng grapha alght

ba called "graphicala*.)

2 .7 .1 . Enveloping ahows the creation of function values.

He alght assuie that there are soae prlaltlva funotlon objects whloh ean be

used as the first srguaent to spply. However, It Is also dealrsble to ba able

to create function objects ourselves.

In FGL, s function which csn be used as sn srguaent to snother will be shown

by enveloping the foraer Inside s node of s graph. Ihat la , the envelope la a

constsnt function irttlch produces the enveloped function of lta value. The

■eanlng of apply can then be eipressed by the rule shown In Figure 2-16. It

Is not d ifficult to see that If the doaaln of the flrat argisaent to apply la

D1 — > Dj, the aet or functions froa D| into 02, and the doaaln of the aeoond

argiaent Is D](then apply Is s function froa (Di — > 02) I Di Into 02.

2 .7 .2 . laport aroa provide *itra fleslblllty.

It la laportant that we allow laport area to paaa froa tha outside to tha

Inside of sn envelope. Ihla allows the graph lnalde of the envelope to get

values froa tha outside In ons of two ways:

1. By aeans of srguaents which are bound to the fra# Input area lnalde
the anvelopa when the latter la applied.

2 . By aeans of laport sres whloh pass Into the envelope. These arcs
are present either In the Initial graph, or residual froa prior
applloatlons.

Funotlon values which have their laport arcs connected to tha outside world

are often called closures (Lsndln i l] . As an eiaaple, auppoaa that we wish to

define s function serlsl_ccap of two arguments, each of which Is s function

FI fur* 2-1T: Illustration of function envelopes

Itself , *uch that the result of »«rl»l_co»p(f, () la • function, say h , such

that h («) » f (f («)) . In other words, h Is the serial composition of functions

f and (. A graphloal presentation of serlal_conp Is shown In Flgur* 2-17. Hie

envelope shown aa th* consequent of the production for serlal_ooap has the

functions f and g as In porta. When this envelope Is presented to the apply

operator, tha envelope Is stripped off and the free Input aro Inside Is bowd

to the seoond arguaent of the apply. Funotlons suoh as serlal_coap whloh are

designed to take functions as argwents are sonetlaes oalled "ooablnators".

For sake of further Illustration, w* direct th* reader to Figure 2-18, which

illustrates th* concept cooaonly oalled "Currying". Here a binary function Is

represented as unary function, the value of which la another unary function.

Applying the binary function to (» , j) is the sane as spplylng the unsry

32

Figure 2 .1 $: Illustration of Currying

function to y, then applying its value to i .

We contend that the enveloped representation of functions as described in this

section Is useful for understanding lexical binding in programing languages,

and the accosipanying issues, e .g . the "funsrg" problem [Hoses 70).

2.7*3- Productiona can ba eliminated.

We now wish to show how the enveloping device can be uaed to eliminate the

need for productions. Although productions are a useful representation for

gaining intuitive understanding, they are awkward for representing the Idea of

imported values, since all such values would presumably have to come froa s

single contest. In our "block-structured" implementation of FGL (Keller, et

s i . 60] we have found it convenient to sbsndon the inplementetlon which

corresponds most closely to productions, in favor of one which treats sll

progrsmmer-defined functions uniformly, whether or not they are returned as

vslues.

Consider s graph grsmmsr production of the form shown in Figure 2-19. We csn

view the consequent of the sbove production ss sn sbbrevlstlon for the

33

C=c>

Figure 2-19: Typical recursive production

Figure 2-20: Equivalent of the consequent of the production of Figure 2*19
using apply

34

subgraph shown in Figure 2-20, when H 1 Is like It, except that G haa been •

replaced with tha apply as shown.

In other words, H ' la a " functional'* which takas an argtaient which oan be

aupplled aa G, whereas H has G built In. Thus, we could write

H - H *(G).

Since the graph of Figure 2-20 la equivalent to the function Qt we aay

substitute the entire graph for G, aa ahown In Figure 2-21. By folding the

graph in thla figure, effectively using the equation

G « H '(G> . ‘

we get an equivalent but aore con pact veralon, aa ahown in Figure 2 -22, aa

well as a further alapltfled veralon In Figure 2-23> The latter can alwaye be

used Jhi place of G Itself.

35

Figure 2-22: Folded version of G

36

Figure 2-23: Simplified folded version of G

37

3 .1 . Function Graphs and Equstlona

We now deal with the problem of determining th* long-range behavior of a

general network. We have not yet provided any reason to believe that thia

behavior la unique in any aenae, particularly In th* oonteit of aaynchronous

cornurrent computation. Sufficient condition* for thla unlqueneaa will be

provided In th* oourse of the presentation, uhloh la at the general funotion

graph level.

As Mentioned earlier, a graph oonslsts of a a*t of nod* funotlona uhloh act on

aro data atructur*s. It haa alr*ady been ae*n how suoh a graph oould b*

characterized by a aystea of equatlona Involving th* aroa aa varl*bl*a. W*

now wish to represent all nod* funotlona eolleotlvely *s on* function F acting

on a tuple of data structures. Correspondingly, th* syst*a of aquations will

be r*duc*d to a alngle aquation.

3 .1 .1 . On* funotion and one aquation aufflo*.

He call F tha system function of the graph. It Intuitively gives that segment

of the overall behavior corresponding to one step of all node functiona acting

In concert without feedback. Tha components of the tuple on whloh F acts

correspond to the "Internsi" and "output" aroa of the graph, with the "Input

aros" of tha graph as "parameters" of F. By Input aro, wa K i n one which Is

not directed out of any node In the graph, and by output aro, we mesn one

trtiloh la not dlreotad Into any nod*. An Intern*! *ro la one uhloh la neither

an Input nor an output aro.

3 .1 .2 . Iiaaple:

Conalder the graph of Flgura 3-1. Here the output aro y la alraady Identified

with an internal aro n . and *2 are the two Input eros. He eipress the

•yatea funotion F In t a r n of f , g , and h by

F (, z2 , i j) ■ (f d , . z2) , g («2 . Z j) . h (x , , z2))

Aa mentioned, F lmplloltly dependa on the lnputa i , , nd j ,,, M iutlon of

3. Ihtofitloil Baala

38

Figure 3-1: Function graph exaaple

3 .? . Data Type a

Ve now preaent conditions under which the ayatea function determines Boat of

the relevant aspecta of the graph1a long-tera behavior. We flrat require a

aeans of characterizing how data atructurea are built up over an Interval of

observation. Formally, this amounts to requiring that our data atructurea be

aenbere of the "domain" of a "data type". (Although the phraae "data type"

■ay appear contradictory to the popular tera "abstract data type", we shall

uae it to have a meaning In the aenae of [Scott 70], which la atill the

prevalent uae of the tera in the ares of seaantiot of coaputatlon.) Although

the generality in this aectlon aay sppear to be overkill, it haa genuine value

in underatanding the scope of the theory behind concurrent execution of

function grapha and what can be proved with thea.

Definition A data type conalats o f:

(1) a set D, celled the doaaln of the data type. -

(i i) an information ordering (on D,

(il l) id undtflned >l»— nl ? In D, and

(I f) a limit operation 11m.

Nora apeolfloally, tha Information ordarlnt ia a partial order on tha domain

D. I .a . i binary relation tAiich ha a tha foil owing propertlea:

(1) anti-aymmetrio: For all x, y In D,

x < y Impllea not y < x

(11) tranaitlve: For all x, y , x in D,

(x < y and y < s) Impllea x < x

When wa aay that 7 la an undefined element, we mean that it la the unique

element auoh that

For all x in D—IT).

7 < x

3 .2 .1 * Data typea oharaotarlxe information oontent.

The Information ordering provides a way of comparing the Information In two

data structures. Thus, if x and y are two possible structures, i < y mesns

that y contalna more information than x. 7 la aometimea oalled bottom. It

represents s structure about which there la no information.

For notational convenience, we extend our notation for the ordering < to <t in

the sense that

39

Converaely, given auoh an ordering <, we osn reoover < by defining x < y to

mean x < y and x 4 y.

Finally, we define the notion of a limit operation. If C ia a aubaet of D and

d an element of D, we write

C < d

If for all x In C, x < d. In thla ease, we aay that d la an upper bound on C.

If 4 Is such thst C < d snd for every d*

C < d' lmpllea d < d«

then we aay thst d Is the least upper bound of C, or H a lt of C. That la. d is

an upper bound on C which la < every upper boiaid of C.

When auch a H a l t exists, we shall denote It ss s funotlon of C by

11a C

In s data type, we require that 11a C exist whenever C Is i "chain", whloh

aesns

For all x, y in C9

1 < y or y < i

In other words, a chain Is a set wherein sny two distinct aeabers osn be

ordered with respeot to the aaount lnforaatlon in them. The H a lt of the

chain corresponds to the lnforaatlon oontalned In all of the aeabers of the

chain, and no aore.

3 .2 .2 . Limits epltoaize successive approxlastions.

It aakea sense to require that the data atruotures appearing on arcs be

aeabers of the domain of data types associated with those srcs. The

lnforaatlon ordering determines which dsts vslues csn sppear conseoutlvely on

sn sro; I .e . we require x < y whenever y sppesrs sfter x. In a sense, this

says thst x is sn spproxlastion to y.

Furtheraore, we csn identify the ultlaste structure sppearlng on an sro ss the

H a lt of the set of suooesslve spproxlastions sppesring there. This provides

s convenient way of characterizing behavior even in the case where such

behavior la non-teralnating.

3 .2 .3 . Exsaple of a data type:

The handshaking example In Section 2 .4 .2 deals with dsts types hsvlng domains

of sets of strings over some alphabet, inoludlng infinite strings. We cell

these strings one-level streams, to contrast with s aore comprehensive type of

atreaa to be discussed subsequently. The undefined element in the domain

10

oorrtipondi to the null string. The lnforaation ordering eoinoidea with the

prefli ordering. The llalt of e oheln of strings Is Juat the shortest string

having ell strings in the ehsln as preflies. For exaaple,

11a IT, b , bb, bbb, . . .) * b b b ...

41

\ / \ / \ . / \ /

Figure 3-2: Ordering dlagraa for a one-level streaa data type

The lnforaation ordering In a data type can be depicted by an ordering dlagraa

which ahows how typical aeabers relate to one another. In auch a dlagraa. If

there la an arrow froa x to y, then x < y In tha lnforaation ordering.

Tranaltlve arrows are not shown explicitly. In other words, z < y also If

there la a aequenoe of arrows directed froa x to y. The ordering for one-level

streams over the alphabet (b , o) Is shown In Flgura 3-2.

3 .2 .4 . tiaaplea of data typea:

1. Let S be any aet. Then F (S), the aet of all subsets of S, Is the
domain of a data type having least element 0 (tha eapty aet),

lnforaation ordering c (aet lnolusion), and llalt operation U

(union). 9iown in Figure 3-3 1* the ordering dlagraa for F(S)

where S la the aet of all natural nuabera, 10, 1, 2. 3.

2 . Let S be any aet. Then B (S), the aet of all baga. I .e . "seta with

poaslbly repeated eleaenta", of aeabera of S, with Inclusion and

union aa in (1) , foras a data type. Shown in Figure 3-4 la the
ordering dlagraa for B(S) where S la the aet of two atoaa (a . b) .

3. Let S be any aet. Let ? be an eleaent not In S. Let the doaain of
the data type be S U IT) with ordering < defined by

(0 . 1 . 2 , 3 }

Figure 3-3* P(S) ordering

\ / \ / \ /
(a. •} («• b) (b, b)

\ / \ /
U)

\ /

Figure 3-4: B(S) ordering

Fl(tira 3-5: Flat ordering of tha natural ntabara

* < y Iff (i « 1 and y t ?)

Ihla la called tha flat data type over S. Notice that each chain In

auch a data type has at aost two aaebera and the llalt Is Juat the

greater of the two. Shown In Figure 3-5 la the flat data type on

tha natural niabere.

Figure 3-6: niacrlc ordering

Let I be the set of all lntegera. Then 1 II | » , - «) la the doaeln

of a data type with the Information ordering of nunerlo Inequality
(<) and aailaua as the llalt operation. This ordering Is

demonstrated In Figure 3-6

5. Let S be a act, called the set of atoas. Ue define a data type

whose doaaln is the set of binary trees over S. Begin by defining

the finite binary trees:

(1) The null tree, t , la a finite binary tree.

(11) Any aeaber of S Is a finite binary tree.

(I l l) If t) and t2 are finite binary trees, then so is the tree

(t f . t j) having t] aa its left subtree and t2 as its right
aubtree.

The ordering < on finite binary trees la defined by: .

(1) 7 < t , for each t i 7

(11) (t K *2) < (t3# t^) iff t t < t3 and t2 < tn.

Me then define the Infinite binary trees to be H a lts of Infinite
chains of finite binary trees. Thus a binary tree la either a

finite binary tree or an infinite binary tree.

For example, the rules above tell us that

7 < (7 . 7) < ((7 , 7) , 7)

Extending thla construction, ue have

t0 < t, < t2 <

where t0 < j and for each 1. tj«.j > ((? , t j) . t) .

r
?

r
7

r
?

Figure 3-7: Limit of the tree aequenoe tQ < t f < t2 < . . .

The limit of this infinite sequence la the infinite tree depioted

in Figure 3-7.

1

7

V* shall observe an Important applloatlon of the binary tree data type In a

forthcoming aeotlon. It oan be noted at thla point that the binary tree data

type oan aiao be viewed as a multi-level atreaa data type over a aet of atoms,

wherein we define

(1) The null atreaa T Is a atream.

(11) Caoh atom la a atreaa.

(I l l) Any finite or Infinite aequenoe of atreams la a atreaa.

The correapondlng ordering la

(I) T < i for all i 4 T

(11) k < y Iff x Is not longer than y and eaoh ooaponent of x la < the

corresponding ooaponent of y.

I---- -̂--- 1
*0

1---- -̂--- 1
* 1 _________

I
"J

r

Figure 3-6: The tree equivalent to the atream Xq . i j . i 2 * • ••

The oonneotlon with binary treea is that the atreaa

*0« *2# '**

la equivalent to the tree shown In Figure 3-6. Thla oonneotlon Is used In

languages auoh aa Llep, whloh aometlmea use a apaolal etoa 'nil* aa the leaf

of a tree to lndloate the end of a finite atreaa trtiloh oan not be further

extended. It la laportant not to eonfuse ’ nil* with the null streaa T%

45

46

3 .2 .5 . Data types ooablne to get new date types.

• D

I " t

b (. . »

if . b)^ »)

o. n '

Figure 3-9: Product date types

It is iaportant to notioe that if we have a collection of dsts types, Dj, ? | ,

<1 , !!■ !• then we aay fora their product dsts type

1. 0 « I Dlt

2. T ■ (?i, t2.......),

3. < is defined by

<d1# d2) < (d | * ,)

iff

Tor esch 1 , d| <4 d j ’

and extending the liait operation so that

lia ((d | , (<lJ t (dj • * • • • •) » ^ 2 * “ • • • •) • • • • !

■ (liB |(d i. dy • • • • •) • l^*2(d2. dj • ^2 • • • •) « • • • •)

Ve Illustrate product data types in Figure 3-9.

To suaaarize our Interest in the notion of dsts types, we require thst the

data structures representing the history of sn sro In s graph be aeabers of s

dsts type. The lnforaatlon ordering of a data type oonstrains the trsnsitlons

between histories of any arc. That is , s dsts structure x oan be later

followed by a structure y only if i < y. The H a l t requireaent of a data type

provides for the existence of a unique (possibly lnflnlts) "ultlaste"

structure on sny aro of s function grsph.

*7

3 .} . Behavioral Descriptions

leturnlni to the handshaking eisaple or Figure 2-A, we further olarlfy the

dlsousslon by pointing out thst there sre two viewpoints for the behavioral

desorlptlon given. First, we reduce the dlsousslon to one eqMstlon. Ve hsd

i ■ lert(y)

■ b Invert(y)
■ b lnvert(rlght(i))

■ b lnvert(lnvert(x))

■ b x, sinoe lnvert(lnvert(x)) ■ i . .

There are two essentlsl ways of viewing en equation suoh ss

i ■ bi

The first Is the view thst the behsvlor st sny step Is given by following the

behsvlor so far by b snd continuing. This is suggested by the repested

substitution for i , viz .

s ■ bx

■ bbx

■ bbbx

■ .

The second Is the view thst the ultlaste behevlor x Is obtained by successive

»ppro»laetlons. starting with the undefined behavior, aa in

I • I
I ■ bT
x ■ bb»

To aore acourately describe the aethod of succeaslve epproxlaetlone for

deteralnlng aystea behavior, we represent the node funotions of the grsph by

the systea funotlon f on the product of the dete types st esch lnternsl sro.

Recsll that the Input aro data values are lapllclt paraaetera of f .

Aasuae for now thst the sros of s given grsph sre lnltlellied so thst the

Input sros contain the ultlaste vslues to be placed on those arcs by the

envlronaent snd the internal arcs sre lnltlellzed to contsln the 'undefined'

*8

structure, ? . It turns out that no generality is lost In theae easuaptions.

3 .3 .1 . Restriottons ere necessary for successive spprosiaations to work.

In order to insure the effioaoy of the successive approiiaatlon approach, we

ahali plaoe aoae requlreaenta on P. The firat requireaent is that of

aonotoniclty. To aay that f ia aonotone aeana

For all d , d *.

if d < d* then F(d) < F (d ') .

In particular, froa the ” aeed” relationship *

t < F(7>

%#e aay apply aonotonlcity repeatedly to get

F(?) < F (F (T))

F (F (7)) < F (F (F (T)))

In ahort, we have a chain

(? , F (7) , F (F (7)) , . . .1

By our assuaptiona about data typea, this ohsln hss a lla lt , which we

henceforth denote by

r'm

Hot Ice that the chain above corresponds to the "slaulation" of only one of

what alght be aany possibly coaputatlons. No assiaaptions have been atated

about relative eoaputation tiaea of the node functiona, but thla one

alaulation assumes that they coaplete each atep synchronously.

49

3 .3 .2 . Nonotonlolty Insures ipttd-indiptDdtooi In sn asynchronous environaent..

Fortunately, tbs aonotonioity property insures thst F-(T) is always the

result, independent of the Banner of siaulation. It is only required thst

esoh node eventually reslizes the value speoified by its function spplied to

its ultiaate input dsts structure. In this ease, eaoh step of sn

arbitrarily-tiaed eoaputation will eventually be aUbsuaed in the liait value.

In other words, the result of the ooaputation is deterainste or

speed-Independent. (This is si so relsted to the "Church-Rosser" property, o f.

(Rosen 7 3] .)

An additional restriction aust be laposed to insure thst F*(7) "aakes sense"

ss sn ultiaate behavior. The following section elsborates on this point.

3*4. Continuity

Although F*(7) Is lnterpretsble ss the unique behsvior of the funotlon grsph,

it does not neoessarlly follow froa the propertiea desorlbed so far thst F#<7)

is a fixed point, i .e . it sstisfies the systea equstlon, •

r(r'(t)> ■ r'(?)

The Inequality

r'(t) < r(F*(T))

follows froa aonotonlolty, but the converse inequsllty *

r(F*(t)) < rtf>

does not.

In other words, there is no gusrsntee that Fa(7) is "stable", in the sense

thst it indeed represents the ultiaste velus whloh the funotlon F is "trying

to produce". One osn esslly oonstruct eisaples consistent with sll properties

introduced so fsr which show thst the above fiied point property doea not

hold. For instsnoa, let

{
oona(a, x) if x Is s finite stresa

oons(b, i) if i Is an infinite streaa

50

Then h is monotone, sinoe If i Is e prefix of y then 0001(1 , 1) Is 1 prefix of

oons(a, y), and similarly with a replaced by b . However, h does not satisfy

the system equation, since

ha(?) a oona(a, oons(a, oons(s, . . .)))

but

h (h "(?)) ■ oons(b, oona(a, oona(a, . , .))) '

Although there Is no great mathematical harm In not having the above system

equation hold, without It we would have that the anomaly that our system

funotlon F could be applied to the limit of the ohaln (I .e . the ultimata

behavior) to get new Information not present In the chain itaelf, whloh aeema

counter-intuitive to physical reality. A auffiolant condition on t which

resulta in the stability of F#(?) la that of continuity.

The funotlon F :D — > D la called continuous provided that it la monotone and

for any ohaln C o D,

F(lim C) < lim (F(d) | d in C|

(Notice that monotonlclty Insures that the set on the right la a ohaln, ao

that It makea aense to consider its lim it.) By Identifying

IT, F (?) , F (F (t>), . . . 1

with C and noting that

lim It , F (T), F (F(T>), . . . I a lim | f (l) # F(F(?>>, . . . 1 ,

we get F*(t) aa a fixed point.

For example, it la easy to see that the funotions left and right from the

handshaking example are both continuous, ao that the derived limit is the

least fixed point. -

3 .4 .1 . txaaplet

Consider the binary tree dsts type introduoed esrller. It is essy to see that

the funotlona head, tall, and oona, defined aa follows, are all continuous:

oona(x,y) • (t , y)

head ((i ,y)) • a

head(t) • t
head(a) ■ error. If a la an atoa

t a l K (i .y)) • y
t e i i m • t

tall(a) t error, if a la an atoa

Hera error la a apeolal value which la dlatinfuiahed froa all other valuea and

lndioatea that a. "non-aenalcal" application of a funotion haa been atteapted.

Notice that error la quite distinct froa ? , the latter being the aatheaatlcal

value Indicating the reault of a divergent or incoaplete computation. Notice

that under the atreaa interpretation of trees, head corresponds to the first

aeaber of the atreaa, trfiile tall corresponds to the rest of the atreaa after

deleting the first aeaber.

3 .4 .2 * fteterainaoy Theorea

We now encapsulate the essenoe of the above discussion in a theorea.

Detcralnacy Theorea If G Is sny function graph composed of nodes tAiloh

represent continuous functions on their conneotlng arc data types,

then G determines a unique function froa the data typea of ita input
area to those of ita output area. Moreover, If each node function
ultimately realizes its output vslue on its ultlaste input valuea,

then G alao will realize ita output value.

The aubtlety of thla theorea is that the input to a given node aay well by a

"aovlng target", i .e . Ita input aay be ohanglng, alnoe that Input value alght

be in the prooeas of being produced by aoae other node, whoae input aay be

changing, etc. Continuity inaures that deapite such aoblllty of values, a

least (with respeot to the lnforaation ordering) tuple of aro values

consistent with the speolfled funotlona exists. This tuple la the least fixed

point of the aystea of equatione. It corresponds to the solution of the

aystea which requires introduction of no additional lnforaation exoept that

51

52

exhibited In the functions and equations themaelves (e .g . no. Information

concerning tha method of evaluation). Successive approximation! give ua one

May of ascertaining that tuple.

3 .4 .3 . Example:

Using the binary tree data type, consider the equation

z a oona(x, t)

Ha have already mentioned that oona it continuous on this data type. For

successive approximations to i we get

oons(x, 1) * *

oons(x, oons(x, ?))

cons(xv cons(x, cons(x, ?)))

The least fixed point is apparently the infinite structure

z * oons(x. cons(x. o o n t (x , . . .)))

Clearly, the equation is satisfied when this structure is substituted for x in

x ■ constx, z) .

Figure 3-10: Graph resulting in the Fibonacci stream

53

3 .4 .4 . Exaaple: .

The in Figure 3-10 produoes the a tr e n or Flbonscol ntmbers. To see

this, we M y use the successive approilaatlon technique.

The systea function is given by

F(x, y, t) ■ (add_atresas(y, x) , e o n s d , x) , o o nsd , y))

so thst we hsve the following successive spproilastions to (i , y, x):

(7 , 1 T , 1 ?)

(2 T, 1 T. 1 1 ?)

(2 ? , 1 2 7 , 1 1 7)

(2 3 t , 1 2 7 , 1 1 2 7)

(2 3 T. 1 2 3 t , 1 1 2 t)

<2 3 5 7 , 1 2 3 7 , 1 t 2 3 7)

(2 3 5 7 , 1 2 3 5 7 , 1 1 2 3 7)

(2 3 5 8 7 , 1 2 3 5 7 . 1 1 2 3 7)

1ti« llalt la F*(t) .

(2 3 5 I 11 21 1 2 3 5 6 13 2 1 1 1 2 3 5 8 1 3 . . .)

Another wey to aotivate the oholoe of F*(7) ss the behsvior Is to use the

sforenentloned notion of repested substitution In the equetlon x ■ F (i) . Thst

Is , by repeatedly substituting the right-hand aide for the left , we get

x ■ F (F (F (. . .)))

This solution sgrees with the suooessive spproxlastion solution. -

3-H.5. Continuity Insures oomposablllty. _

An additional advantage which acoruea from assunlng thst tho node funotions of

a network sre continuous is thst a closure property is essy to demonstrate. A

useful technique in system structuring is to trest s ayatem ss if it were

composed of sub-systems, rather thin of stomio node funotions. It would then

be useful to know thst such sub-systems behaved essentially as if they were

stomio nodes. Me can show that continuous functions are closed under

functionsi composition, so that continuity of individual node funotions

Insures continuity of the system function. Such a property la important in

hierarchical and modular development of software and hardware aystems*.

Note that arbitrarily many identity functions msy be Inserted on any ore of a

function graph composed of continuous functions, without affecting tho

ultimate function computed. Therefore, these graphs exhibit what ia called

delsy-lnsensltlvlty (Keller 7*1], in that the identity functions set os

arbitrary Inserted delsys. When delsy-lnsensltivity holds for a distributed

system, it tends to be much essler to snalyze than in the more general oaae.

A further ramification of continuity is discussed in Section 3 .6 .

3 .5 . Determinaoy of Systems involving Productions

We now wish to extend the closure property dlaouased above to oliow auxiliary

nodes as well. Thst is , given a graph grammar. I f each terminal node

represents a continuous function, then ao does an arbitrary graph.

3 .5 .1 . A aet of fuootiona may bo a dota type.

Some preliminary observations will aid ufl. First, let denote the

set of continuous functions from Dj into D2 , where Dj and t>2 are tho domalna

of two data typea. Then Dj — > itself la tho domain of a data type, tho

ordering of which ia defined by *

F < G i f , and only i f ,

for eaoh x in D|, F(x) < 0 (i) .

5*

55

The least element T of this type 1 1 the function whose value la always the

least element of D^. the limit operation is defined so that for any ohaln Ft,

r2 . F3 , . . . in Di — > D *#

for . .o h , in D „

(11a IF ,. r2 . Fj. . . . I) (i) < 11a (F i d) , F2 (i) . F j d))

Referring to the graph of Figure 2-23. which represents the definition of a

funotion C according to G(s) > H *(G)(x) , as discussed in Seotion 2 .7 .3 , we may

use splitting to unfold the graph into numerous infinite forms, three of which

sre shown In Figure 3-11. The point of these foldings snd unfoldings, besides

being an eierolse in graph manipulations, is thst the infinite form Figure

3-11b shows that the recursively-defined funotion G represents the function

. 11a I t . H * (t) . H'(H’ O)) . H ' (H ' (R ' (t))) , . . . I

where H* is the funotion represented by the consequent in Figure 2-20 snd 7

represents the funotion tftiose value is totally undefined. The Infinite form

of Figure 3-11c Is the equivalent of repeated substitution and gives another

representation, namely

H * ' (t) ■ M'(H, (H, (. . .)))

It is not difficult to show that the limit funotion above Is continuous,

thereby allowing us to conclude the following extension of the determlnaoy

theorem:

Recursion Theorem Any function graph with continuous atomlo funotlona.

Including one with auxiliary nodes defined by productions, itself

represents a continuous function. This funotion is determined by the

graph formed by repeated substitutions of antecedent nodes by their
corresponding consequents.

It Is noted that the limit concept In our notion of data type is essential in

making the above atatement meaningful, since this concept gives meaning to the

funotion represented by an infinite graph.

56

Figure 3-11: Infinite unfolded versions of G

J .f . Finite Support ■

Continuity has another interesting iapllostion. Consider tha output data

atruotura generated by a nod* funotlon. Ihla atruotura aay, in tha lislt , ba

Infinite. However, we aipeot that It will always be generated incrementally.

by a aucoaaslon of finite approilaatlona. Correspondingly, we would eipeot

that each finite approilaatlon ba the reault of tha node function's aotlon on

a finite approilaatlon to Its input, rsthar than an infinite aaount of input.

I M s suggests thst the set of dsts structures D whloh ooaprlse s dsts type be

dichotomized into the set of "fin ite " structures and the "infinite"

structures D |„f . snd thst we hsve the following finite support condition:

For esoh d in D, If F(d) is In D f|„ ,

then for soae d ' in D fi„ ,

d ' < d and F (d ') • F (d) .

Ihe distinction of Df|a vs. Dfnf depends on the dsts type under oonslderstlon.

It is clesr for strings snd trees, but perhsps not so clesr In genersl. One

proposed definition for genersl dsts types (which places sn sdditlonsl

constrslnt on the ordering <) is suggested In [Stoy 7 7) , pages 106-111, but to

eiplore this suggestion would eiceed the scope of this paper.

Here we shsll be oontent with sn s im p le , showing thst the flnlte-support

property holds for continuous funotlons on strings. Suppose thst d is s

(posslbly-lnflnlte) string such thst F(d) Is finite. Let us write d ss the

H a lt of the finite strings

di* d2 , . . .

By continuity, F(d) Is the H a l t of

r < d ,), F(d2)

But since F(d) Is s finite string, there aust be an 1 suoh thst

F(d) ■ F(dj)

so choose d ' * d j . TTta finite support property therefore holds.

57

* . Kaohlne ev luitlo n of Coaputetlona Represented by Grapha .

Having praaented eiaaplea of tha usa of grapha for apeelfloatlon, It la now

tlaa to dlacuaa tha evaluation of functlona speolfled by thea. That la , given

a funotlon greph with deta objeota apeolfled on each of lta Input aroa, by

evaluation wa aean tha procedure to be uaed to oause ultimate production of

the data objeota on the output aroa of the graph.

la we have preaented a rather abstraot foraulatlon of tha aeaantlca of

funotlon grapha, tha notion of evaluation will olearly ba dependent on tha

choice of underlying data typea and atoalo operatora. Henoe, we can at beat

hope to present an evaluation Betted for an eieaplery oholoe of the latter,

ftila oholce will be a alaple language whloh wa oall FGL.

In thla presentation, the aat of data objects of FGL will ba

Objecta • Itoas U Tuples U Graphs U IT)

1. Iton* • Intagcra U String* U terror), where Integera la tha aet of

lntegera and Strings la the set of character atrlnga over soae
alphabet. He assuae that Strings Includes the string 'n il* which

will play the role of the Booleen value falae. Any atoa other than

'n i l ' and (error) n y play the role of the Boolean value true.

2 . Tuples: A tuple la a sequence of N Objecta. (In Lisp, N ■ 2 la

} . Grapha: He allow the enveloping of e greph, es described In

Section 2 .5 , and lta use as a function elosure data objeot.

As we wlah these objects to ooaprlae the dcaeln of a data type, we Bust supply

ordering and H a lt lnforaatlon aooordlngly. Flrat, there la a least eleaent

T, representing a value which has not yet been deteralned. For each data

Second, each atoa la unordered with reapect to every other. Third, the

ordering between two tuples la given by

60

‘ *1........ «n> < <»1.......... »n> .

iff for each I . i§ < yj.

Finally, If G and H ara graphs, then 0 < H I f f H Is like 0 , eioept that soae

substitutions have been aide for auxiliaries in Q to obtain H.

4 .1 .2 . Baslo Operators of FGL

tfe now describe s bsslo set of FGL operators. The expeoted types of srgwents

are lndloated by the following naaes.

obj an object of any typs

tup s tuple .

lnt an integer

bool a string trtilch Is either *t* or *nll9

fun an enveloped graph, representing a funotlon olosurs

The logical functions snd snd or consider 'n i l 1 to be false and everything

else to be true. The following descriptions use the words true snd false in

place of the strings ’ t ' snd 'n i l ' .

The foras In the following descriptions Indicate the expeoted srguaent types,

followed by s colon, followed by the result type. For single argtsient

functions, parentheses aay be oaltted. Violations of the expeoted type of an

argument will result in the speclsl value error. It ia assuaed that If a

function has error as the value of one of ita required srguaents, then the

result of thst function will be error.

naae fora and aeanlng

add lnt1 ♦ int2: lnt

Adda two nuaerlo arguaents;

and obJ| and objg: bool
The logical conjunction of its ergunents. and Is sequential,
evaluating the second srgiaient only If the first is falae.

apply Tunwobj^, obJ3©bjn) : obj.

If fun| |S a variable (not a general expression),

or epply(run1c 0bj2, o bli............. obJn) : obj generslly.
Applies first srgiaient to reaslnlng arguients.

•to * atoa (obJ1): obj

true unless arguaent Is s tuple. •

61

bead

tall

oons

lassp

aod

milt

null

nuabirp

or

salaot

hoad(tup|): obj

Flrat ooaponent Bisisnt.

t a ll (t u p o : obj
Last ooaponent of a tuple argument,

if obJ| then obj2 also objj: obj
Evaluates objj. If the result Is not false, then the second
srgument is returned, otherwise the third arguaent is

returned.

oons(obj), obj2obJn) : tup
Foras a tuple of ita argiaienta, of uhlcti
nuaber.

obJl • obj2: bool
true If arguments are atoas and have the saae value.

lntj < int2tbool
Returns true If the nuaerlo first srguient is less than

second, and falae otherwise.

int In t ,: Int

First Integer arguaent aodulo seoond.

Int« s int2 : int
Froduot of two niaerlo argiaienta.

null(objj): bool
Returns true If argiaent is fslse,
(Use this for logical negation.)

ntaberp(obJ1>: bool

Returns true If arguaent is ntnerlc, falsa otherwise.

°bJl or obJjt bool
Loglcsl dlsjwctlon of Its arginents,

arguaent only If first Is falsa.

returns fslse otherwise.

evsluatlng second

seleot(lnt1a tup2): obi
Gives the ooaponent Indexed left to right by int] Qf the tuple

object tup2 . The coaponents are Indexed 1, 2, n . If
lnt1 la negative, then Indeilng la right to left by -1, -2,
......... -(n-1), -n. An error resulta if lnt| |a 0 or out of

boiatds. (head and tall correspond to seleo td , . . .) and

seleot(-1, . . .) , respectively.)

4 .1 .3 . Internal rapreaeatation of FGL

We present a fora of soeeptable for storsge in ooaputer aeaory. For sske of

oonoreteness, sssuae a conventional llnearly-addreaaable aeaory. We

oonoentrate on the representation of s single graph within thla aeaory.

Assuae for slaplloity thst the aeaory haa a word-alxe large enough to store

j

• I I the lnforaatlon required about a single FGL node. If this ia not the

ease. Multiple w>rd encodings aay be uaed. The lnforaatlon stored Includes an

enoodlng of the name of the function, snd the referenoes to srgtaents to the

funotlon. Since nodes ere stored one per word, we identify the sddress of the

word oontalnlng the node with the sro leaving thst node. Therefore the

references to the argunents of s node sre Just the sddresses of the nodes

whloh produce those arguaents as their result.

All of the sddress lnforaatlon described sbove osn be asde relstive to s block

of words irtilch oontalna the encoding of all nodes for s single grsph. normally

the oonsequent of s production or the contents of sn envelope. The bsse

sddress of this block can then be identified with this grsph. snd used ss the

argument to sn spply. To be aore preolse. s closure aust be accompanied by a

tuple of iaport vslues, ss well ss the bsse address of the blook, for those

laports aay be different for each instantiation of the enveloped grsph.

DCF SUHSTREAM

RESULT ARC I

ARGUMENTS X
IMPORTS ADDSTREANS
ARC_1 CAR X

ARC 2 C M X

ARC 3 APPLT ADD STREAMS ARCJ2 ARC_R
ARC % CONS ARC T ARC_3
ENDDEF

62

Figure M : Assembly language encoding of sn FGL production, thst of Figure

2-1.

Me oould then proceed to give sn "assembly language" version of FGL. A blook

of eode is represented by s sequence of " l in e s " , where esch line encodes one

node of the blook. A line oontsins s symbollo lsbel for the corresponding

node, followed by the nsme of the function, snd the lsbels of the argtsients to

the the function. Shown in Figure is the sssembly code for a simple FGL

grsph.

63

4 .2 . evaluation

We ahall describe a destructive fora of evaluation, In whloh tha nodes of tha

(raph sra raplaoad with thalr values. this aeans thst for each use of sn

apply, tha bloek which encodes tha olosure trill have to be oopled afresh.

This oopylng supplants tha usual initialization which aust soocapany procedure

entry, etc.

Ve have already explained how each graph wlth objects specified on its Input

aros deteralnes a unique tuple of objects on lta output aros. Ue aust now

describe an evaluation a ec hen Isa which Insures thst the

astheaetloslly-deteralned values do get produced. '

Since objects are abstrsct, I .e . we have not really defined what It aeans to

produce an object, we can content ourselves with a prlaitlve irtilch produces a

single atoa, ssy by printing It on a line printer. Ue oan then use this

prlaitlve to dlsplsy genersl objects In tAiatever laage of their abstract fora

we feel appropriate, by dlsplsylng the stoas which coaprlse these objects.

For exsaple. If we went to print a tuple In the fora with parentheses snd

coaass, then we could do so by spplylng our print prlaitlve to strings

consisting of psrentheses, coaass, snd the etoas lAiloh coaprlse the tuple.

Since the result objects alght well be Infinite, It seeas prudent thst we

produce perts of objeots by deaand.

To continue with our dlsousslons of deaand production of objeots, sssuae that

there ia an abatraot entity known as "deaand" tAiloh osn ba present on any arc

of a funotlon graph. This entity reasins on the sro until it Is sstlsfled by

the presence of s predetermined portion of the object. For the ourrent

language, we convene that this portion aust be either an atoa, a graph, or a

akeletal tuple. I .e . a tuple having the nisiber of lta ooaponents, but not

necessarily the coaponents theaselves, specified.

Prior to the deaand being satisfied, the sro vslue is 7 , st Which It aay

reaaln forever if the deaand is never sstlsfled. We intend for the letter to

happen only If the ultiaate functlonally-deteralned value is 7.

4 .2 ,1 . Desoriptlon of deaand propagation

To complete

the deaand j

eons .

Figure 4-2:

aalaot

atoa

oond

•q

the apeoifloation of the evaluation process, we aust specify how

a propagated through each of the atoaio oparatora.

When the result of a oona is demanded, the deaand ia
ia**dlately satisfied by asking the result a skeletal tuple,

the length of whloh ia tha number of input area to the oona.

It aufflees to heve the eona noda itself play tha rola of tha
akeletal tuple, ao no actual replacaaent ia naoassary. Deaand

does not propagate to the components themselvea until aa

apaclfied In aalaot below.

Demand evaluation of aelact

When the result of aeleot(l, i) is demsnded, demend propagstes

to both argwenta. When both of the latter demands ara

aatisfled, if n is the number of components of a and 1 < i <
n, then the aeleat is deleted, its output aro being connected
directly the 1 skeletal argument. Demsnd remains, and la

propagated to that argwent. The diagram of Figure 4-2 is

meant to be suggestive.

The demand propagates to the argument. When the arguaent

demand is satisfied, the output aro gets tha appropriate

logical value.

The demand propagates to the first argunent. When that demand
is satisfied, the output aro la connected to tha second or

third input arc, depending on fa th er or not tha value of tha

first argument is ’ n il1, then demand propagates to the chosen
arguaent.

Demand propagates to both srgistents. When both ara aatiafled,

the function is evaluated and the result appears on the output

•ro of th* node. .

spply(G, l) Demsnd propagates to argument G. When that demand Is
aatlsfled, a oopy of graph G la made, with tha free Input aro

connected to the arguient 1 . The output are of the oopy

. replaces the apply node, and demand propagates to the output

aro of the oopy. Thua the apply rula of Figure 2-16 la

mimicked.

Binary arlthmetlo operatora propagate demand like eq. The propagation of

demand In othar operatora not Hated above may be Inferred from the

propagation for thoae llated. Flgura 1-3 Ulustrstea the propagation of

demend through e oomplete, but very simple, eiaaple.

4 .2 .2 . Correctness of an FGL evaluator .

The correotneas of an evaluator oan be atated Informally ea follows:

For any ero et lAilch e demend preeenta Itself, I f the value determined

by the function la an etom, then the velua ultimately appeara on that

are.

Now oonalder any evaluator having the property that for any aro on which e

demand eventually appeera, the evaluator eventually treata the ero according

to the apeolflcatlona for demand/value propagation. Thla property mey be

Insured, for s>ample, by a combination of task-11st snd notlfler structures

(Keller and Llndstrom 60].

He olalm that auoh an evaluator la oorreot aa atated abova. We do not go Into

further formalization or proof of thla claim here, eioept to aay that It la

naturally conduoted by lnduotlon, based on the depth of s demsnded sub-objeot

within the overall reault object. A more oompleta proof appeara In (Keller

and Llndstrom 60]. Proof aketohea for related modela may be found In

(Friedman and Vise 76] and (Henderson and Horrla 76].

4 .2 .3 . Parsimonious aveluatlon

Another property attributable to the mode of oomputetlon desorlbed here Is

psrslmonloua evaluation. I .e . that a value appearing on an ero whloh fana out

only need be oomputed onoe. This la aooompllahed by almply keeping treok of

trtiether an ero*a value haa been demanded and not propagating any but the flrat

demand. When and If a vslue finally arrives st that sro. It Is svsllsble to

65

66

Figure 4-3: Illustration of deaend propagation (shown by dashed lines),

odd froa is defined in Section 2 .1 .2 .

67

•11 operators whloh had demanded it , • • well • • those tftiioh will demand it in

the future. This implementation technique has found uae in linking mechanism

In operating systems, e .g . Hultloa [Organiok 721. It has been oalled by the

term "suicidal suspension" In [Friedmm and Wise 7 6) , beoause the

"suspensions" (i .e . the enoodings of node funotions) kill themselves by

rsplscing there code with the value of the funotion.

4 .3 . A Higher Level FGL

As desoribed earlier, an FGL graph may be encoded in a font of "assembly

language*. However it would be quite tedious to program and read eitensive

eismples in such a language. For this resson, it is worth pursuing higher

level textual representations of FGL. One cendidste representation, cslled

Textual FQ., which has been Implemented by the author and colleagues (Keller,

et a l . 60], is desoribed here. It is of interest beosuse despite the grester

readability, there is still apparent a reasonably direct correapondence with

the graphical form. Textual FGL has s syntsx adopted from that of (Hearn 74].

For explanatory purposes, we shsll use upper esse for lltcrsi tokens snd lower

eaae to represent the nemes of syntsotio entitles. We use (. . .) to deslgnste

a aequenoe of one or more of the entity encloaed and (. . .) to designate

optional syntactlo entities. It follows thst ((. . .)] denotes zero or more of

the enclosed entity. We csn then proceed with our definitions of program

syntsx by the following productions:

68

program — > (bloc It-definition)

blook-definitlon — > FUNCTION function-name (argiaient-llet]

(IMPORTS imports-llst]

(LET sbbrevlation-llst)

RESULT result-expression

(WHERE (block-definitlon) END)

function-name — > Identifier

arguaent-list — > ldentlfler-list

lmports-llst — > identifier-11 at

sbbrevlstlon-list — > abbreviation (I ill

abbreviation — > identifier BE expression

result-expression — > expression

An identifier list is defined ss follows, where the symbol I denotes s choice

of alternstives:

in FGL, an identifier is any sequence of letters, digits, or underscores (_)

which begins with a letter or undersoore.

One of the blook definitions must have the function neme main. It is this

funotion trtiloh Is evaluated by the system to osuse the evaluation of all other

functions.

As one oan see, the only things thst sre not optlonsl in s block definition

are the funotion name and the result expression. In most oases, we will also

have the first identifier list , which gives the nsmes of srguments to the

funotion being defined.

An expression is either a constant, an identifier, or one of the following:

ldentifier-llst — > identifier

I (identifier (I , Identifier)))

69

IF expression THEN •i p r m l o n ELSE expreaaion

n-ary-funotion («ipr«ialon-llit)

unery-funotion tiprtialon

nullary-function ()

expression expression

Mhtrt

expreaalon-llat — > expression [(, expression)]

Function!, either unary, nullary, or n-ary, oan ba althar atoalo or

prograaaer-defIned. An atoalo funotion ia ona built Into tha language. A

prograwer dafined funotion is what is being defined in a blook.

As exceptions to the above syntsx, aoae functions, e .g . binary arlthaetlo and

logical, are represented in infix fora.

An Identifier used in a block definition aust be known within the definition.

There are five ways in which sn identifier becomes known within s given blook:

1. It is the function nsaa.

2. it appeara In tha arguaent lis t .

3. It appeara in the iaports list .

4. It Is defined In an abbreviation.

5 . It is defined in the WHERE section of the blook.

4 .3 .1 . FGL haa "blook" structure.

The syntsx rules lapart a kind of "block atructure" to textual FGL which is

slallsr to the block atruoture of Algol, except that IMPORTS is used for

aaklng values known in an inner blook, whereas in Algol these vslues are known

iaplloltly. The nesting present in such block atruoture corresponds exsotly

to the nesting of envelopes whloh would ooour if esch blook were trested ss s

function which is the argiaent to an apply wherever Ita naaa la uaed. In aoae

respeots, this nesting is similar to tha "oontour aodel" representstlon of an

Algol-like prograa (Johnston 69* 71].

70

It la a Batter of value Judgaent whether the ex pi lo it or laplioit fora of

laporta la preferred. The laplicit fora la aore oonvenlent when entering a

prograa'a text, but the explioit fora ia aore useful Whan debugging a prograa.

Given that the latter usually takes longer, we ohoose the explioit fora.

Even with a coapller which recognises ooaaon sub-expressions, it is

occssionslly tedious to write these sub-expressions aultiple tiaea in the

code. For this reason, abbreviations are provided. The aeanlng of an

abbreviation is that whenever the identifier ooeurs. it la equated with tha

expression. Notloe thst we do not preclude olroulsrlty In abbravlationa.

Thst is , A could be defined In teras of B, snd vice versa. Thia ia one way of

textuslly representing the cyollc graph structures.

4 .3 .2 . Exaaple of textual FGL:

The 0-ary funotlon whloh generatea the stresa of Fibonaool nmbera oould ba

ooded as

FUNCTION Fibonacci

IMPORTS add_streaas
RESULT o o n sd , oo nsd , add_stresas(FlbonsooK) , head FlbonacoK))))

or alternately, using sn abbreviation as

FUNCTION Flbonsool
LET x BE o o n s d , sdd_streaas(x, Fibonaool))

RESULT o o n s d , x)

4 .3 .3 . Another textusl FGL oxsaple:

Here Is how the serlal_ooap ooablnstor (defined In Seotlon 2 .7 .2) oould be

ooded:

FUNCTION serial ooap(f. g)

RESULT h

WHERE

FUNCTION h(x)

IHPORTS(f. g)

RESULT f (g (x))

END

Inoibtr «iMp)« is Motivated by tha presentation of a function REDUCE

(Iveraoa 791, which appllaa a binary function op to a non-enpty llat ; I .e .

reduce(op)(x1# t2 «tn) • o p (*p op<*2 . o p (........... xn)))

Tha FGL version aay ba coded aa

FUNCTION reduce(op)
RESULT f

WHERE

FUNCTION f(x>

IMPORTS op
RESULT if null x

then n ll()

elae If null tall s

then head x

alae op(heed x, f(tall x))

DID

73

Usea of the graphical Formalism

5 .1 . Loop Itaovil

In contrasting the two odd-prlmes en ap lea , on* noteworthy point la that the

firat antalla a graph with a loop (I .e . oyole) whereas the aeaond does not.

It la north asking whether loops are In any sense neceasary. In answer, we

show that any loop ean ba removed, replacing It by an appropriate recursion.

Hence loops are not essential, although there are Implications which loops

have on Implementation whloh may make them useful for more efficient

realizations. To wit, loops can ba implemented as oyollo data atructures and

avoid a recursion. The following theorem Illustrates the connection between

loops and recuralon.

Loop lemoval Theorem (Keller TT1: For every function graph, there la

an acycllo graph (possibly with additional auxiliary nodes)

representing the same function. .

To. prove the above, we flrat locate within the graph aome cutset T of aros.

I .e . a aet of aroa, the removal of whloh makea the graph acyolio.

Figure 5*1 : A graph showing the chosen outset ,

Hsvlng chosen such a T, depict the graph as in Figure 5-1. Here f represents

the composite function of the acycllo portion of the network, f in turn la

divided into representing the function Whloh determines the values of the

non-ci*aet aroa, and f2# repreaentlng the funotlon whloh determines the vslues

of the outset sros.

(cutlet)

7H

Figure 5-2: Acyllo graph based upon the outset In Figure 5-1«

We then introduce a new auxiliary, say g, end observe that the aayol&o graph

of Figure 5-2 la equivalent to the original. In that tt haa the ease output

function.

The validity of thla construction la best explained by observing that the

original network hea

I ■ f t(I . T)

t . r2u, T)

while the new network has

z • r^x, g(X))

g(X) « f2 (X. g (X))

By Identifying T with g (I) , the equivalence of the two it established.

If the outset oonsista of fanned-out equivalents of the output aroa, then ff *

f2 . In thla case. we o n simplify the first equation to

2 • |(X>

75

Figure 5-3; Example of cutset and simplified acyclic ftraph

Example: Fl|t>ra 5-3 shows the choice of a cutset and result of loop removal In

figure 2-1. This Illustrates the slmpllflostlon mentioned above.

The converse of loop-removal is . of oourset loop Introduction. In the context

of the execution model discussed earlier, loops make better use of storage

than the corresponding recursive versions, as loops sre not unrolled and do

not require additional atorage allocation. Techniques for loop introduction

are still under Investigation.

76

5 .1 .1 . Tail reouralon repreaenta loops in oonventlonal flom harta. '

Thar* la a deceptive slallerlty between the loop renovsl theorea and a result

appearing in (HaCarthy 63a]. The latter deaonstrstes how any "flowchart

prograa* oan be converted into a reourslve progrsa. The idea la to replace

Iteration* In the flowohart prograa with rint are usually called "tail .

recursions". Thla technique Is Important. aa It ahows that any flowohart

prograa has an equivalent representation In our grsph forasllaa.

Tall Reouralon Tbeorea [McCarthy 63a]: For any flowchart prograa,

there Is an equivalent graph greanar. In the aense that there Is sn

auilllary node In the latter which ocaputes the saaa funotlon ss the

progrsa.

He stteapt to oonvey the baslo Ides of the proof without entering lr.to a

foraal presentation of what Is aeant by a flowchart prograa. Suoh s progrsa

consists of stateaenta which operate on "prograa variables". Let x be tha

vector of such variables. He create froa our prograa a aet of productions,

the underlying functions of which operate on the product data type of values

which x aay sssuae.

For esch "control point" p In the flowohart, we lntroduoe an auxiliary ayabol

Fp. The idea la that Fp(x) represent* the trenaforaatlon undergone by x If

thfl prograa Is stsrted at point p . It will turn out that tha funotlon Fj

corresponding to the initial (I .e . entry) oontrol point Is the function

coaputed by the flowohart, for arbitrary Initial prograa variable values.

It auffioes to deaonstrate what productions are introduced for each flowchart

box. Here we treat only asslgnaent ststeaent boxes snd test boxes. An

saslgnaent. In full genersllty, appears as In Figure 5-*s. lhe corresponding

graph graana- production la also shown there. k test appaara as In Figure

5-«b, with Its corresponding production. Here we have uaed a teralnal

funotlon eond. defined earlier. Finally, the production of Figure 5-<o Is

Introduced for each exit point.

Of course, slapllfioatlons sre possible. For Instsnoe. by ooaposlng functions

in a fairly obvious way, we only need one auxiliary for each loop In the

Figure $-4: Production! equivalent to flowohsrt constructs

ra

Figure 5-5l Fiotorlal FI owe her t

1

T

Figure 5-6: Factorial Production

79

flowchart. Also, recognising that the funotlona In the flowchart don't

usually operate on all of the program variables, optimisation is possible

which produces more "independent” area (see Seotion 5 *3) .

5 .1 .2 . Bsample:

Applying the tail recursion trsnsformstion to Figure 5-5, we have the

equivalent produotion in Figure 5-6. Ve call the programs in these two

figures "Factorial", since If we Interpret P, P, end 0 as -

P (i) : s < 1

r<i. y): it - 1, y)

0 (i , y): (i , a ■ y)

snd if y is initislly 1, then we have programs for computing i Factorial.

It has been shown in [Paterson snd Hewitt 70] thst, barring the addition of

new functions to the program, the reverae transformation (from s produotion

form to s flowchart) la not generally possible. k oonsequenoe of the

following section is thst the trsnsformstion is possible if we ere allowed to

use additional functions.

5 .2 . Produotion lemoval and Explication of "Paradoxloal" Combinetors

Our grsphlcsl formslism possesses seversl potentially pedagogical uses,

including the ability to understand "paradosleal" oombinators, or "Y "

operators. These sre various arcane ways of schieving the effect of recursion

without the explicit use thereof.

One method of removing recursion is to extend the function enveloping device

described in the Section 2 .5 . Suppose thst we hsve s reourslve production of

the form of Figure 2-19. There we used the symbol N to denote the grsph whloh

is the consequent of the production. Ve stated earlier thst H could be

re-expressed as H ' in Figure 2-22, iftiere we hsve replaced the occurrence of G

Inside B with sn apply operator.

But since 0 is supposed to be repleoeable by II, we have another folded version

p < 5 0

Figure 5-7: Folded version of Figure 3-11b

•9 shown in Figure 5-7, which is si so Tree of the auxiliary G. To reassure

ourselves of the equivalence of this graph and tha G in Figure 3-11b with

which we stsrted, use the apply rule of Figure 2-16.

5 *2 .1 . All loops and productions oan be removed.

We now Investigate the possibility of eliminating all loops and productions.

The preceding dlsousslon shows how to get rid of productions. The resulting

graph, of the form shown in Figure 5*7 . has a loop. But I f this loop oan be

eliminated without introducing other loops or productions, then we shall have

found a way to eliminate all loops snd productions, sinoe this loop la used to

achieve the effect of a prototypical production. Experience suggests s way of

achieving this gosl.

Consider the subgrsph T of Figure 5-7. aa shown in Flgura 5-6. We notice that

Fl|ir« M t Subgraph T of Figure 5-7

if F la present on the input aro of ! , than tha output aro t aust hsve tha

proparty

s • PCs)

In othar words, tha funotlon I represented by tha graph ia auch that for any

function F. T(F) ia a funotlon auch that

1(F) * F (t (F))

That la . T produoaa a fixed point of F . Tha above only aikei sense, of

course, if F Is a function*producing funotlon. e .g . II1 in the ourrent exaaple.

Since T (H ') ■ fl'(Y(Ha)) f we u*e<J repeated substitution to observe

K I P) • N'CTCH')) • H 'CH 'fTCI!'))) • (T (H '))))

the llalt of irtilch gives us

Y (H ') - H 'C H 'd t 'U t 'C ...))>>

tftilch is exaotly what we get by repeated aubatltutlon of H for 0 when

expanding produotions.

Fortunately, a loop-free operator Y ' equivalent to Y la known, and ia shown in

Flgura 5-9.

J L
aPP^

82

Fi|ur« 5-9: Loop-fr«

Figure 5-10: Showing fch« equivalence of ! and I 9

•3

He present In Figure 5-10 an •n li(ht«n in (graphloal argiaent to show the-

equivalence of Y ' and T. Ilia llalt of tha Mquanoa In Figure 5-10, If an

enveloped B ' la provided aa an arguaent, la the aaae ee thet In the aubiraph

of Figure 3-11b, uhleh repraaenta tha leaat filed point of I ' .

Figure 5-11: Application of the operator T *.

In auM iry , T ' la a loop-free equivalent of T , uhleh allows 0 , defined by en

equivalent loop-free graph, ae ahown In Figure 5-10. leadere faalller with

the laabda ealoulua (Church 41] will recognlie the liabda calculus eipreealon

of T* ae

xr.((*f.ggmi.r(iO)))

although we feel thet the graphloel version Is auoh eleerer. Slnoe laabda

ealoulua eipreeelone ere eaaentlally loop-free, there appeera to be no dlreot

way to repreaent the T In Figure 5-8.

In auaaary, wa have used a graphloal teohnlque to deaonatrete why the

"peradoiloal ooablnetor* [Curry and Fays 58] Is usable to ettaln the least

84

Figure 5-12: k distinguished sub-structure of Figure 5-9

fixed point H ,-(?) . In retrospect, we see thet the sub-graph of I ' shown In

Figure 5-12 which appears at eaoh stage In the expansion of T ' , Is aoaewhat

arbitrary. It la not present at all in the H a l t graph. Indeed, ita use

appeara to be aalnly to force the infinite expansion. Vith thla in Bind, It

la probably no aurprlse that there ere aany other such structures which will

suffice for thla purpose, with no two being inter-convertible by alaple

tr an s fora at ion a auch as aplit and apply. Ue offer thia as a reason for the

existence of such functions, as aentioned for exaaple in [Vadaworth 7 6) .

5 .3 . Parallelled

One iaportant uae of function grapha is in the exhibition of opportunities for

oonourrent (or parallel) evaluation. Parallelled shows up naturally in a

function graph In the fora of two or aore Independent aros, i .e . area not

lying on a common chain of area. The nodes whloh hsve thoae aroa aa their

outputs indicate funotlona whose ooaputation oan proceed concurrently.

In the aub-graph of Figure 5-13 for exaaple, aroa l , y , and t aay receive

values concurrently.

05

Figure 5-1 3t Independent aro* whloh aro evaluable concurrently

Oraph graaaar product Iona aay be ueed for generating ooaputatlona with

arbitrary amounts of parallelisa, depending on tha Input data. Consider, for

eaaaple, tha problem of computing tha number of leaves of a traa data

struoture, tfa oan lnltiata arbitrarlly-aany sub-computations Mileh ooaputt

tha nuabar of leeves of aalaotad aub-trees, than proceed to add tha resulting

value a .

The production of Figure 5-M defines auch a funotlon. We a how in Figure 5-15

the result of the partial evaluation of the funotlon after it haa been applied

to a tree having 256 laavaa.

5 .3 .1 . farallollaa ooours in different granularitlea.

Ve would oonjecturo that moat way a of eiploltlng parallelled in prograaa are

all inatanoea of this * independent aro* phenomenon. For oxaaplo, the

processing unit of s "look-ahead" prooessor (o f . {Keller 7 5)) dynaaioaly

oonatruots auoh a graph froa a aequential prograa to deteralne

ooncurrently-exeoutabla funotiona. Although it la tempting to differentiate

between "look-ahead", "p ipelining", and other foraa of paralleliaa, auoh

dlfferencea ara eaaentlally a Batter of the granularity of the parallelisa

rather than being dlatlnct ooooeptually.

86

1
LEAFCOUNT

T

Fi|uri 5-14: froduotlon for the liafcouit function

ST

Figure 5-15: U ifcount iviluitlon

1
loop

r ~ r

< = o

Figuro S-ll: Production transformed froa that of Flgur# 5-6

68

Fl|ur« 5*17: Unwound graph oorresponding to tha produotion of Figure 5*6

Figure 5*16: An Instance or tha graph In Figure 5*17 with Fa evaluated

We now Illustrate In the function graph aodel how thla look-ahead phenomenon

ocoura In computing operatlona from aeveral different lteratlona of a loop.

Rcoall the flowohart of Figure 5*5 which waa transformed to the reouralve

produotion in Figure 5*6 . In Figure 5*16, we have further transformed the

production by aeparatlng the variables to make independent aro peralleltam

more evident. In principle, this production repreaenta the Infinite graph

shown in Figure 5*17.

For aake of olarlfioatlon, auppose the first aeveral Fa in thla graph evaluate

19

to ■all" (falee). We thin effectively hivt th« graph of Flgur* 5-18. Ve »ee
froa the «bov« that any 1th instance of G. oounting froa laft to right, oan bo
executed concurrently with any Jth inatanoe of F# n long u 1 < J, I alailar
foot was used in [Keller 73] to ahow that no finite aaount of oontrol storage
ganarally eufflces to aohlava aaiiaal parallaliaa. In thla exaaple, we aaa
that no finite aaount of lnteraedlete data atorage auffloes either, alnoa if G
ia auoh slower than F, arbitrarily aany of the lnteraedlete results of
different Fa aust be saved to ooapute future Ga.

5.3.2. Auxiliary nodea oen teaporarlly aaak parallaliaa,
Ihe graph aodel aeeaa to be capable of diaplaylng auoh of the parallaliaa
Inherent in a prograa. One oautlon ahould be taken, however, in aaalgning

aaounta to the feot that aroa entering end leeving a node are not neoessarily
oonneoted in principle.

Figure 5-19: Ihe antecedent and conaequent graphs are equivalent only when
evaluated with an appropriate evaluation rule

For exaaple, auppoae we have a node f whloh la defined by the equation

f(x. y, x) i (if x then z elae y, if x then y elae t)

Thla funotlon alght be repreaented by the produotion of Figure 5-19.

However, whether thla produotion la an accurate rapreaentetlon of the equation
dependa heavily on the aubstltutlon aechanlaa used in effecting productions.
If the aechanlaa uaea the deaand-drlven aoheae auggeated in Section H.2 to
effeot the replaceaent auggeated. there la no difference. However, aoae

ton ohaln Thie oeutlon

U
r « = o

90

■•thoda of (valuation, variously known aa "dsta-drlven* or 'oill-bi-vtlia*
would require data to ba preaent on all thraa aroa In ordar for tha eipanalon
to ooour. Tha plotura represented In th« produotion la than not aoourata.
Inataad, ua hava • funotion f' darinad by

(r(i. y. *) If I * T, y i ?, and z i t

? otharulaa
uhloh la olaarly undaflnad on soae erguaents uhara f la daflnad.

Put another way, f* haa a synchronizing affect In having to ualt on all of Its
valuta, uharaaa f doaa not. Synchronisation la oontrary to parallallaa, alnoa
It lntroduoaa aitra dependencies batman oparstlons. ■

Tha ssae phanoaanon la observsble In tha oholoa of our definition of tha
oparator oona In tha Evaluation aaotlon. Our oooa folloua tha aplrlt of
(Frledaan and Ulaa T6) and (Handaraon and Horrla T6) In being a oona uhleh
■doaa not avaluata Ita argiaenta*, or ona uhloh la lapleaented by "leiy
•valuation*. Nora preclaely, tha aquatlona

oona(i.y) ■ (i.y)

haad(oona(i,y)> « i
tall(oona(i,y>) « y
aaleotd, oona(i,..........in» «

all hold without qualification on i and y. In contrast, oons In convantlonal
Llap and languagaa daalgnad for deta-drlven aitcutlon la atrlct. l.a. raqulraa
all argwenta to ba "ecaplete" prior to yielding any raault, thua producing a
atrong fora of aynchronlzatlon. By a coaplata arguaent, ue Bean one uhleh la
a finite tree with no isideflnad leaves. Our cone la lenient. In that It doaa
not require any arguaent to be ooaplete to yield a aeanlngful reault. Lenient
oona provides no aynohronlzatlon st all, but slaply has tha effeot of asking a
value froa a tuple of valuea. Thla value oan ba treated aa a single entity,
later to ba deooaposed by select funotlons.

91

5.).). Lenient operator* lUpllff understanding and proofs.
Another feature of tho lenient fora of operator la that for ascertaining tho
oorrootneM of a prograa, we wish to be concerned as little as possible with
stlpulatlona auoh aa "If s 4 t*. Mlth lenient oporatora, there are no auch

Figure 5-20: Wiring analoglea to the oona operetor: In tho left pair,
corresponding to lenient oona, the ooaponent wires sre paired, snd either wire
csn be pulled without pulling on the other. In the right pair, corresponding
to strlot oons. the wires sre bound, snd pulling either wire effectively pulls
both.

Figure 5-20 Illustrstes the difference between lenient snd non-lenlent oons
through a wiring analogy. If we view the sros on uhleh vslues flow ss wires,
then In the non-lenlent version, the two wires are wrspped together. Fulling
on elthar output wire pulls both of the Input wires, snd the output wire
doesn't respond inless both Input wires sre free. In the lenient version,
pulling on sn output wire pulls the corresponding Input wire. Independent of
the other Input wire's oonneotlon.

92

5.3.11. Data tjrp« ordering affaata degree of conourrenoy.
The greeter asynohrony, and hanoa conourrenoy, available with lanlant aona
■anlfasts Itself In another way. It allows us to us* tha traa orderlnt for
our data type (aaa Saotlon 3.2). aa opposed to a flat ordarlnt. Iha traa
ordering lapllaa a flnar train of observable atap In tha produotion of data
objaota than doaa tha Hat ordarlng of tha aaae objaeta. With tha flat
ordarlng, thara la an all-or-nothing behavior of aaoh funotlon, l.a. tha only
allowable prograaalon of a value la froa totally undaflnad to oaaplataly
defined In ona atap. In contrast, tha traa ordarlng allows an Infinity of
gradatlona, lnoludlng tha possibility of an lnflnlta aarlaa of approilaatlona,
nona of Uiloh a«ar arrlvaa at a ooapletely daflnad objaet, but aaoh of whloh
la ltsalf uaaful. Hanoa tha data typa ordering aarvea aa a valuable lndloator
of tha granularity and hanoa tha degrea of attalnabla oonaurrancy.

5.3.5. Lanlant oona anhanoas eaynohrony.
Wa Motion that lanlant oona automatically lnoludaa tha oapablllty of
achieving graatar asynohrony In strea»>orlented computation* than do atraaa
operatora Uiloh ara restricted to prooass atrean ltaas In atrlot order. This
asynohrony In turn lessens the constrslnts on the ooaputatlon, thereby
producing aore opportunities for oonourrent evaluation. Suoh dlffarenoes In
■odes of Interpretation have been obnerved, for eiaaple, In tArvlnd and
Costalow 78) which Mentions an 'unraveling Interpreter*. Suoh an Interpreter
Is, In fsct, laplled by a language aaaantlos whloh provides a lenient, rather
than strict, oona operator.

Thera Is s plasslng oonnectlon between the lenlant oona oonventlon snd the
spllclnt effeot of grsph gr—mw produotlona. It lndloataa that we say
raatrlot our attention to auilllary nodes with only one Input and one output
aro, alnoe any niaber of area aay be coded and decoded using oona and aeleot.
As long ss lenient oona la used, the affeot Is the saaa. Iha diagram of
Figure 5-21 Illustrates.

Flgura 5*21: Replaoing luilllarUa with auilllarlts having only on* Input and
on* output arc: (a) Original production; (b) Replaocaaant for antaoadent; (o)
Maw production

9%

5.3.6. Transparent funotlona allow programmer oontrol of oonourreqoy.
Tha final dlaeuaaion of thla aaotlon oonoerna tha exertion of greater oontrol
ovar tha amount of conoia’rency actually realized In evaluation. Lot ua aasuna
tha demand-driven aohene diacuased aarllar. laiuia further that we have ooded
the productlona for aoae computation. A property of the demand~drlven acheme
la that it will never begin evaluating aoae object until it ha a determined
that the object la actually needed. However, the programmer may well know
that certain objecta are ultimately going to be needed prior to their need
being perceived by the evaluator. To allow theaa needa to ba Injected aa
additional demands, we oan provide a apeoial operator, par. Thla will be a
generic operator with any nissber of argiaienta. Ita definition allows it to be
rather tranaparent functionally:

P*r(l1. *2........ in) « *1
However, its effect on the demand evaluator will be to propegate demand to all
of its argiaienta immediately. Thla will have the effeot of anticipating the
need for those argiaiente and forcing them to be recognised aa oonourrently
evaluable.

figure 5*22: Uae of par

A typical use of par, to evaluate the argiaienta for an auxiliary node

•onourrant with It* aipanalon, la ahoun In Flgura 5-22.

A dual (robin lnvolvaa an obaarvad 'tlat-tpMi tradeoff". It taka* mor»
apaoa to aupport oonourrant aotlvltlaa, dlraotly proportional to tha nuabar of
auob aotlvltlaa. It alfht tharafora ba daalrabla to hava an oparator whloh
raduoaa conourranoy, tharaby raduolng aaaory raqulraaanta. Thla oan ba dona
by lntantlonally aaquanolng tha evaluation of oparatlona whloh oould otharwlaa
ba avaluatad oonourrantly. Iha daflnltlon of auoh an oparator la

(“n If il * 7. 12 * 1

T othamlaa

For tha daaand avaluator, aaq dcaanda aaoh arguaant In turn, aoaawhat Ilka our
oond Maa apaolflad to do. Only uhan ail dcaanda haya baan aatlaflad doaa It
raturn lta laat valua. k uaa of aaq, dcplotad In Flgura 5-23, la to pravcnt
axpanalon of a produotion until a\l of lta argtaanta ara raady.

95

Flgura 5-23: U» of aaq

Malthar aaq nor par la approprlata In aoaa altuatlona. For aiaapla. If ona
uantad all arguaanta to ba raady bafora aipandlng a production, but uantad tha
arguaanta to ba avaluatad conourrantly, than an oparator auoh aa apar (for

96

•trlot par) oould ba used. Hie funotlonal definition of a par ia alallar to
that of a*q, but deaanda propagate to all erguaenta concurrently. '

Othar alallarly uaaful operators ara undar ourrent lnoeatlgatlon. k olean
atyle of programing aeeaa to rasult from Initially using lanlant operators aa
auoh aa poaalbla, than “overlaying" on tha prograa oparatora auoh aa aaq and
par for (raatar control. Iha varletlea of auoh oparatora seea to point to a
naad for an oparatlonal aeaantloa to "overlay" tha danotational aeaantloa of
funotlonal languagea. Ihla raaalna a toplo for futura lnvaatlgatlon.

5.3.7. Varlatlona on oparatora affaot demand-driven execution.
It la worth noting tha alnllarlty batwaan par and oparatora auoh aa tha
parallal conditional and parallal or (Kleene 52), [Paterson and Hawltt 70).
For brevity, wa dlsouaa only tha flrat of thaaa.

Our oond operator haa been daflnad In Saotlon 1.2. It la poaalbla to davlaa a
dlffarant operator, poond, which haa an affaot alallar to par In that it
deaanda all of lta arguaenta, plua an additional aapaot tAiloh glvaa daflnad
raaulta In aoaa oaaaa where oond doca not. Iha definition la

Hare ■ la aoaa "weak equality* predloate. that la. It doaa not teat true
equality of lta arguaenta. but rather aoaa weaker relationship Oilch lapllea
equality, auch aa beln« the aaaa atorage atruoture.

pcoad(i.y.x) *

1

1

x

T

If x * 'nil*

If x > ’nil1
If y « x

If i i t and act y ■ x

J,

Figure 5-2*: (reduction possible for poond but not for oond

97

Suoh • fora of equality tak«i plMt, for example, in the graph reduotlon rule
shown in Figure 5-24. The reason why true equality la not eleoted for ■ la
that the foraer would generally be an unooaputable predloate.

i i aentloned, poond will give aore lnforaation (in the aenae of the data type
ordering) than oond. It appeara, however, that thla benefit will be reaped
only rarely in praotloe. Since poond requlrea propagation to all argwenta,
yet will often be unable to a aka use of the value of one of thea, it aeeas
that poond will generate aore work than it eaves, unless a superfluity of
otherwise Idle processors IS avalleble. The uae of poond-like operatora for
gaining parallelisa Is disoussed in [Frledaen and Wise 76).

To suMvlze this suthor's opinion. It is generally aore efficient to rely on
•trlot operatora to introduce oonoirrent deaande for values known to be
essentlsl than to use pcond-like operatora whloh will only yield beneflta in a
aaall nuiber of oases.

5.4. Anolllery Applioationa ■
We aentlon In this section an additional application of the funotion greph
concept, where by "applloatlona" we aean other aodela which aay be viewed aa
Instances of function grsphs. Ihese sppllostions fsll within the reela of the
“general” theory. In that they do not have a dlreot correspondence with an
execution aodel. The Intended result of such s pursuit is thst aet hods being
developed for proving properties of function grsphs sre then applicable to
theae applications.

Figure 5-25: Funotion of a node of a graph operating on languagea

5.1.1. Ud| im|« theory uni funotton-graph ldtai,
One application la to forwl lenguegea (I.e. sets of atrlnga over i finite
alphabet). In tha language context, nodes of i funotlon gnph »re viewed u
funotlona on languages. Specifically, eech node with n input trot !• the
union of n languages, each foraed by concatenating to aaoh eeaber of tha input
language the atrlng which labels the arc. Thus, tha function of tha node
ahoun in Flgura 5-25 vi have

9a

It has long been understood thst flnlta-atata languages can be represented by
labelled directed graphs without use of productions, or equivalently, by
"regular expressions" [Kleene 56). Similarly, oonteit-frea languages can ba
repreeented by a kind of graph graaaar called e ayntax jraph (of. [Keeker 71).
(Hoare and Ulrth 731). Ve aiaply wish to point out thst suoh raprasentationa
can be viewed as function grsphs if properly interprated, and that tha
corresponding interpretation of the deteralnaoy thaorea la that In which tha
least flxed-pointa sre Just the languages genarated.

Figure 5-26: A funotlon graph representable by a regular axpreaalon

Consider tha laballad graph repreeentation of tha non-deteralnlstlo
finite-atate aeohlne in Figure 5-26. To aaa the oonnaction with languages,
notloo that in tha lntarpretation of tha noda atata above, we have an equation
auoh aa

r<L,, Ly. Lj) > L,» U Lyb U Lxo

L « G(L)

uh.r*

C(L) iL g U U .

99

0*<*> > L0 U (Lo U (Lo U)•)■ >•

uhloh la usually denoted

Lo •'
In tha notation of regular expressions. By auoh reasoning, Me aea that tha
funotlon desoribed by any graph la rapraaentabla by a regular expression, a
raault attributed to [Klaene 56).

If we allow productions In addition to the type of operator ahoun In Figure
5-25, It is known (Reeker 71] that the funotlon la not generally rapraaentable
by a regular expression, but In faot requires the greater power of a ayntax
graph (equivalently, a context-free greaser).

5.5> Iodeterminaoy
Me have observed the Determlnaoy Theorem for funotlon grephs, whloh states
that eaoh greph determines unique output velues on eaoh of lte aros. given
pertlouler lnitlsl values on its Input sros. Howevar, It is knoun that there
are perfeotly reaaonable computational ayatems which do not enjoy auch
determinecy properties. An often olted example la that of an airline
reservation aystem, wherein the net reault, the eat of passengers depertlng of
a given flight, might well be dependent on Internal aystem timings, even given
a fixed set of requests for seata.

Tha difference between indeterminacy and "non-determinism" should be
mentioned. Hon-determinism refers to the system choosing one of saverel
notions In a manner "local" to the behavior of the system. Suoh behavior
■lgbt well be prevalent In all of the aystems diaoussed in thla paper. On the
other hand. Indeterminacy la a global phenomenon whloh aays that the overell
outoome of a aystem*a exeoution may be one of aeverel or meny possibilities.

Although suoh Indeterminate aystems hove been the result of some study (cf.
[Plotkln 76), (Smyth 78], [Keller 78s], (Koslnskl 79)). no satlafaotory

But in bavi already represented the solution of thla equation aa •

100 %

icniral theory has btcn developed analogous to th* one presented m far. Tha
operational (i.e. state-transition) daaorlptlon of Indeterminate operatora la
usually fairly ilaplt, yat attempts at describing them ss functions ovar thalr
input hlstorias hsvs been unsuccessful.

As an example, consider tha marge operator» It operates on two inooalng
stresas of values snd produoes s stresa which is a shuffle of the two Input
streaaa. A given pair of input atreaas asy well hava aany different shuffles,
e.g. the sequenoe s b shuffled with o d yields

s b e d,
. e o b d, *

i o d b,
o abd,
o e d b,

Md

o d a b

Here then Is an example of Indeterminacy.

5.5.1. Indeterminate operators challenge conventional Intuition.

Figure 5-27: Splitting involving amb

Reinterpreted here in the context of funotion graphs, [Henneaay and Ashcroft
77J illustrate that referential transparency, as exemplified by the splitting
rule, is destroyed when indetermlnete operstors sre sllowed* For atemple.

101

consider in operator amb [HoCarthy Ob] wtilob la defined by
(« If i * 1

y If y i 1(
with aab(i,y) being Indeterminately i or y If both expressions hold. To see
where referentlel transparency falls, oonaldar tha expreaalon

Depending on utiathar tha laft or tha right graph In Flgura 5-27 la uaed, tha
possible rasulta could elthar ba In tha sat 12, 4) or In tha sat 12, 3, M.
(Hard 7*] consldera additional ramifications of amb-llka funotlon*.
Similarly, [Giordano T9) shorn that tha oyola removal raault described In
Saotlon 5.1 doas not work with lndetermlnste operetors.

[Keller T8a) observed that (rapha uhloh Incorporate merges oan exhibit
snomslles when we atteapt to define a funotlonal sementlos for verge. For
example, when a aerie occur* In a oyole. It la poaslble to eihlblt ahufflaa of
lta ultimate Inputs whloh ara lmpoaslble as ultimate output!. Froa thla
arguaant, ona can further ooncluda that a aarga oannot be deaorlbed aa a
function on any product of any two data types. Instead, a funotlonal
daaorlptlon of Marge aust take Into aocount relationships between lteas In the
two atraaas whloh occur because of tlalng within the aystaa.

S.5.2. Soae lndeteralnaolaa are benign.
t class of systeas lnteraedlete between two eitreaes Is thst In whloh there
srs loosl lndeteralneoles In streeas of output values, yet s unique ultlaste
value Is slwsys produced on outputs of lntsrest. ft psrsdlga for hsndllng such
osses Is to stteapt to modify the ordering pert of soae of the dots types In
auoh s wsy thst tha operstors beooae continuous functions with rsspect to the
modified ordering, then spply the deterainacy thaorea. When the dateralnaoy
theorem can be applied, the verification of the ayatea oan ba reduced to the
verification of selected sequent1si executions, kn sxaaple of thla approaoh
appears In [Keller 78b).

aab(1,2) * sab(1,2)

102

5.6. Proof Nethoda ,
Ho it «iatln(aethoda of oorreotneaa proving oan be oouohed in teraa of proofs
for funotion graphs. Ukewlae, for aost known proof aethoda sppllosbls to
funotion grsphs, thsr* srs slao known inatanoea of suoh asthods whloh hsvs
been spplicd to aor* spsolflo aodcls. 1h« on* thing ws feel is to b* gslnsd
in sttsapting to expreaa s progrsa graphically Is thst th* lsttsr viewpoint
asy suggest sdditlonsl svenues of sttsck for proofs. In this aeotlon, we
present proof aethoda apeoifioelly froa the graph viewpoint.

5.6.1. Induotive proofs ooae in several Interrelated foraa.
1ny general proof aethod whloh deela auaoeaafully with infinite objaota, a.g.
general data typea and funotlona repreaented by graph (ramare, ia going to
use aoae fora of lnduotion. Ihere ere aeveral oatenalbly different foraa of
induotion, naaely:

1. Induction on the data objects which are arguaenta to funotlona.

2. Induction on tha atruoture of the prograa.

3. Induction on the aequenoe of atepa tekan in exeoution of tha
prograa.

Despite these apparant dlffarencee, the foraa of induotion are often oloaely
related and aoaatlaaa tha dlffaranoa le only one of viewpoint.

For exaaple, tha olaaa of data objeota of intarast is oftan repreaentable
using a (perhaps non-daterainlatic) production idtioh generataa the olaaa. So
induotion on tha atruotura of a generating prograa aight ba used to gat the
aaaa effect as induotion on data. Slallarly, if wa ara allowed to traat our
grsphs aa data, aa haa alraady baan dona to aoae extent in the dlacusslon of
enveloping, then we aight well find that Induotion on prograaa is eaaentlally
induotion on data objeota repreaentlng prograaa. Finally, wa oan often aodel
the exeoution aequanoaa of n prograa as a data-type in another oloaely-related
prograa, so thst Induotion on eitoution aequenoea aay aleo ba turned into
Induotion on data.

Tha acope of thla paper doas not parait an exhaustive survey of Inductive

103

■athoda and their olaaalfloatlon. Inataad, we nust ba oontant with • fat*
eiMplaa of bow lnduotlva proof* can ba parforned In tha funotlon fraph
oontext.

5.6.2. lnforaatlon and proof orderings iaf dlffar. .
Lot us befln with a dlaousslon of lnduotlon on data. We have airaady
asntlonad that tba notion of a data typo lnoludaa an ordarlm on tha ncabera
of lta doaaln. To do lnduotlon, wa alao naad an ordarlnf, but tha two
orderInfa naad not oolnolda. Mora stringently. tha type of ordarlnf naadad
for data lnduotlon nuat ba an lnduotl»a ordarlm. l.a. a partial ordarlnf <
with no lnflnlta daaoandlnf ohaln,

*0 > *1 * *2
Thla proparty la naoaaaary baoausa of tha way In whloh lnduotlon procaada,
l.a. by naans of a basis snd an lnduotlon stap.

If wa ara attempting to prova a proparty P for all neabers of a data typa,
than In tha basis wa prova P(«) for all nlnlaal eleaents s. whars by nlnlaal
wa ntan that thara Is no y suoh that y < l. Suoh elaaenta nust ailat, bacausa
If wa start with an arbitrary eleaent and rtpeatadly choosa "saaller"
alaaanta, foralnf a daaoandlnf chain, than tha ohaln cannot dascand foravar
(dua to tha ordarlnf balnf Inductive) and tharafora nust atop st s alnlasl
alaaant. -

In tha Induction stap. wa assuaa that s Is sn srbltrary non-nlnlnal alaaant of
tba data typa. Wa show that

If for aach y < x wa have P(y),
than alao P(x)

Kara tha first llna la oallad tha lnductlva hypothesis snd tha second Is tha
lnduotlva oonoluslon. This partloular version of ttit lnduotlon step aotually
aabodlea tha basis ss wall. In thst for s nlnlaal aleaant x. wa nust prove
P(t) directly. We aeparate the basis or tha proof froa the lnduotlon step In
order to decoapose the dlsousslon by treatlnf only non-nlnlnal eleaanta i In

ion

the lnduotion atap. Onoa tha baala and Induction atap are_ ahoun, tha
oonolualon ia that P(i) holda for every poaslbla I in tha dcaaln.

The oatoh in this form of proof la the generallty of tha lnduotion atap. It
■oat uork for all non-alnlaal i. Iha eaae with uhloh thia Bay ba proved
governa tha oholoa of tha lnduotlva ordarlng, uhloh aay ba quite unlike the-
inforaatlon ordering of the data type.

5.6.3. Ctaaple of Data lnduotion:
Consider the function aua_streaa defined in Figure 2-1. Suppoae that tha
input atraaa to tha funotlon la

* I, *2• *3< ••••
We uant to show that the output atreea

H. V2 . 13........
has tha property

Here ue can use data induction, ohooalng our Inductive ordering aa tha prefli
ordering on atraaaa.

Is a baala, ue auppoae that I ia the null atraaa. Iha property clearly holda
In thla case, aa tha output la alao tha null atreaa, according to tha
definition of aua_atreaa.

hi the Inductive atap, auppoae that i la not tha null atreaa and the property
holda for all s uhloh are proper prefliea of i . In particular, i has aoae
non-taro ninbir of coaponenta, aay 1, and tha property holda for tha prefli of
length 1 - 1. Hore preoiaely,

>l_l • If ♦ *2 ♦ *3 ♦ •••• ♦ *1-1

The i-1**1 coaponent of the atraaa output of the add_atreaaa Mill therefore be
1-1 ♦ <1 But thla ooaponant la also tha Ith ocaponent of tha output
y. Hanoa

105

Tl ■ it ♦ «2 ♦ »3 ♦ ♦ *1
Combining the abova with tha lnduotlva hypothesis. wa hava tha lnduotlva
eonolualon.

Tha Inductive proof method abova la only partially ooaplata, aa wa hava
assumed thus far that tha Input at rasa 1 la flnlta. To uka It ooaplata. wa
■list obaarva that tha truth of tha oonolualon for an lnflnlta 1 follows froa
Ita truth for all Its flnlta prefliea. In thla example, tha obaarvatlon
Indeed holda. To aaa why, auppoaa that tha atatement la trua for all flnlta
1 , but thara la an lnflnlta i auoh that for aoaa 1 It la not trua that

*1 ■ 11 ♦ *2 ♦ 13 ♦ ♦ »1
Than olaarly tha oonolualon auat also fall whan tha flnlta prafli of langth 1
of y la tha Input, which la a contradlotlon.

5.6.4. Admissibility makaa proofs work for lnflnlta objaota.
Iha quality of a predicate P, that tha truth of P on lnflnlta objecta follows
froa Ita truth on msaller flnlta trunoatlons. Is oalled admissibility. It la
a apaolal ossa of tha oonoept of oontlnulty of funotlona on data typas aa
dlaoussad earlier. In partloular, If wa view a pradlcata as a function Into
tha data type with doaaln (trua, false) which has tha ordering true < false,
than oontlnulty with raapaot to thla typa la tha same as admissibility.

It la aasy to oonstruot aiaaplaa of pradloataa whloh ara not admissible In the
abova Sanaa. Consider, for aiaapla, the natural nuebers, with Infinity added,
snd the nuaerlo ordering. Let P(i) be "1 la finite*. Then the baals P(0)
holds and tha Inductive atap holds for flnlta 1 . Al so tha lnduotlva hypothesis
holds for Infinity. However, tha Inductive oonolualon most oartalnly doaa not
hold for Infinity. Hence this P Is not admlsslbls.

106

5.6.S.- Proof* for sequential programs oan ba oaat aa funotlon graph proof a.
Ua now dlacuaa lnduotlon on execution aaquanoaa. In particular, wo dlaousa
axaoutlon of flowohart prograaa, and show how Interpret thla fora of Induction
aa Induction on data in the funotlon graph aodel. A typloal and widely uaed
veralon of lnduotlon on exeoutlon sequenoee la one uaed to prove that an
assertion about the valuea of prograa variablea holda when the prograa
terminates, assuming that another assertion about the values of thoae
variablea held when the prograa started. Thla aethod ia widely attributed to
(Floyd 671* although its essenoe appeared in (Corn 591. To apply the method,
it ia oTten neoeasary to add other aaaertiona about the valuea of variablea at
other polnta in the prograa.

To view the above aethod in the function graph model, we think of eaoh
flowchart statement as s function on the set of aets of prograa variable
states. For example, if the variablea are (x, y, x), then the aro data type
is the set of all sets of values which csn ba aasimed by the triple (x, y, x) •
Each statement correspond a to a funotlon on this set of sets. For example,
corresponding to the ststement

x :« y ♦ x

we have the function F given by

F(3) • l(x', y, x) I (I, y, x) In 3, x* • y ♦ xl

A similar viewpoint oan be uaed to see that conventional "flowchart programs'1
are Juat apeoial typea of funotlon grapha. In thla oaae, the data type le
that of aets of state vectors, I.e. vectors of values aaslgned to variables of
the program. Tha ststement nodes of such a prograa are Just funotions on
these aets. For example, an assignment statement

x :■ F(x)

fatten viewed this way is a funotlon G defined by

G(S) • (F(x) I x In 3)

tor

for any Ht S of atata vectora. . . .

Slallarly, tha atria of two nouohart arrows la tha union of tha two aeta of
atata veotora. In equivalent viewpoint la that of predicate tranaforaara
[Dljkatra Til. alnca a predloate In auoh a prograa la the aaae aa a aat of
atata veotora.

(Hoar a 69) Introduced a aethod for ailoaatizlng tha Introduction of
aaaartlona. He lndloatad how ailoaa oould ba preaented which generete atoalo
stataaanta aoooapanlad by aaaartlona and how rulaa of lnfarenoe oould ba uaad
to (enerata ooapound atataaenta aoooapanlad by aaaartlona. Thla aathod oould
therefore be oonaldared Induction on proiraa atructura. We wlah to lndloate
that a alallar approaoh oan be used for funotlon (rapha. Thla approaoh la a
generalliatlon of Hoare'a In that It oan be applied to data typea other than
aeta of aete of prograa atatea.

5.6.6. Aaaartlonal proof aethoda eitand to funotlon grapha.
He aay aoooapany any funotlon graph with an aaaertlon ebout lta Input/output
relation. Thla alght ba deooapoied Into an Implication whloh lnvolvea a
hypotheala about the Ingoing value and a oonolualon about the outgoing value,
but other foraa of aaaartlona are poaalbla. For atoalo funotlona. tha
allowable aaaartlona are derived ad hoo froa the aeaantloa of thoae funotlona.
For non-atoalo funotlona, coapoaltlon rulaa auat be developed which derive the
aaaertlon for the funotlon froa the aaaartlona for lta oonatltuanta.

In eieaple for a aarlea Interconnection of two grapha la ahown In Figure 5-28.
In tha aaae that the aaaartlona are deooapoaed Into the type of implication
mentioned above, we have e alapler ooapoaltlon rule, es ahown In Figure 5-29.
Slallarly, whan one oparator la a oond, we aay uaa the rule In Figure 5-30.

5.6.7. Filed point Induction provea propertlaa of funotlona.
6 vary laportant rule la tha filed point Induction rule, which glvea us a way
of proving propertlea of reouralvely defined funotlona. Iha rule la ahown In
Figure 5-31. leoalllng that H*(G) ia tha function ooaputed by tha recuralve

108

Fi|ur« 5-28: Composition rule for i Mr Us intsrooonsotion

109

1bfar

Figure 5-29: Special oase of the composition rule for series interconnection

i

110

Flgur* 5-30: Composition rule for oond

produotion with antecedent 0 in Figure 2-19* the rule aays that to prove aoae
property f for h"(0), it auffioea to prove

1. Baala: Kf), trtiere f repreaenta the funotlon whloh alwaya hat the
value undefined.

2. lnduotion step: For arbitrary f, assuming P(f), ahow P(H(f)).

If we were to view a reouraive produotion aa an application of a graph to a
value, aa dlaouaaed in Seotlon 5.2, then fixed point induction beooaea a oaae
of data induction, with the prograa (i.e. funotlon graph) aa data.

Fixed point lnduotion on functions aoaetiaes falla to prove defining
propertlea of funotlona. For exaaple, If w» were to atteapt to use it on the
aua_atreaa exaaple above, we would take P(f) to be f(«t, x2.........) > H,

112

*\+*2» Homvtr, fixed point induotion Mould foil slnoe the
bails, P(T) is fslse. (It is interesting to nots, bo waver, thst the Induotion
step succeeds.)

On the other hsnd, fixed point induotion is often useful for proving
properties possessed by s funotion other then the defining properties. Ve
conclude this section with en example.

Exsmple: Let AS sbbrevlste the funotion edd_stresms defined in Figure 2*9 snd
let SS sbbrevlste the function sm__stresm defined In Figure 2*1. Suppose us
wljh to prove the following:

TheoreM: For sll solid otresMS i, y,

SS(AS(x. y)) ■ AS(SS(x). SS(y))

By s solid atresN, we Mesn s one-level stresM in whloh no component oan be t.
For convenience, we re-deflne oons to be semi-strlot, thst Is oons(T, x) is
equsted with 1 for every x. The reason for doing so is thst the
trsnsforMstions which follow fell without this re-definltlon. This does not
preclude the possibility of a stream whloh is InooMplete st the end, e.g.
cons(s, oons(b, ?)) Is the solid stresM sb...

Figure 5-32: TWo grsphs to be shown equivslent

A graphloal presentation of the theoren is given by sssertlng the equivslenos
or the two grsphs shown In Figure 5-32. We shall prove the theorem using
fixed point induction.

113

Fl(ur« 5-33: Two grsphs aiiuiid to be equivalent

taring th« oourtt of the theorem, we ahall appeal to tha equivalence of tha
two graphs In Figure 5-33. The latter equivalence oan be proved In a Banner
analogous to the theorem, but the proof la auoh simpler.

Figure 5-3*: Graphs to be show) equivalent by fixed point Induction, where
H(g) is the consequent of g In Figure 5-3b.

11#

Figure 5-35: Basis of the fixed point lnduotlon

Figure 5-36: lnduotive hypothesis of the fixed point induction

115

Figure 5-37; Inductive oonolusion of the fixed point lnduotlon. leads to
the troneforaed greph in Figure 5-3B.

lit

Ve appall to the fixed point lnduotion principle to pro** the iqiditliMi of
the graphs In Flgura 5—3*1. Iha basla la tha equivalence of tha graph* In
Flgura 5-35, where T la tha constant funotlon tdtoaa value la tha null atraaa.
Tha aqulvalanoa of these grapha follows froa tha definition of A3, alnoa
U(t, T) > oona(T, T) ■ 1, aeoordlng to our ra-daflnltlon of eoaa.

Iha Induction atap aaauaea the aqulvalanoa of tha grapha la Flgura 5-36 and
provaa tha equivalence of those aaae graphs, esoept with f replaoed bjr 11(0 .
The reaulta of thate replaoeaenta are ahotai la Flgura 5-37.

Iha left graph In Flgura 5-37 la ahown equivalent to the right one by the
aerlaa of tranaforaatlona In Flgura 5-38. The Justlfloatlona are aa follows:

a. Definition of U.

b. Definition of head, tall,
o. Equlvalenoa In Flgura 5-33.
d. Definition of 43.
e. Inductive hypothaalt.’

f. Folding.

g. Definition of U and folding.

117

Flgur* 5-38: TrMKforaatlona used In dtrlvlng th* lnductlv* oonoluilon
(eontlniwd .Mit 2 pagta) .

119

120

<. Poatlude

6.1. Iddltlonel Mstorloel Material
The literature of engineering H lneti, particularly eleotrloel engineering
and oontrol theory, haa aeen aany uaea of (raphloal aodela for funotlon-baaed
ayateaa. See, for wupli, [Zedeh and Daaoar 63], Mhleh dlaausses a version
of tha deteralneoy thaorea for general ayatraa. Many (raphloal aodela for
date-flow ([Conatantlna 68], [Adaas 68], [lodrlguex 69], [Saror TO]) have baan
deaorlbed In tha eoaputar aolanoe lltaratura, tha orlilnal or uhloh aaaaa to
ba [Karp and Nlllar 66]. In Boat of thaaa, tha (raphe have played a rather
etetlo role, lnatead of being dynaaloally atruoturable entltlea. Many of
theae etatlo aodala are surveyed in [Baer 781. t different ostagory of aodel
la beaad on atate-tranaltlon behevlor. These aodala are not aurvayad here,
but eiaaplea aay be found In [Petri 66], [Karp and Nlllar 69], and [Keller
76].

[Churoh (1] lntroduoed the laabda-oelculua, on uhloh aany aodele of funotlonal
progreaalng are baaed. Ihe graph aodal presented hare la aora ganaral In that
It provide* a looping atructure uhloh oan not be dlreotly rapreaented In tha
laabda oalculua. [Broun 62] prophaalaa tha use of eppllcatlve languagaa for
tha exploltetlon of parallel prooaaalng oapablllty. (Boha 66] dlaausses the
relationship between a graphloal aodal and reouralon equations. [Patll 67]
dlaousiea parallel evaluation In a graphical laabda oaloulua aodal.

Iha fixed point theory la due to [Klaane 52] with subsequent ganarallxatlon by
Soott, for exaapla [Scott 70, 71, 76]. [Patll 70] praaanta a deteralnaoy
thaorea for ona-level atraaa-based ayateaa uhloh la alallar to a related proof
In [Zadeh and Daaoar 63]. (Kahn 70 dlaaussea flxad-polnt aaaantloa In a
aodal uhloh oould ba oonaldered either graphloal or equatlonal, but without
tha rlohneaa of Llep operatora and data atruoturea. The letter ware
Introduced Into a graph aodal In [Keller 771. [Adaaa 68] praaanta a aodal
with Uap-llke operatora, but having a aaaantloa auoh lass rloh than tha one
preaented here. Systems baaed on equations, without functions as dsts

121

122

objects, art dliouisad in [O'Donnell 77). [Turner 791 usee i ri]ii«d graph
nodal to represent recursion.

The um of epplioetive lin|ua|«i to iapleaent unbounded structures has been
desoribed in [Lsndln 60, [Kahn 7*), (Burge 75). (Friedaan end Wise 76],
(Henderson end Norrla 76]. The lsst two give sketches of oorreotness proofs
for their evaluators, which sre sequentisl. [Vulllealn 7*3 diso usees issues
of optlaellty of evaluation rules for recursive fuootlons. [Bunaeaa, et el.
80) describes the use of a functionsi lsngusge end laxy evaluation in databsse
epplloetiona. Other sspects of sppllcstlve languages sre discussed, for
exeaple, in [Landin 65], [Evens 681, (Backus 76], [Iverson 79)* snd [Sleep
80).

As this aanusorlpt was being revised, [Henderson 80) aade its eppeeranoe. It
is s highly-reooaaended book, with additionsl exaapies of the use of
indeterainaoy snd use of functions es vslues. Grsphs sre used to a Halted
extent, but their eveluetlon is executed differently than we hsve suggested,
snd the notion of enveloping is not used.

Graph Models have long held eppeel for representing computing systems in Uiloh
the processing loed is distributed eaong dlstlnot physlosl units. The thrust
or aost work on distributed processing hss been in the direction of
process-baaed systeas, i.e. those involving the intercoaaunlcetion of aultlple
sequential processes [Conway 63), (DIJkstra 68), (Kahn and HaoQueen 77),
(Hoare 781, eto. Lately, there has been increased interest in what alght be
teraed teak-besed systeas. Instesd of using "tssk" as a synonjp for
■process*, we propose adopting a different aenae of the foraer: e fundeaental
unit of work involving the coaputatlon of soae stoaio funotion. Hence
task~bssed systeae generally lend theaselves to the expression of a finer
grain of concurrency that do process-bssed systeas.

Tesk-based systeas hsve been discussed [Dennis 69)« [Frledasn and Vise 78),
(Hewitt 77), and [Hewitt end Baker 78), although aore work aeeas to hsve been
done on high-level lenguages then st the iapleaentatlon level. [Arvlnd and

123

Goatelow 77). [Davis 7Ba), and [Dannie and Hlauoaa 74). deaorlbe aoae
lapleaentatloa aapeota of these ayataaa. Tha oonvaralon of oonvantlonal
prograaa to data flow prograaa for tha purpoaa of aitraotlng paralltllaa la
tha aubjeot of [Uraehltr 73). in lapleaentatlon of FGL haa bttn dlacuaaed In
[Keller, Undatroa, and Fatll 79). .

[Grelf 75) and tFranoax 79) dlaouaa proof aathoda for taak-baaad ayataaa.
[Terk 70), [Nanna 70, and [Stoy 77), aaong othara, dlaouaa proofa for g'anaral
aodala rapraaantabla by flxad point aaaantloa. A proof aathod baaad on tall
recurelon la preaented In [Marurklewlox 71]. [Nllnar 72] dasorlbaa a
atchanlutlnn of fliad-polnt Induction. [Boyar and Haora 75] dlacuae
aechanlratlon of data Induotion In Llap prograaa.

i.2. Conolualona
Ua hava praaanted a ganaral graph aodal baaad on funotlona ovar data typaa and
lndloatad hoy tha aodal oan ba uaad to rapraaant dynaaloally-atrueturad
parallal and recuralve ooaputatlona, Including lnterooaaunloatlon between
ooaputlng aodulaa. Froof aathoda and varloua typaa of tranaforaatlona uera
dlaouaaed. Ua al so Indicated how tha grapha theaaelvea cculd ba uaad aa data
objaota.

Although thla aodal haa baan found uaaful In davaloplng an aiacutlon aodal for
a highly oonourrant aaohlna archltaotura, ua ara alao aiplorlng varlatlona of
It aa both a hardware and ao ft wara development tool. Although othar graph
aodala hava baan proposed In thaaa contaita, ua faal that funotion baaad
aodala ara particularly relevant, elnoe rather than Just eaploylng grapha aa a
ayntaotlo entity, our aodel can alao aaalgn a aeaantlo Interpretation to each
graph. Thla feature la eitreaely uaaful In progreaalva raflneaeat, alnoa It
oan avoid having to aultch aodala aa tha level of deaorlptlon bacoaea aore
detailed.

He hava avoided advooatlng the uaa of a graphloal acdlua aa the aole aeana of
ooaaunlcatlon. A textual veralon of our FGL haa been developed [Keller, et

121

•1. 60] and aeeaa aort ustibl« for ooaaunloatlng proiran onoe they ara
developed. However, tha us*fulness of a graphical praaantation for Initial
devtlopitnt and enhancing conceptual understanding aannot ba denied.

Preliminary work has baan dona in tha usa of a graphical foraalla in proofs
of correctness, Such a foraalisa off ara tha advantage of battar visualIration
over conventional linaar foraula repreaentatIons, whloh ara prone to errora.
For exaaple, wa ho pa to apply tha technique to proofs of storage aanageaent
sigorithas. An initial attempt at foraallting thla applloatlon appears In
[Mori 791.

T. Aoknowladiaenta .
I aa Indebted to aany people for dlaousalona over the last aevaral yeara
relating to tha eontant of thla paper, lnoludlng (la Goatalou, Glllaa Kahn,
Cary Undstroa, and Suhaa Patll. I alao appreolata the help froa Jad Hartl In
prograaalnf the flrat ooapllar for whet latar beoaaa taitual FGL, to Barat
Jeyeraaen for attending and helping Maintain that ooapllar, and to Gary
Undatroa for progreaalng tha flrat FGL run-tlae aystea. Additional help waa
provided by FVancle Hunt, Anil Norl, Ruaa Raabo, and David toae. Paul Hudak
foind a aerloua error In the aanuaorlpt. I have enjoyed anoouregeaent froa
Arv Ind. Ed Aahoroft, Stave Boll, Wealay Clark, A1 Davla, Jaok Dannie. Paul
Drongowskl, Dan Frledaan, Chrlatlan Graa, Tony Hearn, Dlok Kleburtx, Hark
Hlllar, Stave Huohnlok, Elliott Orgenlok, Don Oiley, Avl Sllberechati, lonan
Sleep, and Horat Wedde. A rough draft of thla paper waa used In e aaalnar at
the Inatltute for Software Technology, CUD, Bonn, In the Spring of 1980, and I
appreciate the ooaaenta and auggastlons aada by tha partlolpanta thereof.
Laat, but not least, I thank the referees of tha ACH Goaputlng Survey for not
letting a poorly-aotlvated draft gat through. Of oouru, none of thaaa
Indlvlduala la responsible for errora or lack of olarlty In thla praaantatlon.

127

>, leforonoea
Reference tags followed by * arc not cited in the text. ‘ -
[Urn 68) t .l, Idm. A computation sodil with data flow aequenolng.

Stanford University, Computer Solenoe Dept., Taoh. Bept. CS117
(1968).

(Allan 78) J. Allan. Anatomy of Llap. HoGriw-Hl11 (1978).

(Arvlnd and Gostalow 77) Arvlnd and K.F. Goat*low. A oomputer oapabla of
exohenglng prooaasors for time. Proo. IFIP *77. 849-853 Uuva
1977).

(Arvlnd, at al. 77) Arvlnd, K.F. Gostelow, and V. Flouffa.
Indeterminacy, monitora. and dataflow. Oparatlng Systems lavlaw,
11. 5. 159-169 (Nov. 1977).

(Arvlnd and Goatalow 78] Arvlnd and K.F. Goatalow. Some relationship*
batw**n asynchronous Interpreters of a dataflow language. In [.J.
Neuhold (*d.). Foraal description of programing concapta,95-119.
North-Hollend(19TSTT------------------ ------------ -----

(Ashoroft and Wadga 771 E.A. Ashoroft and W.W. Uadga. Luold, s
nonprocadursl language with Iteration. CACM, 20. 7. 519-526 (July
1977).

(Backus 78] J. Backua. Can programming be liberated from the von Neumann
atylel A funotlonal atyle and Ita algebra of prograaa. CACM,. 21,.
8. 613-641 (Aug. 1978). .

(Baar 78] J.L. Baer. Graph modala In programming ayatama. In Chandy snd
Teh (eds.), Current trends In programming methodology. HI, 168-231,
Frentlce-Hall (1978).

(Balter 71] R.M. Balxar. Forte - A method for dynaalo Interprogram
communication and Job control. AFIPS Proo. 38, 485-489 (Spring
1971).

(Bohm 66) C. Bohm. Iha CUCH as a formal deacrlptlon language. In T.B.
Steal (ed.). Formal language description languages. North-Holland
(1966).

(Boyar and Noora 75] B.S. Boyar and i.S. Hoora. Proving theorems sbout
Llap funotlona. JACM, 22, 1, 129-144 (Jan. 1975).

(Brown 62] G. Broun. A naw concept In programming. In M. Graanberger
(ad.), Management and the computer of tha future. Wiley (1962).

(Buneman, et al. 80] O.P. Buneman, B.C. Fran leal, and I. Nlkhll. An
Implementation teohnlque for database query languages, to appear In
ACM TOM (I960).

tBurga 75] W.H. Burge. Reouralve programming techniques. Addlaon-Wealey
(1975).

12#

(Cheaberlln 71] D.D. Chaaberlin. Tha single-assigratnt apprpaob to
parallel prooeeelng. AFIP3 froo., 263-269 (Fall 1971).

(Church 19*1] A. Qiuroh. Tha calculi of laabde-contraralon, Frlaoaton
University Praaa (19*1).

(Constsntlne it] L.L. Constantina. Control of aaquenoe and parallaliaa
aodular prograa*. AFIPS Proa., «09-*1« (Spring 196t>.

(Conway <31 H.E. Conway. Daalgn of a separable transition-disgrsa
ooapller. C1CH, 6. 396-406 (1963).

(Corniah 791 H. Cornlah. Iha TI data flow arohltaoturas: tha power of
oonourrenoy for avlonios. IEEE Third Digital Avionios Systea
Conference (1979).

I Corn1 ah go) H. Corniah. Data flow control: a ’Motherboard* for VH3IC
arohlteoture. IEEE Workshop on Hioroprooeasors in Military and
Industrial Systens (I960).

[Curry and Fays 19] H.B. Curry snd I. Feys. Coabinatory Logio. I,
North-Holland 0956). “

(Davie 7Be] l . l . Davis. The arohlteoture and systea aethod of DOM-1: A
reourslvely-struotured dete driven aaehlne. Proo. Fifth Annual
Syaposlia on Coaputer Arohlteoture (1976).

(Devle 78b) A.L. Duvle. Dete driven nets: A asiiaslly oonourrent.
procedural, parallel procese reprasantetlon for distributed oontrol
systaas. Tech. Kept. UUCS-78-108, Univ. of Utsh, Dept, of Coaputer
Science (July 1976).

(Dennis 69) J.B. Dennis. Progreaalng generality, psrallelisa. snd
ooaputer architecture. Proo. IFIP 68, 484-492, North-Holland
(1969).

(Dennis 7*1 J.B. Dennis. First version of s data flow procedure
lenguage. in B. loblnet (ed.), Pronraaaint Syaposlua. Leoture Notes
in Coaputer Solenoe, 19. 362-376 (1970. '

(Dennis snd Misunss 70 J.B. Dennis snd D.P. Hisunss. A prellalnsry
srohlteoture for s bsslc data-flow procsssor. Proo. 2nd Annual
Syaposiua on Coaputer Architecture, 126-132 (Deo. 1974).

(Deleaer and Kron 76] F. Deleaer snd H.N. Iron. Prograralng-In-the-large
versus prograaBlng-in-the-aasll. IEEE Trans., SC-2, 2 (June 1976).

(DIJkstrs 66] E.W. Dijkstrs. Cooperating sequentlsl processes. In
F. Cenuys(ed.), Progrsaalm languages. Aeadeaio Press (1966).

(DIJkstrs 76] E.W. Dijkstrs. A dleolpline of proiraaalni. Prentioe-Hall
(1976). "

(Evans 661 A. Evsns, Jr. PAL- s lsnguage designed for tesohing

129

progrwaatng llnguietloa. Proo. ACM Nat. Conf., 395-403 (1966).
[Floyd 67) R.U. Floyd. Assigning mm Ir ii to prograaa. Proc. Syap. in

Appl. Hath..19. 19-32, AMS (1967).

[Forreater 61] J.U. Forrester. Industrial dynaaios. MIT Press (1961).
[Franoas 79) On aohlevlng dlatrlbuted teralnatlon. in Kahn (ed.).

Seaantlca of ooncurrant coaputation. Springer Lecture Notea in
Coaputar Science, 70, 300-315 (1979).

[Friadaan and Ulna 76) D.P. Frladaan and D.S. Ulse. CONS ahould not
evaluate ita arguaenta. in Hiohaalaon and Milner (eda.), Autoaeta.
Languages. and Prograaalng. 257-264, Edinburgh Unlveralty Freaa
(1976)7

[Frladaan and Ulaa 77) D.P. Friadaan and D.S. Ulaa. Aspeota of
applicative prograaalng for file ayataas. 31gpian Notloea, 12, 3,
41-55 (March 1977).

[Frladaan and Wlee 76) D.P. Friadaan and D.S. Ulaa. Tha iapaot of
applioatlva prograaalng on aultlprocaaalng. IEEE Trans, on
Coaputera, C-27. 4. 269-296 (April 1976).

[Friadaan and Ulaa 79) D.P. Frladaan and D.S. Ulaa. An approach to fair
applicative aultiprograaalng. in Kahn (ad.), Scaanttoa of
concurrent coaputation. Springar Leoture Notea in Coaputer Science.

[Giordano 60) J.V. Giordano. A tranaforaation for parallel prograas with
indateralnate operators. UC Irvine Dataflow Architecture Project
Note No. 46 (Fab. I960).

[Corn 59) S. Corn. Coaaon prograaalng language task. Part 1, Section 5.
Final Rapt. AD59UR1. U.S. Aray Signal Corpa. Moore School of
Electrical Engineering (Aug. 1959).

[Grelf 75) I. Grelf. Seaantloa of ooaaunicating parallel prooesaea. MIT
Project MAC TR-154 (Sept. 1975).

[Gurd and Uataon 77) J. Gurd and I. Uataon. A aultllayered data flow
coaputer architecture. Proo. 1977 International Conrarenoe on
Parallel Proceaaing (Aug. 1977).

[Guiaan and Segovia 76) A. Guzaan and R. Segovia. A parallel
reconflgurabla Liap aachlne. Proo. International Conference on
Inforaation Sciences and Systeaa, Uhiveralty of Patraa. Greece,
207-211 (Aug. 1976).

(Hearn 74) A.C. Hearn. Reduce 2 ayabollo aode prlaer. Utah Syabollo
Coaputation Group, Operating Note 5.1 (Oot. 1974).

[Hebalkar and Zillea 79) P.G. Hebalkar and S.N. Zlllea. Graphical
rapreaentatlon and analysia of inforaation ayateaa dealgn. IBM

130

Beeearoh Rept. tJ 2465 (Jan. 1979)* .

[Henderson 751* D.A. Henderson. Jr. The binding aodel; A seasntlo bsse
for aodulsr progrsaalng systeas. HIT MAC TA-145 (Feb. 1975).

[Henderson snd Morris 76) P. Henderson snd J.H. Morris, Jr. A lsxy
evaluator. Proo, Third ACM Conferenoe on Frlnolples of Programming
Languages, 95-103 (1976).

[Henderson 80) P. Henderson. Functional progrsaalng. Prentloe-Hall
(1980).

[Henneasy and Ashoroft 77) H.C.B. Henneasy snd E. A. Ashoroft.
Parameter-passing aeohanlsas snd nondeteralnisa. Proo. Ninth ACM
Syaposlimi on Theory of Coaputlng, 306-311 (1977)*

[Hawltt 77) C. Hewitt. Viewing control atruoturea aa patterna of passing
aeasages. Artlfloisl Intelligence, 6, 3. 323-364 (June 1977).

[Hewitt snd Baker 76) C. Ifewltt end H. Baker. Actors end eontinuous
funotlonels. in E.J. Njuhold (ed.), Formal deacrlptlon of
prograaalng concepta, 365-390, North-Holiand (1978).

[Hoare 69) C.A.I. Hoare. An silomatlo bsals for computer progrsaalng.
CACH, 12, 10, 576-560, 583 (Oct. 1969).

[Hoare end Wlrth 73) C.A.B. Hoare end N. Ulrth. An ailoaatlo definition
of the programming language Pesoal. Aota Informatloa, 2, 335-355
(1973).

[Hoare 76) C.A.B. Hoare. Communlcstlng sequentlsl processes. CACM, 21,
8. 666-677 (Aug. 1978).

[Iverson 79) K.E. Iverson. Operstors. ACM Toplss, 1, 2, 161-176 (Oct.
1979). ~

[Jeyeremen end Keller 80) B. Jayaramen and N.M. Keller. Resouroe control
in a demand-driven data-flow model. Proo. Internstlonsl Conference
on Parallel Proceaalng, 118-127 (1960).

[Johnson, et si. 60) D. Johnson, et si. Autoastto partitioning of
programs In aultlprocessor systeas. Digest of pspers, IEEE Coapcon
80, 175-176 (Feb. I960).

[Johnston 69) J.B. Johnston. Struoture of aultlple activity slgorlthas.
Third Annusl Princeton Conference on lnforaation Solenoe snd
Systeas, 38-43 (March 1969).

(Johnston 71) J.B. Johnston. The contour model of blook structured
processes. Sigplsn Notices, 6, 2, 55-62 (Feb. 1971).

[Kehn 74) G. Kahn. The seasntics of s simple lsnguege for parallel
prograaalng. Proo. IFIP *74, 471-475 (1974),

131

(Kahn and NeoQuean 77) G. Kahn and D. NaoQuaan. Coroutine a and net wo r lta
of parallai prooaaaaa. Proo. IFIP *77* 993-996 (1977). ‘ -

(Karp and Nlllar 66] K.N. Karp and I.E. Hi Her. Properties of a aodal
for parallel computations: Determinaoy. ternlnatloo, queueing.
SIAN J. Appl. Hath. 14. 6. 1390-1411 (Mov. 1966).

(Karp and Nlllar 691 K.N. K*rP *nd Millar. Parallel program
aohamata. J. Comp, and Syat. Sol.. 3« 2. 147-195 (Hay 1969).

[Keller 73] K.N. Kallar. Parallel program aohamata and maximal
parallelism. JACM. 20. 3, 514-537 (July 1973) and JACN, 20. 4.
696-710 (Oot. 1973).

(Kallar 74] R.N. Kallar. Towarda a theory of unlveraal apeed-Independent
modulea. IEEE Tirana, on Computera. C-23* 1. 21-33 (Jan. 1974).

[Keller 75] K.H. Keller. Look-ahead prooeaaora. Computing Surveya,' 7.
4. 177-195 (Dao. 1975).

(Keller 76] K.N. Kallar. Formal verification of parallel programa.
CACH. 19. 7. 371*384 (July 1976).

[Kallar 77) R.N. Kallar. Samantioa of parallai program grapha.
Unlvaralty of Utah. Dept, of Computer Soienoe. Taoh. Kept.
UUCS-77-110 (July 1977).

[Kellar 78a) K.N. Keller. •DenotatIona1 model a for parallel programa with
indetarninate operatora. In E.J. Nauhold (ed.). Formal description
of progranmlng concepts. 337-366. North-Holland (1978).

[Keller 78b) K.H. Kallar. An approaoh to determlnaoy proofs. Unlvaralty
of Utah. Dept, of Computer Soienoe. Tech. Kept. UUCS-78-102 (Haroh
1978).

(Keller. Llndstrom. and Patll 79) K.N. Kallar. G. Llndatrom. and
5. Patll. A loosely-coupled applicative multi-prooeasing aystem.
AFIPS Proo. (June 1979).

(Kellar, Llndatrom. and Patll 80] K.N. Kallar. G. Llndatrom. and
S. Patll. Data-flow oonoepta for hardwara deaign. Dlgeat of
papara. IEEE Compoon 80. 105-111 (Feb. I960).

[Keller 80] Divide and CONCer: Data atrueturlng for applloativa
multiprooeaalng. Proo. 1980 Liap Conference. 196-202 (Aug. 1980).

(Kellar. at al. 80) FGL Programmer1a guide. Unpublished memo.
(Keller snd Llndatrom 80] K.N. Kallar and G. Llndatrom. Hlararohical

analysia of a dlatrlbuted evaluator. Proo. International Conference
on Parallel Prooeaalng. 299-310 (1980).

(Klaana 52] S.C. Klaane. Introduction to metamsthematica. Van Hoatrand
(1952).

132

[Kleene 56} B.C. Klim . Repreaentation of tvmfci 1b i»r»* Beta and
finite mtoaiti, In C.E. Shannon and J. Ho Car thy (eda.), Auto—t a
atudlea. 3-42, Prlnoeton Unlveralty Press (1956).

[Koalnakl 79] p.I. Kosinskl. Denotstional aeaantlcs of determinate and
non-determlnate data flow prograaa. HIT/LC3/T8-220 (May 1979)*

[Landin 64] P.J. Landin. Tha aeohanloal evaluation of oaproaaiona.
Coaputar J., 6, 4, 306-320 (Jan. 1964).

[Landln 65] P.J. Landin. A corraapondanoa between Algol 60 and Churoh1a)
Laabda-Notation, CACH, 8, 2, 69-101 (Fab. 1965) and 0, 3. 156-165
(Har. 1965).

(Hanna 74] Z. Manna. Matheaatlcal theory of eoaputatlon. HoGraw-Hill
(1974).

[Hazurkiewioz 71] A.V. Mazurklawioz. Proving algorlthaa by tall
functlona. Inforaation and Control 16, 220-226 (Apr. 1971).

[McCarthy 60] J, hoCarthy. Saouraiva functions of syabolio azprassions
and thslr coaputation by machine, 1. CACH, 5. 27-37 (1970).

(HoCarthy 63a] J. HoCarthy. Towarda a aathaaatloal solanoa of
ooaputatlon. IF IP *62, Proo. 2WB (1963).

[McCarthy 63b] J. McCarthy. A baals for s aathaaatloal thaory of
eoaputatlon. In P. Braffort and D. Hlrahberg (ada.), Coaputar
prograaalng and foraal aysteaa. 33*70, North-Holiand (1963). *

[Hllnar 72] I. Milner, lapleaentatlon and applioatlons of Soott9s loglo
Tor coaputabla funotiona. SIgpian Notices, 7. 1« 1-6 (Jan. 1972).

[Morris, at si. 60]* J.H. Morris, E. Schmidt, snd P. Wadlsr. Eiperienoe
with an applioatlva string prooesaing language.

[Morris snd Sohwars 80]* L. Morris snd J. Sohwars. Computing cyollo list
struotures. Proo. I960 Lisp Conference, 144*153 (Aug. 1980).

(Hoaas 70] J. Hoses. The funotlo* of FUNCTION In Lisp. SICSAM Bulletin,
13-27 (July 1970).

(Mudge 78] T.N. Mudgo. A data driven coaputer architecture. Proo. Johns
Hopkins Conf. on Inforaation Soienoea and Syatama (1978).

[Nor! 79) A.I. Nori. A storage reclamation soheae for AMPS. M.S.
Thesis, Dept, of Computer Sclenoe, Unlveralty of Utah (Deo. 1979).

[0‘Donnell 77] M. O'Donnell. Coaputlng in systeas described by
equations. Lecture Notes in Coaputer Science, 58 (1977).

[Psrk 70] D. Psrk. Flxpoint induction snd proofa of program eorrectoeaa.
Machine Intelligence. 5, 279-299. North-Holland (1970).

133

(Petereon Mid Hewitt 70] N. Pateraon and C. Hewitt. Comparative
achematology. Rm . Project HAC Confaranoa on Concurrant Syat««i and
Parallel Computation. 119-128 (1970). .

(Patll 671 S. fit11. An abstract parallel-prooesalng ayatea. H.S.
Theala, HIT Dept. of Eleotrloal Engineering (June 1967).

[patll TO] S. Patll. Closura Propartlaa of lntarconnaotlons of
dataralnata systaaa. Proo. Projaot MAC Confarance on Concurrent
Systeas and Parallel Computation, 107*116 (Juna 1970).

[Patrl 66) C.A. Patrl. Communication with autoaata. Supplement 1 to
Tech. Kept. RADC*TR-65*377. Grlfflaa Air Foroa Base, New Tork
(1966).

[Plaa 76] A. PI as, at al. LAU ayatam architecture: A parallel
data-driven processor based on single aaalgnment. Proo.
International Conferenoe on Parallel Prooeaalng, 293*302 (Aug.
1972).

(Plotkln 76] C.D. Plotkln. A power doaaln construction. SIAM J. Comp.
5, 3. 452-487 (Sept. 1976).

(Pritsker and Pegden 791 A.A.B. Prltaker and C.D. Pegden. Introduction
to simulation and Slam. Halated Preaa (1979)*

[Pugh 70) A.L. Pugh III. Dynamo user1a manual. HIT Press (1970).

(Quine 60] W. Quine. Word and object. Wiley (I960).

[Rabiner and Rader 72] L.R. Rabiner and C.H. Rader. Digital algnal
processing. IEEE Press (1972).

(Reekcr 71] L.H. Reeker. State graphs and context free languages. in
Kohavl and Psz (eds.), Theory of machines snd computations. 143*151*
Aoademio Press (1971).

[Ritchie and Thompson 75] D.M. Ritchie and K. Thompson. Tha Unix
time*sharing aystea. CACM. 17. 7. 365-381 (July 1975).

[Rodrlguex 69] J.E. Rodriguez. A graph aodel for parallel coaputatlon.
HIT Project HAC Tech. Rept. TN-64 (1969).

[Roaen 73] B. Rosen. Tree manipulating systems and Church-Roaser
theorems. JACK, 20, 1, 160-187 (Jan. 1973).

[Roaen 75)" B.K. Roaen. Deriving graphs from graphs by spplylng a
production. Aota Informatioa 4, 337*357 (1975).

(Roaa 77] D.T. Ross. Struotured analyala (SA): A language for
oommunlcating ideaa. IEEE Trans., SE-6, 1, 16-33 (Jan. 1977).

[Ruabaugh 77) J. Rumba ugh. A data flow multlprooesaor. IEEE
Tranaactione, C*26, 2. 138*146 (Fab. 1977).

13*

[Schwarz 77)• J* Sohwarx. Using annotations to Bake racuraion aquations
behave. Kaa. lept. 43, Dapt. of Artificial Intelligence, Unlvaralty
of Edinburgh (Sept. 1977). 1 .

[Scott 70] D. Scott, (hit line of a aatheaatlcal theory of ooaputetlon.
Fourth Annual Princeton Confaranca on Inforaation and Systeas
Sclanoas, 169-176 (Maroh 1970).

(Soott 71] D. Scott. iha lattlca of flow dlagraaa. Syaposlta oa
aeaantlca of algorlthalc languagaa, 188, 311-366, Sprlngar-Varlag
(1971).

(Scott 76] D. Soott. Data types as lattloas. SliH J. Coap., 5, 3,
522-587 (Sapt. 1976).

[Saror 70] D, Seror. DCPL: A dlatrlbutad control prograaaing language.
Tach. Kept. (ftEC-CSo-70-108, Dapt. of Coaputar Soianca, Unlvaralty
of Utah (Dae. 1970).

[Slaap 80] H.R. Slaap. Applicative languagaa, dataflow, and pura
coablnatory coda. Digest of papara, IEEE Coapcon 80, 112-115 (Fab.
1980).

(Salth and Chang 751 J.N. Salth and P.T.T. Chang. Optialxlng tha
parforaanca of a ralatlonal algebra databaaa lntarfaoa. CACH 18,
10. 568-579 (Oct. 1975).

(Saoliar 79) S.lf. Saollar. Using appllcatlva taohniquas to daalgn
dlatrlbutad syataas. Proo. IEEE Conf. on laliabla Software (April
1979).

[Sayth 78) H.B. Sayth. Power doaalns. JCSS, 16, 23-36 (1978).
[Stoy 77] J. Stoy. Tha Scott-Strachey approach to tha aatheaatlcal

aeaantlca of prograaaing languages. HIT Press (1977)*

[Syre, et al. 771 J.C. Syra, at ai. Pipelining, parallaliaa and
asynchronisa in tha LAU ayataa. Proo, Intarnstlonal Conf. on
Parallel Proceasing, 87-92 (Aug. 1977).

[Tealer and Enea 68) L.C. Teslar and H.J. Enea. A language daalgn for
concurrent proceaaea. AFIPS Proo., 403-408 (Spring 1968).

(Traleavan and Hole 80]* P.C. Treleaven and G.F. Hole. A aultl-processor
reduction aachlne for usar-daflnad reduction languages. Proc. 7th
Annual Syap. on Coaputar Architecture (Hay 1980).

[Turner 79) D.A. Turner. A new lapleaentatlon technique for applioativa
languages. Software - Practloa and Experience, 9, 31-49 (1979).

[Ursohler 73) G. Ursohler. The transforaatlon of flow dlagraaa Into
aaxlaally parallel fora. Proc. Sagaaora Confaranca on Parallel
Processing, 38-46 (Harch 1973).

135

[Vulllamln 741 J. Yuli 1 rain. Corraot and optlail UplMMtatlom of
roouralon In a liaplt programing lut|ua|«, JCS5, 9. 332-354
(1974). • * .

[Wadawortta 76] C.f. Wadsworth. Tha rotation batwaan computational and
doootatlonal proportlaa for Soott'a modal a of tho lambda-oaloulua.
SIAN J. Comput.. 5. 3 (Sopt. 1976).

(Ward 74} S.A. Ward. Funotional domains of applicative languagaa. NIT
Project HAC, Rept. HAC TA-136 (Sept. 1974).

[Ward and Kalatoad 00]* S.A. Ward and R.N. Ha lata ad, Jr. A ayntaotio
theory maaaaga patting. JACM 27* 2, 365-363 (Apr. I960).

[Wtlnborg 76] V. Wainbarg. Structured analyala. frontioo-tiall (1976).

(Wang 79] I.S. Wang. An abatraot inplamantatlon for a generalised data
flow language. HIT LC3 Rapt. TR-226 (Nay 1979).

(Wolfberg 72]* N.S. Wolfbarg. fundamentals or tho Amblt/L
liap-prooeaaing languaga. Sigplan Hotloaa, T* 10. 66-75 (Oat.
1972).

[Tourdon and Gonatantlna 79] C. Tourdon and L.L. Conatantint. Structured
design. frentloo-Nall (1979)*

[2adah and Daaoar 63] L.A. Zadah and C.A. Da aoar. linear ay at am thaory.
HoGraw-Jllil (1963).

