Robert M. Reller

UUCE-80-112

October 1980

sEMATICS AND APPLICATIOMS OF FUMCTION GXAPHS

Nobert M. Keller
Deperteent of Computer Selenoe
Undversity of Uteh
Salt Lake City. Utah 84112
28 Oatober 1980

Abstract

ABSTMCT Function eraphs provide graphlcal models of prograss based on function application. The uses of auoh modele include provision of a eantio framework for functionsl prograne, elplication of the atructure of cosplex systest based on function applicetion, Inoressins prozisity of proframs to certaln mppliostion domalns, resolution of mbigulties in programe besed upon systeme of equations, and representetion of executable progreas in asohines based upon data flow execution, uppliostion exenplea and underiylng theory of Sunction grapha are preaented.

Keywords and Phraees: Applicetive progremalng, Asynchronous satems. Distributed eystems. Functional programing. Greph modele. Concurrenay, Data flow, Lamble celoulus. Deasid-driven cosputetion, Parallelism. Multiprocesaing

```
CN Colegoriea: 3.2.4.2, 5.2. 5.7. 8.1
```

Thls materlal ia based upon work supported by the Nationsl Solence Foundetion under grant MCS 71-09369.

Table of Contenta

1. Introduotion 1
1.1. Hotivating Funotion Craphs 1
1.1.1. Function graphs represent applicative programa and aystemas. 1
1.1.2. Appiscetive lenguages simplify programing. 1
1.1.3. Graphical representationa are often olearer. 1
1.1.4. Funotion graphe are counterpart to flowcharts. 2
1.1.5. Function graphs form bsils for programing language 3
eesantios.
1.1.6. FCL 1 s both generic and speoifio. 3
1.1.7. The following features further motivate the Investigation of - FCL:
1.1.8. Function graphs may be executable or otherwise. 5
1.2. How to and Why lase the measinder of the Paper 6
2. Preliainary Disousation 7
2.1. Computing with Inrinite Objeats and Equations 7
2.1.1. Infinite objects provide naw ways of presenting algorithas. 7
2.1.2. An exmple of computing with infinite objeots: 8
2.1.3. Hore eramples involving infinite objeots. 9
2.2. Graphioal Modela 10
2.2.1. Graphicel models clarify complez ideas. 11
2.2.2. Aro nanes are irrelevant in function graphs. 11
2.2.3. Fields outside Computer Science employ formblizable graphs. 11
2.2.4. Stream components need not be simple. 14
2.3. Semantioe of Function Grapha 16
2.3.1. Function graphs have siaple baaic form. 16
2.4. iepresenting Syiten as Graphs 19
2.4.1. The null structure contains no information. 19
2.4.2. Handshaking 111 ustrates aimple form of communication. 20
2.f.3. Solving equations expresses long-range systen behavior. 21
2.5. enouraton 22
2.5.1. Exemple: 23
2.6. Splitting Transformation 27
2.7. Functiona as Values 30
2.7.1. Enveloping shows the creation of function velues. 30
2.7.2. Import arcs provide extra flexibility. 30
2.7.3. Produations can be eliainated. 32
3. Theoreticel Basia 37
3.1. Function Grapha and Equetiona 37
3.1.1. One funotion and one quation cuffice. 37
3.1.2. Exemple: 37
3.2. Date Types 38
3.2.1. Date iypes oharsoterise information oontent. 39
3.2.2. Limits epitomize successive mproximations. 40
3.2.3. Example of dets type: 40
3.2. H. Examples of deta types: 4
3.2.5. Date types oombine to get new deta types. 4
3.3. Babivioral Desoriptions 4
3.3.1. Reatrictions ara neosesary for suocesive appreximations to 48
mork.
3.3.2. Monotonioity insuree aped-independence in sn saynohronous 4 environment.
4. 4. Continulty 49
3.4.1. Eneaple: 51
3.4.2. Determinacy Theoren 51
3.4.3. Exemple: 52
3.4.4. Exampie: 53
3.4.5. Continuity insures composability. 54
3.5. Detaminacy of Syateas Invoiving Productions 54
3.5.1. A set of functions may be date type. 54
3.6. Finits Support 57
M. Maohine evaluation of Computetions Bepreaented by Craphe 59
4.1. A ludieentary fore of FCL 59
4.1.1. The date types of FCL 59
4.1.2. Basic Operators of FCL. 60
4.1.3. Internal representation of FGL 61
4.2. Evaluation 63
4.2.1. Description of demand propagation 64
4.2.2. Correctness of en FGL evaluator 65
4.2.3. Paralmonious evaluation 65
4.3. A1 gher Level FGL 67
4.3.1. FCL has "block" structure. 69
4.3.2. Example of textual FGL: 70
4.3.3. Another textual FGL example: 70
4.3.4. Example: 71
1. Uses of the Graphioal Formalisa 73
5.1. Loop Removal 73
5.1.1. Tail recursion represents loops in conventional floweherts. 76
5.1.2. Erample: 79
5.2. Production Resoval and Explication of MParadozioal" Comblnators 19
5.2.1. All $100 p$ and productions can be removed. 60
5.3. Parallelisa 64
5.3.1. Paralleliam occurs in different grenularities. 05
5.3.2. Auxiliary nodes can temporarily aask parallelism. 89
5.3.3. Lenient operators simplify understanding and proofa. 91
5.3.4. Date type ordering effects degree of conourrenoy. 92
5.3.5. Lenient cons enhances asynchrony. 92
5.3.6. Transparent functions ellow programeer oontrol of 94concurrency.
5.3.7. Variations on operators effect demand-driven exeoution. 96
5.4. Ancillary Applications 97
2. .. 1. Language theory uses function-graph ideas. 98
5.5. Indeteralnacy 99
5.5.1. Indeterainate operators challenge conventional intuition. 100
5.5.2. Some indeterninacles ara benign. 101
5.6. Proof Methods 102
5.6.1. Inductive proofs cone in several interrelated forms. 102
5.6.2. Information and proof orderinge may differ. 103
5.6.3. Example of Data Induction: 104
5.6.4. Admisaibility makes proofs work for infinite objeots. 105
5.6.5. Proofs for sequential programs can be cast ss funotion eraph 106 proofs.
5.6.6. Assertional proof eethods extend to function grapha. 107
5.6.7. Fixed point induction proves properties of lunctions. 107
3. Poatlude 121
6.1. Additionel Historicel Materisi 121
6.2. Conolusione 123
4. Ioknowl edfenta 125
5. liferenoes 127
Iv
List of figures
Figure 2-1: A graph for Funotion aum atreen 10
Figure 2-2: transfar nuation yith E-tranaform$\left(a_{0} \operatorname{an}_{12}^{-1}\right) /\left(1-b_{1} z^{-1}-z_{2} z^{-2}\right)$
Figure 2-3: Graphical representation of ayster dynanios model 12
Figure 2-4: A function which strips the leaves from a tree in 14
breadth-flrst order.
Figure 2-5: Illustration of fanout 16
Figure 2-6: Conourrent ereation of data atruoteres by f. . and h 17
Figure 2-7: Recoding a history dependent funotion 18
Figure 2-8: Mandshaking eremple 19
Figure 2-9: a production for the add atresen function 23
Flgure 2-10: Flrst Odd-Priaes Enemple 23
Figere 2-1i: Expansion of the Firat Odd-priaes Exmeple (odd_frou is 23
defined in Section 2.1.2).
Figure 2-12: Second Odd-Primes Exemple 23
Figure 2-13: Expansion of the Second Odd-primea Exeple 23
Figure 2-14: Splitting transformation 27
Figure 2-15: Repeated applioation of the aplitting trensformation 28
Figure 2-16: The eeaning of epply 28
Figure 2-178 lllustration of function envelopes 30
Figure 2-18: Illustration of Curryine 31
Ficure 2-19: Typioal recuralve production 32
Figure 2-20: Equivalent of the oonsequent of the production of Figure 32
2-19 using apply
Figure 2-21: A second graph equivalent to the G of Figure 2-19 34
Ficure 2-22: Folded version of G 34
Figure 2-23: Simplified folded version of C 34
Figure 3-1: Function ereph example 37
Figure 3-2: Ordering diagran for one-level atrean data type 41
Figure 3-3: P(S) ordering 41
Figure 3-4: $B(5)$ ordering 41
Figure 3-5: Flat ordering of the natural nubera 4
Figure 3-6: numeria ordering 43
Figure 3-7: Lisalt of the tree sequence $t_{0}<t_{1}<t_{2}<\ldots$ 44
 45
Figure 3-9: Product data types 46
Figure 3-10: Graph reaulting in the Fibonacol gtrean 52
Figure 3-1i: Infinite unfolded veralona of C 55
Figure A-1: Assembly language enooding of an FCL produotion, that of 62
Figure 2-1.
Figure 4-2: Demend evaluation of seleot 64
Figure -3: Iliustration of demand propagation (show by deshed ilnes). 65 odd_from is defined in section 2.1.2.
Figure 5-1: a raph showing the ohosen outset 73
Figure 5-2: Acylie graph based upon the outaet in Figure 5-1. 73
Figure 5-3: Emeaple of outset and siaplified aoyolic eraph 75
Figure 5-4: Prodwotions equivalent to flowohart oonstruota 16
Figure 5-5: Faotorial Flowehart 76
Figure 5-6: Feotorial Produotion 76
Figure 5-7: Folded veraion of Ficure 3-11b 79
Figure 5-8: Subgraph I of Figure 5-7. 80
Figure 5-9: Loop-free operator I' equivalent to Y 81
figure 5-10: Shoulng the equivalenoe of I end T^{\prime} 81
Figure 5-11: Application of the operstor I^{1}. 83
Figure 5-12: A distinguished aub-atrwoture of Figure 5-9 83
Figure 5-13 Independent eros which ere evalumble oomourreatly 8
Figure 5-14: Produation for the leefoount fumotion 85
Figure 5-15: Leafcount evaluation 85
Figure 5-16: Produotion transformed from thet of figure 5-6 87
Figure 5-17: Unwound greph oorresponding to the production of Figure 3-6 87
Figure 5-18: An inatance of the ersph in Figure 5-17 uith po ovaluated 87
Figure 5-19: The antecedent and consequent graphe ere equiveleat oaly 89
Whan evalumtad with on appropriate evaluation rule
Figure 5-20: Wiring enalogies to the oons operetor: In the left palr. 81
corrasponding to lentent cons. the oomponent wires arepaired. and either uire oan be pulled without pulling onthe other. In the right peir. oorresponding to gtriotoons. the wires are bound, and pulling elther wireoffectively pulle both.
Figure 5-2i: Replacing auxiliaries with auxilieries having oniy one 92
Input and one output sro: (a) Original produation: (b)Replecenent for entecedeat: (o) Mev produotion
Figure 5-22: Use of par 94
Figure 5-23: Use of aeq 95
Figure 5-24: a reduction poasible for poond but not for cond 96
Figure 5-25: Function of a node of graph operating on lengueges 97
Figure 5-26: A function graph representeble by reguler expression 98
Figure 5-27: Splitting Involving eab 100
Figure 5-28: Composition rule for aeries interoonneotion 107
Flgure 5-29: Special case or the oomposition rule for serlea 107
Intaroonnection
Figure 5-30: Composition rule for aond 107
Figure 5-3i: Fixed point indwotion rule 107
Figura 5-32: Two graphs to be ahown equivalent 112
Figura 5-33: Two eraphs assumed to be equivalent 112
Figura 5-34: Griphs to be shown equivelent by fixed point induotion. 113
where $H(s)$ is the oonsequent of in Figure 5-3b.
Figure 5-35: Besis of the fired point induction 113
Figure 5-36: Inductive hypothasie of the rimed poiat induction 113
Figure 5-37: Inductive concluat on of the fized point induotion 113
Figure 5-38: Transformationa used in deriving the induative conolusion 116
(continued mett 2 pages)

1．1．Motivatias Function Graphs

1．1．1．Funotion grephs represent appliastive progran and systems． Fumetion eraphs are graphical representations of aystems based on function application．Ne inolude prograns within the scope of aystems＂．Progras based on function application are usually called applicativem．© functional＂． or＂data flow prograing，alhough it eay be aeen that other types of progrens can also be mathematioally represented as function sraphs．

1．1．2．Applioative languages siaplify progreming．
Some more Important edvantages of applicative programing languages include：

1．Greater aysten modularity
2．Ease in debuseing
3．Matural exploitation of concurrency
4．Natural representation of oomunioation
5．Ease In humen comprehension
The features cenerally imply reduced progremaing oosts．Additionally，alnoe achines mioh direotly execute applicative languages are being proposed ［\｛Dennis and Misunas 74］，［Plas 76］．【Guzman and Segovia 76］，［Arvind and Gostelow 77］．［Gurd and Watson 77〕．【Rumbagh 77〕．【Davis 78a〕．【Mudge 78〕． ［Keller，Lindetron．and Patil 79），［Cornish 79．80〕．［Johnson，et al．80］，and othara），the attendent reduotion in number of software layers oan further highlight the reatures liated soove．

1．1．3．Graphioal representations are often olearer．

As with other uses of craphe，function eraphs are mathematioally Interchangeable with one－dimensional representations of the seae systev． However，they often serve to llluatrate concepta more olearly and avocinctly than their one－dieensional counterperts．

Furthermore，craphs can obviate the use of names for eatablishing
relationships betwoen entities. which ia usually necessesry when s one-dieenalonel reprecentetion is used for absically eraphical opnoept. For exaple, the leabds-calculus 【Church 41], whoh hat long been louted as a baslo model for underatanding of oertaln computstionsl phenomens. requires a "re-namingí rule for lta general application. Wlth an appropriate eraphicel model, such ss thet presented herein. such rulss are unneceasary.

As enother exemple, the sequential liating of statements in progrea tert usually laplies, or at least sugsests, corresponding sequentiality of control. much of wich is inessential. A greph any ueed to illuetrate only the eesential aequentielity and, dually, the avallable concurrenoy, In contrast. meny one-dimeneionel representetions must be reprocessed to deteat potentially concurrent operations (cf. [Keller 73, 75a, 75b]).

The present peper uses eraphs to slullarly expose other aspecte of concurrent computation. such as the relationship between paraliellam and oholce of data types, and the comperison of progemeing atyles for data-driven va. demend-driven computetion. It elso uses fraphs to demonstrste other aspects less ralated to concurrency, such as oommanication, binding. transformationa of programe, end verificetion. We suggest that oomprehensiblifty of anoh concepts msy often be improved through the use of eraphs.
1.1.4. Function grsphs sre oounterpart to Nowharts.

Function graphs bear reletionship to applioative programs siailar to that of flowoharts to asalgnment-baced prograes. However, whereas flowcharta are usually thought to be informal repreeentetiona of an alcorlthm yet to be ooded and requiring further formalization prior to ezeoution or analysis. function erapha rely only on the underatanding of their constituent functions to ba formally meaningful.

Like flowcharta, function ersphs cen be used informally to exhibit and develop basic interrelationships betwen systen perts. However. this informal use can become formal one if a programalng language based on function grapha is evaliable. In this case, there is no discontinuity involving the coding" of
the systen speoifioation in siven language，sinoe the apsoifioation is already in language mioh represents code．Thus the continuity provided by both developing aster specification and iepleeenting it in teris of function graphs providea more relisble design procedur than one involving a trensibion from specificetion dowain to ooding domsin．

It is possible to enter funotion graphs directiy into programing system siven suitsble graphioal input devioe．Another possibility is to use o textual language wich allows erpression of funotion graphs in amner in wich the correspondence between the text and the graph is fairly direct． Indeed．combinations of textusl and graphical entry oan be profitsble．

1．1．5．Function graphe form a bala for programing language seantios： Additionslly，function graphs mey be used as formal base for semantics of texturi languages，even when the correspondence is not direct．The advantage of thia form of base ia that it provides a comon means of program comparison and translation for different textusi linguages．In this sense，semantics of function graphs is related to other work on denotationsi＂semantica of programing languages（of．［Stoy 77］）．

A prototype language based on function eraphs has been developed and is Inciuded as part of this presentation for soke of concreteness and lllustration．While not all features of the language，oslled FCL（Function Graph Language）．can be presented here．it is hope that the flavor of the graphical presentation and conceptualization can be conveyed．

1．1．6．FGL is both generio and speoific．
FGL is related to number of other language ideas wich have appeared in the literature，in some cases in disjoint threads of investigetion．As suoh，we hope that in addition to being a programing language，it provides aeans of understending these ideas，which Inolude：

1．A large assortment or mdata－flow languages wich are being proposed for other highly－concurrent machine architectures． Eremples may be found in 【Dennis 74〕．【Plas，et al．76〕，［Arvind． et al．77］．［Davia 78b］．［Neng 79］．
2. Languages based on function application ([Churoh mi]. [MoCarthy. at al. 62]. [Landin 64]. [Eahn 74]. [Burga 75]. (Backus 7a]) and on syatems of equations ([Eleene 52), (Kahn 74). (0'Donnell 771).
3. Dats structuring operations from the Lisp fanliy (MaCarthy 60]. Although such operations fit neturaliy into FCL, we nesd not atop with just the conventional set of operations. The use of FC. eraphs for representing dats atructures can replece the more machine-oriented "box diagras" often found in texts dealing with data structuring. Further atructuring idess oan also be found in [Eeller 80b]
4. Languges wich provide for programing with infinite atrueturea. such ss atreams and trees ([Landin 64], [Kahn 74]. [Burge 75], (Friedman and Wise 76]). Such structures ara entremely powerful devices for modeling various mathenatioal structures and for representing comonication mong sub-systema. It has also been noted that they naturally provide many sites for the eiploitation of concurrency In highly-concurrent aystema (fFriedaen and whas 78]. (Eeller, Lindstrom, and Patil 79]).

In sumary. although we have particular language FCL. in aind. the reader aay view FGL as if it represented a generic member of fanly of languages based upon function graphs.

1.1.7. The following features further motivate the inveatigation of FGL:

1. FCL is an "applicative" language. In the sense that it is based on function application and therefore enjoys the features of auch languages es expressed ebova.
2. FCL overcomes some of the awkard features of previous date-flow languages through a suggested implementation using "demand-driven" evaluation. FGL avoids the notion of rassignment". father than being called by the euphaism mingle assignemt" language fcf. [Tesier and Enes 68]. [Chamberlin 71], [Aryind, at al. 77]) it is properly " mero assignment" languace.
3. FCL may be asily adapted to sult a large number of engineering and scientific applications. For enmaple. signal-fiow graphs used in digital aignal processing (cf. (Mabiner and lader 72]) and systes dynamics modela used for modeling and aimulation of sooioeconomia systems (cf. [Forrester 6il) can be maturally represented In FCL. It is attractive to have a general purpose, adularizable, language st hand to enhance such modeling approsohes.
4. The sraphicsi sspect of FCL has uses in aoftware and hardware development by refinement. The use of eraphicsl tools for software developent has been mentioned before (cf. [Moss 77]. [Neinbers 78]. (Yourdon and Constantine 79]. (Hebalker and 2illes 79), and others). Whan similer tools ara expressed in FGL. an additional adventage mecrues: The grephs have a well-defined functional aeaning. rathar than alaply rapresenting procedure nesting. loop
neating, calling sequenoes, to. This meaning is apeoifioation of the syatem under development.
5. The refinement of an FCL apeoification from coarae Interconnection of functione aay proceed by further apecifying those functiona in ths ame language. There is no need to heve different languages for "programing-in-the-large" vi. "programing-1n-the-small" [Dellemer and Xron 76]. This is desirable, alnoe often that initially appeara to be alaple atomio taak turns out to expand into soaething more formidsble. Thus transition made too early from module interconnection language to s conventional programing lenguage may result in substantial backing up in the design process. With the uniform lenguage approach, when the level of atomic funotions is reached, the apmoification is complete and the result is a runnable prosem.
6. FCL allows persona with little training to get atarted in progranaing. This is due to the fev concepts involved and the absence of a need to coquire knowledge about a linear ayntax. Given an adequate input device, nalve user need only know how to connect bores and to interpret them as mathematiosl funotions.
7. FG. allows the visusilization of data atruoturing operations mithout using atorage diagrams and references. As such. it exhibits the underlying concepts with high degree of machine independence. it seems particularly useful in conceptualizing mothematically infinite data structures and representing the operations on auch atructures.
8. FGL is the base of directly-executable maching language, namely that for the system proposad In (Keller, Lindstrom, and Patil 79]. As suoh. it ellows exploltetion of concurrency without mejor concern from the programer and narrows the gap between a high-level programing language and its machine implementation.
9. FG. allows intultive representations of "functionals" or "higher-order functions" whioh are usually explafned using the lambde calculus (Church 41). We hope to show that FGL provides. better base for understanding the subtleties of these ldese.
10. FCL allows prograns to be oleanly interfaced with flle aystem flles, In the spirit of [Balzer 71], [filtahle and Thompson 75], (Friedmen and Mise 77).

1.1.8. Funotion graphe may be areoutable or otharmise.

Thle paper presente ddeas about function erephs on two levels. One level is that corresponding to exeoutable prograns. The other is a more .enersl conceptual level, for misoh there may be no know effiolent execution means. When it is necsasery to oontrast these levels. we shall refer to the former as

```
apecial fungtion graphs and the latter es general funotion graphe. The
reasons for the desire to consider the general level ot all ere: .
1. Understanding the seneral level oan often provide olearer underatanding of the speoial level.
2. Some ideae cen be conceptualized only at the general level.
3. It ie desirable to widen the speciel level as muoh ae possible. 1.e. to express more concepts in the form of erecuteble progreme. The ceneral level provides eterget for thia widening.
```

1.2. How to and Why lead the Macalnder of the Paper

The ressons for this paper ere eeveral:

1. To introduce the reader to aphical forme of applicative prograning through e reasonably unifying model.
2. To provide theoretical remework for those interested in awoh natters.
3. To survey the few key ideas present in on epperently ieportent, but embryonic, eree of computer programing, including pointare to the literature for results which cannot be Included here.

The section entitied Prelivinery biseussion ia intended to introduoe mome types of dete objects and systems wilch can bexplested with ersphical models and argements. The eection entitied theoretical Basie mey be read for those wanting a tutorisi introduation to the theory behind swoh models. It may be skipped on first reading, or taken on faith. The section entitied Machine Evaluation of Computationa Eepresented by Orapha further develops the function graph model, desoribee almple language based on the model, and discusses e means of oomputing within the model. The seotion ontitied uaes of the Craphiosi Formelita desoribes concepte whoh oan be understood using the model, and manipulations and proofs within the model. Exoept for the aub-aection on Loop llecoval, thia eection may be akipped by those interested only in programing aspects. The pootlude mentlone tome of the hatorloal aspeote releted to the idees presented here. end annerimes the onolusions.

2. Prellalnary Discuasion

2.1. Computing with Infinite Objeats and Equations

Several of the exemples gresented in this paper involve ocaputing with infinite objeots. By this. we mean that the progran oan manipulate as whole objeots which ore conoeptually infinite. even though the user may ot any eiven run only wish to oause ainite truncation of the object to be menifeat. In prinoiple. the user could ask for the manifestation of an entire infinite object, thereupon if there were sufficient coaputing resources and he waited sufficientiy long, any finite portion of the infinite objeot would be anifest. Since conventional theory of computation has shunned infinite objects, other than funotions, In favor of morking only with thelr finite truncations. brief introduction to this style of computing is merited.
2.1.1. Infinite objects provide new waye of presenting algorithas.

There are several reasons for wanting to consider such objecta:

1. Some systems. e.f. oomputer operating systems. treat their input and output (streans of requests and responses) as if they were infinite. since the point of termination of these streans is unknown and irrelevent.
2. Programing with infinte objeots ta often simpler than programing with finite objects, since it relleves the programer of many concerns of "boundery conditions" wich often are the cause of errors. For example. instead of writing a progran to conpute a finite set of values of funotion

$$
f(1), f(2), f(3), \ldots ., f(n)
$$

the programer aight wite aimpler progran wioh computes the infinite set of values.

$$
f(1), r(2), r(3), \ldots
$$

and then use pre-defined selection function to select the finite subset in wich he is Interested. Properly implemented, only the necessary values of f are really conputed, but the programior aanipulates the aerics of values as though it were infinite.
3. Mith respect to this paper. one of the prime uses of function eraphs is to display progran atructures which represent an efficient and applicative method for coaputing auch infinite data
struotures.
2.1.2. An enaple of computing with infinite objecta:

Let us cive simple exmple of defining en infinite atruoture. Suppose wo wished to define the (infinite) sequence of all odd natural numara,

$$
1357 \ldots
$$

(Here, and throughout the paper, three dote indiostes sequence whioh continues ad infinitun, whereas four dots indicates aequence with last oomponent.) We may do $s 0$ by produoing a general function odd_from whioh uith arcuatent n produces

$$
n n+2 n+4 \ldots
$$

then applying that function to arcusent 1. To define odd_rroa, we aimiy note that it atisfies the equation

```
odd_fron(n) : n followed_by odd_fron(n+2)
```

where followed_by is binary function which produces acquence consiating of the item on its left followed by the item on its right. Our aequence is then eiven by the result of odd_from(1).

To ape 11 out in detall.

```
odd_rron(1)
```

 - I rollowed_by odd_rroe(3)
 - 1 rollowed_by 3 followed_by odd_from(5)
 : 1 followed_by 3 rollowed_by 3 followed_by odd_from(7)
 - ...
 For readability and convenience, we henceforth onit the followed_by in mritine suoh sequences, preferfing to write

$$
135 \ldots
$$

Inatead of the last line above.
We al so use the expression cons (x, y) in place of z followed_by y. alnce a minor extenaion of the oons (constructor) function fron Lisp is just wat me
seed to implement followad_by.

2.1.3. More eximples Invoiving Infinite objeote.

To cive further exaple of operating on infinite objects. whow that the an of the first n odd nubera la equal to the aquare of n. We could therefore oompute the stresa of squarea by function whioh produced suocessively the su of the components of its input stream. Let us oall suoh a funotion sungerran. The firit component of sungtrean(n) is Just the first component of x. Using head(x) to refer to this coaponent. we set the basio form

$$
\text { sun_strean }(x)=\operatorname{coss}(h e a d(x), \ldots . .)
$$

where the dots must yet be rilled in to give us complete definition.

We now observe that if we knew sun_atrean(x), then we could add its components palr-wise to the tall of the input (1.e. the oomponents which are followed by the head) and end up with exectly sum_straseng .1 In other words. we have an -quation

```
aun_strean(x) = oons(head(x), add_streams(tall(x), aun_atrean(x)))
```

Here we hove used add_atreams to name the function whioh adds two streans oomponent-wle. For ereaple.

```
edd_streans(3 5 7 9.... 1 4 16...) = 9 16 25...
```

To see that equation for sungtrean cives us exootly the Inforiation needed. we try to disoover what it tella us about su_strean(i 3 ...). Using the definition.

```
sun_strean(1 3 5 ...) -
```

cons(1. add_atreames(3 5 sustrean(1 3 5 ...))) $=$

[^0]coas(1. dd_atreamal3 5 oons(1. dd_atreana(3 sungeram(1 ...)))))

- cona(1, cone(4, come(9. ...)))

Thile this type of reasoning eay appear foreign to the reader at firat. with little practice. It la asy to beome oonvinced that it is an extrealy powerful definitional and progreming tool.

Inoidentally, we could so further and provide definition of edd_strease:
 where - repreaenta the uaual addition operator on two nuabers.

2.2. Eraphleal Hodele

Figure 2-1: A graph for Function ous atraete
2.2.1. Grophioal sodele elarify conplez 1deas.

We ere Interested in eraphioal expresalon of oomputational apecifloations of the type apecified in the previous seotion. For axsmple, the function sunatrean could be represented by the graph shown in Figure 2-1. This graph 11lustraties the input and output of the funotion, as well as the essentials of Its Internal structure.
2.2.2. Ara ames are Irrelevint in funation fraphe.

In most cases we shall avoid giving names to the aros of araph. Instead, me shall rely on the orientation of the ircs to deteraine the position of the oorresponding ariceent to funotion. That 1s, viewing the node so that input aros enter node at its botton, the left-tomight orientation of arcs corresponds to the order of arguent listing. Where ablguity or confusion alght arlse. we can return to the use of naging.
2.2.3. Fields outalde Computer Solence employ formalizable graphs.

It is claiacd that for certain exemples. the graphioel expression can land to better comprehension of atructures. Slaliar representations have ocourred in related application areas. For exmple. in disital signal processing. digital filters are often represented eraphically. Unfortunately, the behavior of such filters is often explained using notions suoh as olocks, unit time delays, and other jargon, instead of appealing to their intringio meaning in terms of functions on sequences. The legend acoompanying figure 2-2 lilustrates how the basic filter operations oan be viewed as functions on atreans defined in the previous section. By aking this conneotion, it is possible for Computer Scienoe to contribute to digital filter desien by:

1. Providing a language in wich the ldeas of flitering oan be expreased direotly, instead of having to revert to Fortran codine. which is often lengthy prooess.
2. Allowing the difital filter researcher to mbed his filters directy into a general purpose computational aystea (1.e. a Function Graph Languace).

The language Lucid [Ashoroft and Madee 77] is a tertual one based entirely upon recurrence equations of the type used in defining atrean functions as

Figure 2-2: Graphical representation of digital filter having a transfer function with z-tranaforn $\left(a_{0+0} 1^{-1}\right) /\left(1-b_{1} z^{-1}-b_{2 z^{2}}-2\right)$
used cbove.

Another applioation area of interest ia that of Systen simulation. Here one Is often concerned with phyaical processes which oan be modeled as intercomunicating via atreans of discrete values. An example is Forrester'a aysten dynamios (Forrester 61). which employs eraphs of the type shown in

ivelve(rate, inflow) - cons(k*head(rate) head(inflow).
vive(tull(rate), tall(inflow)))

$$
\begin{array}{r}
\text { level }(x, y)=\text { cons(initia)_level. } \\
\text { add_streens (sub_stremens }(x, y) . \\
\text { level }(x, y)) \text {) }
\end{array}
$$

Figure 2-3: Graphicel representation of a syaten dynanios model

Figure 2-3. As with digital filters. the nodes in this graph oen he defined as atream functions, as presented in the legend. anguage, Dynano (Pugh 701. already exists wich allows such models to be input to ocmputers. Although Dynamo is Indeed an applicative ianguge (perhaps the first evoh), its teatual erpression rather resembles monolithio Fortren progran. which does little to heip ita user visualize relationahlps betwen sub-ayatema. By using a textual language (as we describe later) wich is isomorphlo to the eraphioal model. one attains new degree of modularity, at the aeme time retaining the possibility of having one's models erbedded in a general purpose computational system. Some other simulation methods. e.8. [Pritsker and Pegden 79]. employ e eraphical notation, but these graphs do not have the formal properties of functionslity in whioh we are intereated.

Other isolated instances of function ersphs have ocoured from within computer science. such as In \{Smith and Chang 75\}, who employ eraph tranaformations to illustrate query optimizations for relstional databases.
2.2.4. Strean oomponents need not be almple.

One should not Infer from the above examples that FGL deala only with atreame of atomic (i.e. Indecomposable) values. The components of atrean aight well be arbitrary atructures (Including possibly streans) themselvea. for example. in Figure 2-4 an argument tree becomes the first of atrean of trees. the rest of wioh is obtained by splitting its non-atomlo membere into sub-trees. This ex anple exhibits an cyclic orrangement of "processes" whioh oominioete vis atreame and perform appropriate atream functions suoh as filtering of atoms or non-atoms. The figure shows the basie comeunication acheme, but the functione inalde the bozee may be desoribed by simple conditional expressions corresponding to ayolio graphs:

Figure 2-4: A function which atripy the leaves from tree in breadth-first order.

```
atoma( n) =
    if null(x)
        then nll()
        else If atom(heed(n))
                                then oona(head(y), atoms(tail(y)))
                        el se atona(tall(y))
nonatoms(x) =
        If null(n)
            then oll()
            else If aton(head(x))
                                then nonatoes(tall(y))
                                el se oons(head(m). nonatoms(tal1(m)))
split(x) =
    If null(n)
        then mil()
        else oons(head(head(x)). cona(tall(head(x)). aplit(tail(x))))
```

In the bove exaple, nil is function whloh producea a terminated empty atream, whereas null is a predlagte whoh teats whether its arguant is that atresa. atom teats whether its arguent is an stom. head and tall, acting on trees which are not atoms, eitract the left and right subtrees, reapectively.

2.3. Semantios of Function Graphs

2.3.1. Function grapha have aimple basio form.

The mase interest here ia in systens of computstion wich can be represented as a certain form of directed graph. which were caliling efunction graph". The name derives from the interpretation of the nodes of the eraph as functions. The arca of function graph represent variabies ranging over data atructures (incluiling various degenerate forma of this oonoept). Aroa directed from one node to another therafore represent the phenomenon of the firat node creating a date strwoture wich is an input to the ascond.

It is possible for an arc to "fan-out". 1.e. aplit into two or mora ares. Indicating that the same structure is to be made avallable to more than one node as input, as show in Figure $2-5$. No meaning 18 assigned to two or more arcs converging together. Other than this reatriction. sny interconnection of nodes can be ascribed amaning, as ahall be geen.

Figure 2-5: 111ustration of ranout

The following features uill be seen to fit into this general model:
(i) Creating data otructurea by several functions oonourrently.
(1i) Operating upon data structures at the aane time that they are being ereated.
(ili) Mepresentation of commilcation protocols.
(iv) Mepresentation of infinite graphs by finite means.
(v) Representing "history-dependent" funotions.
(vi) Resolving abiguity in the representation of recuratvely-defined functions.

Figura 2-6: Concurent creation of date atructurea by f. t, and h

Iten (1) suggests that much a data atructure should somehow be repreaented ss several function nodes sharing s aingle output aro. Although this posaibility was excluded sbove, we can represent this sharing by inciuding another node. the output of which is the date structure and the input area are direoted froa several funotion nodes. es in Figure 2-6.

Concerning item (11), our formallan does not require that the entire data atructure at the output of function node be oompletaly present at any instant. Instead, the atructure appeare during the computation, poasibly a piece at a time. It is even proper, and often oonvenient, that wensider computations of infinite duration whioh produce data atruotures of infinite ortent.

Regerding iten (111), at some levela of detall, faniliar notions of comminication protocol may be completely abatracted froa view. However, when such fasues are of concern, they may often be represented in our formelisa.

Regarding iten (iv), the three primary techniques for representing infinite objecta. elther data structures or function graphs, are the use of oycles in grapha. the uae of eraph productions. and allowing data objects which oan thesscives be function grapha. Theae techniques ahall be explained and interrelated in the subsequent development.

Figure 2-7: mecoding aletory dependent funotion

Miatory-dependent funotion, since our model ellows the encoding of en. arbitrary history as date struoture. Any function with form of ate mey be represented by node with aelf loop wioh feede the previous hiatory of the function beok to itself at each oompurtationsi step, es depioted In Figure 2-7.

Finaliy, regarding (vi). we thall see in absequent seotions that there are two way of interpreting en equation such se thet whioh definea sumatreaw. The oholce of interpretation has bearing on storage and execution efficiency. so It will be uaful to resort to eraphiosi representation of the function. wioh resolves the abiguity.

2. ${ }^{\text {. Depresenting Syatema }}$ Eraphs

Given thet one accepte the basic premises of function graphs as preatented thus far. we now wish to further atipulate the natur of node functions end arc data structures. For this purposes we shall use streases our date structures, although the basic ideas will later be seen to generalize. Begin by imagining that we obarve the output of a funotion node over eemininfinite computation period. that is, one whion has definite start but no finish.
2.4.1. The null atruoture oontaina no information. assuse that the date struature starts out initisily ef spoisi null atructure, wioh we denote

After some slopsed tise, the node funotion produces some output, ohanging the atraoture to if. After more elapsed time, it geta ohanged to ez, then aj. and to on. Over the observed period wetherefore see

$$
\text { 7, } 3_{1}, 3_{3}, \ldots
$$

Figure 2-8: Handehaling exteple
2.4.3. Kandshaling illuatrates a siople fors of oommiostlon.

Consider two devices comuniceting via almple mandshaking* protocol, as in Figure 2-8. Assume that the left node Initiates compunication by sending a signal b on the top ilne. When the algnal is reaelved by the right node, the latter reaponda by aending algnal c on the bottom line. When the left node recelves this algnal, the whole process otarts over agaln.

If we record the accumulated algnals in atring on esch lins in atate. we eet the following atate-transition pleture:

One wey of expresaling the bove bahavior is to give eet of productions which charecterize the tranaitiona batween atates. From an underatanding of this behavior, the following produotions suffice:

$$
\begin{array}{ll}
y \rightarrow y & \text { if length }(x) \text { elength }(y) \\
y & y \\
y & y
\end{array}
$$

Here y and y represent arbitrary finite atringe and length(y) is the length of n.
a second way of representing the behevior is to present the left and right
nodes as functions. In the form

```
left(y) = cons(b. Invert(y))
FIght(x) = Iavert(x)
```

where invert(x) is the atring obtalned by replacing each b in x with and each o In x with b.

Taken individually, the functions defined do not capture the short term hand-shaking behavior of the syatea. However, taken together, with the underatanding that the syaten then in state (x, y) tends toward the state (left(y). right(x)). they do quite well. For extople.

and so forth.
2.4.3. Solving equations exprasses long-range eystem behavior.

The functional description is able to express one aspect of the system suoolnotly wioh the atete-transition behavior oannot, naealy that there will be no deadlock in the sense that some node eventually stops sending aignala to the other. To see this, we firat aubalt that the long-range behavior of the systea 1a solution (or fired-point) (x, y) of the system of equations
n = left (y)
$y=$ Fight (x)

From the disouagion regarding atate-tranaltion behavior. it is intuitive that the solution should be

$$
\begin{aligned}
& y=b o b \ldots \\
& y=\operatorname{coc} . . .
\end{aligned}
$$

Indeed, this is a solution, since

$$
\begin{aligned}
& \text { laft(occ...) }=b \text { invert (aco... })=\text { bbbb...: } \\
& \text { right (bbb...) }=\text { invert(bbb...) }=000 . . .
\end{aligned}
$$

We heve not demonatrated thet the above solution is unique. nor how that fa the proper choice mong several posalbilities. This will be addrassed in the following sections.

2.5. Leouraion

It is useful to extend our concept of araphs to graphs wich are specified by traph gramars. This extension allows ua to represent infinite graphs by finite presentations, wich will dive us convenient means of defining functions by possibly recuralve spplications of productiona.

Suppose that we allow the nodes of araph to be labelled with two typea of aymbols: terininal symbols. which denote prodefined functions. and auxlliary aymbols. For each auxiliary aymbol, there is to be exactly one production which has the node labelled with the auxiliary syabol as antecedent. and an sccompanying eraph as the consequent. The set of productions oolleotively will sometimes be eslled araph ramar.

Modes labelled with terainal and auxiliary aymbols will be called terminal nodes and suxiliary nodes reapectively. We assune a one-to-one correspondence betwen the aros of any node labelled with an auxlliary aybol and unconnected arca In the consequent of the production. The meaning ascribed to o production ia that manever there ia an auxlliary node In the graph. it way be repleced with the oonsequent of its oorreaponding produotion to determine ite meaning.

For enhenoed readability, we shall dopt the practice of aaking nodes oontaining terainal sybola circuler or elliptical, end nodes containing auxiliary aybola reotencular.

Furthermore. we ghell use hezagonal nodea to aymolize an arbitrary abgraph, auch at the oonsequent of production.

Figura 2-9: A production for the addatreans function

2.5.1. Exemple:

Consider the add_atreams function used eariler. Ne csin represont this function in terma of ara priaitive runction add which adds only aingle pair of integers. using the production in Figure 2-9.

A* further exemplea of recursion, we show belou two different exemples. both of wich generate all odd prime numbers. The modus operand of these two exaplea is augeated in Figures 2-11 and 2-13. The detailed definitions of 2ome of the operatora contained therein are presented in the Evaluation section wich appears later.

Figure 2-10: Firat Odd-Primes Example

Figure 2-18: Expansion of the First Odd-primea Example (odd_from is derined in Section 2.1.2).

Figure 2-12: Second Odd-Primea Example

Figure 2-13: Expension of the Second Odd-prises Excaple

2.6. Splitelug Irmasformetion

Figure 2-14: Splitling transformation

The discuasion of recursion in the previous section deseribed ways of transforming eraph by applying productions. Another type of transformation of Intercst involves local modifications to the eraph based on the fact that the nodes represent functions. Such tranaformations are useful in understanding the functions represented by graphs. However. these transformations are not necessary to provide meaning for the eraphe. That can be done on puraly functional basis, as deacribed in the section on Theoretical Balf.

Because sodes of eraph represent functions. it is easy to see the validity of the aplitting tranaformation, os demonatrated in the diagrem of figure 2-14. Because the values on the top erce each represent f(y,......In). where each x_{1} - $E_{1}(\ldots .$.$) . we can aplit f$ into several coples of itself in place of the aplit output arc of f. One resson for vanting to do this micht be that we with to the further transformationa involving Just one of the copies of f. The eplitting transformation ereplifiea the notion of referential tranaparency (cf. (Ouine 601, (Landin 64]). In that functional erpresalon has the sane meaning independent of its context.

Wotice that to any that the aplitting rule is applied does not remove the
ableuity of where in the graph it is applied. We shall adopt the pratice of placing en asterisk near the node belng aplit to so indiante.

Applying the splitting transformation to the example in Figure 2-1. we get the sequence shom in figure 2-15. The infinite graph is again seen to be embedded in the liait of an infinite avoeesion of auch transformationa.

It can be noted in Figure 2-15 how function eraphs subsue the usual moor diegrans" (cf. 【Allen 78]) used to represent dats structures in Lisp-like languages. The cons nodes replece the role of boxes containing dotted pairg". The arrows are reversed in coing from one representation to the other. In the sense that they represent references in box dlagrass, but date flow in Function ersphs. Furthermore. In function eraphs, such dste structure nodes blend well with functions other than cons. whereas no blending augesta itself with box diegrams.

The inverse of aplitting, which will be called folding, will also have its uses in discovering certain equivalences later on.

Figure 2-16: The meaning of appiy

Figura 2-15: Rapested application of the aplitting tranaformation

2.7. Funotions as Veluee

In order to present aementics of produatione, and also to repreaent a powerful definitional mechsnian in trephical terma, we introduoe speciel function colled epply. In ita siapleet rorm. epply ie function of two arguenta. one of which la function and the other of which itan arguent to thet function. Functiona which take one or are functions arguenta ere
 be called "graphicala".)
2.7.1. Enveloping hows the oreation of function values.

We aight aname that there are some priaitive funation objecta mioh oan be uaed es the firat argunent to apply. However, it ia also dealrable to be able Lo oreate function objecta ouraeives.

In FGL, function which can be used as an arguent to another vill be abown by enveloping the former inside a node of a graph. That ia, the envelope ia a conatant function wich producea the enveloped function of ita value. The meaning of appiy cen then be expreased by the rule thom in figure 2-16. It 1s not difficuit to see that if the domain of the first arguent to apply is $D_{1} \rightarrow D_{2}$. the eat of functiona from D_{1} into D_{2}. and the domain of the acoond ertent is D_{1}, then apply ia function from $\left(D_{1} \rightarrow D_{2}\right)$ a D_{1} into D_{2}.

2.7.2. Import aroe provide ontra fiesibility.

It If Important that wa llov import eres to pass from the outside to the Inside of sn envelope. Inia allowa the graph inalde of the envelope to cet values from the outalde in ona of two waya:

> 1. Dy meana of arguenta mich are bound to the free ingut aroe inaide the anvelope wen the latter ia applied.
> 2. By means of iaport aroa wich pass Into the envelope. These ares are present elther in the initisl greph, or realdual from priar applioationa.

Funotion values which have their ieport area connected to the outalde world are often called cloaures \{Landin 64]. As an eraple, auppose that we with to define a function serial_comp of two arguenta. eseh of which is a function

Figure 2-17: Illustration of function envelopes
itself. weh that the result of serial_comp(f, ©) is function, say h, such that $h(x)=f(E(x))$. In other words, h is the serial composition of functions f and c. A graphioal presentation of serial_comp 15 shown in Figure 2-17. The envelope shown at the consequent of the production for serial oomp has the functions f and E as Imports. When this envelope is presented to the apply operator. the envelope is atripped off and the free input aro inside is bound to the second argument of the apply. Functions awoh as serial_comp wioh are designed to take functions arguments are sometimes olled oombinators".

For anke of further 11lustration, we direct the reader to figure 2-is, which Illustrates the concept comonly called mCurrying. Here binary function is represented as unary function. the value of which is another unary function. Applying the binary function to (x, y) is the same asplying the unary

Figure 2-18: 111ustration of Currying
function to y, then applying ita value to x.
We contend that the enveloped representation of functions as described in this section is uaeful for underatanding lexical binding in programing longuages. and the accompanying lasues, e.s. the "funarg" problem (Moses 70].

2.7.3. Produotiona can be elicinated.

We now wish to ahow how the enveloping device can be used to elialnate the need for productions. Although productions are aseful representation for gaining intuitive underatanding, they are awward for representing the idea of 1mported values, alnce all auch values mould presuably have to come frome afngle contest. In our "block-structured" implementation of FGL [Keller. et a1. 80] we have found it convenient to absidon the implementation which corresponds most closely to productions. in favor of one witch trests all programer-defined functions uniformly, whether or not they are returned as volues.

[^1]

Figure 2-19: Typical recursive production

Figure 2-20: Equivalent of the consequent of the prodvetion of figure 2-19 uling apply
subgraph shown In Figure 2-20, were fi is like if. exoept that G hae been replaced with the apply as show.

In other worde. H' in "functional" wich takes an arguent whioh oan be supplied se G, whereas H has G bullt in. Thus. we could write

$$
H=H^{\prime}(6)
$$

Thit equation will find aditional uses later.

Figure 2-21: A second greph equivalent to the G of Figure 2-19

Since the graph of Figure $2-20$ is equivalent to the funotion 0 . we ar substitute the entire graph for G. se shown in Figure 2-21. By folding the eraph in this figure, effectively using the equation

$$
G=H^{\prime}(G)
$$

we get an equivalent but more compect version. as shown In Figure 2-22. es well as further aimplified version in figure 2-23. The lattor cen alwaye be used in place of Gitself.

Figure 2-22: Folded version of C

Fieure 2-23: Simplified folded version of \mathbf{G}

3. Theoretioel Banie

3.1. Function Graphe and Equationa

We now deal with the problet of deteraining the long-rance behavior of seneral network. Me have not yet provided any reason to believe that thia behtior ia unique in my sense. pertioulariy in the context of aynchronous. coneurrent computation. Surfiolent conditions for this uniqueness will be provided in the course of the presentation, whioh is the seneral function graph level.

As eentloned earlier, areph consista of aet of node functions mioh act on arc data atructures. It has already been seen how avoh eraph could be characterized by aysten of equations involvint the arcs variebles. We now wish to represent all node functions collectively es one fumcton fating on tuple of dete structures. Correspondingly, the system of quations will be reduced to alngle equation.

3.1.1. One function and one quation suffioe.

We call F the system function of the sraph. It Intuitively sives thet segment of the oversll behavior correspondint to one step of all node functions acting In concert without feedbeck. The components of the tuple on whith facts correspond to the "internsi" and "output" oros of the saph. with the "input arosm of the ersph es Marametorsm of F. By Input aro, we mean one which is not directed out of any node in the eraph, and by output arc, we mean one which is not direoted into any node. An internel arc is one wioh is nelther an Input nor an output aro.

3.1.2. Example:

Consider the eraph of Ficura 3-1. Here the output aro y is alrady identified with on internal arc 21. Ki and 22 are the two Input ores. We express the syaten function F in teries of f. g. and h by

$$
F\left(z_{1}, z_{2}, z_{3}\right) \cdot\left(f\left(x_{1}, z_{2}\right) \cdot E\left(x_{2}, z_{3}\right) \cdot h\left(z_{1}, z_{2}\right)\right)
$$

As mentioned. Implioitiy depends on the inputs x_{1} and $x 2$. The solution of

Figure 3-1: Function eroph exaple

3.2. Dute Trpee

We now preaent conditions under which the syaten function determines moat of the relevant aspecta of the graph'a long-term behavior. We firat reguire e means of characterizing how data atructurea are built up over an interval of observation. Formally, this asounta to requiring that our data atructurea be nembers of the "domain" of adeta type". (dlelwough the phrase odata type" ay appear contradictory to the populer term "abatract date typen. we ahall use it to have emeaning in the sense of 【Scott 70], which is atill the prevalent use of the tern in the aree of semantion of computation.) Although the generality in thit section may appear to be overkill. it has genulne value In underatanding the scope of the theory behind concurrent execution of function sraphs and whst can be proved with them.

Definition date type consists of:
(I) eet D_{0} celled the domain of the date type,
(ii) an information orderinc < on D_{0}
(111) an undefined element 9 in D_{0} and
(1v) 11صit operation 11m.
Mor apalfically. the information ordering is partial order on the domain D. 1.e. binary relation which has the following properties:
(1) enti-symetrio: For all x, y in D.

$$
x<y \text { implies not } y<x
$$

(11) tranaltive: for all I_{o} Y. 2 in D_{0}

$$
(x<y \text { and } y<z) \text { Implies } y<z
$$

When way thot 7 is an undefined element. we mean that it is the unique eleaent suoh that

For all 1 in $D-\{1\}$.

$$
?<\varepsilon
$$

3.2.1. Date types chareoterise inforantion content. The information ordering provides wey of coaparing the information in two data atructures. Thus. If z and y are two possible structurea. $I<y$ means that y contains more information than 1.1 is sonetiaes called bottom. It represents atructure about wich there is no information.

For notetionel convenience, we extend our notation for the ordering $<$ to \leq. in the sense that

$$
x \leq y \text { eeans } x<y \text { or } x=y
$$

Conversely. Elven auoh an ordering \leq. we can recover < by defining $<y$ to mean $x \leq y$ and Σy.

Finaliy, we define the notion of lialt operation. If C is aubet of D and d en element of D. we write

$$
c \leq d
$$

If for all I in $\mathrm{C}, \mathrm{E} \leq$. In this asse, we asy that d is an upper bound on C. If d is such that $C \leq d$ and for every d^{\prime}

$$
C \leq d^{\prime} \text { inpliea } d \leq d^{\prime}
$$

then we any that d is the least upper bound of C or lisit of C. That in. d is an upper bound on C which is \leq every upper bound of C.

When such a lialt exista. we shall denote $1 t$ as function of C by

110 C

In date type, we require that lie C exiat whever C is ofaln". whioh means

For all x . y in C .

$$
\mathrm{y} \leq \mathrm{y} \text { or } \mathrm{y} \leq \mathrm{x}
$$

In other words, a chain is aet wherein any two distinct members can be ordered with respect to the mount information in them. The ilalt of the chain corresponds to the inforaation contained in all of the members of the chain, and no more.
3.2.2. Lialts epitomize succesalve approzimations.

It aakea sense to require that the data atruotures appearing on arcs be members of the domaln of data types associated with those arcs. The information ordering determines which date valve can sppear conseoutively on an arc; 1.e. we require $z<y$ whenever y appest after x. In aense. this asy that ia an approximation to y.

Furthermore. we can identify the ultiagte atructure appearing on an arc ss the limit of the set of successive approximations appering there. Inls provides a convenient way of characterizing behavior even in the case where auch behavior ia non-terminating.

3.2.3. Exeaple of date Eype:

The handshaking exampe in Section 2.4 .2 deal with data types having domains of gets of gtringe over some alphabet. inciuding infinite atringe. We cell these atrings one-level streans. to contrast with a more comprehensive type of atrean to be disoussed subsequentiy. The undefined element in the domain
corresponds to the null string. The information ordering coinoidea with the prefin ordering. The lialt of ohein of strings is junt the shortest giring having ell strings in the ehain as prefixes. For exemple.

$$
\text { 11. } 17, b, \Delta b, b \Delta b, \ldots\}=B b b \ldots
$$

Figure 3-2: Ordering diegran for one-ievel strean data type

The information ordering in data type can be deplcted by an ordering diagran which shows how typical members reiate to one another. In auch a diagran, if there ia an arrow from x to y, then $x<y$ in the information ordering. Transitive arrows are not shown expliaitly. In other words. I y also if there is eequence of arrows directed from to y. The ordering for one-level atreass over the alphabet $(b, 0)$ is show in Figure 3-2.

3.2.4. Eremplea of dete typea:

1. Let S be any set. Then $P(S)$, the act of all subsets of S, is the domaln of a data type having least element (the eapty aet). Information ordering c (set inclusion), and linit operation U (union). Shom in figure 3-3 it the ordering diagrea for $P(S)$ there 5 it the set of all natural numbera. 10. 1. 2, 3.l.
2. Let S be any aet. Then $D(S)$. the set of all baga. 1.e. eseta with possibiy repeated elementa". of membera of S_{o}. with inclusion and union es in (i). forms data type. Shom in Figure 3-4 is the ordering diagran for $B(S)$ where S ia the aet of two atoea (a, b).
3. Let S be my set. Let ? be on element not in 5 . Let the domain of the date type be $S U(1)$ with ordering \leqslant defined by

Figure 3-3: P(S) ordering

Figure 3-h: $\mathrm{B}(\mathrm{S})$ ordering

Figura 3-5: Fiot ordering of the natural numbers

$$
x<y \operatorname{liff}(x=1 \text { and } y \neq 1)
$$

Thia ia called the flat data type over S. Notice that each chain in auch data type has ot most two member and the iliait is juit the ereater of the two. Shown in Figure 3-5 ia the flat date type on the natural numbers.
-

Figure 3-6: numeric ordering

Let 2 be the set of all integera. Then $2 U(\infty,-\infty)$ is the domein of data type with the information ordering of numeric inequality (\leq and asimum as the lifit operation. This orderinc is demonatrated in Figure 3-6.
5. Let S be aet, called the set of atoms. We define date type whose domain is the set of binary trees over S. Bein by defining the finite blnary trees:
(1) The null tree. ?, it finite binery tree.
(11) Any 膻ember of 5 is finite binary tree.
(1is) If t_{1} and t_{2} are finite binary trees. then so is the tree (t_{1}, t_{2}) having t_{1} ae its left subtree and t_{2} as its right uberee.

The ordering \leq on finite binary trees is defined by:
(1) ? < t. for asch $t \geqslant ?$
(11) $\left(t_{1}, t_{2}\right) \leq\left(t_{3}, t_{n}\right)$ iff $t_{1} \leq t_{3}$ and $t_{2} \leq t_{n}$.

We then define the infinite binary trees to be limits of infinite ohains of finite binary trees. Thus binary tree ia either finite binary tree or an infinite binary tree.

For excaple, the rules above tell us that

$$
1<(7,7)<((9,9), 7)
$$

Extending this construction, we have

$$
t_{0}<t_{1}<t_{2}<\ldots
$$

where $t_{0}=9$ and for each $1, t_{i+1}=\left(\left(9, t_{i}\right), 7\right)$.

Figure 3-7: Lialt of the tree sequence $t_{0}<t_{1}<t_{2}<\ldots$

The limit of this infinite sequence is the infinite tree depioted in Figure 3-7.

We shall observe an Important applioation of the binary tree date type in a fortheoning section. It oan be noted at thia point that the binary tree data type ean also be vieved as a miti-level atrean data type over a set of etoms. whereln w define
(1) The null atrean 7 is atrean.
(11) Each atom $1 s$ a strean.
(1is) Any finite or infinite sequence of strems is strean.
The corresponding ordering is
(1) $7<$ for 11 ! ?
(11) $x \leq 1$ iff x not longer than y and each oomponent of is \leq the corresponding component of y.

Figure 3-8: The tree equivalent to the atrean $\mathbf{\Sigma}_{0}, \mathbf{\Sigma}_{1}, \mathbf{\Sigma}_{2}$...

The conneotion with binary trees is that the atrean

$$
x_{0} \cdot x_{1}, x_{2}, \ldots
$$

is equivalent to the tree shom in Figure 3-8. This conneotion is used in lenguages avch es Liep. whioh sometimes use apeolal oton inll' an the leaf of eree to Indicate the end of finite atrean whioh oennot be further extended. It is important not to confuse 'nil' with the null strean ?.
3.2.5. Data typea oombine to cet new date types.

Figure 3-9: Product date types

It is important to notioe that if we have collection of date types. D_{1}, If. <1. Ilai. then wo may form their product data type

1. $D=X D_{1}$.
2. $1=\left(11_{1}, 12, \ldots .\right.$. .
3. < is defined by

$$
\left(d_{1}, d_{2}, \ldots\right) \leq\left(d_{1}{ }^{\prime} \cdot d_{2}{ }^{\prime}, \ldots .\right)
$$

iff
for each 1. $d_{1} \leq_{1} d_{1}{ }^{\circ}$
and extending the ligit operation so that
lim($\left(d_{1}, d_{2}, \ldots ..\right),\left(d_{1}{ }^{\prime}, d_{2}, \ldots ..\right),\left(d_{1}{ }^{n}, d_{2}{ }^{n}, \ldots.\right), \ldots l$

We illustrate product data types in Ficure 3-9.

To sumarize our interest in the notion of dots types, we require that the data atruoturea repreaenting the hiatory of an aro in araph be membera of a date type. The information ordering of data type constrains the tranaltions between hlatories of any aro. That 1s, data atruoture a be later followed by etructure yonly if x. y . The limit requirenent of date type provides for the existence of anique (posibly infinits) mitimate" atructure on eny aro of a function sraph.

3.3. Ebuvioral Desoriptione

Returning to the handshadis exeple of Figure 2-8. we further olarify the diacmalon by pointing out thet there ar two viempoints for the behavioral desaription given. Firat, we reduce the disoussion to one guation. We had

- - left (y)
- D Invert (y)
- D Invert(right(x))
- b Invert(Invert(x))
- b. Inoe Invert(Invert(x)) a. .

There are two esesential ways of viewing en equation ouch es

x - bx

The firet is the view that the behavior at any otep is given by following the behavior so far by bend continuing. This is suyseted by the repested substitution for x_{0}, $i z$.

- - br
- bor
- bobs
- .
-

The second is the view that the ultimate behevior, is obtained by successive epprosimations. eterting with the undefined behevior, es in

```
y - 1
z-b>
x-bos
    -
    \bullet
    \bullet
```

To more ecourately describe the method of suocessive approximations for deterinining systew behavior, we represent the node funotions of the greph by the syeten funotion F on the product of the date types ot each internal aro. Recall that the input aro date values are iaplicit parameter of f.

Aasuat for now that the sas of given graph are initielized so that the Input aroe contein the ultiante values to be placed on those arcs by the environeent and the internal srcs ore Initialized to contein the 'undefined'
atruoture. 7. It turns out that no generaility is lost in these egsuptions.
3.3.1. Destriotions ere necessary for successive approsiantions to work. In order to insure the efficacy of the successive approzimation approsch. we ahall pleoe some requirenenta on F. The firat requirement is that of monotonicity. To sey that F is monotone means

For all d. d^{\prime}. If $d \leq d^{\prime}$ then $F(d) \leq F\left(d^{\prime}\right)$.

In particular. fron the "aced" reletionship

$$
9 \leq F(7)
$$

we may epply monotoniolty repeatediy to get

$$
\begin{gathered}
F(7) \leq F(F(7)) \\
F(F(7)) \leq F(F(F(7)))
\end{gathered}
$$

In short, we have a chaln

$$
\text { \{1, } F(7), F(F(7)), . . .]
$$

By our assuaptions bout data typee. this ohain has a ifait, which we henceforth denote by

$$
F^{0}(7)
$$

Wotlce that the chain sbove corresponds to the "simulation" of only one of what might be aeny possibly conputations. No assumptions heve been atated about relative computation timea of the node functions, but inis one almulation assumes that they complete each atep synchronousiy.
3.3.2. Monotoniafty insures speed-independence in en esynchronous environeent.. Fortunately, the monotonioity property insures that $F^{*}(1)$ is always the result. independent of the manner of siaulation. It is only required that esch node eventualiy realizes the value apeoified by its function applied to Its ultimate input data atructure. In thia oase. each step of an arbitrarily-timed computation will eventually be subsumed in the lialt value. In other mords, the result of the oomputation is deterninate or apeed-independent. (this is also related to the "Church-loaser" property. or. (Rosen 73).)

An aditional restriotion must be imposed to insure that $F^{(1)}(7)$ makes sense" as on ultimate behavior. The following section elaborates on thle point.

3.4. Continulty

Although $F^{(1}(7)$ Is Interpretable as the unique behavior of the function eraph. It does not neoessarily follow from the properties desoribed so far that $\mathrm{F}^{\mathbf{(1}}$ (7) is rixed point. I.e. It satisfies the gysten equation.

$$
F\left(F^{(1)}\right)=F^{6}(7)
$$

The inequality

$$
F^{(17}\left(7 \leq F\left(F^{0}(7)\right)\right.
$$

follows from monotonicity, but the converse inequality

$$
F\left(F^{0}(9)\right) \leq F(7)
$$

does not.

In other words. there is no guarantee that $F^{10}(7)$ is "atable ${ }^{(1)}$. in the sense that it indeed represente the ultieate value which the funotion fis etrying to produoe". One can easily constrwot eremples oonsistent with all properties introduced so far whioh show that the sbove figed point property does not hold. For inatance. let

$$
h(x)= \begin{cases}\operatorname{cons}(a, x) & \text { if } x \text { is inite strean } \\ \operatorname{cons}(b, x) & \text { if } x \text { is an infinite stresu }\end{cases}
$$

Then h is monotone, since if x is eprefix of y then oons(e, x) is eprefin of oons(a. y), and slallarly with e replaced by b. However, h does not satisfy the systen equation, since

$$
h^{\mathrm{N}}(\mathrm{f})=\text { oons(a, oons(s, oons(a.))) }
$$

but

$$
h\left(h^{\bullet}(7)\right)=\text { cons }(b \text {. oons }(\mathrm{a}, \text { oons }(\mathrm{a}, \ldots))
$$

Although there is no ereat mathematical hara in not having the above system equation hoid. without it we would have that the anomaly that our system function F could be applied to the lialt of the ohain (i.e. the ultiaste behavior) to cet new information not present in the chain itself, whioh seeme counter-intultive to physical reality. A aufficient oondition on which resulte in the atability of $F^{\prime \prime}(7)$ is that of continuity.

The function F:D \rightarrow D is called continuous provided that it is monotone and for any ohaln C © D.

$$
F(110 C)=110|F(d)| d \text { in } C \mid
$$

(Notice that monotonicity insures that the set on the right is ohain. so that it ankes sense to consider ita liait.) Dy identifying

$$
\text { (19, } F(1), F(F(7)), \ldots .1
$$

with C and noting that

$$
\text { 11m 17. } F(7), F(F(7)), \ldots 1=110(F(7), F(F(1)), . . .1 \text {. }
$$

we get $\mathrm{F}^{\prime}(9)$ as a fired point.

For exmple, it la essy to see that the funations left and right from the handshaking exsmple are both continuous, so that the derived linit is the lesst fired point.

Conalder the binary tree data type introduoed earlier. It is easy to see that the functions head, tall, and cons, defined as follows, are all continuous:

```
coas(x,y) : (x, y)
    bead((x,y)) = 2
    mead(7) : ?
    bead(a) = error, if a 1s an atom
    eall((x.y)) = y
    tal1(7) = \
    tall(a) = error, if a is an atom
```

Here error 18 epecial valu mich is diatingulshed from oll other vialues and Indicates that ."non-sensical" application of a function has been atteapted. Notice that error is quite distinct from ?. the latter being the mathealical value Indicating the result of divergent or incomplete computation. Motice that under the atreas interpretation of trees, head corresponds to the first nember of the atreang, while tall corresponda to the rest of the atrean after deleting the first nember.
3.4.2. Deterininacy Theoren

We now encepsulate the essence of the above disoussion in atheorem.
Determinacy Theoren If G is any function graph composed of nodes whloh represent continuous functions on their conneoting are data types. then G deteralnes unique function from the date types of its input arcs to those of its output arca. Moreover. If each node function ultimately realizes its output valua on its ultimate input values. then 6 also will reallze its output value.

The subtlety of thls theore is that the input to a fiven node aay well by a "moving target". 1.e. Its Input may be ohanging, alnoe that Input value aight De In the process of being produced by some other node. Whose Input may be changing. etc. Continuity insures that despite such moblifty of values. a least (with respeot to the information ordering) tuple of aro values consistent with the apeoified funotions exists. This tuple is the least rixed point of the systen of equations. It correapons to the solution of the systea which requirea introduction of no sditional inforaation exoept that

```
exhbited in the functions and equations theaselves (e.e. no. Information concerning the method of evaluation). Successive approxivationa give us one way of ascartalning thet tuple.
```


3.4.3. Exiaple:

Using the blnary tree date type, consider the equation

$$
z=\operatorname{cons}(x, z)
$$

We have already mentioned that cons if continuous on this data type. For successive spproximations to z wo get

cons($x .7$)
cons($x_{\text {, }}$ cons $\left.(x, 7)\right)$
cons(1. cons(x, cons($x, 7))$)

The least fixed point is apparently the infinite structure

$$
z=\operatorname{cons}(x, \operatorname{cons}(x, \operatorname{cona}(x, \ldots)))
$$

Clearly. the equation is sutiafled wen this atruoture is substituted for in $2=\operatorname{cons}(\mathrm{x}, \mathrm{z})$.

Figure 3-10: Grsph resulting in the Fibonacci strean

3.4.7. Erinple:

The graph in Figure 3-10 produces the streas of Fibonacol numbers. To see this. we eay use the auccessive approximation technique.

The aystex function is civen by
$F(x, y, z)=($ add_atreana (y, z), cons(1, x), cons(i, y))
so that we have the following avcoessive approrimations to (x, y, z):

The limit if $F^{0}(9)$.
(2 3581321 34.... $123501321 \ldots . .11235813 . .$.)
Another mey to motivate the oholac of $F^{\prime \prime}(?)$ es the behovior 13 to use the eforenentioned notion of repeated substitution in the equation $x=F(x)$. That 1s. by repeatediy substituting the right-hand side for the left, we get

$$
z=P(F(F(\ldots)))
$$

This solution agrees with the suocessive approximation solution.

3.9.5. Continuity inaures composablilty.

An additional advantage which ecorue from asauming that the node functions of - network are continuous is that closure property is essy to demonstrate. A useful technique in system struoturing is to trest aysten as if it were composed of sub-syatens, rather than of atomio node functions. It would then be useful to know that such sub-systems behoved easentialiy as if they were atonic nodes. We can show that continuous functions are closed under functionsi composition, so that continuity of individual node functions Insures continuity of the aystem function. Such a property is iaportant in hierarchical and modular development of software and hardware aysteas..

Note that arbitrarily many identity functiona asy be inserted on any arc of a function graph composed of continuous functions, without affecting the ultiaate function computed. Therefore. these graphs eahibit that is called delsy-insensitivity [Relier 74], In that the identity functions eot as arbitrary inserted delays. When delay-inaensitivity holds for a distributed system. It tends to be much essier to analyze than in the more general oase.

A further ramification of continuity 18 discussed in Section 3.6.

3.5. Deternineoy of Syatems involving Prodvotione

We now wish to extend the closure property disoussed above to allow aurlifary nodes as vell. That is. glven a graph gramar, if each terminal node represents a continuous function. then so does an arbitrary eraph.

3.5.1. a at of funotiona may be deta type.

Some preliminary observations will ald us. First. let $D_{1} \rightarrow D_{2}$ denote the set of continuous functions from D_{1} into D_{2}, where D_{1} and D_{2} are the doasina of two data typea. Then $D_{1} \rightarrow D_{2}$ itself 10 the doaln of a date type. the ordering of wioh is defined by

FSGIf. and only if.

```
for each: in D (, F(x)\leqO(x).
```

The least element $?$ of this type is the function wose value is alwas the least element of D_{2}. The lialt operation ia defined so that for any ohaln Fi. $F_{2 .} F_{3} \ldots$ In $D_{1} \rightarrow D_{2}$.
for each x in D_{1}.

$$
\left(11=\left(F_{1}, F_{2}, F_{3}, \ldots f\right)(x)=1 f\left(F_{1}(x), F_{2}(x), F_{3}(x), \ldots 1\right.\right.
$$

Referring to the graph of Figure 2-23. wion represents the definition of a function G acoording to $G(x)=A^{\prime}(G)(x)$, as disoussed in Seotion 2.7.3. we ary use splitting to unfold the eraph into numerous infinite forms. three of whioh are shown in figure 3-1i. The point of these foldings and unfoldinge, besides being en exeroise in graph manipulations, is that the infinite form figure 3-11b shows that the reoursively-defined funotion G represents the function

$$
H^{\circ}(7)=\text { 18- (9, } H^{\prime}(7), H^{\prime}\left(H^{\circ}(7)\right), H^{\circ}\left(H^{\circ}\left(H^{\circ}(7)\right)\right), \ldots .
$$

Where H^{\prime} is the funotion represented by the consequent in Figure 2-20 and ? represents the function those value is totally undefined. The infinite form of Figure 3-ilc is the equivalent of repeated substitution and gives another representation. namely

$$
H^{\circ \prime}(1)=N^{\prime}\left(H^{\circ}\left(H^{\circ}(\ldots .)\right)\right)
$$

It is not difficult to show that the limit funotion above is continuous, thereby allowing us to conclude the following extension of the deternineoy theoren:

Mecursion Theorem Any function graph with continuous atomic functions. Including one with auriliary nodes defined by produotions, itself represents a continuous function. Ihis funotion is determined by the eraph formed by repested substitutions of entecedent nodes by their corresponding consequents.

It is noted that the livit concept in our notion of data type is essential in eaking the above atatement meaningful. since this concept gives meaning to the function represented by an infinite graph.

Figure 3-11: Infinite unfolded versions of C

3.6. Finite Support

Continuity has another intereating implioation. Congider the output date atruoture generated by mode funotion. This atruature may, in the lialt, be Infinite. However, wexpect that it wil alwaye be senerated incrementally, by aucoesion of finite appraximationa. Correspondingly, we would expeot that each finite approxiantion be the realt of the node function's aotion on - finite approifantion to ita input, rather than an infinite amount of input. Thle sugests that the set of dete atruotures D wioh oompriae deta type be dichotonized into the et of winitew atructures Dpin and the infinitew otructures $\mathrm{Dinf}_{\text {f }}$ and that we have the following finite support condition:

For esth din D. If F(d) is in Dfin.
then for ore d^{\prime} In Dfin.

$$
d^{t} \leq d \text { and } F\left(d^{*}\right)=F(d)
$$

The distinction of $D_{f i a} v$. Dinf depends on the data trpe under consideration. It is clear for strings and trees, but perhaps not so clear in general. One propoaed definition for seneral date types (which places an edditional constraint on the ordering () is sugested in (Stoy 77), pages 106-111, but to explore this sugeestion mould exceed the soope of thia peper.

Here we shall be content with sn exemple. showing thet the finite-support property holda for continuous funotions on atringe. Suppose that de e (posesibly-infinite) atring swh that $F(d)$ is finite. Lat us write d es the limit of the finite otringe

$$
d_{1}, d_{2}, \ldots
$$

By continulty, F(d) is the linit of

$$
F\left(d_{1}\right), F\left(d_{2}\right), \ldots
$$

But ance $F(d)$ is anite atring, there ast be an 1 swoh that

$$
F(d) \equiv F\left(d_{1}\right)
$$

so choose d^{\prime}. d_{1}. The Iinite support property therefore nolds.
4. Meohine eveluation of Computetions Represented by Graphs

Meving presented ermples of the use of eraphs for apecifioation; it is now time to disouse the eveluetion of functions specified by then. Thet is, tiven - funotion sreph uith dete objeots speoified on each of its input eros. by evaluation we mean the procedure to be used to osuse ultimete production of the date objecte on the output ares of the eraph.

4.1. Indientery fore of FeL

Ae we hev presented ather sbicsot formulation of the semantics of function eraphe, the notion of evalution will olearly be dependegt on the cholce of underlying dets types and tomic operstore. Hence, we can st best hope to present an evaluation method for on ezemplery oholee of the latter. Thia cholce ulli be elmple langueg whioh weall FGL.
4.1.1. The date types of FGL

In this presentetion, the set of deta objects of FGL will be
Objects a Atoms U Tuples U Graphs U [?]

Where

1. Aloms Integers U Stringa U Ierrorl, where Integers ia the eet of Integers and strings it the set of character otrings over some alphabet. Ne sssume that strings inciudea the string 'nil' wich will play the role of the Booleen value false. Any stom other than 'nil' and lerrorl mey play the role of the Boolean valu true.
2. Tuples: tuple is sequence of M Objeote. (In Lisp. N : 2 is typicelly required.)
3. Grepha: We sllow the enveloplng of eraph, es desoribed In Section 2.5, and its use as function olosure dete objeot.
A. wish these objects to oompriet the doealn of dete type, we mut supply ordering and limit information moordingly. First. there is e lest element 1. representing velue with hes not yet been deterained. For each data obJect x ? we have ? < x.

Second, esch ston 1s unordered with reapect to every other. Indrd, the ordering between two tuples is given by

$$
\left(x_{1}, \ldots \ldots x_{n}\right) \leq\left(y_{1}, \ldots \ldots, y_{n}\right)
$$

iff for each 1. $\mathrm{y}_{1} \leq \mathrm{y}_{1}$.
 substitutions have been asde for auxiliaries in \mathbf{C} to obtain H .

4.1.2. Basio Operators of FGL

We now describe s basio eet of FCL operators. The expected types of argments are indicated by the following names.
obj an object of any type
tup - tuple
int an integer
bool a string wich is elther ' t ' or 'nll'
fun an enveloped graph, representing - function closurs
The logical functions and and or consider 'nil' to be false and everything else to be true. The following descriptions use the words true and foles in place of the strings ' t ' and ' n ll'.

The forms in the follouing descriptions indicate the expeoted argument types. followed by a oolon, followed by the result type. for single arsunent functions, parenthesea may be onitted. Violations of the expacted type of an argument will reault in the specisi value error. It is assumed that if a function has error as the value of one of ita required argumenta, then the result of that function will be error.
name
edd
and obj1 and obj2: bool
apply
aton

The logical conjunction of ita orguments. and is sequential. evalueting the aecond arguent only if the firat la falae.

form and meaning

Int 1 . Int \mathbf{I}_{2} int Adde two numerlo arguments: $\mathrm{run}_{1}\left(o b \mathrm{~J}_{2}, o b \mathrm{~J}_{3}, \ldots\right.$. obj $\left._{n}\right)$: obj. If funp is a varlable (not a general erpression). or epply(run 1, obj2, obj3.objn): obj generally. Applies firat argiment to remining arguents.
atom (obj1): obj true unless argument is a tuple.

head	head(tupp): obl First component of a tuple arguent.
tal1	tall(tupl): obj Last component of a tuple arcueent.
00nd	If obj1 then obj 2 elee obj3: obj Evaluates obji. If the result is not false. then the second argument is returned, othermise the third arguent is returned.
cons	oons(obj1, obJ2. objn): tup forms a iuple of itis argments, of which there may be any number.
- 4	obl1 = obj2: bool true if argusents are atoms and have the seae value.
10ssp	int ${ }_{1}<$ int $_{2}:$ bool Returns true if the numeric first argument is leas than second, and false otherwise.
nod	int $\boldsymbol{1}_{\bmod }^{\bmod } \mathrm{inf}_{2}$: Int Firat integer orguent modulo seoond.
-ult	int ${ }^{1 n t}$ in: int Product of two numerio arsuments.
nul1	null(objf): bool Returns true if argument is felse, returns false othervise. (Use this for logical negation.)
numberp	```numerp(objf): bool Returns true if arcument is numerlc. falee othermse.```
or	obj1 or ob J_{2} : bool Logical disjunction of its erguents, evaluating second arguent only if first is fales.
esleot	seleot(inti. tupz): obl Gives the component indexed left to right by inti of the tuple objeot tup2. The components are indered 1, 2, n. If Int, is negative. then indering is risht to left by $-1,-2$, $\ldots-(n-1) .-n$. An error resulta fr int, 180 or out of bounds. (head and tall correspond to seleot(1,) and select(-1, ...), respectively.)

4.1.3. Internal representation of FFL

We present form of sceptable for storase in oomputer memory. For ake of conoreteness. asame conventional linearly-addressable memory. We concentrate on the representation of aingle graph within this meary.

Assume for simplioity that the menory has word-aize large enough to store
all the inforeation required bout aingle FCL node. If this is not the case, multiple mord encodings may be used. The information stored inoludes an enoodinc of the name of the function, and the references to arguents to the funotion. : Since nodes ere atored one per word. wa Identlfy the adress of the word containing the node with the aro leaving that node. Therefore the references to the arguents of a node are just the addresses of the nodes wioh produce those arguments as their reault.

All of the address information described above can be eade relative to block of words which containg the encodine of all nodes for aingle ereph, normally the consequent of aroduction or the contents of an envelope. The base address of this blook can then be identified with this graph, and used ae the argument to an apply. To be more prealse. alosure muat be acompanied by a tuple of import velues, as woll as the base address of the block. for those Imports may be different for each Instantiation of the enveloped graph.

```
dEF sumstream
mESULT ARC !
ARGUNEMTS \overline{X}
ImPORTS ADD STREAMS
ARC : CAR X
ARC-2 CDM X
ARC3 APPLY ADD STREAMS ARC_2 ARC_M
ARC-3 CONS ARC_T ARC_3
EMDDEEF
```

Figure 4 -1: Assabby language encoding of an FHL production, that of Figure 2-1.

Abstract

Ne oould then prooed to give an assenbly languagem version of FCL. A blook of code is represented by sequence of ilnesm, where each ilne encodes one mode of the blook. A Iine contains e sybolic idelel for the oorresponding node. followed by the name of the function, and the lebel of the argumenta to the the funotion. Shown in Figure $4-1$ is the essembly code for eleple FCL Eraph.

4.2. Ivaluation

We thall describe a destructive form of evaluation. In which the nodes of the graph are replaced with their values. Thia means that for each use of an apply. the block whloh encodes the closure wll have to be copled afresh. This oopying supplants the usual inltialization whlch must acooapany procedure entry, eto.

We have olready explained how each craph with objecte apeaified on its input aros deternines a unique tuple of objects on its output aros. We nust now describe an evaluation mechanise wich insures that the mathenatioally-determined values do get produced.

Since objecta are abstract. 1.e. we have not really defined what it means to produce an object, we can content ourselves with a priaitlve which produces a aingle stom, say by printing it on aline printer. We oan then use this prialtive to display general objects in thatever image of their abatract form we reel appropriate, by displaying the atoms which coaprise these objects. For exmple, if we want to print a tuple in the form with parentheses and comes, then we could do so by applying our print prialtive to strings conglating of parentheses, conass, and the atoms whioh comprise the tuple. 3ince the result objects might well be infinite. it seens prutent that wo produce parts of objects by demand.

To continue with our disoussions of demand production of objeots, assume that there is on obatraot entity known as "demand" wifoh oan be present on any aro of a function graph. This ontity remains on the aro until it is satisfied by the presence of a predeterained portion of the object. For the ourrent lenguage. we convene that this portion must be elther an atom, e graph, or e akeletal tuple. 1.e. e tuple having the number of ita components, but not necessarily the components themselves, speoified.

Prior to the demend belng satisfied, the aro value is 7 , at which it may remaln forever if the demand is never astiafled. We intend for the latter to happen only if the ultimate functionally-determined value is 7.

4.2.1. Desoription of deand propagation

To complete the apeaification of the evaluation process, we must apeaify how the demand Is propagated through each of the atonio operatore.
cona . When the result of oons is demanded, the demand is imaediately satisfied by esking the result akeletel tuple. the length of which is the number of input arca to the cona. It suffices to heve the cona node itself play the rola of the akeletal tuple, so no ectual replecement ia nacessary. Denand does not propagate to the components thenselves until as epecified in eeleot below.

Figure m-2: Deaend evaluation of select

cel	When the result of aeleot(1, x) is desanded, demand propagates to both argumenta. When both of the latter demands are satiafied. If n is the number of components of a and $1 \leq 1 \leq$ n, then the aefeot 10 deleted. its output aro belng oonnected directiy the $i^{\text {th }}$ skeletal arguent. Demand remaline, and ia propagated to that argunent. The diagran of figure -2 is meant to be suggestive.
atom	The demand propagates to the argument. When the argument demand is atiafied, the output aro gets the appropriate logical value.
00nd	The denand propagates to the firat argusent. When that deaand 13 satisfied, the output aro ia connected to the second or third input arc. depending on whather or not the value of the first argument is 'nll'. then demand propagates to the chosen orguent.
-9	Deasnd propagates to both arguents. When both ara aatiaried. the function la evaluated and the result appears on the output

ero of the node.

Binary arithetio operator propagate demand like eq. The propegation of deand In other operatore not liated bove way be inferred from the propagation for those listed. Figuration lliustrates the propagation of demand through oomplete, but very simple, example.

4.2.2. Correcteses of in FCL evaluator

The correctness of en evaluator can be steted inforaslly es follows:
For any aro ot wich a demand presents itself. If the valvedeternined by the function ia on tom. then the value ultimataly sppears on thet are.

Now conalder eny evaluator having the property that for any aro on which demend eventusily eppers, the evaluetor eventusily treats the oro ecoording to the apeciflcatione for deamdivalue propagation. This property asy be Insured. for axaple. by combination of task-list and notifier struotures \{Keller and Lindetrom 80才.

Me olsin that suoh en evalustor is oorrect se ated sbove. He do not so into further formsiliation or proof of this clalm here, except to eay that it is naturally conduoted by induetion, based on the depth of dewanded sub-objeot within the overall result objeot. A more oompleta proof appeara in [Keller and Lindstrom 80). Proof aketches for related models may be found in [Friedmen and Wise 76] and [Henderson and Morris 76〕.

4.2.3. Parsitenious avalution

Another property eteributable to the aode of computation desoribed here is persimonious evaluation. 1.e. that vilve appearing on an aro wioh fans out only need be oomputed once. This is rocomplished by simply keepling traok of whether on ero's value hae been deaanded and not propagating any but the firat demand. When and if value finally arrives at that aro, it is available to

Figure -3: Illustration of deand propagation (ahom by dashed linea). odd_from 1a defined In Section 2.1.2.
all operatorg wich hed demended $1 t$, as well as those mich will demand it in the future. This iaplesentation techinique has found use in inking mechanism In operating aystems, e.g. Multios [Organiak 721. It has been oalled by the tern maicidal auspension" In [Friedam and MIse 76], beoause the "ouspensions" (1.e. the encodings of node funotions) klll themselves by replacing there code with the value of the function.

4.3. A Blgher Leval FFL

As desoribed earlier, an FGL graph aay be encoded in a form of Masseably language". However it would be quite tedious to progran and read eztensive ezeaples in euch - languace. For thle reason. it is worth purguing higher level tezturl representations of FGL. One candidate representation. called Teztuel FCL, which hes been implemented by the author and colleagues (Keller, et al. 801. Is described here. It is of Interest beouse desple the sreater resdability, there is still apperent reasonably direct correapondence with the graphlcal form. Textual FGL has syntex edopted from that of [Hearn 74].

For explanatory purposes. we shall use upper case for literal tokens and lover cose to represent the nemes of syntaotio entitiea. We use l...l to designate - sequence of one or more of the entity enclosed and [...] to designate optional syntectic entities. It follows that [f...l] denotes zero or more of the enclosed entity. We can then proceed with our definitions of progran syntaz by the following productions:

progran -->	(block-definition)
blook-definition -->	FUNCTIOM runction-name [arguent-1iet]
	[IMPORTS imports-11at]
	[LET abbreviation-1ist]
	RESULT result-expression
	[WHERE \{block-definition] EMD]
function-name -)	Identifier
arcunent-11st -)	Identifler-11st
1mports-11at -->	Identifier-11st
abbreviation-11at -->	abbreviation [(ebbreviation]]
abbreviation -)	Identifier BE expression
result-expression --)	expression

An identifier list is defined as follows, where the aymol I denotes aholce of aiternatives:

```
Identifier-11st m)
```

Identifier
(Identifier [. Identifier))

In FGL. an identifier ia any sequence of letters, digita, or underacore (_) which begins with a letter or undersoore.

One of the blook definitions must have the function neae main. It is this function whloh ia evaluated by the aysten to osuse the evaluation of all other functions.

As one oan see. the only things that are not optional in block definition are the function name and the result expression. In most cases, we will also have the firat identifier list, which gives the names of arguments to the function being defined.

An expression is either constant, an identifier, or one of the follouing:

If expression THEM expresesion ELSE Expession
n-ery-function (erpreagion-11at)
unery-function expreasion
nullery-function ()
expression expression
Miere
expression-11st \rightarrow expression 【 (expression 1]

Functions. elther unary. nullary, or b-ary. can be elthar atoma or progremer-defined. An atomic funotion is one built into the language. A procrater defined function is whet is being defined in blook.

As exceptions to the bove mytas, some functions. . .t. binary arithaetic and logical. are represented in infiz form.

An identirier used in block definition must be known within the definition. There are five ways in mioh an identifler becones known within given block:

1. It is the function nase.
2. It appears in the arcument list.
3. It appears in the inports ifst.
4. It is defined in an sbbreviation.
5. It Is defined in the WHERE gection of the blook.
©.3.1. FtE hes "blook etrvoture.
The syntaz rules impart akind of mbok otructure" to textual FGL which is siallar to the block atruoture of Aleol. except that IMPSRTS is used for making values known in an Inner blook, whereas in Algol these values are knomn implicitiy. The nesting present in avoh blook etructure corresponds execty to the nesting of envelopes mich would ooov if each blook mere treated as a function thich is the erguent to on epply merover its naed is used. In some respects. this nesting is almilar to the "oontour model" representation of an Aleol-1ike progran (Johnston 69. 71].

It Is matter of value judgaent wether the exploit or iaplioit form of imports is preferred. The ieplicit fore is more convenient men entering a progran's text, but the expliolt form is more useful wion debusing prograe. Given that the latter ususily takes longer. we ohoose the explicit form.

Even with complier mich recoenizes comon sub-expressione. it la occasionally tedious to mrite these mb-expressions multiple times in the code. For this resson, bbbreviations are provided. The ecaning of an abbreviation is that whenever the identifier oocure. it is equated with the expresision. Notice that we do not prealude oiroularity in bbreviations.
 textully representing the cyolio graph structures.
4.3.2. Eremple of tentual FCl:

The 0-ary funotion wioh generates the straan of Fiboneoel number could be ooded as

FUNCTION Fibonacei
IMPORIS add_atreams
DESULI cons (i. cons(i, add_gtreams(Fibonaooil), hesd fibonaccil))))
or alternately. using an obbreviation as
FUNCTION FIbonaoos
LET : BE cons(1. add_streass(z. Fibonsoci))
RESULT cons(1.E)
4.3.3. Another tertual FCL eremple:

Here 1s how the serial_oomp comblnator (defined in seotion 2.7.2) oould be ooded:

FUNCTION serial coep(f. B)
DESULT h
WHERE
FUNCTION h(n)
IMPORTS (f, g)
RESMLT (E(E))
EMD

4.3.4. Breple:

Another ermaple 1s motivated by the presentation of function REDUCE in [Iverson 791. which applies binery function op to non-empty 11st: 1.e.
reduce $(o p)\left(x_{1}, x_{2}, \ldots ., x_{n}\right)=o p\left(x_{1}, o p\left(x_{2}, o p\left(\ldots . . x_{n}\right) \ldots . ..\right)\right.$
The FCL version may be coded ae
FUMCTIOM reduce(Op)
MESULT f
WHERE
FUWCT1ON f(E)
IMPORTS OP
RESURT If null E
then nil()
else if null tall a
then haed y
else op(heed E, f(tall E))
EMD

5. Uses of the Graphical Formali se

5.1. Loop Monovel

In oontrasting the two odd-primes exeaplea, one noteworthy point is that the firat antalla araph with a loop (1.e. oyole) wheres the second does not. It is morth asking wether loops are in any sense neceasary. In answer, we show that any loop ean be removed. replacing it by en appropriate recuraion. Hence loopa are not essential. although there are Implications which loops have on implementation whioh may moke them useful for more efficient realizations. To wit. loops can ba implemented as oyilo date atructurea and avold a recursion. The following theorea lllustrates the connection betmeen loops and rectraion.

Loop lemoval Theoren [Xeller 71]: For every function graph, there is an acyelio eraph (possibly with additional buriliery nodes) representing the same function.

To. prove the sbove, we firat loonte within the graph aome cutset Y of aros. 1.e. at of aros. the removal of wheh askea the graph acyolio.

Figure 5-1: A graph showing the ohosen outset

Heving chosen such a $\mathrm{Y}_{\text {, deplot the graph as in Figure 5-1. Here represents }}$ the composite function of the acyelic portion of the network. f in turn is divided into f_{1} regresenting the function which determines the values of the non-cutaet aros, and P_{2}, representing the function wioh determines the values of the outset aros.

Fiture 5-2: Acyllo graph based upon the outset in Figure 5-1.

We then introduce a new auxiliary, say $\mathrm{t}_{\text {, and observe that the acyolio graph }}$ of Figure 5-2 is equivalent to the original. In that it hat the eane output function.

Tho validity of thie construction is best explained by observine that the orlginal network hes

$$
\begin{aligned}
& Z=T_{1}(X, Y) \\
& Z=T_{2}(X, Y)
\end{aligned}
$$

while the new network has

$$
\begin{gathered}
2=r_{1}(x, g(x)) \\
f(x)=r_{2}(x, g(x))
\end{gathered}
$$

By Identifying Y with $g(X)$, the equivalence of the two is establishad. If the cutset consiste of fanned-out equivalents of the output aros. then f_{1} :
r_{2}. In this case, w can simplify the first equation to

$$
z=g(x)
$$

Figure 5-3: Eneaple of outset and simplified acyclic graph

Example: Figure 5-3 shows the choice of outset and result of loop removal in Figure 2-1. This illustrates the almplification mentioned above.

The converse of loop-removal is. of course. loop introduction. In the context of the execution model discussed earlier, loops make better use of storage than the corresponding recursive versions, as loops are not unrolled and do not require additional storage allocation. Techniques for loop introduction are still under Investigation.
5.1.1. Tall reouraion repremente loops In oonventional flowharte:

Thare in deceptive aimilerity between the loop reaval theorem and resuit appearing in [MoCarthy 63a]. The later demonstratea how any mowohart program" oan be converted into reouralve progran. The idee in to repl toce Iterations in the flowhart progran with wat are usually osiled etall recursions". This technique is important. as it ahows that any flowohart progrta has an equivalent representation in our graph formalisa.

Tall Reouraion Theored [HeCarthy 63a]: For any flowohart progrme. there is an equivalent graph gremmar. In the aense that there is in auyiliary node in the latter wich oomputes the sam funotion sa the progran.

We attempt to convey the basic ides of the proof without entering irio a formal presentation of what is meant by flowchart progran. Such progem conalsts of atatementa wich operate on mprogrea variables". Lat a be the vector of such veriables. We ereate from our progran aet of productions, the underlying functions of wich operate on the produot dita type of valuas which x may sssume.

For esoh "control polnt" p in the flowohart, we introduoe an auxiliary aymbol F_{p}. The Idea ia that $F_{p}(x)$ represents the trenaformetion undergone by x if the progran is atsrted ot point p. It wll turn out that the funotion F_{1} corresponding to the initial (i.e. entry) control point it the function computed by the flowhart, for arbitrary initial progran variable valua.

It auffices to demonstrate what prodwotions are introduoed for each flauchart box. Here wiont only assigneent statement bozes and test boxes. An sasignment. In full generality, appeara as in Figure 5-fa. The corresponding Eraph gramar production in also shown there. a test appara as in figure 5-4b, with ita corresponding production. Here we have uad a tereinal funotion cond. defined earlier. Finally, the production of Figure 5-40 is introduced for each exit point.

Or course. simplifiations are posaible. For instanoe, by oonposing functions in a fairiy obvious way, we only need one auxlifary for each loop in the

c. Eift

Figure 5-4: Productions equivalent to flowhart constructe

Figure 5-5: Factorial Flowhart

Figure 5-6: Factorial Production
flowohart. Also, recognizing that the functions in the flowart don't usually operate on all of the progran variebles. optialeation 18 possible which produces more "independent" ares (see Section 5.3).
5.1.2. Erample:

Applyinc the tall recuraion tranaformation to figure 5-5. we have the equivalent produotion in Figure 5-6. We call the prograns in these two figures "Factorial", alnce if we interpret P. F. and 0 as

$$
P(x): \Sigma \leq 1
$$

$F(x, y):(x-1, y)$
O(y.y): (z. \quad (y)
and Ify is initially 1 , then we have programs for computing a Factorial.

It has been shown in [Paterson and Hewitt 70] that, barring the addition of new functions to the progran, the reverse transformation (from a production form to flowehart) is not senerally possible. A consequence of the following aection is that the tranaforaation is possible if we are allowed to use additional functions.
5.2. Production Iemoval and Explioation of PParadozioal" Comblnatora Our eraphical formalisa possesses several potentially pedagogical uses. including the ablify to understand "paradozical" combinators. or "I" operators. These are various arcane ways of achleving the effect of recursion without the explialt use thereof.

One method of renoving recuraton ta to extend the function enveloping device described in the Section 2.5. Suppose that we have reouraive groduction of the form of figure 2-19. There we used the sybol \boldsymbol{H} to denote the eraph whioh 10 the conaequent of the production. We atated earilar that fill could be reangreased as \boldsymbol{H}^{\prime} in Figure 2-22, there we have replaced the occurrence of \mathbf{G} Inside with an epply operator.

But alnce 6 is supposed to be repleceable by H. we have another folded veraion

Figure 5-7: Folded veraton of figure 3-11b
es chown in Figure 5 -7. whioh ia also free of the ouxiliary G. To reasure ourgelves of the equivalence of thia graph and the t in figure 3-ilt with Which we started, use the apply rule of Figure 2-16.
5.2.1. A1 loops and prosuctione oan be reaoved.

We now inveatigate the possibility of elifinating all loops and productions. The preceding discussion shows how to get rid of productions. The resulting eraph. of the form shown in figure 5-7. has a loop. Aut if this loop can be elininated without introducing other loops or produationa, then we shall have found way to eliminate all loops and produotiona. inoe thit loop ia used to mehieve the effect of prototyplan produotion. Experience eugest a may of achieving this coel.

Conaider the abgraph of figure 5-7. a shom in Fliure 5-8. Ne notice that

Figure 5-8: Subgraph 1 of Figure 5-7

1f Is present on the input aro of Y . then the output aro z aust have the property

$$
z=Y(x)
$$

In other words, the function I represented by the graph is auch that for any function $F, Y(F)$ is a function such that

$$
Y(F)=F(T(F))
$$

That 1s. I produoes fixed point of F. The above only aakes sense, of course. If F is a function-producing function, e.e. H^{\prime} In the ourrent exmple.

the linil of which gives us

$$
T\left(H^{\prime}\right)=\text { 月' }^{\prime}\left(\mathrm{H}^{\prime}\left(\mathrm{H}^{\prime}\left(\mathrm{n}^{\prime}(\ldots . .)\right)\right)\right)
$$

Which is exeotly what we get by repeated substitution of m for 0 when expanding productions.

Fortunately. a loop-free operstor Y ' equivalent to I is known, and is shown in Figure 5-9.

Figure 5-9: Loop-free operator Y' equivalent to Y

Figure 5-10: Showing the equivalence of I and I

We preaent in figure 5-10 an enlightening graphical arguent to show the equivalenot of T^{\prime} and Y . The linit of the sequenee in Figure 5-10, if an enveloped if' is provided as on arguent. is the aame se that in the aubgraph of Figure 3-ilb, whioh represents the least fired point of A'.

Figure 5-11: Application of the operetor \boldsymbol{Y}^{\prime}.

In sumaery. Y ' $1:$ e loop-free equivalent of Y, which allows 0 , defined by an
 the leabde esloulus [Church il] will recognize the lembde colculus expression of Y' 0

$$
\lambda f .((\lambda E \cdot E E)(\lambda x . f(x x))))
$$

although we feel that the craphical version is muoh olearer. Sinoe lambde calculus expressions are essentlelly loop-free. there appears to be no direot way to represent the I in Figure 5-8.

In sumary, we heve used araphical teahnique to demonstrate wh the "paradorical oombinator" (Curry and Feys 58) 1s uasble to attain the lesst

Fisure 5-12: A distinguished sub-structure of Figure 5-9
fired point $H^{\circ}(7)$. In retrospect. we see thet the sub-graph of I^{\prime} shown in Figure 5-12 which appears at each stage in the expansion of T^{\prime}. is someunat arbitrary. It is not present at ali in the liait graph. Indeed, ite use appeara to be alinly to force the infinite erpunaion. With thia in eind, it is probabiy no aurprise that there are many other auch struotures wich will affice for thia purpose. with no two being inter-convertible by aieple transforaations auch as aplit and apply. Ye offer thia as reason for the existence of such functions, as mentioned for exemple In (Madaworth 76).

5.3. Parallelime

One important use of function eraphe is in the exhibition of opportunities for concurrent (or parallel) evaluntion. Paralleliae shows up naturally in a function graph in the form of two or are independent aros. 1.e. arcs not lying on comon chaln of arca. The nodes which have thoce aroe as their outputs indicate funationa those oomputation oen prooeed oonourrently.

In the sub-graph of Figure 5-13 for exaple, aran $y_{0} y_{0}$ and z ay reacive valves ooncurrentiy.

Figure 5-13: independent aros with are evaluable conourrently

Oraph gramar produotions may be ueed for cenerating oomputations with arbitrary mounts of parallelism. depending on the input data. Conalder, for ereaple. the problea of computing the number of leaves of a tree data struoture. Me oan Initiate arbitrarily-many sub-computations which coapute the number of leaves of selected sub-trees. then proceed to add the reaulting -alues.

The production of Figure 5-14 defines such function. We show in Figure 5-15 the result of the partial evaluation of the function after it has been applied to a tree having 256 leaves.
5.3.1. Paralielisa cocurs in different sranularities.

We mould conjecture that most may of erploiting parallelise in prograsa are all inatances of this independent arow phenomenon. For exmple. the processing unit of alook-mhed" prooessor (of. [Reller 75) dymanioly oonstructs auoh e eraph from e equential progra to deteraine ooneuremtly-ateautable functions. Although it is temptine to differentiate betwen look-aheam. Epipelining". and other forme of parallelism. guch differences ore essentially a matter of the pranularity of the parallelise rather than belfe distinct conoptually.

Figure 5-14: Produotion for the leafcount function

Figure 5-15: Leafcount evaluation

Figure 5-16: Production transforned froe that of Figure 5-6

Figure 5-17: Unwound graph oorresponding to the production of Figure 5-6

Figure 5-18: An inatance of the graph in Figure 5-17 with pa evaluated

We now lllustrate in the function graph model how thia look-aheed phenomenon ocoura in coaputing operations from several different iterations of a 100p. Reoall the flowhart of Figure 5-5 which was transformed to the reouraive production in Figura 5-6. In Figure 5-16. wh have further tranaforaed the production by separating the variables to ake independent are parallelism more evident. In principle. this production representa the infinite eraph shown in Figure 5-17.

For aake of clarifioation, suppose the firat several Pa in this graph evaluate
to "all' (false). We then effeotively have the graph of Figure 5-18. Ve sed from the above that any $1^{\text {th }}$ instance of $\sigma_{,}$oounting from laft to right, oan be ereouted concurrently with eny $j^{t h}$ instence of F. as lons as $1 \leq J$. A aiallar fact was used in [Reller 73] to show that no finite mount of control atorage senarally euffices to echiava arian parallalism. In this erample, we sea that no finite amount of Intermediete date atorage auffices elther, alnca if C is muah alower than F. arbitrarily many of the interaedieta results of different fo must be saved to oompute future 6a.

5.3.2. Auniliary nodec oan temporarily aask parallalima.

The graph eodel seans to be capable of diaplaying muah of the parallelism Inherent in a progras. One caution should be tsken, however, in saigning aras to be dependent eleply because they lie on oomen ohain. This caution amounta to the fect that aros entering and leaving node ere not neoessarily oonneoted in prinoiple.

Figure 5-19: The antecedent and consequent eraphs are equivalent only wen evaluated with an appropriate evaluation rule

For eraple, suppose we have node f wioh ia defined by the equation

$$
f(x, y, z)=(1 f x \text { then } z \text { else } y, \text { if } E \text { then } y \text { oise } z)
$$

Thle function might be repreaented by the produation of figure 5-19.

However, whether this produotion is en eacurate representetion of the equation depends heavily on the aubatitution eachanisa used in effecting productions. If the eechanise uses the demend-driven sobese augeated in Section 4.2 to effect the replacesent augseated, there is no difference. However. some
methode of evalustion, veriously knom se "dete-driven" or "oell-by-value" vould require dete to bs present on all thrise aros in order for the erpanation to coovr. The pioture represented in the production it then not soourate. Inataed, we hava a funotion f^{\prime} defined by

$$
f^{\prime}(x, y, z)=\left\{\begin{array}{l}
f(x, y, z) \text { if } x \in 7, y \in \geq, \text { and } z \& ? \\
z \quad \text { otherwite }
\end{array}\right.
$$

Whioh is olearly undafined on some erguenta where fit defined.

Put snother wiy, $f^{\prime \prime}$ has eynchronizing effect in having to wait on all of ita veluse. wharase does not. Synchronization is contrary to parallalian, elnoe it introdvaes axtra dependenaies batwean operatione.

The seate phanomenon is observeble in the oholos of our definition of tha operstor oons in the Evaluation aection. Our oons follous the apirit of [Friadam and Wise 76] and [Handarson and Morris 76] in being a oant which "does not evaluate its arguenta". or ons wion ie laplemented by mexy evaluation". Mors precisely. the squations

```
Oong(x,y) © (x,y)
head(oons(x,y))=E
tall(oone(x,y))}=
```


all hold without quelificstion on x and y. In contrat, oons it convantionsl Lisp and languges designed for deta-driven axecution is atrict, l.t. requirat all ergumente to be "complete" prior ta yieldint eny reault, thus producing * atrong form of aynchrosization. By complete erguent, we mean one which is - finite tree with no undefined leaves. Our cone is lenient. In that it doee not reguire any arguent to be ocmplete to yleld aesningful result. Lenient oons provides no aynohronization et ell. but alaply hat the effeot of making a value from a tuple of velue. Inla value oan be treated as aingle entity. leter to be deoonposed by eeleot funotione.
5.3.3. Lenient operntort eimplify under atending and proofe. Ancther featur of the lealent fors of operator is that for asoertalning the correatases of progren, wish to be concerned as little sessible with atipulstions woh as If w. With leniont operstors. there ar mo avoh

Figure 5-20: Miring analogies to the cona operetor: In the left pair. corresponding to lenient oons, the component wires are palred, and ither wire can be pulled without pulling on the other. In the right pair, corresponding to atriot cons. the wires are bound, and pulling elther wire effectively pulls both.

Figure 5-20 illustrates the difference between lenient and non-lenient cone through olring abalogy. If we viev the arca on which valuea flow as mires. than in the non-lenient version. the two wires are wropped together. Puliling on elther output wire pulis both of the input wires. and the output wire doentit respond unless both input wires are free. In the lenient version, pulling on on output wire pulls the corresponding input wre. Independent of the other Input wire's connection.

5.3.4. Date type ordering affacts degree of conourrenoy.

The sracter asynahrony, and henoe conourrenoy, avalieble with lanient cone emifasts itseif in mother way. It allows we to the tree ordering for our date type (ses seotion 3.2), es opposed to efiet ordering. The trase ordering inplise finer grain of observebie stsp in the production of date objeots than does tha flat ordaring of the same objeote. With the flat ordering, there la an all-or-nothing behavior of acoh function, la. the only sllowable prograssion of value le from totslly undafined to oomplately defined in ons atep. In contrast. the tras ordering allowe an infinity of eradatione. including the possibility of an Infinits earias of opproziastions. none of wioh suar errives ot sompletaly defined objeat. but esoh of wioh Is itsalf ussful. Henos the dets type ordering earves as veluabie indiostor of the grenulerity and henoe the degree of attelnable ooncurency.

5.3.5. Lenisnt oons sahames eaynahrony.

We mention thet lenient cons outometicelly inoludee the oapability of echleving grsetar asynohrony in stresm-oriented computetions than do strace operstors wioh ere restrioted to proossa strese iteng in otriot order. Inis espnohrony in turn leasons the conatralnts on the oomputation, thereby producing more opportunities for oonowrant ovaluation. Suoh diffarenoes in modes of interpretstion have been observed. for exmale. in Iarvind and Costelow 78) wich mentions an mareveling interpreter". Suoh en interpreter 18. In fact, Laplied by languge samentios wioh provides olenient, rather than strict. cons operator.

Thera is plasaing conneation between the lenient coes oonyention and the splicing effeot of graph gronar prodvotions. It indiostss that wey rastiot our attention to auiliary nodes with only one input and one output ero. alnce eny nuber of ercs may be coded and deooded using oone and meleot. As Long as lenient cons is used, the offeot is the ana. Ths disgran of Figure 5-21 111uatretes.

Figure 5-21: leplacing auxiliaries with ausiliaries having only one input and one output are: (a) Original production; (b) Replecement for antecedent: (o) Mew production
5.3.6. Tranaparent funotiona allow programer oontrol of cosourreqoy. Tha final diacusation of this acotion oonceras the exertion of greater oontrol ovar the mount of conourrency actually realized in evaluation. Lat us aasua the demand-driven cohene discussed aarller. lssuag further that we have ooded the productions for some computation. A property of the deand-adriven scheme is that it will never begin evaluating some objeot until it has deterained that the objeot ia ectualiy needed. However. the prograner gay mell know that certain objects are ultiastely going to be needed prior to their need belng perceived by the evaluator. To allow theaa neede to ba infected aa additional demands, we oan provide apeolal operator, par. Thie will be e ceneric operator with ony number of arguenta. Ite definition sliows it to be rather tranaparent functionally:

$$
\operatorname{par}\left(x_{1}, x_{2}, \ldots . x_{n}\right)=x_{1}
$$

However, its effect on the demand evaluator will be to propegate demand to all of its arguenta imediately. This uill have the effeot of anticipating the need for those argumente and forcing then to be recognized as ooncurrently evaluble.

Figure 5-22: Use of par

A typlcal use of par, to evaluate the argments for an euxiliary node
oogourrent with its expansion, is shom in Figure 5-22.
A dual problem Involves an observed wime-space tredeoff. It takea momy space to support ooncurrent sotivities. direotly proportionel to the nuber of suob eotivities. It might therefore be desirable to have an operator mioh reduoes conourrency, thereby redwolng memory requireaents. Thla can be done By intentionaliy sequanoing the evelumion of operations wich could otherwie be evaluted conourrently. The definition of suoh on operator is

For the deand evaluator, seq denande esch erguent in turn, somewhet like our oond wea epecified to do. Only when sil deande heve been setisfied doea it return ite lest vilue. ase of eeq. deploted in Figure 5-23. is to prevent expension of produotion until 11 of ite arguente ere ready.

Figure 5-23: Use of aeq

[^2]atrict per) could be uaed. The functional definition of apar ia aifiler to that of seq, but deamde prepagate to all erguente oonourrentiy.

Other alailariy useful operatora are under ourrent lavestigetion. a olean atyle of prograning ceena to result from initisliy using lenient operators as mwoh es posaible, then "overlaying" on the progran operatora avoh ea as and par for greater eontrol. The varietiee of moh oparatora asea to polat to e med for an operationel sementics to moverlay the denotational somatios of functionsl langueges. This rencina topie for future invecigation.

5.3.7. Variationa on operators effect deand-Ariven ezeoution.

It is worth noting the alailarity between par and operatore awh ae the perallel conditional and perallel or [Kleene 52]. [Paterion and Hawit 10]. For brevity. we disouss only the first of these.

Our cond operator has been defined in seation 4.2. It ie possible to devise e different operator, poond, which hes on effect siellar to par in that it deemens sil of its arguments. plus an edditionel eepeot wioh givea defined results in some easet where cond does not. The definition ia

Here $=$ ie sone meak equelitym predionte. That is. it doee not teat trae equality of its ergunente. but rether sone masker relationship which iapliee equsift, such se being the same atorsge etruoture.

Fisure 5-24: a reduction possible for poond but not for eond

Suoh e form of equality takes pleoe. for exemple. In the graph reduotion rule chovi in Figure 5-24. The reason thy true equality is not eleated for is is that the former would generally be an uncomputable predioate.

As meationed. poond will give more Information (ln the sense of the data type orderingl than eond. It appeara, however. that thit benefit will be reaped only rarely in practioe. Sinoe poond requirea propagation to all arginenta. yot will often be unable to nake use of the value of one of them. it seens that poond will generate more work than it aves, unless a superfiulty of otherwise 1dle processors is avallable. The use of poond-like operstors for caining perallelisa is discussed in (Friedman and wise 78).

To sumerize this athor' oplnion, it la denerally aore efficient to rely on atriot operatora to introduce oonowrent demande for values known to be essential than to use poond-like operators wioh will only yleld benefita in e sall nubber of cases.

5.4. Aaolliery Applioationa

He mention in thia section an additional applioation of the function eraph concept. where by applications" we mean other models mich any be viewed as Instances of function craphs. These applioations fall within the reala of the "egeneral" theory. In that they do not have a direot correspondence with en exeoution model. The intended result of such pursuit is that methods being developed for proving properties of function graphs are then appliosble to these applications.

Fisure 5-25: function of a node of a graph operating on languages

5.4.1. Language theory uses funotion-graph dean.

One application to to formal languages (1.e. sets of atriage over a finite alphabet). In the language context, nodes of function graph are viewed as functions on languages. Specificelly, each node with in input eros is the union of n languages, each formed by concatenating to sech saber of the input language the string which labels the arc. Thus. the function of the node show in Figure $5-25$ we have

$$
r\left(L_{x}, L_{y}, L_{z}\right)=L_{z} \in U L_{y} b \cup L_{z} 0
$$

It has long been understood that finite-atate languages can be represented by labelled directed graphs without use of productions, or equivalently. by "regular expressions" [Kleene 56]. Sieilerly. oontezt-free languages cen be repraeanted by a kind of graph framer allied a syntax caph (of. [Reeker 71].【Hoare and Mirth 731). We simply wish to point out that such reprasentationa can be viewed as function graphs if properly interpreted, and that the corresponding interpretation of the deteraineoy theorem 10 that in which the least fired-pointa are Just the languages generated.

Figure 5-26: a function graph representable by e regular expression

Consider the labelled seraph representation of the non-deterninistio finite-atate machine in Figure 5-26. To see the connection with languages, notloo that in the interpretation of the node state above. we have en equation such ae

$$
L=G(L)
$$

Mere

$$
G(L)=L_{0} \cup L
$$

But we hevelready represented the solution of this equation as.

$$
\theta^{n}(\theta)=L_{0} \cup\left(L_{0} \cup\left(L_{0} \cup \ldots\right) a\right) a
$$

Mnloh la uoually denoted

$$
L_{0}
$$

In the notation of regular expresions. By such reasoning. we see that the funotion desoribed by any graph is representable by regular expression, a result attributed to [Eleene 56].

If we ellow productions in addition to the type of operator ahom In figure 5-25. it is known (Reeker 71) that the funotion is not generally representable by a regular expression. but in faot requires the ereater power of aynaz eraph (equivalently, a contezt-free grean).

5.5. Indeterninaoy

We have observed the Deterelneay Theore for funotion sraphs, whioh states that esoh ereph determines ungque output velues on esoh of its aros. elven partiaular initial values on its input ares. However. it is known that there ere perfeotiy reasonable computational myateas mioh do not enjoy such determinecy propertiea. An often oited example is that of an airline reservation system. wherein the net result. the set of passengers departing of - given תlght, aight well be dependent on internal gater timings, even given - fired set of requats for seats.

The difference between indeterminacy and mon-deteriminism should be mentioned. Mon-determinise refers to the aystef choosing one of aeveral cotlons in anner localo to the behavior of the systen. Suoh behavior alght well be prevalent in oll of the aysteas disoussed in thla paper. On the other hand, indeteralnacy is alobal phenomenon whioh says that the overall outocme of aysten's exeoution may be one of several or meny possibilities.
dithough awoh indoterminate aystems have been the result of some study (cf. [Plotkin 76). (Sayth 78]. [Keller 78s]. (Xosinaki 79]). no atisfactory
ceneral theory has been developed analogous to the one presented 00 far. The operational (1.e. atate-transition) dascriptlon or indeterninate operators le usually fairly slaple, yot attempts at describlag then as finotions over thair loput histories have been unsuocesaful.

As an ezeaple, conalder the merte operator. It operates on two inecaing streans of values and produces s atroan wich is ahuffle of the two input strease. A given pair of input atreams may will have many difforent shuffles, -.8. the sequanoe s b shuffled with o dields

$$
\begin{array}{llll}
& b & d \\
c & c & d & d \\
c & d & b_{1} \\
- & b & d \\
- & d & b_{0}
\end{array}
$$

and

$$
0 d e b
$$

Here then is an example of indetarainacy.
5.5.1. Indeteralnate operators challenge conventional Intuition.

Figure 5-27: Splitting involving and

Reinterpreted here in the contert of function graphs. [Hennesay and isheroft 77] Illustrate that referantial tranaparancy, as exemplifiad by the eplitting rule. de destroyed then indeterninate operators are slowed. for exemple.
consider an ogerator－b 【MoCerthy 63b】 with is defined by

$$
\operatorname{anb}(x, y) \cdot\left\{\begin{array}{l}
x \text { if } x \nmid \\
y \text { if } y \in
\end{array}\right.
$$

with abb（ x, y ）being indeterainately 1 or y if both expreasion hold．To see umere referential tranaparency falla，conaider the expreasion

$$
b(1,2)+m b(1,2)
$$

Depending on whether the left or the right graph in Figure 5－27 is uaed．the
【Mard 74 consider edditionel raifioetions of emb－like functions． Sinilarly，［Giordano 19］shows that the oyola renowal rasult deacribed in Section 5.1 does not work with Indeterminate operators．

〔Keller 78a）observed that eraphs mich incorporate arges oan axhbit enomalles then wetteapt to define functional seantios for merge．For example，wien eerie ocours In oyole．it is possible to exhibit ahuffies of 1te ultimate inputs wich ara impossible as ultiate outputa．From this arguent，one can further conciude that eerge cannot be deseribed as function on eny product of any two date types．Instead，functional deseription of merge must take Into account reletionships between items in the two atreans mioh occur because of tising within the getem．

5．5．2．Som Indeterminaeiea ore bendge．

－olass of system intersediata betwen two ertrees is that in wich there ara loosi indaterninacies in streana of output valus，yet uniquatisate value is alwas produced on outputs of Interest．A paradige for handing such oases is to attempt to modify the ordering pert of sode of the date types in eugh wey that the operators beoone contsmuous functions with raspect to the modified ordering，then apply the detarminecy theoree．When the daterminsey theores can be spplied，the verificstion of the gystem can be reduced to the verificetion of selected sequential executions．An axaple of thia approsh appears in［Keller 78b］．
5.6. Proof Mathode

Mont existing aethode of porrectness proving can be ounhed in teras of proofs for funotion grapha. Likembe, for moat known proof aethode appllosble to funotion traphe. there are also known inatances of unh methode mhloh have been applied to aore apeciflo aodels. The one thing mefeel is to be galned In attempting to expreas a progran fraphioally is thet the latter viempoint may suseat edditional avenues of atteck for proofe. In this seation, we present proof aethods apeoifioelly from the eraph viempoint.

5.6.1. Iodnotive proofa oone in seversi interrelated forme.

Any teneral proof athod whioh deala awaesafuliy with infinite objeota. e.E. Eeneral date types and funotiona represented by eraph eramars, is coing to use some fora of induotion. There ore deveral oatensibly different forma of Induction, nemely:

1. Induction on the date objocts which ore orgumenta to funotiona.
2. Induction on tha atruoture of the protren.
3. Induction on the sequence of etepe taken in exeoution of the progran.

Despite these apparsent differencee, the fores of Induotion ara often closely releted and soastase the differsonce le only oas of viempoint.

For axeaple, the oleas of deta objeots of Interset is often representable using (perhaps mon-dsterainistic) production wioh tenerstas the olaa. So Induotion on the atrwoturs of genersting progren aight be used to get the aame effect ss induotion on dsta. Slallarly, if wara allound to trset our ersphe es dete, es bas elrasdy bsen done to sone axtent in the diacussion of envaloping, then welght wil find that induction on progreat is easentieliy Induction on data objeota representing programs. Finally, we osn often model the excoution sequacea of n progran as dsts-type in another olosely-related grogran, so thet induotion on eneoution esquences aly siso be turned into Induotion on date.

The scope of thls paper does not permit an ezhaustive aurvey of inductive
methode and their oleselfloetion. Inatead. we must be content with faw exemple of how induotive proofs oen be performed in the function ereph oontezt.
5.6.2. Iaformation and proof orderinge mey differ.

Let us begin with diseusaion of indwotion on data. We have alreedy mentioned that the sotion of dote type includee en ordering on the membere of its domala. To do induotion, wo elso aeed on ordering. but the two orderinge need not colnelde. More etringently. the type of ordering needed for date induotion must be an inductive ordering. 1.e. partimi ordering < with no infinite descending ohain.

$$
z_{0}>x_{1}>x_{2} \ldots
$$

This property 10 necesary because of the way in wioh induction procesda. 1.e. by maans of baske and an induction itep.

If were attepting to prove property for all menbers of date type.
 we mean that ther is no y such thet $y<x$. Such elesenta must exiat, because If we start with en arbitrary element end repeatediy choose analler* elementa. forming deacending chain, then the ohain cennot descend forever (due to the ordering being inductive) and therefore must atop at ainimal element.

In the induction atep, weaume that is an arbitrery non-minimal element of the data type. We show that

```
If for each y < x we hove P(y).
    then also P(x)
```

Here the lirst line ia oblled the inductive hypotheala and the second is the Inductive oonclusion. This partioular veralon of the induction etep eotually
 P(a) directiy. We seperate the basia of the groof from the induction etep in order to decompose the disusion by treiting only non-minimel elementa in
the Induotion atep. Once the beala and Induotion atep are bhom. the oonolusion is that $P(x)$ holds for every poasibie $:$ in the domala.

The oatch in this form of proof it the generality of the induotion atep. It must mork for alt non-Einimal E. The ease wth whoh this may be proved governe the oholoe of the induotive ordering, whioh may be quite unlike the Information ordering of the data type.

5.6.3. Exemple of Date Induotion:

Consider the function sungtrem defined in Figure 2-1. Suppose that the Input atrean to the function is

$$
x_{1}, x_{2}, x_{3}, \ldots
$$

We want to show that the output atrees
y1, y2, y3,
has the property

$$
y_{j}=x_{1}+x_{2}+x_{3}+\ldots . n_{j} \text { for each } 1 \leq 1
$$

Here we can use data induction, ohoosing our inductive ordering as the prefin ordering on atreama.

As basia. we auppose that t ia the null atram. The property olearly holds In this oase, as the output is also the null atrean, aoording to the definition of sunatrean.
as the induotive atep. auppose that I Ia not the null atrasm and the property holds for all 3 whoh ere proper prefizes of x. In partiouler. a has some non-zero numer of components, say 1 . and the property holde for the prefix of length 1-1. Hore preoleely.

$$
y_{1-1}-x_{1}+x_{2}+x_{3}+\ldots+x_{1-1}
$$

The $1-1^{t h}$ oomponent of the atrean output of the add_atreame wll therefore be y_{1-1}. If. But this component is also the $1^{\text {th }}$ oomponent of the output y. Hence

$$
y_{1}=x_{1}+x_{2}+x_{3}+\ldots \ldots+x_{1}
$$

Combining the bove with the inductive hypothesis. we have the induotive conclusion.

The inductive proof method bove is only partislly oomplete es we have samued thus far thet the input etrean Is finite. To make it oomplete, we aust observe that the truth of the ooncluaion for an infinite follows from 1ta truth for all ite finite prefixes. In thie exampe. the obervation Indeed holds. To see wh, suppose that the stetenent is true for all finite x. but there is an infinite sewh that for some it is not true that

$$
y_{1} \times 1+x_{2}+x_{3}+\ldots \ldots x_{1}
$$

Then olearly the oonolusion must also fall wen the finite prefiz of length 1 of y 1s the input, which is contradotion.
5.6.4. Adeiselbility make proof mork for infinite objeots.

The guality of predicste P. that the truth of P on Infinite objects follows from its truth on analler finite trunosions, is oalled adelasibility. It Is - speasi onse of the conoept of oontinulty of functions on dets types as diacussed earlier. In partiouler, if we view predicete as function into the data type with dowin (true, felae) wich has the ordering true < ralse, then continuity with respeot to this type is the man as admissibility.

It is essy to oonstruot exmples of predicates which are not sdelssible in the sbove senae. Considar, for exmple, the natural numbers, with infinity sdded, and the nuerlo ordering. Let $P(x)$ be mit finite". Then the basia $P(0)$ holds and the inductive atep holds for finite x. Also the induative hypothesis holds for infinity. However, the inductive ooncluston most oertafnly does not hold for infinity. Hance this P is not deissibla.
5.6.5. Proofa for sequential prograns oan ba oat ae function graph proofs. Wa now discuse induotion on erecution saquences. In partioular. we disouss axeoution of flowhart prograan. and show how interpret thla form of induation as Induction on date in the function graph aodel. A typical and widely used veralon of indwation on execution sequenoes is one used to prove that an assertion bout the value of progran variablea holda when the prograe terminatas, ssauning that another assertion bout the valuas of those veriablea held when the progras started. Thia method ia widely attributed to (Floyd 67). although its essenoe appeared in (Gorn 59). To apply the method. it is often neacsary to add other asertiona about the valua of veriablea at other points in the progran.

To view the sbove method in the funotion eraph aodel. we think of eaoh fiow hart atatenent as a function on the set of aets of progren variable states. For example, if the variablea are (x, y, z, then the aro data type Is the eet of all sets of values wich can ba asumed by the triple (x,y, 2). Each atateaent oorresponde to (unction on this set of sets. For ermple. correaponding to the atatement

$$
x: y \in z
$$

we have the function F given by

$$
F(S)=\left|\left(x^{\prime}, y, z\right)\right|(x, y, z) \text { in } S, x^{\prime}=y+z \mid
$$

A giallar vieupoint can be used to see that conventional "flowchart prograng" are just apeaial types of function grapha. In this ease, the data type le that of aets of state vectors. 1.e. vectors of valus asaigned to veriables of the progran. The ststement nodes of such a progran are just functions on these cata. For exmple. en essigneent statement

$$
E:=P(x)
$$

Wen viewed this way is a funotion 6 defined by

$$
G(S)=\{P(x) \mid \rrbracket \ln s\}
$$

for any set 5 of etste vectors.
sialleriy, the merge of two rlowhart orrows is the union of the two sets of atete vectors. An equivalent viempoint is that of predicste tranaformers (Dijketre 76), since predicate in auoh progrey is the ane as set of atate vectora.
[Hoare 69] introduced a eethod for asionetizing the introduction of sseertions. He indicatad how axions could be presented mich generate atomia statemente accompanied by essertions and how rules of inference could be used to senersta oompound stetenents ccoompanied by aaaertiona. Thie mathod could therefore be oonsidared induction on profran atructura. We wito indicate that aleiler eppromh oen be used for function grapha. This appromh is e eeneralization of Hoare' In that it can be applied to data types other than eets of sete of progrse ststes.
5.6.6. Aseertionsl proof eathode ertend to fuaction eraphe.

We may acoompany any function sraph with an ssection bout its input/output relation. This alfigt bs decomposed into an implication uhich involvea hypotheals bout the ingoing value and conclusion bbout the outgoing valua. Dut other forma of essertiona are posesble. For atomic functions. the allowable sesertions are derived ad hoo from the semantics of those functions. For mon-stonic functions. composition rulea must be developed mich derive the essertion for the function from the esertiona for its constituente.

An exemple for aeries interconnection of two graphs ia shown in Figure 5-28. In the osse that the asartions ar decomposed into the type of implication -entioned bove, we have almpler composition rule. es shown In Figure 5-29. Slalierly, when one operstor is cond, we may use the rule in Figura 5-30.
5.6.7. Fired point induction prove properties of functions.

A very daportant rula is the fized point induction rule, which sives us way of proving properties of reoursively defined functions. The rule is shom in Figere 5-31. measiling that $\mu^{(1)}(0)$ is the function oomputed by the recuraive

Pafor

Fran

finfor

Figure 5-29: Special osse of the composition rule for series interconnection

Ire

Safer

Figure 5-30: Composition rule for cond

Figure 5-31: Fixed point induotion rule
produotion with antecedent C in Figure 2-19, the rule says that to prove some property P for $H^{(1}(Q)$. it surfices to prove

1. Besla: P(?), were $?$ represents the function whioh always has the velue undefined.
2. Induotion atep: for arbitrary f. assuming $P(f)$, show $P(H(f))$.

If were to view a recursive production as application of araph to a value as discussed in Seotion 5.2, then ixed point induction beoones case of date Induction, with the progree (1.e. funotion graph) as data.

Fized point induotion on funotions sometimes falls to prove defining propertiee of funotions. For exemple. If were to attenpt to use it on the

$x_{1}+x_{2}, x_{1}+x_{2}+x_{3} \ldots \ldots$ Howner. fixed point induotion mould fall aince the basis. P(7) is false. (It is intereating to note, homper, that the induction step awcereds.)

On the other hand, fixed point induotion is often useful for proving properties possessed by e Cunotion other than the defining proparties. We conclude this acotion with an exaple.

Eremple: Let as abbreviate the funotion add_atreaas defined in Figure 2-9 and let 35 abbreviate the function su_strean defined in Figure 2-1. Suppose wo whish to prove the following:

Theores: For all solld etraas $\mathrm{E} . \mathrm{y}$.

$$
\operatorname{ss}(\operatorname{As}(x, y))=\operatorname{As}(\operatorname{ss}(x), \operatorname{ss}(y))
$$

By solid strean, we mean one-ievel strese in wioh no component oun be i. For conveniance, we re-define oone to be semi-gtrlot. that is oons(f. I) is equated with $?$ for every E. The reason for doing so is that the tranaformationa wioh follow fail without this re-definition. This does not preclude the possibility of atream whioh ia inoomplete at the end. e.e. cone(a, cons(b, 7)) Is the solid strean eb...

Figure 5-32: Two graghs to be shown equivalent
a graphical presentation of the theorem ia given by aseerting the equivalence of the two grapha shown in Figure 5-32. We shall prove the theoree using fired point induction.

113

Figure 5-33: Two eraphe assued to be equivalent

During the oourse of the theoren, we shall appeal to the equivalence of the two ersphe In Figure 5-33. The latter equivalenoe can be proved in manner analogous to the theorem, but the proof is much almpler.

Figure 5-34: Graphs to be shom equivalent by flaed point induction, where $H(g)$ is the consequent of in Figure 5-30.

Figure 5-35: Basia of the fized point induation

Figure 5-36: Induative hypotheaia of the fixed point induction

Figure 5-37: Inductive oonolusion of the flxed point induction. $\xrightarrow{\rightarrow}$ leads to the tranefaraed graph in Figure 5-38.

We sppesi to the fired polnt induotion principle to prove the equivelaroe of the graphs in Figure 5-34. The basta is the gatvalenoe of the graphe in Figure 5-35, where 7 is the constant funotion whoee value is the null gtrese. The equivalance of these graphe follows from the definition of AS, ainoe 4S(7. 7) $=\operatorname{cons}(7,7)$ 2. ecoording to our re-defialtion of cons.

The induction atep assuae the equivalenoe of the graphe ia Figura 5-36 and provee the equivalence of those mane graphs, ezoept with freplaoed by M(f). The resulte of these replsoemente ore shown in Figure 5-37.

The left graph in Figure $5-37$ ie ohom equivalent to the right one by the serita of tranaformations in Figure 5-38. The Justifiootione ore se follows:
3. Definition of AS.
b, Definition of heed, tall.
c. Equivalenoe in Figure 5-33.
d. Definition of AS.
-. Inductive mypothoels.'
r. Folding.
8. Definition of as and rolding -

Figure 5-38: Trensformationc used in deriving the inductive concluaion (continued nezt 2 peges)

120

6．1．Aditionel Matorioel Material

The literature of ensincering solences，partioularly eleotrioel engineering and control theory，has meen meny uses of crephioel models for funotion－bemed systess．See．for exemple．［2edeh and Desoer 63l．whioh disousses version of the determineoy theore for ceneral aystene．Many rephieel models for dete－riow（［Constentine 68）．（Adens 68），（Sodrifuez 69］．（Seror 70））heve been desoribed in the computer soienoe literature．the orisinel of whioh eeens to be［Iarp and Miler 66］．In most of these，the eraphe have played e rather etetio role．inteted of being dynenionly atructurable entitias．＇Many of these etetio model are surveyed in（Baer 78）．Adifferent oategory of model is besed on atate－trensition behevior．These modela ore not aurvered here． but axaples may be found in［Petri 66］．［Karp and Miller 69］，and［Kadier 761.

【Churoh 41】 Introduoed the labderoelculus．on wiloh many modele of functional progremaing we besed．The eraph model preaented here is more cenersi in that It provides looping atructure whioh cennot be direotly rapresented in the leabde oalculus．【Brom 62〕 prophealet the use of epplicative lenguagea for the exploitetion of paraliel procesaing oapability．［Bote 66］disousses the relationship betmen raphicel model end reoursion equations．【Patil 67】 discusses parallel evaluation in erephical lapde celoulue model．

The fixed point theory is due to［gieene 52］with ubsequent ceneralisation by Soott．for example［Scott 70．71．76］．（Pidil 70〕 presents deterainecy theorem for one－level atream－besed systeme mhoh is alullar to releted proof In［2adeh and Desoer 63］．［itahn 74］disausses fixed－point sanantios in a model whith could be considered alther craphioel or equationel．but without the riohneat of Liep operstora and dats struotures．The letter mere Introduoed Into eraph model In［Yeller 77］．【Adens 68］presente aodel with Liap－like operator，but having seemento muoh less rioh than the one presented hare．Systens based on equations，without functiona es data
objeate，are discusaed in［O＇Donnell 77）．（Turner 79］usee a raleted eraph nodel to represent reauraion．

The use of epplicetive languages to impleaent unbounded struotures has been desoribed in［Landin 64］．［Kahn 74］．（Burge 75］．［Friodaen and Mise 76］．〔Honderson and Morria 76〕．The last two give aketobes of oorreotnesa proofs for their evalumtors，whioh are eequentiol．［Vuilienin 74］disousees isaves of optimelity of evalumition rules for reouralve funotions．［Buncman，et el． 80）describes the use of a functional languge end lazy evaluation in databsee epplioatione．Oher aspeata of applicative languges are disoussed．for exaaple．In［Landin 65〕．【Evans 68］．（Backua 78］，［Iverson 79），and isleep 803.

As this annusorlpt was beling revised，［Henderson 80］asde its eppeerence．It is a highly－recomended book，with edditional ermples of the use of indeterainaoy and use of functions as values．Graphs are uasd to alfited extent，but their evalution is oxecuted differentiy than me have sugseated． and the notion of enveloping is not used．

Graph modela have lons held eppeel for representing computing aystens in whioh the processing losd is distributed mong distinot physiosl unlts．The thrust of nost work on diatributed processing has been in the direotion of process－based ayatems，1．e．those involving the intercomunloction of aultiple sequential processes［Conway 63］．（Dijkstra 68）．（Kahn and Maoquen 71），〔Hoare 781．eto．Lately，there has been increased intereat in what alght be termed task－besed syateas．Instead of using atask＂as aynonye for ＂process＂．we propose edopting e different sense of the former：afundemental unit of work involving the computation of soae stoalo funotion．Hance task－based syateme generally lend theaselves to the expression of a finer grain of oonourreacy that do process－based aystems．

Task－based syatems have been discuased［Dennis 69］．［Friedaen and Mse 70］． （Hewitt 71］，and［Hewitt and Baker 78］．although more work seens to heve Deen done on high－level lenguagea than at the iapleaentation level．［arvind and

Costelow 77）．［Davis 78s），and［Dennis and Misunse 74］．desoribe ame Iepleantstion sapeots of these syateas．The conversion of conventional prograse to date flow prograne for the purpose of extraoting parallelian is the aubjeot of（Urechler 73）．An Lapleaentation of FGL has been discussed in ［Keller，Lindstrom，and Petil 79 ］．
［Greif 75〕 and［Francez 79］disouse proof methods for tesk－based systems． ［Park 70〕．（Manne 74）．and［Stoy 77］，anons othera，disouss proofe for feneral models representsble by fized point sementios．A proof method besed on teil recuraton is presented in（hezurkiemoz 71］．［hilner 72］desoribes a eschanization of fixed－point induction．【Boyer and Moore 75〕＇discuse meahanization of deta induotion in Liap programe．

6．2．Conoluatone

We heve presented ageneral graph model based on funotions over dets types and indloated how the model ann be used to represent dymanicelly－atructured parallel and recuralve coaputetions，Including Interoomunioation betuean oomputing modules．Proof eethods and varlous types of transformations were discussed．We slso indionted how the graphs thenselves oould be used es dete objeote．

Althoush this model has been found useful in developing an exeoution model for －highly oonourrent machine arohlteoture，we are also exploring varistions of it se both a hardware and software development tool．Although other graph models hevs been proposed in these oontexts，we feel thet funotion besed models are partioularly relevant，alnoe rather then just eaploylne eraphese s syntsotic entity，our model can also assign aemantic interpretation to esch sraph．This festurs is extremely useful in progressive refinement．since it ean avold beving to switoh models es the level of desoription becomes more detalled．

We have evolded advoosting the use of egraphlaal mediun as the cole means of comenicetion．textual version of our FCL hee been developed \｛Keller．et
al. 801 and ceena more useable for oomunfaating prograna onoe they ara developed. However, the usefulness of eraphical presentation for initial development and enhancing conceptual underatandiac aannot be denied.

Preliminary work has bean dona in the use of a graphioal formalle in proofa of correctneas. Such formalise offere the edvantage of batter visualization over conventional linear formula repreaentations, whioh are prome to errore. For exemple, we hope to epply the teohnlque to proofs of etorage manageaent algorithas. An initisl ettempt at formalising thie eppileation appears in [Nor1 79].

I. Aoknowledreente

I an ladebted to many people for disousaions over the last eeveral years ralating to the oontent of thie paper. Inoluding Kin Gostelow, Gilles kahn, Gary Lindstrom, and Suhes Patil. I aleo eppreolate the help from Jed Karti in programing the firat ooapliar for that later beoae textual FGL, to Berat Joyarmaen for extending and belplag malntain that oomplior, and to Gary LIndatrom for programing the firat FCl. run-time system. Mditional melp was provided by Prancle Hunt, Anll Mori, llusa Rambo, and David hose. Paul Hudak found a serfous arror in the manumoript. I hove onjoyod ancouregement from Arvind, Ed Aehoroft, steve Boll, Wealey Clark, Al Devis, Jeok Dennis, Paul Drongowsk!, Dan Friedmen, Christian Gram, Tony Hearn, Diok kieburtz, Mark Miller, Steve Muchniok, Elliott Orgenick, Don Oxley, Avi Sllberschatz, monan Sleap, and Horst Medde. A rough draft of this paper wes used in eseminar at the Institute for Software Technology, GAD, Bonn, in the Spring of 1980, and I apprectate the comenta and augestions made by the partioipanta thereof. Last, but not least. I thank the reforees of the ACH Computing Survey for not letting apoorly-motivated draft get through. of oourse. none of these individuals is responsible for errora or lack of clarity in this presentation.
126

6．Referenoea

Meferenae tegs followed by are not alted in the tert．
［Admen 60］D．A．Adens．A oomputation model mith data flow eequenoing． Stenford Univeralty，Computer Solence Dept．．Teoh．Mept．CS117 （1968）．
（Allen 78）J．Alen．Anatony of Llep．MoGraw－H111（1978）．
［Arvind and Gostelow 71〕 Arvind and K．P．Goatelow．A oamputer aapable of exohongligg proosasors for time．Proo．IFIP＇77．849－853（Juac 1977）．

【Arvind，et al．T7〕 Arvind，I．p．Contelow，and K．Plouffe． Indeterainacy；monitora，and dataflow．Oparatine syatema meview， 11．5．159－169（Mov．1977）．
（Arvind and Costelow 70］Arvind and K．p．Costelow．Some reletionshipe betwean asynobronous interpreters of datefiow lancuace．in E．J． Meunold（od．）．Foreal deacription of programing conceple．95－119． Morth－Holl end（i978）．

〔Ashoroft and Madee 77〕 E．A．Ashoroft and K．M．Madea．Luold，： nonprocedural lenguage with iteration．CACN，20．7．519－526（July 1977）．
［Beckus 78］J．Beclase．Can programing be liberated from the von Meumenn atylet a funational atyle and lie algebre of programe．CaCH．21． 8．613－641（aus．1978）．
［Baer 78］J．L．Baer．Graph modela in programing oyatees．in Chandy and Yeh（eds．）．Current trends in programing eethodolony，III．168－231． Prentioe－Hell（1978）．
［Aelzer 71］A．M．Dolzer．Porta－mathod for dynelo interprogra ocmunication and Job control．AFIPS Proc．30，485－489（Spring 1971）．
［Boha 66］C．Bohm．The CUCH as eforal deacription language．in T．B． Steal（ed．）．Formal language description languages．Morth－Holland （1966）．

【Boyer and Moore 75］R．S．Boyer and J．S．Moore．Provine theorems about Liap functione．JaCH．22，1．129－14h（Jen．1975）．

【Brown 62】 C．Brom．A new concept in programing，in M．Greenberger （ed．）．Management and the computer of the future．Wiley（1962）．
（Buncman，et ol．80］O．P．Bunamen，A．E．Prankel，and D．Mikhil．An inplementection teobinique for database query lenguages，to appear in ACM TODS（1900）．
（Burse 75］Х．H．Burge．Reouralve programins techntques．Addison－Mesley （1975）．
［Chamberin 7i］D．D．Chamberlin．The singlessasignaent epprpeoh to parallel procesalng．NFIPS Proo．．263－269（Fall 1971）．

【Church 1941〕 A．Churoh．The colcull of leabde－conrersion．Priaceton University Prase（1941）．
［Constantine 68］L．L．Constantine．Control of aquenoe and parallelita poduler progrens．AFIPS Proo．．109－114（Spring 1968）．
［Conmey 63］M．E．Conmey．Dasign of a epparable transition－diagran acmpiler．CACN，6．396－408（1963）．
［Cornish 79］M．Cornish．The II dete flow arohitectures：the power of conourrenay for avionias．IEEE Third Disital Avionias syatem Conference（1979）．
［Corniah 10］M．Cornith．Date flow control：amotherboerd＂for visic arohiteoture．IEEE Norkshop on Mioroprooeasors in Military asd Industrial Systens（1980）．

【Curry and Feys 19］H．B．Curry and R．Fays．Combingtory Logia．I． Wor th－Holland（\＄958）．
［Devie 78e］A．L．Davis．The arohiteoture and systen method of DDM－1：a recursively－struotured dete driven mechine．Proc．Fifth Annual Syaposin on Computer Architeature（1978）．
［Devie 78b］A．L．Duvie．Dete driven nets：a msimelly conourant． procedural．parellel procese representetion for distributed oontrol systems．Tech．Rept．UUCS－78－108．Univ．of Utah，Dept，of Computer Science（duly 1978 ）．

【Dennis 69〕 J．B．Dennis．Programing generality，parellelisen and computer erohitecture．Proc．IFIP 68．484－492．Morth－Holland （1969）．
［Dennis 74］d．B．Dennis．First version of a data flow procedure langusge．in 8．mobinet（ed．）．Programing Symposiun．Laoture Motes In Computer Seienoe．19．362－376（1974）．
［Dennis and Misunas 74］1．8．Dennis and D．P．Misunse．A proliainary srahiteoture for bssio date－flom procaseor．Proo．2nd Anaul Symposiu an Computer Arohitecture．126－132（Deo．1974）．
［Dellemer and tron 76］F．Delemer and H．M．Eron．Prograging－in－the－large versus progrealag－in－the－smail．IEEE Trens．．sE－2． 2 （June 1976）．
［Dijkstra 68］E．W．DI jkstra．Cooperating sequential processes．In F．Cenuysfed．）．Programelng lengueres．Lcedenio Fress（1968）．
［Dijketrs 76］E．U．Dijkstra．A dieaipline of progemang．Prentioe－Mall （1976）．

【Evans 68］A．Evens，Jr．PAL－language destgned for teaohing
programing lingulstlos．Proo．ACM Mat．Conf．．395－403（1968）．
（Floyd 67）M．W．Floyd．Lasigning meaninge to prograne．Proc．Syep．In Appl．Math．．19．19－32．AMS（1967）．
（Forreater 61］J．W．Forrester．Industrial dynanios．KIT Press（1961）．
〔Franoez 79〕 On cohleving diatributed termination．in Kahn（ed．）． Sementica of ooncurrent computation．Springer Lecture Motes in Computer soience．70，300－315（1979）．

【Friedean and Mise 76】 D．P．Friedean and D．S．Mise．COWS should not evaluate its arguents．In Mohaelson and Milner（eds．）．Automatas Lenguases，and Programaing．257－284．Edinburgh Univeraity Press （1976）．

【friedeen and Wise 77】 D．P．Friedeen and D．S．Mise．Aspate of epplicative programing for flie ayatems．Sigplen Wotices．12．3． 41－55（March 1977）．

〔Friedaen and Wise 78〕 D．P．Friedean and D．S．Mise．The lepaot of eppliontive programaing on aultiprocessing．IEEE Trans．on Computers，C－27．4．289－296（April 1978）．
［Friedmen and Wise 79］D．P．Frledaan and D．S．Wise．An approach to falr epplicative multiprograming．in kahn（ed．）．Semantics of concurrent computation．Springer Leoture Motes in Computer Scienoe． 76．205－225（1979）．
\｛Giordano 80\} J.V. Giordano. A transformation for parallel programs with Indeterainate operators．UC Irvine Dataflow Architecture Project Mote Mo． 46 （Fab．1980）．

【Gorn 59］S．Gorn．Comin programing language task．Part 1．Section 5. Final Rept．ADS9URI．U．S．Aray Signal Corps，Moore School of Electrical Engincering（Aug．1959）．

【Greif 75】 1．Greif．Semantio of comunicating parallel processea．MIT Projeet MAC IR－154（Sept．1975）．

【Gurd and Watson 77〕 J．Curd and I．Wetson．A multlayered data flow computer architeoture．Proo． 1977 International Conference on Parallel Processing（Aus．1977）．

【Guracn and Segovia 76〕 A．Guraan and i．Segovia．A parallel reconfigurable Lisp aachine．Proc．International Conference on Information Solences and Systems，Univeraity of Patras．Grecee． 207－211（Aus．1976）．
（Hearn 74）A．C．Hearn．Reduce 2 gybolio mode priaer．Utah Sybolla Computation Group．Operating Mote 5.1 （00t．1974）．
（Hebalkar and 2111ea 79）P．G．Habalkar and S．W．2illes．Graphical representation and enalysis of inforaation systems desisn．IBN

Hesearoh lept．AJ 2465 （Jan．1979）．
［Henderson 75$]^{0}$ D．A．Henderson．Jr．The binding model：A seastic bese Cor codular progreming ayatema．MIT MAC Th－145（Feb．1975）．

【Henderson and Morris 76】 P．Henderson and J．M．Morris．Jr．a lazy evaluetor．Proo．Third ACM Conference on Prinolples of Prograning Languages，95－103（1976）．

〔Henderson 80〕 P．Henderson．Functional prozramine．Preatioe－Hall （1980）．

【Henneasy and Ashoroft 77〕 H．C．B．Henneasy and E．A．Lshoraft． Paramoter－passing meohanisan and nondetermiaism．Proc．Minth 104 Symposium on Theory of Computing．306－311（1977）．

〔Hawitt 77〕C．Hewitt．Viewing controi atructures aa patterna of pasaiac measages．Artificial Intelligence．8．3．323－364（June 1977）．
［Hewitt and Baker 78］C．Hswitt and H．Baker．Natora end eontinuous funotionels．In E．d．Miuhold（ed．）．Formal deaeription of proaraming concepts．365－390．Morth－Holiand（1978）．

【Hoare 69】 C．A． $\begin{gathered}\text { ．Hoare．An axionatic bala for oomputer progrmaing．}\end{gathered}$ CACM．12．10．576－580． 583 （Oct．1969）．

【Hoare end Mirth 73］C．A．B．Hoare end M．Wirth．An axioaatlo definition of the programing language Pasoal．Lota Informatica，2．335－355 （1973）．
［Hoare 78］C．A．R．Hoare．Commicating sequential proceasea．CACM，21． 8．666－677（Aus．1978）．
［Iverson 79］K．E．Iverson．Operatora．ACM Toplas．1，2，161－176（Oat． 1979）．

【Jayaramen and Kelier 80〕 B．Jayaraman and R．M．Keller．Resource control In a demend－driven data－flow model．Proo．Internationsl Conference on Parallel Procesaing．118－127（1980）．
（Johnson，et al．80）D．Johnson，et al．Autometic partitioning of proprams in multiproceasor ayatena．Digest of papers．IEEE Compcon 80．175－178（Feb．1980）．
［Johnaton 69］J．B．Johnaton．Structure of auitiple activity alcorithas． Third Annual Princeton Conference on information Solence and Syatems．38－43＇（March 1969）．
［Johnaton 71］d．B．Johnston．The contour sodel of blook atruotured processes．Sigplan Notices．6．2，55－82（Feb．1971）．

【Kehn 7\％G．Kahn．The samantica of a almple language for parallel programing．Proc．IFIP＇74．471－475（1974）．
（Kamp and Meoqueen 77］C．Kahn and D．Maoqueen．Coroutines and networke of perallel processes．Proo．IFIP 177．993－998（1977）．
（Karp and Miler 66〕 R．M．Karp and R．E．Millor．Properties of eodel for parallel computations：Daterminsoy．ternination，queuning． sIaN d．Appl．Math．14．6．1390－1411（Mav．1966）．
（Kerp and Miller 69］R．M．Karp and R．E．Miller．Perallel progrm cohemata．d．Comp．and syat．Sol．．3．2．147－195（May 1969）．

【Keller 73］B．M．Keller．Parallel progen shemate and mazieal parallelism．JACM，20．3．514－537（July 1973）and JACN．20．4． 696－710（00t．1973）．
［Keller 74］．．M．Xoller．Towarda e theory of universal speed－independent modulea．IEEE Trans．on Computera，C－23，1．21－33（Jen．1974）．

〔Keller 75〕 i．M．Keller．Look－ahead prooessors．Computing Surveys．7． 4．177－195（Dea．1975）．
［Reller 76］M．N．Reller．Formal verifiontion of parallel progrean． CACH．19．7．371－384（July 1976）．

【Keller 77〕 A．M．Koller．Semantios of parallel progran eraphs． University of Utah，Dept．of Computer Solence．Tech．lept． UUCS－77－110（July 1977）．
［Xeller 78a］M．M．Xoller．，Denotetional models for parallel progreas with indeterminate operators．In E．J．Meuhold（ed．）．Formal deacription of propraning concepts．337－366．North－Holland（1978）．
［Xeller 78b）A．M．Keller．An approach to deterninacy proofs．Univeralty of Utsh．Dept．of Computer Solence．Tech．Bopt．UUCS－78－102（Maroh 1978）．
［Keller．Lindstrom，and Patil 79］．M．Keller，C．Lindstrom，and 3．Patil．A loosely－coupled applicative aulti－procesaing systen． Afips froo．（June 1979）．
［Keller，Lindstron，and Patil 80］M．M．Kelier．C．Lindstroan，and S．Patil．Date－flou concepts for hardware dealgn．Digest of pepers．IEEE Compoon 80，105－1il（Feb．1980）．
［Xeller 80］Divide and CONCer：Data atrueturing for applicative multiprooessing．Proo．1980 Lisp Conferenoe．196－202（Aug．1980）．

【Keller，et al．80！FGL Programer＇s gulde．Unpublished meeo．
〔Keller and Lindetroa 80\} M.N. Keller and G. Lindatron. Hierarohical enalysis of a diatributed evaluator．Proc．International Conference oa Parallel Prooqaaing．299－310（1980）．
（XIeene 52）S．C．acene．Introduotion to metamatheasice．Van Moatrand （1952）．
［K1eene 56］S．C．Kleene．Representetion of evente in nerve mete and finite autoaste．in C．E．Shennon and J．MoCarthy（eds．）．Automate atudiee，3－42．Princeton Univeralty Press（1956）．
［Kosinaki 79］P．R．Kosinaki．Denotational cemantles of deteralnate and non－deteralnote date flow prograas．HIT／LCS／TR－220（May 1979）．
［Landin 64］P．J．Landin．The meohanioal evaluation of oaprosaiona． computer J．．6．4．308－320（Jan．1964）．
［Landin 65］P．J．Landin．a correapondenoe betmen 1180180 and Chureh＇s Lambde－Motation，CACH，B．2．89－101（Feb．1965）and A．3．158－165 （Mar．1965）．
（Manna 74）2．Manna．Mathematicel theory of eomputation．MoGraw－Hill （1974）．
［Hazurklewlez 71］A．V．Mazurklewlez．Proving algorithae by tall （unctions．Inforeation and Control 18，220－226（Apr．1971）．
［MoCarthy 60］J．MoCarthy．Recuralve functiona of aymbolio axprassions and thair computation by machine．1．CACN．5．27－37（1970）．
［MoCerthy 63a］J．MoCerthy．Towarde mathenatioal solenoe of oomputation．If IP＇62．Proo．21－28（1963）．
［McCarthy 63b］J．MoCarthy．a basis for mathematical theory of computation．in P．graffort and 0．Mirahbers（ede．）．Computar programing and formel gyateme．33－70．Morth－Molland（1963）．
［Milnar 72］A．Milnar．Iapleaentation and appliaations of Soott＇a logio ：or computabla funotionc．Sieplan Motices．7．1．1－6（Jan．1972）．
［Morris，at al．80］J．H．Morris，E．Schaldt，and P．Madler．Experience with an applicative atring prooessing languege．
［Morris and Sohwarz 80 ］＇L．Morris and J．Sohwarz．Computing eyollo list seructures．Proo． 1980 Lisp Conference，144－153（Aug．1980）．
（Moses 70］J．Moses．The function of Function In Lisp．SICSaM Bulletin． 13－27（July 1970）．

〔Nudge 78〕 T．M．Mudgo．A data driven computer architecture．Proo．dohna Hopkins Conf．on Information Soiences and Syateme（1978）．
（Mori 19〕 A．K．Morl．A atorege recleastion seheme for MPS．M．S． Thesis，Dept．of Computer Scienoe，Univeralty of Utah（Dec．1979）．
［0＇Donnell 71］M．O＇Donnell．Computing in ayatems desoribed by equations．Lecture Notes in Computer Solence．58（1977）．
［Park 70］D．Park．Fixpoint induction and proofs of progrea corroctaces． Mechine Intelligence，5．279－299．Worth－Holland（1970）．
［Peterson and Heultt 70】 M．Poterson and C．Hewitt．Comparative echematology．Reo．Projeot MAC Confarence on Concurrent Syatene and Parallel Computation．119－128（1970）．
［Patll 67］S．Patil．An batreot parallel－prooesalng ayaten．M．S． Thesie．MIT Dept．of Eleotrical Engineering（June 1967）．
［Patil 70〕 S．Patil．Closure Propertisa of interconnactions of detarminate systens．Proo．Projeot MAC Conference on Conourrent Systema and Parallel Computation，107－116（June 1970）．
［Patri 66］C．A．Patri．Comaniostion with sutomate．Supplement 1 to Tech．Rept．MDC－TM－65－377．Grifflea Alr Foros Base．New York （1966）．
［Plas 76］A．Plas，at al．LaU ayatem arohitecture：A parallel date－driven processor based on single easigneent．Proo． Internetional Conference on Perallel Prooesalng．293－302（Aug． 1972）．

〔Plotkin 76〕G．D．Plotkin．a power domain construation．SIAM d．Comp． 5．3．452－487（Sept．1976）．
（Pritsker and Pegden 791 A．A．B．Pritaker and C．D．Pegden．Introduction to simulation and Slan．Halated Prese（1979）．
（Pugh 70〕 A．L．Pugh III．Dynamo user＇e manual．MIT Press（1970）．
［Quine 60】 W．Duine．Mord and object．Miley（1960）．
［Rabiner and lader 72］L．A．Rebiner and C．M．Rader．Digital alpang processing．IEEE Press（1972）．
（Recker 71）L．K．leeker．State graphs and context free languages．in Kotavi and Paz（eds．）．Theory of machines and computations．143－151． Loademic Press（1971）．
［Aitohie and Thompson 75］D．M．Itchie and X．Thompson．The Unix time－sharing aystea．CACM．17．7．365－381（July 1975）．
（Modrlguaz 69］J．E．Modriguez．A graph model for perallel computation． MIY Project MaC Tech．lept．In－64（1969）．

〔Mosen 73〕 B．Hosen．Tree manipulating aystems and Church－Hosser theorens．JACM．20，1．160－187（Jan．1973）．
［Aosen 75］B．K．Mosen．Deriving graphs from erapha by applying o production．Mote Informatios 4．337－357（1975）．
［Rose 77］D．T．loss．Struotured analyala（SA）：A language for commiteating 1deas．IEEE Trans．．SE－6．1．16－33（Jan．1977）．

【Aumbugh 77〕 d．liumbeugh．A date flow multiprocessor．IEEE Traneactione．C－26．2．138－146（Fab．1977）．
（Schuarz 77）J．Sohwarz．Using ennotetions to meke racureion aquations beheve．lea．tapt．43，Dept．of Artifioiel Intelilgence，Univerelty of Edinburgh（Sept．1977）．
［Soott 70］D．Soott．Outiine of a mathenatical theory of oomputation． Fourth Annual Princeton Conference on Information and systeas Sciences，169－176（March 1970）．
［Soott 71 D．Soott．The lattice of flow diagrane．Syeposin on aementice of algorithalo languges．188．311－366．Springer－Verlas （1971）．
［Scott 76］D．Soott．Date types es lettices．slan J．Comp．．5．3． 522－587（Sapt．1976）．
［Seror 70 D．Seror．DCPL：A diatributed control programing language． Teoh．Rept．UTEC－CSo－70－108．Dept．of Computer Solence，Univereity of Utah（Dee．1970）．
［Sleep 80］K．R．Sleep．Applicative lengueges，deteflow，and pure cosbinatory code．Digest of papere．IEEE Compoon 80，112－115（Feb． 1980）．

【Saith and Chang 75〕 J．M．Saith and P．Y．T．Cheng．Optiaizling the performancs of e relational elgebra detabaen interface．CACM 18． 10，568－579（Oct．1975）．
（Smolier 79］S．W．Smoiler．Using appilcetive taohniquea to dagign distributed syateas．Proo．IEEE Conf．on lallable Software（April 1979）．

【Smyth 78〕M．B．Smyth．Power domelna．JCSS．16．23－36（1978）．
［Stoy 77］J．Stoy．The Scote－Strachey approach to the mathematical aemantice of prosraming lenguares．MIT Preas（1977）．

〔Syre，et el．77〕 J．C．Syre，at al．Pipalining，parallelian and esynchronism in the LAU eystan．Proc．Internationel Conf．on Parallel Proceasing．87－92（Aus．1977）．
［Tealer and Enea 68〕 L．G．Tesler and H．d．Enea． 1 language deafg for concurent procesece．AFIPS Proc．．403－408（Spring 1968）．
［Treleavan and Mole B0］P．C．Treleaven and G．F．Mole．A multi－processor reduction machine for user－dafinad reduction languagea．Proc．7th Annual Syap．on Computer Arohitecture（May 1980）．
［Turner 79］D．A．Turner．A new implementation technique for applioative languages．Software－Prectloe and Experience．9．31－49（1979）．
（Urschler 73〕 G．Ursohler．The transformation of flow diegrame into mandeally parallel form．Proo．Sagemore Confereno on Perallel Processing，38－46（March 1973）．
[Vulilealn 74] d. Vullienin. Corraot and optian laplementatione of reeuralon in a alaple programing language. JCss. 9. 332-354 (1974).
[Wedeworth 76] C.P. Madsworth. The relation between ocaputational and denotational properties for scott's models of the labde-oaloulus. ssan J. Comput.. 5. 3 (Sept. 1976).
\{Ward 74\} S.A. Mard. Functional doanins of applloative languages. MIT Projeot maC. Rept. MAC TR-136 (Sept. 1974).
[Mard and Halatead 80]" S.A. Ward and M.M. Malatead. dr. a ayntactio theory nessage passing. JACM 27. 2. 365-383 (Apr. 1980).
[Helabers 78] V. Melnbers. Struatured anolyafis. Prentioe-Hall (1978).
(Weng 79) K.S. Yeng. An ebatraot laplementetion for a generalized data flow languge. MIT LCS Rept. TR-228 (May 1979).
[Holpers 72]e M.S. Molfbers. Fundenentels of the mabit/L 1lap-processing language. Sigiplen Motioes. 7. 10. 66-75 (oot. 1972).
[Yourdon and Constantine 79] E. Yourdon and L.L. Conatantine. Struatured desifn. Prentice-Hall (1979).
[2adeh and Desoar 63] L.A. Zadeh and C.A. Desoer. Linear ayaten theory. MoGraw-H111 (1963).

[^0]: We avold uning the Lisp oar and odr for head and tall for two reasons: One 10 that these teras are not auggestive of their aeaning, and the other is that whave in aind a later extension of oons for whioh head and tall fit more alcely.

[^1]: Consider agraph gramar production of the form ahown in Figure 2-19. We can ulew the consequent of the sbove production an ebbrevistion for the

[^2]: Malther eeq mor par is appropriste in mome attustions. For exemple, if one manted ell erguaente to be ready before expanding aproduction, but manted the erguents to be evaluated conourrently, then an operetor anoh eser for

