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1 .1 . Motivating Funotion Graphs

1 .1 .1 .  Funotion graphs repreaent applicative programs and ayateas.

Funotion grsphs srs graphical representations of syattas based on funotion 

spplioation. Us inolude programs within the scope of "systems1*. Programs 

based on function application are ususlly celled "applicative*, "functional", 

or "data flow" progress, sithough it may be seen thst other types of programs 

oan also be nathenatioally represented ss funotion grsphs.

1 .1 .2 . Applicative languages simplify progrsmming. .

Some more important advantages of applicetlve programming langueges Include:

1. Greater system nodularity

2 . Ease in debugging

3. Nsturel exploitation of concurrency

I .  Natural representetion of oommiailoation

5 . Eese in human comprehension 

The festures generally imply reduced programing costs. Additionally, ainoe 

machines uhioh direotly execute applicative languages are being proposed 

((Dennis snd Hlsunss TH], (Piss 76], (Guzman and Segovia 76], (Arvlnd end 

Goatelow 77], (Curd end Vetson 771. (Rusbsugh 77]. (Davis 78s ), (Nudge 78 ). 

(Keller, Llndstros, snd Patil 7 9 ) . (Cornish 79. 8 0 ) . (Johnson, et el. 80 ), and 

others)« the attendant reduction in number of software leyers csn further 

highlight the features listed sbove.

1 .1 .3 .  Oraphloal representations are often oleerer.

As with other uses of grsphs, funotion grsphs sre mathematically 

Interchangeable with one-dimensional representations of the same system. 

However, they often serve to illustrste ooncepts more d early  snd suoclnctly 

than their one-dimensional oounterparta.

Furthermore, graphs oan obviate the use of names for establishing

1. Introduction



relationships batman entitles, which Is usually naoasssry whan s 

one-dlaenalonel rapraaantatlon Is usad for a basically graphical oonoapt. For 

eiaaple, tha laabda-oalculus (Churoh 41], which haa long baao tout ad as a 

baslo aodel for underatandlng of oartaln ooaputstlonsl phenoaena, requires a 

"re-naalng" rula for lta fenaral application. Vlth an approprlata graphical 

■odal, such ss that presented herein, auch rulaa ara unneaeasary.

is another eiaapla, the sequential Hating  of atateaents In a prograa tait 

usually laplias, or at least suggests, a corresponding sequentiality of 

control, auch of which la Inessential. A graph aay uaed to illuatrate only 

the easentlal aequentlallty and, dually, the available ooncurrenoy. In 

contrast, aany one-dlaenalonal representations aust be reprocessed to deteat 

potentially concurrent operations (c f . (Keller T3, 75a, 75b]),

Tha present paper uses graphs to slallarly expose other aspects of concurrent 

ooaputatlon, such as tha relationship between parallellaa and oholoe of data 

types, and the coaparlson of prograaalng atyles for data-driven va. 

deaand-drlven coaputetlon. it also uses graphs to deaonstrste other aspeots 

less related to concurrency, such as ooaaunlcatlon, binding, transforaatlona 

of prograaa, and verification. He auggest that ooaprehenslblllty of auoh 

ooncepts aay often be laproved through tha use of grsphs.

1 .1 .4 .  Funotlon grsphs sre a counterpart to flowcharts.

Funotlon graphs bear s relationship to applicative prograas slallar to that of 

flowcharts to aaalgnaent-baaed prograas. However, whereas flowcharta ara 

usually thought to be lnforaal repreaentstlona of an algorltha yet to be aoded 

and requiring further foraallzatlon prior to eieoutlon or analysis, function 

graphs rely only on tha underatanding of their constituent functions to ba 

foraally aeanlngful.

Like flowcharta, function graphs can ba used Inforaally to exhibit and develop 

baslo Interrelationships between systaa parts. However, this lnforasl use can 

bacoae a foraal one If  a prograaalng language based on funotlon grapha la 

available. In this oase, there Is no discontinuity Involving tha 'coding* of



thl ayatea apeolfloatlon In ■ given lin|ut|t, alnce the specification la 

already In a language which repreaenta code. Thus the continuity provided by 

both developing a aystea apeclflcatlon and lapleaentlng It In teras of 

function grapha provide* a aore reliable design procedure than one Involving a 

tranaltlon froa apeclflcatlon doaaln to coding doaaln.

It la possible to enter function grapha directly Into a programing aystea 

given a aultable graphical Input device. Another possibility la to use a 

teitual language which allows eipreaslon of function graphs In a Manner In 

which the correspondence between the text and the graph Is fairly direct. 

Indeed, coablnatlona of textual and graphical entry can be profitable.

1 .1 .5 . Funotion grapha fora a basla for programing language levant lea. 

Additionally, function graphs lay be used aa a foraal base for aeaantlcs of 

teitual languages, even when the correspondence la not direct. The advantage 

of thla fora of base la that It provldea a coanon Beans of prograa coaparlson 

and tranalatlon for different textual languages. In thla sense, seaantlcs of 

function graphs Is related to other work on "denotatlonal" seaantica of 

programing languages (c f . [Stoy 771).

A prototype language based on function graphs has been developed and la 

Included aa part of this presentation for aake of concreteness and 

Illustration. While not all features of the language, called FGL (Function 

Graph Language), oan be presented here. It Is hope that the flavor of the 

graphical presentation and conceptualliatlon can be oonveyed.

1 .1 .6 . FGL la both generlo and apeclflo.

FGL la related to a niaiber of other language Ideas which have appeared In the 

literature. In aoae caaes In dlajolnt threada of Investigation. Aa such, we 

hope that In addition to being a programing language. It provides a aeans of 

understanding these Ideas, which Inolude:

1. A large assortaent of "data-flow* languages which are being 
proposed for other hlghly-concurrent aachlne architectures. 

Exaaples Bay be found In [Dennis 7 " ) .  iPlas, et a l. 76], lArvlnd, 
at al. 77], [Davla 78b), [Weng 791.

3
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2 . Languages based on function application ([Churoh I I ] ,  [HcCarthj, at 

a l . 62], [Landln 64], [Kahn 71]. (Burga 75 ] . (Backus 78]) and on 
aysteas of equations ([Kleene 52], [Kahn 71] , (O'Donnell 77 1 ).

3 . Data atructurlng operations froa the Llap faally [McCarthy 60],
Al though auch operations fit naturally Into FCL, we need not atop 

with Just the conventional sat of operatlona. The use of FGL 

graphs for representing data atructurea can replaoe the aore 

■achlne-orlented "boi dlagraas" often found In texts dealing with 

data structuring. Further atructurlng Ideas oan alao be found In 
(Keller 60b] "i

4 . Languages riilch provide for programing with Infinite atructurea, 

such as atreaas and trees ((Landln 61], (Kahn 7 * ] . [Burga 75], 
[Frledaan and Ulsa 7 6 ] ) . Such structures ara eitreaely powerful 

devices for aodellng various aatheaatloal atructurea and for 

representing coaaunlcatlon aaong sub-systeaa. It haa alao been 

noted that they naturally provide aany sites for the eiploltatlon 

of concurrency In a hlghly-concurrent aystena ([Frledaan and Ulaa 
78], [Keller, Undstroa. and Petll 7 9 ] ).

In suamary, although we have a particular language FGL In alnd, the reader aay

view FGL as If It represented a generic aeaber of a faally of languages based

upon funotlon graphs.

1 .1 .7 . The following features further aotlvate the lnveatlgatlon of FGL:

1. FGL Is an "applicative" language. In tha sense that It Is based on 

function application and therefore enjoys tha features of auch 

languages as eipressed above.

2. FGL overcoaes soaa of the awkward features of previous data-flow 

languages through a suggested lapleaentatlon using "deaand-drlven" 
evaluation. FGL avoids the notion of "asslgnaent". Rather than 

being called by the euphealsa "single asslgnaent" language (c f . 

[Tesler and Enea 68], [Chaaberlln 71], [Irilnd , at a l . 77 ))  It Is 

properly a "lero asslgnaent" language.

3. FGL aay be easily adapted to suit a large niaber of engineering and 

scientific applications. For eiaaple, slgnal-flow graphs used In 

digital signal processing (c f . [Rabiner and Rader 72]) and systea 
dynamics aodela used for aodellng and alaulatlon of sooloeconoalo 

systeas (c f . [Forrester 61]) can be naturally represented In FGL.

It Is attractive to have a general purpose, aodularlxable, language 

at hand to enhanoe such aodellng approaohes.

4 . The graphical sspect of FGL has uses In software and hardware 

development by reflneaent. The use of graphical tools for aoftware 

development has been aentloned before (c f . [Ross 77], [Weinberg 
78], (Yourdon and Constantine 79], (Hebalkar and Zlllea 79], and 
others). When slallar toola ara ei pressed In FGL, sn additional 

advantage accrues: The grephs hsve a well-defined functional 
aeanlng, rather than alaply representing prooedtre nesting, loop
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n«atln(, calling sequenoea, ato. Ihla meaning la a apeolfloatlon 

of tha ayatem under developaaent.

5 . Die refinement of an FGL apeolfloatlon from  a coarae 

Interconnection of functlona aay proceed by further apeclfylng 

those functlona In the aame language. Itiwi Is no need to heve 

different languages for *programmlng-ln-the-lerge" vs. 

"prograaalng- ln-the-saall* [Delemer and Kron 76]. Ihla la 
desirable, alnoa often what Initially appeara to be a simple atoalo 

taak turns out to expand Into something more formidable. Thus a 

transition made too early fro* a module Interconnection language to 
a conventional prograaalng language may result In substantial 

beoklng up In the design process. With the uniform language 

approach, whan the level of atomlo funotlons Is reached, the 

apeolfloatlon Is coaaplate and the result la a runnable program.

6. FGL allows persons with little trelnlng to get atarted In 

programing. m is  la due to the few concepts Involved and the 

absence of a need to acquire knowledge ebout a linear ayntax.

Given an adequate Input device, a naive user need only know how to 

connect boxes and to Interpret them es mathematical funotlona.

7. FGL allows the vlsuellxatlon of data struoturlng operations without 

using storage dlegrems and references. ha auch. It exhlblta tha 

underlying concepts with a high degree of mechlne Independence. It 

seems particularly useful In conceptuellxlng methematloally 

Infinite deta structures end representing the operetlons on auch 

atructures.

8. FGL Is  the base of dlrectly-executeble machine language, namely 

that for the aystem proposed In (Keller, Llndstroa, end Petll 79].
As suoh. It sllows exploltetton of oonourrenoy without mejor 

concern from the progrenaer end nerrows the gep between e 

high-level programing language and Its machine Implementation.

9. FGL allows Intuitive representetlons of *functlonels* or 
•hlgher-order functions* whloh ere usuelly explelned using the 

lambda calculus (Church 41]. We hope to show that FGL provides a 

better bese for understanding the aubtletles of these ldeea.

10. FGL allows programs to be oleenly lnterfeced with file aystem 

files . In the spirit of [Balzer 71] , (iltohle end Thompson 751, 

(Friedman and Wise 77].

1 .1 .8 . Funotlon grapha say be executable or otharwlae.

Ihla paper present* Idee* ebout function grephs on two levels. One level la 

that corresponding to executable programs. The other la a more general 

conoeptuel level, for whloh there may be no known efflolent execution meens. 

When It 1* neoeessry to oontrsst these levels, we shsll refer to the former es



t

apeclal funotion grapha and the latter aa general function trapha. Hi* 

reasons for the desire to consider the general l n t l  at all art: -

1. Understanding the general level oan often provide a olearer 
underatandlng of the speolal level.

2 . Soae ldeaa can be conceptualized only at the general level.

3 . It la desirable to widen the special level as auoh aa possible.

I .e .  to express aore concepts In the fora of executable prograaa.
Tha general level provides a target for thla widening.

1 .2 . How to and Why lead tha leaalnder of the Paper 

The reasons for thla paper are aeveral:

1. To Introduce the reader to graphical foraa of applicative 

programing through a reasonably unifying aodal.

2 . To provide a theoretical fraaework for those Interested In auoh 
■attera.

3- To survey the few key ideas present In an apparently laportent, but 
eabryonlc, area of coaputer programing. Including polntara to the 
literature for results which cannot be Included here.

The section entitled Prellalnery Discussion la Intended to Introduce aoae 

types of data objects and systeas which can be explicated with graphloal 

aodeIs and arguments. The aeotlon entitled Theoretical Basle aay be read for 

those wanting a tutorial Introduction to tha theory behind auoh aodels. It 

aay be skipped on first reading, or taken on faith . The section entitled 

Machine Evaluation of Coaputatlona lepreaentad by Graphs further develops the 

function graph aodel, desorlbea a alaple language baaed on the aodel, and 

dlacusses a aeans of ooaputlng within the aodel. The aeotlon entitled Uses of 

tha Graphloal ForaalIsa deaorlbea sonoapta whlob oan be understood ualng tha 

aodel, and Manipulations and proofs Hithin the aodel. Except for tha 

aub-aeotlon on Loop leaoval. thla aeotlon aay be skipped by thoae Interested 

only In progressing aspects. The Poatluda aentlona aoae of the hlstorloal 

aspeota raleted to the ldees presented here, end auaaarlxaa the oonoluslona.
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2 . Prtllilntry Dlicuaalon

2 .1 .  Computing ir&tb Infinite Objaots u d  Equations

Several of tha eiaaplas presented in this pspar involve coaputlng with 

lnflnlta objeots. By this, wo aesn thst tha prograa osn aanlpulate as a whola 

objaots whloh ara oonoeptually lnflnlta, even though tha usar aay at any given 

run only wish to oausi a finlta truncation of tha objaot to ba Ban 1 fast* In 

principle, tha usar eould ask for tha aanlfeatation of sn antlra lnflnlta

objaot, wharaupon if  thara wcra sufflolant coaputlng rasourcas snd ha waited

i
aufficlently long, any finlta portion of tha lnflnlta objaot would ba 

aanlfeat. Slnca conventional theory of coaputation has shunned infinite 

objects, other than functions, In fsvor of working only with their finite 

truncations, s brief Introduction to this style of coaputlng is aerited.

2 .1 .1 .  Infinite objects provide new ways of presenting algorithms, 

there are seversl ressons for wsntlng to consider such objects:

1. Soae systeas, e .g . ooaputer operstlng systeas, trest their input 

and output (streaas of requests and responses) as if they were 

infinite, since the point of teralnatlon of these streaas is 

unknown snd irrelevant.

2. Programing with Infinite objeota la oft«n simpler than programing 

with finlta objects, since it relieves the programmer of asny 

concerns of "boundary conditions* which often are the cause of 
errora. For example. Instead of writing a program to compute a 

finite aet of values of a funotlon

f (1 ) ,  f ( 2 ) , f<3>............ fCn) ,

tha prograamer alght write a slapler progran whloh coaputes the 

Infinite set of values,

f (1 ) .  f(2> , f(3> . . . .

snd than use s pre-defined selection function to seleot the finite 

subset in which he is Interested. Properly iaplenented, only tha 

necessary vslues of f are really computed, but the programmer 

aanlpulates the series of vslues ss though It were Infinite.

3. With respect to this paper, one of the prlae uses of function 

grapha is to dlsplsy progrsa atructurea which represent an 

efficient and applicative aothod for coaputlng auch infinite data



8

struoturts,

2 . 1 .2 . in « i « p l t  of coaputlng with infinite objecta: *

Let us |lvt a slaple of defining an Infinite structure. Suppose wo

wished to define the (infinite) sequence of sll odd natural ntabers,

1 3 5 7 . . .

(Here, end throughout the psper9 three dots indiostes s sequence whloh 

continues sd lnflnltua. wheress four dots lndicstes s sequence with a last 

ooaponent.) We Bay do so by producing a general function odd_froa whloh with 

srgment n produoes

n n+2 n^* . . .

then applying thst funotlon to arginent 1. To define odd_flroa, we aiaply note 

that It satisfies the equation

odd_froa(n) « n followed_by odd_froa(n»2)

where followed_by is a binary function which produoes a sequence consisting of 

the itea on its left followed by the ltea on its right. Our sequence Is then 

given by the result of odd_fro«(1 ) .

To apell out in detail, '

odd_fro«(1)

* 1 rollowed__by odd_froa(3)

« 1 followedby 3 followed_by odd_froa(5)

■ 1 followed_by 3 followed_by b followed_by odd_froa(7)

• . . .

For readability and convenience, we henoeforth oalt the followed_by in writing 

auch aequenoes, preferring to write

1 3 5 . . .

lnstesd of the last line above.

We also use the expression oons(x, y) in place of i followed_by y, aince a 

■lnor extension of the oons (constructor) function froa Lisp is Just trtiat we
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M «d  to lnpleaent followed_by.

2 .1 .3 .  Mora w « p l n  involving infinite objeota. *

To |lv« i further ciaaplt of operating on Infinite objects, we knot# that the 

eua of the flrat n odd nimbera la equal to the equate of n. Me could therefore 

ooapute the atreaa of aquarea by a funotion whloh produced successively the 

a us of the ooaponenta of ita input atrean. Let us call such a funotion 

aun_atreaa. The flrat component of auB_atreaa(x) la Just the first ooaponent 

of x. Using head(x) to refer to thla ooaponent, we aee the basio fons

•ua_atreaa( x) ■ oons(head(x)...........)

where the dota nust yet be filled in to give us a coaplete definition. ,

We now observe that if we knew sua_streaa(x), then we oould add Its ooaponents 

pair-wise to the tsll of the Input ( I .e .  the ooaponents which sre followed by 

the heed) snd end up with exectly sua_stresa( x ) . 1 In other words, we hsve an 

equation

sua_streaa(x) ■ oona(head(x), add_streaas(tall(x), aua_stresa(x)))

Here we have used add_streaas to nsae the funotion which adds two streaas 

ooaponent-wlse. For exaaple,

add_streaas(3 5 7 9 . . . .  1 4 9 16. . . )  •  4 9 16 2 5 . . .

To see that equation for su»_streaa givea us exsotly the lnforaetlon needed, 

we try to disoover what It tell a us about sua__streaa( 1 3 5 . . . ) .  Using the 

definition.

sua_streea(1 3 5 . . . )  ■

oons( 1 , add_atreaas(3 5 . . . .  sua_streaa(1 3 5 . . . ) ) )  ■

'we avoid uaing the Lisp oar and odr for head and tail for two reasons: One 
is thst these teras ere not suggestive of their aeanlng, and the other Is that 

we have In alnd a later extension of oons for utiloh head and tall fit sore 
nicely.
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oonsd, «Jd_atreaas(3 5 .. . .  oonsd, addjtreaaiO . . . f ...)))))

■ oonsd, oor»(̂ , «o m (9 , . . . ) ) )

While this type of reasoning say ipptir foreign to the rtidtr at first , with m 

llttla practice, It la aaay to baooaa oonvlnoed that It la an eitreaely 

powerful definitional and prograaalng tool.

Incidentally, wa could go further and provide a definition of add_streaas: 

add_strea«s(i, y) « oona(head(x)«heed(y)t add_strea«s(tail(i), t a l l (y ) ) ) ,  

where ♦ repreaenta the usual addition operator on two nunbera.

2 .2 .  Graphical Models ‘

Figure 2-1: A |riph for Function •ua_siras*
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2.2.1. Griphlotl aodtli clarify eosplsi idiu.
We tr« lnitrtitid in graphloal « i|r «» lo D  of coaputatlonal spec If lost ions or 

th« type specified in the previous seotion. For example, the function 

s u ^ s t r c u  oould be represented by the trsph shown in Figure 2-1. This fraph 

illustrstes the input snd output of the funotlon, ss well ss the essentials of 

its lnternsl structure.

2 .2 .2 .  Iro dmms are Irrelevant in function graphs. ■

In aost oasaa we shall avoid |ivin| nsaes to the sros of s graph. Instead, we 

ahall rely on the orientation of the arcs to deteraine the position of the 

corresponding argument to s funotlon. That la, viewing the node ao that input 

aroa enter a node at its bottoa, the left-to-right orientation of sres 

corresponds to the order of arguaent listing. Where aabiguity or confusion 

sight arise, we osn return to the use of naalng.

2 .2 .3 .  Fields outside Computer Solenoe eaploy foraalliable grsphs.

It is claiaed that for oertaln examples, the graphioal expression osn to

better coaprehenslon of structures. Slailar representations have occurred in 

related application areas. For example, in digital signsl processing, dlgltsl 

filters sre often represented grsphicslly. Unfortunttely, the behavior of 

such filters is often explsined using notions such as clocks, unit tiae 

delsys, and other Jargon, Instead of appealing to their Intrinsic aesnlng in 

teras of functions on sequences. The legend socoapanylng Figure 2-2 

illustrstes how the bsslo filter operstlons osn be viewed ss funotlons on 

streaaa defined in the provloua aection. By aaklng this connection, it is 

possible for Coaputer Sclenoe to contribute to digital filter design by:

1. Providing a language in whloh the Ideas of filtering can be 

expreased direotly, instead of having to revert to Fortran coding, 

which 1s often s lengthy prooess.

2. Allowing the digital filter researcher to eabed his filters 

directly into s general purpose coaputstlonsl aystea ( i .e .  a 
Function Graph Language).

The language Lucid [Ashoroft and Wadge 771 is a textual one based entirely 

upon recurrence equations of the type used in defining stream functions as



- com(O.i)

• ((i) • coni(i|‘ltt»d(i)« ■|(UII(i)))

Figure 2-2: Graphical representation of a digital filter having a transfer 

funotion with z~transfom

used above. .

Another applloatlon area of Interest la that of Systew Simulation. Here one 

Is often eoncerned with physical processes which oan be aodeled as 

lntercoaaunlcatlng via streams of discrete values. An exawple Is Forrester's 

aystew dynamics (Forrester 61)* whloh eaploys graphs of the type shown In
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if low) • COfift(k*ht«d(rftU)*ltt*d(lflfl0M)*
v«lv«(UM(raU). UU(Inflow)))

1«v«1

FIfur•  2-3: Graphical representation of a aystaa dynaalos aodal
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Figure 2-3. As with digital filters, the nodea in thla graph oan he defined 

as stream functions, as presented In the legend. A language, Dynamo (Pugh 

70] , already exists which allows suoh Models to be input to computers. 

Although Dynamo la Indeed an applicative language (perhaps tha flrat auoh), 

its textual expression rsther resembles a Monolithic Fortran program, which 

does little to help ita user visualize relatlonahlps between sub-ayatema. By 

using a textual language (as we deacrlbe later) which ia laomorphlo to the 

graphloal Model, one attains a new degree of Modularity, at the aame tlMe 

retaining the possibility of having one's nodels embedded in a general purpose 

computational system. Some other simulation Methods, e .g . [Pritsker and 

Pegden 7 9 ) , employ a graphical notation, but these graphs do not have tha 

formal properties of functlonsllty In whloh we are Interested.

Other Isolated instances of function grsphs hsva occurred from within ooMputer 

science, such as in (Smith and Chang 7 5 ), who eMploy graph transforMations to 

illustrate query optimizations for relstlonsl databases.

2 .2 .4 .  StreaM components need not be alMple.

One should not Infer froM the above exsmples that FGL deala only with atreama 

of atomic ( i .e .  Indecomposable) values. The components of a stream might well 

be arbitrary atructures (Including possibly streams) themselves. For example, 

in Figure 2-H an argument tree becomes the first of s stream of trees, the 

rest of uhioh is obtained by splitting Its non-atomlo membera Into aub-trees. 

Tills . . . . p i .  cihlblts an cyclic .r r .n « « .n t  of -proo.**.*- «hloh oo— unio .t . 

via atreama and perform appropriate atream functiona auoh aa filtering of 

atoms or non-a toms. The figure ahows the basle communication acheme, but the 

functiona lnaide the boxea may be desoribed by simple conditional expreaaiona 

corresponding to aoyolio graphs:
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Fifura 2-4: A function which strips the leaves froa a tree 
order.

breadth-first
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fttoaa(x) t

if  null(x) *

then n il()
else if atoa(head(x>)

. then oona(head(x), atoas(tail(x )))

elae atoaa(tall(i))

nonatoas(x) ■

If null(x)
then o l lO

elae if atoa(head(x>)

then nonatoas(ta|l(x))
elae oona(head(i)v nonatoas(tall(x)))

spllt(i) « 

if  null(t) 

then nil<)

elae oons(head(head(x)), eona(tall(head(x)). aplitCtail(x)) ) )

In the above exaaple, nil Is a function whloh produaea a tern In a ted n p ty  

stress, whereas null Is a predloste whloh tests whether Its argisiant la that 

stresa. ato* teats whether Its argtnent Is sn sto a .‘ head and tall, acting on 

trees which are not atoms, extract the left and right subtrees, respectively*

2 .3 .  Semantics of Funotlon Grapha

2 .3 .1 .  Function grapha have a simple baalo fora.

The asia Interest here la in systems of computstion which csn be represented 

as s certain fora of directed graph, which we are calling a "function graph” . 

The naae derives froa the Interpretation of the nodes of the graph as 

functions. The area of a funotlon graph represent variables ranging over data 

atructures (including various degenerate foraa of thla oonoept). Aroa 

directed froa one node to another therefore represent the phenoaenon of tha 

firat node creating a data structure which la an input to the seoond.

It is possible for an arc to "fan-out", I .e .  apllt into two or aora ares, 

indicating that the saae structure is to be aade available to aore than one 

node as input, as shown in Figure 2-5. No aesning la assigned to two or aore 

arcs converging together. Other than this restriction, sny interconnection of 

nodes can be ascribed a aesning, as ahall be seen.
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Fl|ur« 2-5: Illustration of fanout

Tha following features will ba seen to fit into this general aodel!

(I )  Creating data atructurea by several functions concurrently.

(11) Operating upon data structures at the aane tlae that they are 

being created.

(I l l )  Representation of comunlcatlon protocols.

(iv) Representation of Infinite grapha by finite aeana.

(v) Representing "history-dependent" funotions.

(vl) Resolving aabiguity In the representation of recurelvely-defined 

funotions.

Figure 2-6: Concurrent creation of data atructurea by f ,  g . and h
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Itea (1) suggests thst such ■ dats structure should aoaehow be represented ss 

several function nodes sharing s single output aro. 111ho h thla possibility 

waa excluded sbove, we esn represent this sharing by lnoludlng another node, 

tha output of whloh la tha data etructure and the Input aroa are directed froa 

aeveral funotion nodes, as in Figure 2-6. .

Concerning itea ( i i ) ,  our foraallsa does not require that tha entire data 

atructure at the output of a funotion node be ooapletaly preaent at any 

Instant. Instead, the structure appeara during the ooaputatlon, poaaibly a 

piece at a tlae. It is even proper, and often oonvenlent, that wa consider 

computations of infinite duration uhioh produce data atruoturea of infinite 

extent.

Regarding itea ( i i i ) ,  at aoae levels of detail, faaillar notions of 

coaaunication protocol asy be coapletely sbstraoted froa view. However, when 

auch issues sre of ooncern, they asy often be represented in our foraelisa.

Regarding itea (lv ) , the three prlasry techniques for representing infinite 

objects, either dsts structures or function grapha, are the use of oyoles in 

grsphs, the use of grsph productions, snd sllowing dsts objects which csn 

themacIves be funotion grsphs. These techniques shsll be explslned snd 

lnterrelsted in the subsequent developaent.

Figure 2*7 ; Recoding a hlatory dependent funotion

Regarding Itea (v ) , there la really no need to lntroduoe a apeolal notion of a
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'history-dependent* funotlon, sinoe our aodel allows tha encoding of an. 

arbitrary hi a tor y aa a data atruotura. Any function Kith a fora of atata aay 

ba rapraaantad by a noda with a aalf loop whloh faada tha previous hlatory of 

tha function baok to ltaalf at aaoh ooaputatlonal atap, as daplotad In Flgura 

2-T.

Finally, regarding ( * 1 ) .  we ahall sea In subsequent saotlons that thera ara 

two waya of lntarpratlng an aquation such as that whloh daflnaa aia_straaa. 

Tha oholca of Interpretation has bearing on atoraga and execution efficiency, 

so It will ba useful to resort to s grsphlosl representation of tha function, 

which resolves the aablgulty. '

2 .4 .  Representing Syateaa as Graphs

Given that one accepta tha basic prealses of function grsphs ss presented thus 

far, we now wish to further stlpulste the nature of noda functions and arc 

data structures. For this purposes wa shall use atraaaa as our data 

structures, although tha basic ldaas will later ba seen to generalise. Begin 

by laaglnlng that we observe the output of a function noda over a 

seal-lnflnlta coaputatlon period, that Is , one whloh has s definite stsrt but 

no finish.

2 .4 .1 .  The null struoture contains no lnforaatlon.

Assuaa that tha data atruature stsrts out Initially aa a speolal null 

structure, whloh we denote

?

After aoaa elapsed tlae. the node function produces soae output, changing the 

struoture to s j . After aore elapsed tlae, It gets ohanged to 82, then S3, and 

ao on. Over tha obaerved period wa therefore see

*|i Sj, Sj......
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X
----------------------►

left right

y

Figure 2-8: Handshaking naplt

2 .4 .? .  Handshaking Illustrates a simple fora a t  ooamiailostlon.

Consider two devices communlcetlng via a simple "handshsklng* protocol, is In 

Figure 2-8. Assume that the left node Initiates coaaunlcatlon by sending a 

signal b on the top line. When the signal Is reoelved by the right node, the 

letter responds by sending s slgnsl c on the bottom line. When the left node 

receives this signal, the rfwle process stsrts over sgsln.

If we record the sccumulsted signals In s string on esch 11ns In a state, ne

get the following state-trsnsltlon picture:

1 b b bb bb bbb 
—> —> —> —> —> —> ... 

t t 0 0 00 CO

One wey of expressing the sbove behavior Is to give a set of productions uhlch 

chsracterlzea the transitions between ststes. Froa an understanding of this

behavior, the following produotlons suffloe:

I bx

—> If length(s) * length(y)
I I

I s

— > If  length(s) *  length(y)

y .

Here s end y represent srbltrsry finite strings snd length(s) Is the length of 

i.

A second way of representing the behevlor Is to present the left snd right
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nodn  aa functiona. In tha fora . '

left(y) > oona(b, invert(y)) 

right(x) > Invert(x)

whore iavert(x) la tha atrlng obtained by replaoing aaoh b in i with o and 

aach o In * with b.

Taken individually, the funotlona defined do not capture the abort tera 

hand-ahaklng behavior of the ayatea. However, taken together, with the 

underatandlng that the ayatea when in atate ( i ,y )  tend a toward the atate 

(le ft (y ), rlght(x )), they do quite wall. For eiaaple.

u r td ) b
a

rlght(T) t

left(T) bm
right(b) c

left(o) bb
■

rlght(b) o

left(o) bb
■

rlght(bb) OC
and oo forth.

2 .4 .3 *  Solving equationa eipreaaea long-range ayatea behavior.

The functional description la abla to expresa one aapeot of the aystea 

auoclnotly which tho atato-tronaltion behavior oannot, naaoly that there will 

be no deadlock In the aenae that aoae node eventually atopa aendlng aignala to 

the other. To aee thla, we flrat aubait that the long-range behavior of the 

aystea la a aolutlon (or fixed-point) (x , y) of the systca of equatlona

x - left(y)

y ■ rlght(x)
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From the discussion regarding stste-trsnsltion behavior. It Is Intuitive that 

the solution should be

I » b b b ... 

y •  c o o ...

Indeed, this Is s solution, sinoe

lo ft (c c c ...)  > b Invert( oco.. . )  * b b b b ..; 

right(bbb.. . )  a lnvert( bbb♦ . . )  > o o o ...

We here not demonstrsted thet the sbovs solution is  unique, nor how thst Is 

the proper choice among several possibilities. This will be sddrsssed in the 

following sections.

2 .5 . Recursion

It Is useful to extend our concept of grsphs to graphs which sre specified by 

graph gra— ars. This extension sllows us to represent infinite grsphs by 

finite presentations, which will give us s convenient Beans of defining 

functions by possibly recursive sppllcstions of productions.

Suppose that we allow the nodes of a graph to be labelled with two types of 

symbols: terminal s y b o ls , which denote pre-deflned functions, snd suilllsry 

symbols. For each auxiliary symbol, there is to be exactly one production 

which has the node lsbelled with the suxillsry symbol ss sntecedent, and sn 

sccompsnylng graph ss the consequent> The set of productions oolleotively 

will sometimes be eslled a grsph gra— ar.

Modes lsbelled with terminal snd auxiliary symbols will be called termlnsl 

nodes snd suxillsry nodes respectively. We sssume a one-to-one correspondence 

between the sros of sny node lsbelled with sn suxillsry symbol snd unconnected 

srcs in the consequent of the production. The mesnlng sscribed to •  

production is thst whenever there Is an auxiliary node in the graph, it may be 

replaced with the oonaequent of its corresponding production to determine its 

mesnlng. .



For enhanced readability, im  ahall adopt tha practice or Baking nodes 

oontalnlng teralnal ayabola circular or alllptlcal, and nodas oontalnlng 

auxiliary ayabola raotaniular.

Furthermore, we shall uaa hexagonal nodea to ayabollze an arbitrary aubgraph, 

auob aa tha eonaaquant of a production.

23

Figure 2-9: I  production for tha add_atreaas function 

2 .5 .1 .  Exaapla:

Consldar tha add_atreams function used earlier. We can represent this 

funotlon In terse of a a ora prlaltlve function add which adds only a atngle 

pair of lntegera, using the production In Figure 2-9.

la further eiaaplea of recursion, we show below two different exaaples, both 

of which generate all odd prlae nuabera. The aodus operand 1 of these two 

eiaaplea la auggeated In Figures 2-11 snd 2-13. The detailed definitions of 

soae of the operatora contained therein are presented In the Evaluation 

section which appears later.
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Flfur* 2-10: First Odd-Prlaes Eiaapl*

Figure 2-11: Eipanslon of the First Odd-prlaes Eiaapl* (odd_froa Is defined In 

Section 2 .1 .2 ) .

rum



pr laclfroi

25

Fl|tar« 2-12: Sacond Odd- FrUn Eiaapl*
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Figure 2*13: Expansion of tha Second Odd-prlacs Exaaple
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2.4. Splitting frNifomtlM

M r1
• £ >  ^  

nk
Figure 2-14: Splitting transformation

The discussion of recursion In tha previous section described ways of 

transforming s graph by applying productions. Another type of trsnsformatlon 

of Interest Involves local modlflcatlona to the graph based on the fact that 

the nodes represent functions. Such trsnsformstlons are useful In 

understanding the functions represented by graphs. However, these 

trsnsformatIona are not necessary to provide meaning for the grapha. That can 

be done on a purely functional basis, as described In the aectlon on 

Theoretical Basis.

Because nodes of s graph represent functions, it Is essy to see the validity 

of the apltttlng trsnsformatlon. ss demonstrsted In the dlsgrsm of Figure

2-11. Bacsuse the values on the top area each repreaent f ( i | .......... «n ) .  where

each i| 9 g|( . . . . ) ,  we csn split f  Into seversl copies of Itself In pi see of 

the spilt output are of f .  One reason for wanting to do this might be that we 

wish to make further trsnsformstlons Involving Just one of the copies of f .  

The splitting tranaformation exempliflea the notion of referential 

transparency (c f . tOulne 60], [Landln 6 4 ] ) , in that a functional expression 

has the same meaning Independent of lta context.

Botice that to say that the splitting rule is spplled does not remove the
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aablgulty of where In the graph It la applied. He shall adopt the practice of 

placing an asterisk near the noda being apllt to ao indicate.

Applying the splitting transforaation to the eiaaple In Figure 2-1. we get the 

sequence ahown in Figure 2-15. The Infinite graph la again aeen to be 

embedded In the H a lt  of an Infinite aucoeaslon of auoh tranaforaationa.

It can be noted In Figure 2-15 how function grapha sub suae the uaual "boi 

diagrams" (c f . [Allen 78]) used to represent data structures in Lisp-like 

languages. The cona nodes replace the role of boiea containing "dotted 

paira". The arrows are reveraed in going froa one repreaentatlon to the 

other. In the aense that they represent references in boi dlagraaa, but data 

flow In Function graphs. Furtheraore, in function graphs, such data atructure 

nodes blend well with functions other than cona, whereas no blending auggesta 

itself with boi diagraas. .

The Inverse of splitting, which will be called folding, will alao have lta 

uses In discovering certain equivalences later on.

♦

Figure 2-16: The aeanlng of spply
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Flgur* 2-15: h p iit id  application of tlx •p uttin g  tranaforaatlon
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2 .7 .  Funotlon* ■* Valu*a

In ordar to present a semantics of productlona, and al so to repreaent a 

powerful definitional aechsnlsa In graphical teraa, wa introduce a special 

function called apply. In lta slapleat fora, apply la a function of two 

arguaents, one of whl ch is a function and the other of which la an argisaent to 

that funotlon. Functions iriilch take one or aore functions as srguaents ara 

aoaetlaea called 'functionals*. (Analogously, the oorreapondlng grapha alght 

ba called "graphicala*.)

2 .7 .1 .  Enveloping ahows the creation of function values.

He alght assuie that there are soae prlaltlva funotlon objects whloh ean be 

used as the first srguaent to spply. However, It Is also dealrsble to ba able 

to create function objects ourselves.

In FGL, s function which csn be used as sn srguaent to snother will be shown 

by enveloping the foraer Inside s node of s graph. Ihat la , the envelope la a 

constsnt function irttlch produces the enveloped function of lta value. The 

■eanlng of apply can then be eipressed by the rule shown In Figure 2-16. It 

Is not d ifficult to see that If the doaaln of the flrat argisaent to apply la 

D1 — > Dj, the aet or functions froa D| into 02, and the doaaln of the aeoond 

argiaent Is D]( then apply Is s function froa (Di — > 02) I Di Into 02.

2 .7 .2 .  laport aroa provide *itra fleslblllty.

It la laportant that we allow laport area to paaa froa tha outside to tha 

Inside of sn envelope. Ihla allows the graph lnalde of the envelope to get 

values froa tha outside In ons of two ways:

1. By aeans of srguaents which are bound to the fra# Input area lnalde 
the anvelopa when the latter la applied.

2 . By aeans of laport sres whloh pass Into the envelope. These arcs 
are present either In the Initial graph, or residual froa prior 
applloatlons.

Funotlon values which have their laport arcs connected to tha outside world 

are often called closures (Lsndln i l ] .  As an eiaaple, auppoaa that we wish to 

define s function serlsl_ccap of two arguments, each of which Is s function



FI fur* 2-1T: Illustration of function envelopes

Itself , *uch that the result of »«rl»l_co»p(f, ( )  la •  function, say h , such 

that h («) » f ( f ( « ) ) .  In other words, h Is the serial composition of functions 

f and ( .  A graphloal presentation of serlal_conp Is shown In Flgur* 2-17. Hie 

envelope shown aa th* consequent of the production for serlal_ooap has the 

functions f and g as In porta. When this envelope Is presented to the apply 

operator, tha envelope Is stripped off and the free Input aro Inside Is bowd 

to the seoond arguaent of the apply. Funotlons suoh as serlal_coap whloh are 

designed to take functions as argwents are sonetlaes oalled "ooablnators".

For sake of further Illustration, w* direct th* reader to Figure 2-18, which 

illustrates th* concept cooaonly oalled "Currying". Here a binary function Is 

represented as unary function, the value of which la another unary function. 

Applying the binary function to (» , j)  is the sane as spplylng the unsry
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Figure 2 .1 $ : Illustration of Currying 

function to y, then applying its value to i .

We contend that the enveloped representation of functions as described in this 

section Is useful for understanding lexical binding in programing languages, 

and the accosipanying issues, e .g . the "funsrg" problem [Hoses 70 ).

2.7*3- Productiona can ba eliminated.

We now wish to show how the enveloping device can be uaed to eliminate the 

need for productions. Although productions are a useful representation for 

gaining intuitive understanding, they are awkward for representing the Idea of 

imported values, since all such values would presumably have to come froa s 

single contest. In our "block-structured" implementation of FGL (Keller, et 

s i . 60] we have found it convenient to sbsndon the inplementetlon which 

corresponds most closely to productions, in favor of one which treats sll 

progrsmmer-defined functions uniformly, whether or not they are returned as 

vslues.

Consider s graph grsmmsr production of the form shown in Figure 2-19. We csn 

view the consequent of the sbove production ss sn sbbrevlstlon for the
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C=c>

Figure 2-19: Typical recursive production

Figure 2-20: Equivalent of the consequent of the production of Figure 2*19 
using apply
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subgraph shown in Figure 2-20, when H 1 Is like It, except that G haa been • 

replaced with tha apply as shown.

In other words, H ' la a " functional'* which takas an argtaient which oan be 

aupplled aa G, whereas H has G built In. Thus, we could write

H - H *(G ).

Since the graph of Figure 2-20 la equivalent to the function Qt we aay 

substitute the entire graph for G, aa ahown In Figure 2-21. By folding the 

graph in thla figure, effectively using the equation

G « H '(G> . ‘

we get an equivalent but aore con pact veralon, aa ahown in Figure 2 -22, aa

well as a further alapltfled veralon In Figure 2-23> The latter can alwaye be 

used Jhi place of G Itself.
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Figure 2-22: Folded version of G
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Figure 2-23: Simplified folded version of G
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3 .1 . Function Graphs and Equstlona

We now deal with the problem of determining th* long-range behavior of a 

general network. We have not yet provided any reason to believe that thia 

behavior la unique in any aenae, particularly In th* oonteit of aaynchronous 

cornurrent computation. Sufficient condition* for thla unlqueneaa will be 

provided In th* oourse of the presentation, uhloh la at the general funotion 

graph level.

As Mentioned earlier, a graph oonslsts of a a*t of nod* funotlona uhloh act on 

aro data atructur*s. It haa alr*ady been ae*n how suoh a graph oould b* 

characterized by a aystea of equatlona Involving th* aroa aa varl*bl*a. W* 

now wish to represent all nod* funotlona eolleotlvely *s  on* function F acting 

on a tuple of data structures. Correspondingly, th* syst*a of aquations will 

be r*duc*d to a alngle aquation.

3 .1 .1 .  On* funotion and one aquation aufflo*.

He call F tha system function of the graph. It Intuitively gives that segment 

of the overall behavior corresponding to one step of all node functiona acting 

In concert without feedback. Tha components of the tuple on whloh F acts 

correspond to the "Internsi" and "output" aroa of the graph, with the "Input 

aros" of tha graph as "parameters" of F. By Input aro, wa K i n  one which Is 

not directed out of any node In the graph, and by output aro, we mesn one 

trtiloh la not dlreotad Into any nod*. An Intern*! *ro la one uhloh la neither 

an Input nor an output aro.

3 .1 .2 .  Iiaaple:

Conalder the graph of Flgura 3-1. Here the output aro y la alraady Identified 

with an internal aro n .  and *2 are the two Input eros. He eipress the 

•yatea funotion F In t a r n  of f ,  g , and h by

F ( , z2 , i j )  ■ ( f d , .  z2 ) ,  g («2 . Z j ) .  h (x , ,  z2 ))

Aa mentioned, F lmplloltly dependa on the lnputa i ,  , nd j ,,, M iutlon of

3. Ihtofitloil Baala
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Figure 3-1: Function graph exaaple 

3 .? . Data Type a

Ve now preaent conditions under which the ayatea function determines Boat of 

the relevant aspecta of the graph1a long-tera behavior. We flrat require a 

aeans of characterizing how data atructurea are built up over an Interval of 

observation. Formally, this amounts to requiring that our data atructurea be 

aenbere of the "domain" of a "data type". (Although the phraae "data type" 

■ay appear contradictory to the popular tera "abstract data type", we shall 

uae it to have a meaning In the aenae of [Scott 70], which la atill the 

prevalent uae of the tera in the ares of seaantiot of coaputatlon.) Although 

the generality in this aectlon aay sppear to be overkill, it haa genuine value 

in underatanding the scope of the theory behind concurrent execution of 

function grapha and what can be proved with thea.

Definition A data type conalats o f:

(1 ) a set D, celled the doaaln of the data type. -

(i i )  an information ordering (  on D,



(il l )  id undtflned >l»— nl ? In D, and

(I f )  a limit operation 11m.

Nora apeolfloally, tha Information ordarlnt ia a partial order on tha domain

D. I .a . i  binary relation tAiich ha a tha foil owing propertlea:

(1) anti-aymmetrio: For all x, y In D,

x < y Impllea not y < x

(11) tranaitlve: For all x, y , x in D,

(x < y and y < s) Impllea x < x

When wa aay that 7 la an undefined element, we mean that it la the unique 

element auoh that

For all x in D—IT).

7 < x

3 .2 .1 *  Data typea oharaotarlxe information oontent.

The Information ordering provides a way of comparing the Information In two 

data structures. Thus, if x and y are two possible structures, i < y mesns 

that y contalna more information than x. 7 la aometimea oalled bottom. It 

represents s structure about which there la no information.

For notational convenience, we extend our notation for the ordering < to <t in 

the sense that
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Converaely, given auoh an ordering <, we osn reoover < by defining x < y to 

mean x < y and x 4 y.

Finally, we define the notion of a limit operation. If C ia a aubaet of D and 

d an element of D, we write

C < d

If  for all x In C, x < d. In thla ease, we aay that d la an upper bound on C. 

If 4 Is such thst C < d snd for every d*



C < d' lmpllea d < d«

then we aay thst d Is the least upper bound of C, or H a lt  of C. That la. d is 

an upper bound on C which la < every upper boiaid of C.

When auch a H a l t  exists, we shall denote It ss s funotlon of C by

11a C

In s data type, we require that 11a C exist whenever C Is  i  "chain", whloh 

aesns

For all x, y in C9

1 < y or y < i

In other words, a chain Is a set wherein sny two distinct aeabers osn be 

ordered with respeot to the aaount lnforaatlon in them. The H a lt  of the 

chain corresponds to the lnforaatlon oontalned In all of the aeabers of the 

chain, and no aore.

3 .2 .2 .  Limits epltoaize successive approxlastions.

It aakea sense to require that the data atruotures appearing on arcs be 

aeabers of the domain of data types associated with those srcs. The 

lnforaatlon ordering determines which dsts vslues csn sppear conseoutlvely on 

sn sro; I .e .  we require x < y whenever y sppesrs sfter x. In a sense, this 

says thst x is sn spproxlastion to y.

Furtheraore, we csn identify the ultlaste structure sppearlng on an sro ss the 

H a lt  of the set of suooesslve spproxlastions sppesring there. This provides 

s convenient way of characterizing behavior even in the case where such 

behavior la non-teralnating.

3 .2 .3 .  Exsaple of a data type:

The handshaking example In Section 2 .4 .2  deals with dsts types hsvlng domains 

of sets of strings over some alphabet, inoludlng infinite strings. We cell 

these strings one-level streams, to contrast with s aore comprehensive type of 

atreaa to be discussed subsequently. The undefined element in the domain

10



oorrtipondi to the null string. The lnforaation ordering eoinoidea with the 

prefli ordering. The llalt of e oheln of strings Is Juat the shortest string 

having ell strings in the ehsln as preflies. For exaaple,

11a IT, b , bb, bbb, . . . )  * b b b ...
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\ /  \ /  \ . /  \ /

Figure 3-2: Ordering dlagraa for a one-level streaa data type

The lnforaation ordering In a data type can be depicted by an ordering dlagraa 

which ahows how typical aeabers relate to one another. In auch a dlagraa. If  

there la an arrow froa x to y, then x < y In tha lnforaation ordering. 

Tranaltlve arrows are not shown explicitly. In other words, z < y also If 

there la a aequenoe of arrows directed froa x to y. The ordering for one-level 

streams over the alphabet (b , o) Is shown In Flgura 3-2.

3 .2 .4 .  tiaaplea of data typea:

1. Let S be any aet. Then F (S ), the aet of all subsets of S, Is the 
domain of a data type having least element 0 (tha eapty aet), 

lnforaation ordering c (aet lnolusion), and llalt operation U 

(union). 9iown in Figure 3-3 1* the ordering dlagraa for F(S) 

where S la the aet of all natural nuabera, 10, 1, 2. 3.

2 . Let S be any aet. Then B (S ), the aet of all baga. I .e .  "seta with 

poaslbly repeated eleaenta", of aeabera of S, with Inclusion and 

union aa in (1 ) ,  foras a data type. Shown in Figure 3-4 la the 
ordering dlagraa for B(S) where S la the aet of two atoaa (a . b ) .

3. Let S be any aet. Let ? be an eleaent not In S. Let the doaain of 
the data type be S U IT) with ordering < defined by



(0 . 1 . 2 , 3 . . . . }

Figure 3-3* P(S) ordering

\  / \  /  \  /  
(a. •} («• b) (b, b) 

\  /  \  /
U) <b>

\ /

Figure 3-4: B(S) ordering



Fl(tira 3-5: Flat ordering of tha natural ntabara

* < y Iff  ( i  « 1 and y t ?)

Ihla la called tha flat data type over S. Notice that each chain In 

auch a data type has at aost two aaebera and the llalt Is Juat the 

greater of the two. Shown In Figure 3-5 la the flat data type on 

tha natural niabere.

Figure 3-6: niacrlc ordering

Let I be the set of all lntegera. Then 1 II | » ,  - « )  la the doaeln 

of a data type with the Information ordering of nunerlo Inequality 
(<) and aailaua as the llalt operation. This ordering Is 

demonstrated In Figure 3-6

5. Let S be a act, called the set of atoas. Ue define a data type 

whose doaaln is the set of binary trees over S. Begin by defining 

the finite binary trees:

(1 ) The null tree, t ,  la a finite binary tree.

(11) Any aeaber of S Is a finite binary tree.

( I l l )  If t) and t2 are finite binary trees, then so is the tree 

(t f . t j) having t] aa its left subtree and t2 as its right 
aubtree.



The ordering < on finite binary trees la defined by: .

(1 ) 7 < t , for each t i 7

(11) ( t K  *2 ) < (t3# t^) iff t t < t3 and t2 < tn.

Me then define the Infinite binary trees to be H a lts  of Infinite 
chains of finite binary trees. Thus a binary tree la either a 

finite binary tree or an infinite binary tree.

For example, the rules above tell us that

7 < (7 . 7) < ( (7 , 7 ) ,  7)

Extending thla construction, ue have

t0 < t, < t2 < ... . 

where t0 < j and for each 1. tj«.j > ( (? , t j ) .  t ) .

r 
? 

r
7

r
?

Figure 3-7: Limit of the tree aequenoe tQ < t f < t2 < . . .

The limit of this infinite sequence la the infinite tree depioted 

in Figure 3-7.

1

7



V* shall observe an Important applloatlon of the binary tree data type In a

forthcoming aeotlon. It oan be noted at thla point that the binary tree data

type oan aiao be viewed as a multi-level atreaa data type over a aet of atoms,

wherein we define

(1) The null atreaa T Is a atream.

(11) Caoh atom la a atreaa.

(I l l )  Any finite or Infinite aequenoe of atreams la a atreaa.

The correapondlng ordering la 

( I )  T < i for all i 4 T

(11) k < y Iff  x Is not longer than y and eaoh ooaponent of x la < the 

corresponding ooaponent of y.

I---- -̂--- 1
*0

1---- -̂--- 1
* 1 _________

I
"J

r

Figure 3-6: The tree equivalent to the atream Xq . i j .  i 2 * • ••

The oonneotlon with binary treea is that the atreaa

*0« *2# '**

la equivalent to the tree shown In Figure 3-6. Thla oonneotlon Is used In 

languages auoh aa Llep, whloh aometlmea use a apaolal etoa 'nil* aa the leaf 

of a tree to lndloate the end of a finite atreaa trtiloh oan not be further 

extended. It la laportant not to eonfuse ’ nil* with the null streaa T%

45
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3 .2 .5 .  Data types ooablne to get new date types.

• D

I " t

b ( . .  »  

if . b)^ ») 

o. n '

Figure 3-9: Product date types

It is iaportant to notioe that if  we have a collection of dsts types, Dj, ? | , 

<1 , !!■ !• then we aay fora their product dsts type

1. 0 « I  Dlt

2. T ■ (?i, t2.......),

3. < is defined by

<d1# d2 ...........) < (d | * , . . . . )

iff

Tor esch 1 , d| <4 d j ’

and extending the liait operation so that

lia ((d | , (<lJ t (dj • * • • • • ) »  ^ 2 * “ • • • • ) •  • • • !

■ (liB |(d i. dy • • • • • ) •  l^*2(d2. dj • ^2 • • • • ) «  • • • • )

Ve Illustrate product data types in Figure 3-9.

To suaaarize our Interest in the notion of dsts types, we require thst the 

data structures representing the history of sn sro In s graph be aeabers of s 

dsts type. The lnforaatlon ordering of a data type oonstrains the trsnsitlons 

between histories of any arc. That is , s dsts structure x oan be later 

followed by a structure y only if  i < y. The H a l t  requireaent of a data type 

provides for the existence of a unique (possibly lnflnlts) "ultlaste" 

structure on sny aro of s function grsph.
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3 .} .  Behavioral Descriptions

leturnlni to the handshaking eisaple or Figure 2-A, we further olarlfy the 

dlsousslon by pointing out thst there sre two viewpoints for the behavioral 

desorlptlon given. First, we reduce the dlsousslon to one eqMstlon. Ve hsd

i ■ lert(y)

■ b Invert(y)
■ b lnvert(rlght(i))

■ b lnvert(lnvert(x))

■ b x, sinoe lnvert(lnvert(x)) ■ i .  .

There are two essentlsl ways of viewing en equation suoh ss

i ■ bi

The first Is the view thst the behsvlor st sny step Is given by following the 

behsvlor so far by b snd continuing. This is suggested by the repested 

substitution for i ,  viz .

s ■ bx

■ bbx

■ bbbx

■ .

The second Is the view thst the ultlaste behevlor x Is obtained by successive

»ppro»laetlons. starting with the undefined behavior, aa in

I • I 
I ■ bT 
x ■ bb»

To aore acourately describe the aethod of succeaslve epproxlaetlone for 

deteralnlng aystea behavior, we represent the node funotions of the grsph by 

the systea funotlon f  on the product of the dete types st esch lnternsl sro. 

Recsll that the Input aro data values are lapllclt paraaetera of f .

Aasuae for now thst the sros of s given grsph sre lnltlellied so thst the 

Input sros contain the ultlaste vslues to be placed on those arcs by the 

envlronaent snd the internal arcs sre lnltlellzed to contsln the 'undefined'
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structure, ? . It turns out that no generality is lost In theae easuaptions.

3 .3 .1 .  Restriottons ere necessary for successive spprosiaations to work.

In order to insure the effioaoy of the successive approiiaatlon approach, we 

ahali plaoe aoae requlreaenta on P. The firat requireaent is that of 

aonotoniclty. To aay that f  ia aonotone aeana

For all d , d *.

if  d < d* then F(d) < F (d ') .

In particular, froa the ” aeed” relationship *

t < F(7>

%#e aay apply aonotonlcity repeatedly to get

F(?) < F (F (T))

F (F (7)) < F (F (F (T )))

In ahort, we have a chain

(? , F (7 ) , F (F (7 )) ,  . . .1

By our assuaptiona about data typea, this ohsln hss a lla lt , which we 

henceforth denote by

r'm

Hot Ice that the chain above corresponds to the "slaulation" of only one of 

what alght be aany possibly coaputatlons. No assiaaptions have been atated 

about relative eoaputation tiaea of the node functiona, but thla one 

alaulation assumes that they coaplete each atep synchronously.
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3 .3 .2 .  Nonotonlolty Insures ipttd-indiptDdtooi In sn asynchronous environaent.. 

Fortunately, tbs aonotonioity property insures thst F-(T) is always the 

result, independent of the Banner of siaulation. It is only required thst 

esoh node eventually reslizes the value speoified by its function spplied to 

its ultiaate input dsts structure. In this ease, eaoh step of sn 

arbitrarily-tiaed eoaputation will eventually be aUbsuaed in the liait value. 

In other words, the result of the ooaputation is deterainste or 

speed-Independent. (This is si so relsted to the "Church-Rosser" property, o f. 

(Rosen 7 3 ] .)

An additional restriction aust be laposed to insure thst F*(7) "aakes sense" 

ss sn ultiaate behavior. The following section elsborates on this point.

3*4. Continuity

Although F*(7) Is lnterpretsble ss the unique behsvior of the funotlon grsph, 

it does not neoessarlly follow froa the propertiea desorlbed so far thst F#<7) 

is a fixed point, i .e .  it sstisfies the systea equstlon, •

r(r'(t)> ■ r'(?)

The Inequality

r'(t) < r(F*(T))

follows froa aonotonlolty, but the converse inequsllty *

r(F*(t)) < rtf>

does not.

In other words, there is no gusrsntee that Fa(7) is "stable", in the sense 

thst it indeed represents the ultiaste velus whloh the funotlon F is  "trying 

to produce". One osn esslly oonstruct eisaples consistent with sll properties 

introduced so fsr which show thst the above fiied point property doea not 

hold. For instsnoa, let

{
oona(a, x) if  x Is s finite stresa

oons(b, i )  if i Is an infinite streaa
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Then h is monotone, sinoe If i Is e prefix of y then 0001( 1 , 1 ) Is 1 prefix of 

oons(a, y ), and similarly with a replaced by b . However, h does not satisfy 

the system equation, since

ha(?) a oona(a, oons(a, oons(s, . . . ) ) )

but

h (h "(? ))  ■ oons(b, oona(a, oona(a, . , . ) ) )  '

Although there Is no great mathematical harm In not having the above system 

equation hold, without It we would have that the anomaly that our system 

funotlon F could be applied to the limit of the ohaln ( I .e .  the ultimata 

behavior) to get new Information not present In the chain itaelf, whloh aeema 

counter-intuitive to physical reality. A auffiolant condition on t  which 

resulta in the stability of F#(?) la that of continuity.

The funotlon F :D  — > D la called continuous provided that it la monotone and 

for any ohaln C o D,

F(lim C) < lim ( F(d) | d in C|

(Notice that monotonlclty Insures that the set on the right la a ohaln, ao 

that It makea aense to consider its lim it.) By Identifying

IT, F (? ) , F (F (t> ), . . . 1

with C and noting that

lim It , F (T ), F (F(T>), . . . I  a lim | f ( l ) # F(F(?>>, . . . 1 ,  

we get F*(t) aa a fixed point.

For example, it la easy to see that the funotions left and right from the 

handshaking example are both continuous, ao that the derived limit is the 

least fixed point. -



3 .4 .1 .  txaaplet

Consider the binary tree dsts type introduoed esrller. It is essy to see that

the funotlona head, tall, and oona, defined aa follows, are all continuous:

oona(x,y) •  (t , y)

head ((i ,y )) •  a 

head(t) •  t
head(a) ■ error. If a la an atoa

t a l K ( i .y ) )  •  y 
t e i i m  •  t

tall(a ) t error, if  a la an atoa

Hera error la a apeolal value which la dlatinfuiahed froa all other valuea and 

lndioatea that a. "non-aenalcal" application of a funotion haa been atteapted. 

Notice that error la quite distinct froa ? , the latter being the aatheaatlcal 

value Indicating the reault of a divergent or incoaplete computation. Notice 

that under the atreaa interpretation of trees, head corresponds to the first 

aeaber of the atreaa, trfiile tall corresponds to the rest of the atreaa after 

deleting the first aeaber.

3 .4 .2 *  fteterainaoy Theorea

We now encapsulate the essenoe of the above discussion in a theorea.

Detcralnacy Theorea If G Is sny function graph composed of nodes tAiloh 

represent continuous functions on their conneotlng arc data types, 

then G determines a unique function froa the data typea of ita input 
area to those of ita output area. Moreover, If  each node function 
ultimately realizes its output vslue on its ultlaste input valuea, 

then G alao will realize ita output value.

The aubtlety of thla theorea is that the input to a given node aay well by a 

"aovlng target", i .e .  Ita input aay be ohanglng, alnoe that Input value alght 

be in the prooeas of being produced by aoae other node, whoae input aay be 

changing, etc. Continuity inaures that deapite such aoblllty of values, a 

least (with respeot to the lnforaation ordering) tuple of aro values 

consistent with the speolfled funotlona exists. This tuple la the least fixed 

point of the aystea of equatione. It corresponds to the solution of the 

aystea which requires introduction of no additional lnforaation exoept that
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exhibited In the functions and equations themaelves (e .g . no. Information 

concerning tha method of evaluation). Successive approximation! give ua one 

May of ascertaining that tuple.

3 .4 .3 .  Example:

Using the binary tree data type, consider the equation

z a oona(x, t)

Ha have already mentioned that oona it continuous on this data type. For 

successive approximations to i we get

oons(x, 1) * *

oons(x, oons(x, ? ))  

cons(xv cons(x, cons(x, ? ) ) )

The least fixed point is apparently the infinite structure

z * oons(x. cons(x. o o n t (x , . . . ) ) )

Clearly, the equation is satisfied when this structure is substituted for x in 

x ■ constx, z ) .

Figure 3-10: Graph resulting in the Fibonacci stream



53

3 .4 .4 .  Exaaple: .

The in Figure 3-10 produoes the a tr e n  or Flbonscol ntmbers. To see

this, we M y  use the successive approilaatlon technique.

The systea function is given by

F(x, y, t) ■ (add_atresas(y, x ) , e o n s d , x ) , o o nsd , y))

so thst we hsve the following successive spproilastions to ( i ,  y, x ):

(7 , 1 T , 1 ?)

(2 T, 1 T. 1 1 ?)

(2 ? , 1 2 7 , 1 1 7)

(2 3 t , 1 2 7 , 1 1 2 7)

(2 3 T. 1 2 3 t , 1 1 2 t)

<2 3 5 7 , 1 2 3 7 , 1 t 2 3 7)

(2 3 5 7 , 1 2 3 5 7 , 1 1 2 3 7)

(2 3 5 8 7 , 1 2 3 5 7 . 1 1 2 3 7)

1ti« llalt la F*(t) .

(2 3 5 I  11 21 1 2 3 5 6 13 2 1 . . . .  1 1 2 3 5 8 1 3 . . . )

Another wey to aotivate the oholoe of F*(7) ss the behsvior Is to use the 

sforenentloned notion of repested substitution In the equetlon x ■ F ( i ) .  Thst 

Is , by repeatedly substituting the right-hand aide for the left , we get

x ■ F (F (F (. . . ) ) )

This solution sgrees with the suooessive spproxlastion solution. -



3-H.5. Continuity Insures oomposablllty. _

An additional advantage which acoruea from assunlng thst tho node funotions of 

a network sre continuous is thst a closure property is essy to demonstrate. A 

useful technique in system structuring is to trest s ayatem ss if  it were 

composed of sub-systems, rather thin of stomio node funotions. It would then 

be useful to know thst such sub-systems behaved essentially as if  they were 

stomio nodes. Me can show that continuous functions are closed under 

functionsi composition, so that continuity of individual node funotions 

Insures continuity of the system function. Such a property la important in 

hierarchical and modular development of software and hardware aystems*.

Note that arbitrarily many identity functions msy be Inserted on any ore of a 

function graph composed of continuous functions, without affecting tho 

ultimate function computed. Therefore, these graphs exhibit what ia called 

delsy-lnsensltlvlty (Keller 7*1], in that the identity functions set os 

arbitrary Inserted delsys. When delsy-lnsensltivity holds for a distributed 

system, it tends to be much essler to snalyze than in the more general oaae.

A further ramification of continuity is discussed in Section 3 .6 .

3 .5 . Determinaoy of Systems involving Productions

We now wish to extend the closure property dlaouased above to oliow auxiliary 

nodes as well. Thst is , given a graph grammar. I f  each terminal node 

represents a continuous function, then ao does an arbitrary graph.

3 .5 .1 .  A aet of fuootiona may bo a dota type.

Some preliminary observations will aid ufl. First, let denote the

set of continuous functions from Dj into D2 , where Dj and t>2 are tho domalna 

of two data typea. Then Dj —  > itself la tho domain of a data type, tho 

ordering of which ia defined by *

F < G i f ,  and only i f ,

for eaoh x in D|, F(x) < 0 ( i ) .

5*
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The least element T of this type 1 1  the function whose value la always the 

least element of D^. the limit operation is defined so that for any ohaln Ft, 

r2 . F3 , . . .  in Di — > D *# 

for . .o h  ,  in D „

(11a IF ,.  r2 . Fj. . . . I ) ( i )  < 11a ( F i d ) ,  F2 ( i ) .  F j d ) .  . . . )

Referring to the graph of Figure 2-23. which represents the definition of a 

funotion C according to G(s) > H *(G )(x ) , as discussed in Seotion 2 .7 .3 ,  we may 

use splitting to unfold the graph into numerous infinite forms, three of which 

sre shown In Figure 3-11. The point of these foldings snd unfoldings, besides 

being an eierolse in graph manipulations, is thst the infinite form Figure

3-11b shows that the recursively-defined funotion G represents the function

.  11a I t .  H * ( t ) .  H'(H’ O ) ) .  H ' ( H ' ( R ' ( t ) ) ) ,  . . . I

where H* is the funotion represented by the consequent in Figure 2-20 snd 7 

represents the funotion tftiose value is totally undefined. The Infinite form 

of Figure 3-11c Is the equivalent of repeated substitution and gives another 

representation, namely

H * ' ( t )  ■ M'(H, (H, ( . . . ) ) )

It is not difficult to show that the limit funotion above Is continuous, 

thereby allowing us to conclude the following extension of the determlnaoy 

theorem:

Recursion Theorem Any function graph with continuous atomlo funotlona. 

Including one with auxiliary nodes defined by productions, itself 

represents a continuous function. This funotion is determined by the 

graph formed by repeated substitutions of antecedent nodes by their 
corresponding consequents.

It Is noted that the limit concept In our notion of data type is essential in 

making the above atatement meaningful, since this concept gives meaning to the 

funotion represented by an infinite graph.
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Figure 3-11: Infinite unfolded versions of G



J .f .  Finite Support ■

Continuity has another interesting iapllostion. Consider tha output data 

atruotura generated by a nod* funotlon. Ihla atruotura aay, in tha lislt , ba 

Infinite. However, we aipeot that It will always be generated incrementally. 

by a aucoaaslon of finite approilaatlona. Correspondingly, we would eipeot 

that each finite approilaatlon ba the reault of tha node function's aotlon on 

a finite approilaatlon to Its input, rsthar than an infinite aaount of input. 

I M s  suggests thst the set of dsts structures D whloh ooaprlse s dsts type be 

dichotomized into the set of "fin ite " structures and the "infinite"

structures D |„f . snd thst we hsve the following finite support condition:

For esoh d in D, If F(d) is In D f|„ , 

then for soae d ' in D fi„ ,

d ' < d and F (d ')  •  F (d ) .

Ihe distinction of Df|a vs. Dfnf depends on the dsts type under oonslderstlon. 

It is clesr for strings snd trees, but perhsps not so clesr In genersl. One 

proposed definition for genersl dsts types (which places sn sdditlonsl 

constrslnt on the ordering <) is suggested In [Stoy 7 7 ) , pages 106-111, but to 

eiplore this suggestion would eiceed the scope of this paper.

Here we shsll be oontent with sn s im p le , showing thst the flnlte-support 

property holds for continuous funotlons on strings. Suppose thst d is s 

(posslbly-lnflnlte) string such thst F(d) Is finite. Let us write d ss the 

H a lt  of the finite strings

di* d2 , . . .

By continuity, F(d) Is the H a l t  of

r < d ,), F(d2 ) .  . . .  .

But since F(d) Is s finite string, there aust be an 1 suoh thst

F(d) ■ F(dj)

so choose d ' * d j . TTta finite support property therefore holds.
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* .  Kaohlne ev luitlo n  of Coaputetlona Represented by Grapha .

Having praaented eiaaplea of tha usa of grapha for apeelfloatlon, It la now 

tlaa to dlacuaa tha evaluation of functlona speolfled by thea. That la , given 

a funotlon greph with deta objeota apeolfled on each of lta Input aroa, by 

evaluation wa aean tha procedure to be uaed to oause ultimate production of

the data objeota on the output aroa of the graph.

la we have preaented a rather abstraot foraulatlon of tha aeaantlca of 

funotlon grapha, tha notion of evaluation will olearly ba dependent on tha 

choice of underlying data typea and atoalo operatora. Henoe, we can at beat 

hope to present an evaluation Betted for an eieaplery oholoe of the latter, 

ftila oholce will be a alaple language whloh wa oall FGL.

In thla presentation, the aat of data objects of FGL will ba 

Objecta •  Itoas U Tuples U Graphs U IT)

1. Iton* • Intagcra U String* U terror), where Integera la tha aet of 

lntegera and Strings la the set of character atrlnga over soae 
alphabet. He assuae that Strings Includes the string 'n il* which 

will play the role of the Booleen value falae. Any atoa other than 

'n i l ' and (error) n y  play the role of the Boolean value true.

2 . Tuples: A tuple la a sequence of N Objecta. (In Lisp, N ■ 2 la

} . Grapha: He allow the enveloping of e greph, es described In 

Section 2 .5 ,  and lta use as a function elosure data objeot.

As we wlah these objects to ooaprlae the dcaeln of a data type, we Bust supply 

ordering and H a lt  lnforaatlon aooordlngly. Flrat, there la a least eleaent 

T, representing a value which has not yet been deteralned. For each data

Second, each atoa la unordered with reapect to every other. Third, the 

ordering between two tuples la given by
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‘ *1........ «n> < <»1.......... »n> .

iff  for each I .  i§ < yj.

Finally, If G and H ara graphs, then 0 < H I f f  H Is like 0 , eioept that soae 

substitutions have been aide for auxiliaries in Q to obtain H.

4 .1 .2 .  Baslo Operators of FGL

tfe now describe s bsslo set of FGL operators. The expeoted types of srgwents 

are lndloated by the following naaes.

obj an object of any typs

tup s tuple .

lnt an integer

bool a string trtilch Is either *t* or *nll9

fun an enveloped graph, representing a funotlon olosurs

The logical functions snd snd or consider 'n i l 1 to be false and everything 

else to be true. The following descriptions use the words true snd false in 

place of the strings ’ t ' snd 'n i l ' .

The foras In the following descriptions Indicate the expeoted srguaent types,

followed by s colon, followed by the result type. For single argtsient

functions, parentheses aay be oaltted. Violations of the expeoted type of an

argument will result in the speclsl value error. It ia assuaed that If  a

function has error as the value of one of ita required srguaents, then the

result of thst function will be error.

naae fora and aeanlng

add lnt1 ♦ int2: lnt

Adda two nuaerlo arguaents;

and obJ| and objg: bool
The logical conjunction of its ergunents. and Is sequential, 
evaluating the second srgiaient only If  the first is falae.

apply Tunwobj^, obJ3 .............©bjn) :  obj.

If  fun| |S a variable (not a general expression),

or epply(run1c 0bj2, o bli............. obJn) : obj generslly.
Applies first srgiaient to reaslnlng arguients.

•to *  atoa (obJ1): obj

true unless arguaent Is s tuple. •
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bead

tall

oons

lassp

aod

milt

null

nuabirp

or

salaot

hoad(tup|): obj 

Flrat ooaponent Bisisnt.

t a ll (t u p o : obj
Last ooaponent of a tuple argument, 

if  obJ| then obj2 also objj: obj
Evaluates objj. If the result Is not false, then the second 
srgument is returned, otherwise the third arguaent is 

returned.

oons(obj), obj2 .............obJn) :  tup
Foras a tuple of ita argiaienta, of uhlcti 
nuaber.

obJl •  obj2: bool
true If arguments are atoas and have the saae value. 

lntj < int2tbool
Returns true If the nuaerlo first srguient is less than 

second, and falae otherwise.

int In t ,: Int

First Integer arguaent aodulo seoond.

Int« s int2 : int
Froduot of two niaerlo argiaienta. 

null(objj): bool
Returns true If  argiaent is fslse,
(Use this for logical negation.)

ntaberp(obJ1>: bool

Returns true If  arguaent is ntnerlc, falsa otherwise. 

°bJl or obJjt bool
Loglcsl dlsjwctlon  of Its arginents, 

arguaent only If  first Is falsa.

returns fslse otherwise.

evsluatlng second

seleot(lnt1a tup2): obi
Gives the ooaponent Indexed left to right by int] Qf the tuple

object tup2 . The coaponents are Indexed 1, 2, ......... n . If
lnt1 la negative, then Indeilng la right to left by -1, -2,
......... -(n-1), -n. An error resulta if lnt| |a 0 or out of

boiatds. (head and tall correspond to seleo td , . . . )  and 

seleot(-1, . . . ) ,  respectively.)

4 .1 .3 .  Internal rapreaeatation of FGL

We present a fora of soeeptable for storsge in ooaputer aeaory. For sske of 

oonoreteness, sssuae a conventional llnearly-addreaaable aeaory. We 

oonoentrate on the representation of s single graph within thla aeaory.

Assuae for slaplloity thst the aeaory haa a word-alxe large enough to store

j



• I I  the lnforaatlon required about a single FGL node. If this ia not the 

ease. Multiple w>rd encodings aay be uaed. The lnforaatlon stored Includes an 

enoodlng of the name of the function, snd the referenoes to srgtaents to the 

funotlon. Since nodes ere stored one per word, we identify the sddress of the 

word oontalnlng the node with the sro leaving thst node. Therefore the 

references to the argunents of s node sre Just the sddresses of the nodes 

whloh produce those arguaents as their result.

All of the sddress lnforaatlon described sbove osn be asde relstive to s block 

of words irtilch oontalna the encoding of all nodes for s single grsph. normally 

the oonsequent of s production or the contents of sn envelope. The bsse 

sddress of this block can then be identified with this grsph. snd used ss the 

argument to sn spply. To be aore preolse. s closure aust be accompanied by a 

tuple of iaport vslues, ss well ss the bsse address of the blook, for those 

laports aay be different for each instantiation of the enveloped grsph.

DCF SUHSTREAM 

RESULT ARC I 

ARGUMENTS X 
IMPORTS ADDSTREANS 
ARC_1 CAR X 

ARC 2 C M  X

ARC 3 APPLT ADD STREAMS ARCJ2 ARC_R
ARC % CONS ARC T ARC_3
ENDDEF
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Figure M :  Assembly language encoding of sn FGL production, thst of Figure 

2-1.

Me oould then proceed to give sn "assembly language" version of FGL. A blook 

of eode is represented by s sequence of " l in e s " , where esch line encodes one 

node of the blook. A line oontsins s symbollo lsbel for the corresponding 

node, followed by the nsme of the function, snd the lsbels of the argtsients to 

the the function. Shown in Figure is the sssembly code for a simple FGL 

grsph.
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4 .2 . evaluation

We ahall describe a destructive fora of evaluation, In whloh tha nodes of tha 

(raph sra raplaoad with thalr values. this aeans thst for each use of sn 

apply, tha bloek which encodes tha olosure trill have to be oopled afresh. 

This oopylng supplants tha usual initialization which aust soocapany procedure 

entry, etc.

Ve have already explained how each graph wlth objects specified on its Input 

aros deteralnes a unique tuple of objects on lta output aros. Ue aust now 

describe an evaluation a ec hen Isa which Insures thst the 

astheaetloslly-deteralned values do get produced. '

Since objects are abstrsct, I .e .  we have not really defined what It aeans to 

produce an object, we can content ourselves with a prlaitlve irtilch produces a 

single atoa, ssy by printing It on a line printer. Ue oan then use this 

prlaitlve to dlsplsy genersl objects In tAiatever laage of their abstract fora 

we feel appropriate, by dlsplsylng the stoas which coaprlse these objects. 

For exsaple. If we went to print a tuple In the fora with parentheses snd 

coaass, then we could do so by spplylng our print prlaitlve to strings 

consisting of psrentheses, coaass, snd the etoas lAiloh coaprlse the tuple. 

Since the result objects alght well be Infinite, It seeas prudent thst we 

produce perts of objeots by deaand.

To continue with our dlsousslons of deaand production of objeots, sssuae that 

there ia an abatraot entity known as "deaand" tAiloh osn ba present on any arc 

of a funotlon graph. This entity reasins on the sro until it Is sstlsfled by 

the presence of s predetermined portion of the object. For the ourrent 

language, we convene that this portion aust be either an atoa, a graph, or a 

akeletal tuple. I .e .  a tuple having the nisiber of lta ooaponents, but not 

necessarily the coaponents theaselves, specified.

Prior to the deaand being satisfied, the sro vslue is 7 , st Which It aay 

reaaln forever if the deaand is never sstlsfled. We intend for the letter to 

happen only If the ultiaate functlonally-deteralned value is 7.



4 .2 ,1 .  Desoriptlon of deaand propagation

To complete 

the deaand j 

eons .

Figure 4-2: 

aalaot

atoa

oond

•q

the apeoifloation of the evaluation process, we aust specify how

a propagated through each of the atoaio oparatora.

When the result of a oona is demanded, the deaand ia 
ia**dlately satisfied by asking the result a skeletal tuple, 

the length of whloh ia tha number of input area to the oona. 

It aufflees to heve the eona noda itself play tha rola of tha 
akeletal tuple, ao no actual replacaaent ia naoassary. Deaand 

does not propagate to the components themselvea until aa 

apaclfied In aalaot below.

Demand evaluation of aelact

When the result of aeleot(l, i) is demsnded, demend propagstes 

to both argwenta. When both of the latter demands ara 

aatisfled, if n is the number of components of a and 1 < i < 
n, then the aeleat is deleted, its output aro being connected 
directly the 1 skeletal argument. Demsnd remains, and la 

propagated to that argwent. The diagram of Figure 4-2 is 

meant to be suggestive.

The demand propagates to the argument. When the arguaent 

demand is satisfied, the output aro gets tha appropriate 

logical value.

The demand propagates to the first argunent. When that demand 
is satisfied, the output aro la connected to tha second or 

third input arc, depending on fa th er  or not tha value of tha 

first argument is ’ n il1, then demand propagates to the chosen 
arguaent.

Demand propagates to both srgistents. When both ara aatiafled, 

the function is evaluated and the result appears on the output



•ro of th* node. .

spply(G, l ) Demsnd propagates to argument G. When that demand Is 
aatlsfled, a oopy of graph G la made, with tha free Input aro 

connected to the arguient 1 . The output are of the oopy 

. replaces the apply node, and demand propagates to the output

aro of the oopy. Thua the apply rula of Figure 2-16 la 

mimicked.

Binary arlthmetlo operatora propagate demand like eq. The propagation of 

demand In othar operatora not Hated  above may be Inferred from the 

propagation for thoae llated. Flgura 1-3 Ulustrstea the propagation of 

demend through e oomplete, but very simple, eiaaple.

4 .2 .2 .  Correctness of an FGL evaluator .

The correotneas of an evaluator oan be atated Informally ea follows:

For any ero et lAilch e demend preeenta Itself, I f  the value determined 

by the function la an etom, then the velua ultimately appeara on that 

are.

Now oonalder any evaluator having the property that for any aro on which e 

demand eventually appeera, the evaluator eventually treata the ero according 

to the apeolflcatlona for demand/value propagation. Thla property mey be 

Insured, for s>ample, by a combination of task-11st snd notlfler structures 

(Keller and Llndstrom 60].

He olalm that auoh an evaluator la oorreot aa atated abova. We do not go Into 

further formalization or proof of thla claim here, eioept to aay that It la 

naturally conduoted by lnduotlon, based on the depth of s demsnded sub-objeot 

within the overall reault object. A more oompleta proof appeara In (Keller 

and Llndstrom 60]. Proof aketohea for related modela may be found In 

(Friedman and Vise 76] and (Henderson and Horrla 76].

4 .2 .3 .  Parsimonious aveluatlon

Another property attributable to the mode of oomputetlon desorlbed here Is 

psrslmonloua evaluation. I .e .  that a value appearing on an ero whloh fana out 

only need be oomputed onoe. This la aooompllahed by almply keeping treok of 

trtiether an ero*a value haa been demanded and not propagating any but the flrat 

demand. When and If a vslue finally arrives st that sro. It Is svsllsble to

65
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Figure 4-3: Illustration of deaend propagation (shown by dashed lines), 

odd froa is defined in Section 2 .1 .2 .
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•11 operators whloh had demanded it , • •  well • •  those tftiioh will demand it in 

the future. This implementation technique has found uae in linking mechanism 

In operating systems, e .g . Hultloa [Organiok 721. It has been oalled by the 

term "suicidal suspension" In [Friedmm and Wise 7 6 ) , beoause the 

"suspensions" ( i .e .  the enoodings of node funotions) kill themselves by 

rsplscing there code with the value of the funotion.

4 .3 . A Higher Level FGL

As desoribed earlier, an FGL graph may be encoded in a font of "assembly 

language*. However it would be quite tedious to program and read eitensive 

eismples in such a language. For this resson, it is worth pursuing higher 

level textual representations of FGL. One cendidste representation, cslled 

Textual FQ., which has been Implemented by the author and colleagues (Keller, 

et a l . 60], is desoribed here. It is of interest beosuse despite the grester 

readability, there is still apparent a reasonably direct correapondence with 

the graphical form. Textual FGL has s syntsx adopted from that of (Hearn 74].

For explanatory purposes, we shsll use upper esse for lltcrsi tokens snd lower 

eaae to represent the nemes of syntsotio entitles. We use ( . . . )  to deslgnste 

a aequenoe of one or more of the entity encloaed and ( . . . )  to designate 

optional syntactlo entities. It follows thst ( ( . . . ) ]  denotes zero or more of 

the enclosed entity. We csn then proceed with our definitions of program 

syntsx by the following productions:
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program — > (bloc It-definition)

blook-definitlon — > FUNCTION function-name ( argiaient-llet ] 

( IMPORTS imports-llst ]

( LET sbbrevlation-llst )

RESULT result-expression

( WHERE (block-definitlon) END )

function-name — > Identifier

arguaent-list — > ldentlfler-list

lmports-llst — > identifier-11 at

sbbrevlstlon-list — > abbreviation (I ill

abbreviation — > identifier BE expression

result-expression — > expression

An identifier list is defined ss follows, where the symbol I denotes s choice 

of alternstives:

in FGL, an identifier is any sequence of letters, digits, or underscores (_ )  

which begins with a letter or undersoore.

One of the blook definitions must have the function neme main. It is this 

funotion trtiloh Is evaluated by the system to osuse the evaluation of all other 

functions.

As one oan see, the only things thst sre not optlonsl in s block definition 

are the funotion name and the result expression. In most oases, we will also 

have the first identifier list , which gives the nsmes of srguments to the 

funotion being defined.

An expression is either a constant, an identifier, or one of the following:

ldentifier-llst — > identifier 

I ( identifier ( I , Identifier ) ) )
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IF expression THEN •i p r m l o n  ELSE expreaaion 

n-ary-funotion («ipr«ialon-llit) 

unery-funotion tiprtialon 

nullary-function ( )  

expression expression 

Mhtrt

expreaalon-llat — > expression [ ( , expression ) ]

Function!, either unary, nullary, or n-ary, oan ba althar atoalo or 

prograaaer-defIned. An atoalo funotion ia ona built Into tha language. A 

prograwer dafined funotion is what is being defined in a blook.

As exceptions to the above syntsx, aoae functions, e .g . binary arlthaetlo and 

logical, are represented in infix fora.

An Identifier used in a block definition aust be known within the definition. 

There are five ways in which sn identifier becomes known within s given blook:

1. It is the function nsaa.

2. it appeara In tha arguaent lis t .

3. It appeara in the iaports list .

4. It Is defined In an abbreviation.

5 . It is defined in the WHERE section of the blook.

4 .3 .1 .  FGL haa "blook" structure.

The syntsx rules lapart a kind of "block atructure" to textual FGL which is 

slallsr to the block atruoture of Algol, except that IMPORTS is used for 

aaklng values known in an inner blook, whereas in Algol these vslues are known 

iaplloltly. The nesting present in such block atruoture corresponds exsotly 

to the nesting of envelopes whloh would ooour if  esch blook were trested ss s 

function which is the argiaent to an apply wherever Ita naaa la uaed. In aoae 

respeots, this nesting is similar to tha "oontour aodel" representstlon of an 

Algol-like prograa (Johnston 69* 71].



70

It la a Batter of value Judgaent whether the ex pi lo it or laplioit fora of 

laporta la preferred. The laplicit fora la aore oonvenlent when entering a 

prograa'a text, but the explioit fora ia aore useful Whan debugging a prograa. 

Given that the latter usually takes longer, we ohoose the explioit fora.

Even with a coapller which recognises ooaaon sub-expressions, it is 

occssionslly tedious to write these sub-expressions aultiple tiaea in the 

code. For this reason, abbreviations are provided. The aeanlng of an 

abbreviation is that whenever the identifier ooeurs. it la equated with tha 

expression. Notloe thst we do not preclude olroulsrlty In abbravlationa. 

Thst is , A could be defined In teras of B, snd vice versa. Thia ia one way of 

textuslly representing the cyollc graph structures.

4 .3 .2 .  Exaaple of textual FGL:

The 0-ary funotlon whloh generatea the stresa of Fibonaool nmbera oould ba 

ooded as

FUNCTION Fibonacci 

IMPORTS add_streaas
RESULT o o n sd , oo nsd , add_stresas(FlbonsooK) ,  head FlbonacoK) ) ) )

or alternately, using sn abbreviation as 

FUNCTION Flbonsool
LET x BE o o n s d , sdd_streaas(x, Fibonaool))

RESULT o o n s d , x)

4 .3 .3 .  Another textusl FGL oxsaple:

Here Is how the serlal_ooap ooablnstor (defined In Seotlon 2 .7 .2 )  oould be 

ooded:

FUNCTION serial ooap(f. g)

RESULT h 

WHERE

FUNCTION h(x)

IHPORTS(f. g)

RESULT f (g (x ))

END



Inoibtr «iMp)« is Motivated by tha presentation of a function REDUCE

(Iveraoa 791, which appllaa a binary function op to a non-enpty llat ; I .e .

reduce(op)(x1# t2 « .........tn) •  o p (*p  op<*2 . o p (........... xn ) . . . . ) )

Tha FGL version aay ba coded aa

FUNCTION reduce(op)
RESULT f 

WHERE

FUNCTION f(x>

IMPORTS op 
RESULT if  null x

then n ll()

elae If null tall s

then head x

alae op(heed x, f(tall x ))

DID
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Usea of the graphical Formalism

5 .1 .  Loop Itaovil

In contrasting the two odd-prlmes en ap lea , on* noteworthy point la that the

firat antalla a graph with a loop ( I .e .  oyole) whereas the aeaond does not.

It la north asking whether loops are In any sense neceasary. In answer, we

show that any loop ean ba removed, replacing It by an appropriate recursion.

Hence loops are not essential, although there are Implications which loops

have on Implementation whloh may make them useful for more efficient

realizations. To wit, loops can ba implemented as oyollo data atructures and

avoid a recursion. The following theorem Illustrates the connection between

loops and recuralon.

Loop lemoval Theorem (Keller TT1: For every function graph, there la 

an acycllo graph (possibly with additional auxiliary nodes) 

representing the same function. .

To. prove the above, we flrat locate within the graph aome cutset T of aros. 

I .e .  a aet of aroa, the removal of whloh makea the graph acyolio.

Figure 5*1 : A graph showing the chosen outset ,

Hsvlng chosen such a T, depict the graph as in Figure 5-1. Here f  represents 

the composite function of the acycllo portion of the network, f in turn la 

divided into representing the function Whloh determines the values of the 

non-ci*aet aroa, and f2# repreaentlng the funotlon whloh determines the vslues 

of the outset sros.

(cutlet)
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Figure 5-2: Acyllo graph based upon the outset In Figure 5-1«

We then introduce a new auxiliary, say g, end observe that the aayol&o graph

of Figure 5-2 la equivalent to the original. In that tt haa the ease output 

function.

The validity of thla construction la best explained by observing that the 

original network hea

I  ■ f t( I .  T)

t . r2u, T)

while the new network has

z • r^x, g(X))

g(X) « f2 (X. g (X))

By Identifying T with g ( I ) ,  the equivalence of the two it established.

If the outset oonsista of fanned-out equivalents of the output aroa, then ff *



f2 . In thla case. we o n  simplify the first equation to

2 • |(X>
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Figure 5-3; Example of cutset and simplified acyclic ftraph

Example: Fl|t>ra 5-3 shows the choice of a cutset and result of loop removal In 

figure 2-1. This Illustrates the slmpllflostlon mentioned above.

The converse of loop-removal is . of oourset loop Introduction. In the context 

of the execution model discussed earlier, loops make better use of storage 

than the corresponding recursive versions, as loops sre not unrolled and do 

not require additional atorage allocation. Techniques for loop introduction 

are still under Investigation.
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5 .1 .1 .  Tail reouralon repreaenta loops in oonventlonal flom harta. '

Thar* la a deceptive slallerlty between the loop renovsl theorea and a result

appearing in (HaCarthy 63a]. The latter deaonstrstes how any "flowchart

prograa* oan be converted into a reourslve progrsa. The idea la to replace

Iteration* In the flowohart prograa with rint are usually called "tail .

recursions". Thla technique Is Important. aa It ahows that any flowohart

prograa has an equivalent representation In our grsph forasllaa.

Tall Reouralon Tbeorea [McCarthy 63a]: For any flowchart prograa, 

there Is an equivalent graph greanar. In the aense that there Is sn 

auilllary node In the latter which ocaputes the saaa funotlon ss the 

progrsa.

He stteapt to oonvey the baslo Ides of the proof without entering lr.to a 

foraal presentation of what Is aeant by a flowchart prograa. Suoh s progrsa 

consists of stateaenta which operate on "prograa variables". Let x be tha 

vector of such variables. He create froa our prograa a aet of productions, 

the underlying functions of which operate on the product data type of values 

which x aay sssuae.

For esch "control point" p In the flowohart, we lntroduoe an auxiliary ayabol 

Fp. The idea la that Fp(x) represent* the trenaforaatlon undergone by x If 

thfl prograa Is stsrted at point p . It will turn out that tha funotlon Fj 

corresponding to the initial ( I .e .  entry) oontrol point Is the function 

coaputed by the flowohart, for arbitrary Initial prograa variable values.

It auffioes to deaonstrate what productions are introduced for each flowchart 

box. Here we treat only asslgnaent ststeaent boxes snd test boxes. An 

saslgnaent. In full genersllty, appears as In Figure 5-*s. lhe corresponding 

graph graana- production la also shown there. k test appaara as In Figure 

5-«b, with Its corresponding production. Here we have uaed a teralnal 

funotlon eond. defined earlier. Finally, the production of Figure 5-<o Is 

Introduced for each exit point.

Of course, slapllfioatlons sre possible. For Instsnoe. by ooaposlng functions 

in a fairly obvious way, we only need one auxiliary for each loop In the



Figure $-4: Production! equivalent to flowohsrt constructs
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Figure 5-5l Fiotorlal FI owe her t 

1

T

Figure 5-6: Factorial Production



79

flowchart. Also, recognising that the funotlona In the flowchart don't 

usually operate on all of the program variables, optimisation is possible 

which produces more "independent” area (see Seotion 5 *3 ) .

5 .1 .2 .  Bsample:

Applying the tail recursion trsnsformstion to Figure 5-5, we have the

equivalent produotion in Figure 5-6. Ve call the programs in these two

figures "Factorial", since If we Interpret P, P, end 0 as -

P ( i ) :  s < 1

r<i. y ): it  - 1, y)

0 ( i ,  y ): ( i ,  a ■ y)

snd if y is initislly 1, then we have programs for computing i Factorial.

It has been shown in [Paterson snd Hewitt 70] thst, barring the addition of 

new functions to the program, the reverae transformation (from s produotion 

form to s flowchart) la not generally possible. k oonsequenoe of the 

following section is thst the trsnsformstion is possible if we ere allowed to 

use additional functions.

5 .2 .  Produotion lemoval and Explication of "Paradoxloal" Combinetors

Our grsphlcsl formslism possesses seversl potentially pedagogical uses, 

including the ability to understand "paradosleal" oombinators, or "Y " 

operators. These sre various arcane ways of schieving the effect of recursion 

without the explicit use thereof.

One method of removing recursion is to extend the function enveloping device 

described in the Section 2 .5 .  Suppose thst we hsve s reourslve production of 

the form of Figure 2-19. There we used the symbol N to denote the grsph whloh 

is the consequent of the production. Ve stated earlier thst H could be 

re-expressed as H ' in Figure 2-22, iftiere we hsve replaced the occurrence of G 

Inside B with sn apply operator.

But since 0 is supposed to be repleoeable by II, we have another folded version
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Figure 5-7: Folded version of Figure 3-11b

•9  shown in Figure 5-7, which is si so Tree of the auxiliary G. To reassure 

ourselves of the equivalence of this graph and tha G in Figure 3-11b with 

which we stsrted, use the apply rule of Figure 2-16.

5 *2 .1 . All loops and productions oan be removed.

We now Investigate the possibility of eliminating all loops and productions. 

The preceding dlsousslon shows how to get rid of productions. The resulting 

graph, of the form shown in Figure 5*7 . has a loop. But I f  this loop oan be 

eliminated without introducing other loops or productions, then we shall have 

found a way to eliminate all loops snd productions, sinoe this loop la used to 

achieve the effect of a prototypical production. Experience suggests s way of 

achieving this gosl.

Consider the subgrsph T of Figure 5-7. aa shown in Flgura 5-6. We notice that



Fl|ir« M t  Subgraph T of Figure 5-7

if F la present on the input aro of ! ,  than tha output aro t aust hsve tha 

proparty

s •  PCs)

In othar words, tha funotlon I  represented by tha graph ia auch that for any 

function F. T(F) ia a funotlon auch that

1(F) * F (t (F ))

That la . T produoaa a fixed point of F . Tha above only aikei sense, of 

course, if  F Is a function*producing funotlon. e .g . II1 in the ourrent exaaple. 

Since T (H ')  ■ fl'(Y(Ha) ) f we u*e<J repeated substitution to observe

K I P )  •  N'CTCH')) •  H 'CH 'fTCI!'))) •  (T (H ') ) ) )

the llalt of irtilch gives us

Y (H ')  - H 'C H 'd t 'U t 'C ...))>>

tftilch is exaotly what we get by repeated aubatltutlon of H for 0 when 

expanding produotions.

Fortunately, a loop-free operator Y ' equivalent to Y la known, and ia shown in 

Flgura 5-9.
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Fi|ur« 5-9: Loop-fr«

Figure 5-10: Showing fch« equivalence of !  and I 9
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He present In Figure 5-10 an •n li(ht«n in ( graphloal argiaent to show the-

equivalence of Y ' and T. Ilia llalt of tha Mquanoa In Figure 5-10, If  an

enveloped B ' la provided aa an arguaent, la the aaae ee thet In the aubiraph 

of Figure 3-11b, uhleh repraaenta tha leaat filed point of I ' .

Figure 5-11: Application of the operator T *.

In auM iry , T ' la a loop-free equivalent of T , uhleh allows 0 , defined by en 

equivalent loop-free graph, ae ahown In Figure 5-10. leadere faalller with 

the laabda ealoulua (Church 41] will recognlie the liabda calculus eipreealon 

of T* ae

xr.((*f.ggmi.r(iO)))

although we feel thet the graphloel version Is auoh eleerer. Slnoe laabda 

ealoulua eipreeelone ere eaaentlally loop-free, there appeera to be no dlreot 

way to repreaent the T In Figure 5-8.

In auaaary, wa have used a graphloal teohnlque to deaonatrete why the 

"peradoiloal ooablnetor* [Curry and Fays 58] Is usable to ettaln the least
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Figure 5-12: k distinguished sub-structure of Figure 5-9

fixed point H ,-(? ) .  In retrospect, we see thet the sub-graph of I '  shown In 

Figure 5-12 which appears at eaoh stage In the expansion of T ' ,  Is aoaewhat 

arbitrary. It la not present at all in the H a l t  graph. Indeed, ita use 

appeara to be aalnly to force the infinite expansion. Vith thla in Bind, It 

la probably no aurprlse that there ere aany other such structures which will 

suffice for thla purpose, with no two being inter-convertible by alaple 

tr an s fora at ion a auch as aplit and apply. Ue offer thia as a reason for the 

existence of such functions, as aentioned for exaaple in [Vadaworth 7 6 ) .

5 .3 .  Parallelled

One iaportant uae of function grapha is in the exhibition of opportunities for 

oonourrent (or parallel) evaluation. Parallelled shows up naturally in a 

function graph In the fora of two or aore Independent aros, i .e .  area not 

lying on a common chain of area. The nodes whloh hsve thoae aroa aa their 

outputs indicate funotlona whose ooaputation oan proceed concurrently.

In the aub-graph of Figure 5-13 for exaaple, aroa l ,  y , and t aay receive 

values concurrently.
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Figure 5-1 3t Independent aro* whloh aro evaluable concurrently

Oraph graaaar product Iona aay be ueed for generating ooaputatlona with 

arbitrary amounts of parallelisa, depending on tha Input data. Consider, for 

eaaaple, tha problem of computing tha number of leaves of a traa data 

struoture, tfa oan lnltiata arbitrarlly-aany sub-computations Mileh ooaputt 

tha nuabar of leeves of aalaotad aub-trees, than proceed to add tha resulting 

value a .

The production of Figure 5-M defines auch a funotlon. We a how in Figure 5-15 

the result of the partial evaluation of the funotlon after it haa been applied 

to a tree having 256 laavaa.

5 .3 .1 .  farallollaa ooours in different granularitlea.

Ve would oonjecturo that moat way a of eiploltlng parallelled in prograaa are

all inatanoea of this * independent aro* phenomenon. For oxaaplo, the

processing unit of s "look-ahead" prooessor (o f . {Keller 7 5 ))  dynaaioaly

oonatruots auoh a graph froa a aequential prograa to deteralne

ooncurrently-exeoutabla funotiona. Although it la tempting to differentiate

between "look-ahead", "p ipelining", and other foraa of paralleliaa, auoh

dlfferencea ara eaaentlally a Batter of the granularity of the parallelisa 

rather than being dlatlnct ooooeptually.
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1
LEAFCOUNT

T

Fi|uri 5-14: froduotlon for the liafcouit function



ST

Figure 5-15: U ifcount iviluitlon

1
loop

r ~ r

< = o

Figuro S-ll: Production transformed froa that of Flgur# 5-6



68

Fl|ur« 5*17: Unwound graph oorresponding to tha produotion of Figure 5*6

Figure 5*16: An Instance or tha graph In Figure 5*17 with Fa evaluated

We now Illustrate In the function graph aodel how thla look-ahead phenomenon 

ocoura In computing operatlona from aeveral different lteratlona of a loop. 

Rcoall the flowohart of Figure 5*5 which waa transformed to the reouralve 

produotion in Figure 5*6 . In Figure 5*16, we have further transformed the 

production by aeparatlng the variables to make independent aro peralleltam 

more evident. In principle, this production repreaenta the Infinite graph 

shown in Figure 5*17.

For aake of olarlfioatlon, auppose the first aeveral Fa in thla graph evaluate
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to ■all" (falee). We thin effectively hivt th« graph of Flgur* 5-18. Ve »ee 
froa the «bov« that any 1th instance of G. oounting froa laft to right, oan bo 
executed concurrently with any Jth inatanoe of F# n  long u  1 < J, I alailar 
foot was used in [Keller 73] to ahow that no finite aaount of oontrol storage 
ganarally eufflces to aohlava aaiiaal parallaliaa. In thla exaaple, we aaa 
that no finite aaount of lnteraedlete data atorage auffloes either, alnoa if G 
ia auoh slower than F, arbitrarily aany of the lnteraedlete results of 
different Fa aust be saved to ooapute future Ga.

5.3.2. Auxiliary nodea oen teaporarlly aaak parallaliaa,
Ihe graph aodel aeeaa to be capable of diaplaylng auoh of the parallaliaa 
Inherent in a prograa. One oautlon ahould be taken, however, in aaalgning

aaounta to the feot that aroa entering end leeving a node are not neoessarily 
oonneoted in principle.

Figure 5-19: Ihe antecedent and conaequent graphs are equivalent only when 
evaluated with an appropriate evaluation rule

For exaaple, auppoae we have a node f whloh la defined by the equation

f(x. y, x) i (if x then z elae y, if x then y elae t)

Thla funotlon alght be repreaented by the produotion of Figure 5-19.

However, whether thla produotion la an accurate rapreaentetlon of the equation 
dependa heavily on the aubstltutlon aechanlaa used in effecting productions. 
If the aechanlaa uaea the deaand-drlven aoheae auggeated in Section H.2 to 
effeot the replaceaent auggeated. there la no difference. However, aoae

ton ohaln Thie oeutlon

U
r « = o
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■•thoda of (valuation, variously known aa "dsta-drlven* or 'oill-bi-vtlia* 
would require data to ba preaent on all thraa aroa In ordar for tha eipanalon 
to ooour. Tha plotura represented In th« produotion la than not aoourata. 
Inataad, ua hava • funotion f' darinad by

( r(i. y. *) If I * T, y i  ?, and z i t  

? otharulaa
uhloh la olaarly undaflnad on soae erguaents uhara f la daflnad.

Put another way, f* haa a synchronizing affect In having to ualt on all of Its 
valuta, uharaaa f doaa not. Synchronisation la oontrary to parallallaa, alnoa 
It lntroduoaa aitra dependencies batman oparstlons. ■

Tha ssae phanoaanon la observsble In tha oholoa of our definition of tha 
oparator oona In tha Evaluation aaotlon. Our oooa folloua tha aplrlt of 
(Frledaan and Ulaa T6) and (Handaraon and Horrla T6) In being a oona uhleh 
■doaa not avaluata Ita argiaenta*, or ona uhloh la lapleaented by "leiy
•valuation*. Nora preclaely, tha aquatlona 

oona(i.y) ■ (i.y)

haad(oona(i,y)> « i 
tall(oona(i,y>) « y
aaleotd, oona(i,..........in» «

all hold without qualification on i and y. In contrast, oons In convantlonal 
Llap and languagaa daalgnad for deta-drlven aitcutlon la atrlct. l.a. raqulraa 
all argwenta to ba "ecaplete" prior to yielding any raault, thua producing a 
atrong fora of aynchronlzatlon. By a coaplata arguaent, ue Bean one uhleh la 
a finite tree with no isideflnad leaves. Our cone la lenient. In that It doaa 
not require any arguaent to be ooaplete to yield a aeanlngful reault. Lenient 
oona provides no aynohronlzatlon st all, but slaply has tha effeot of asking a 
value froa a tuple of valuea. Thla value oan ba treated aa a single entity, 
later to ba deooaposed by select funotlons.
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5.).). Lenient operator* lUpllff understanding and proofs.
Another feature of tho lenient fora of operator la that for ascertaining tho 
oorrootneM of a prograa, we wish to be concerned as little as possible with 
stlpulatlona auoh aa "If s 4 t*. Mlth lenient oporatora, there are no auch

Figure 5-20: Wiring analoglea to the oona operetor: In tho left pair, 
corresponding to lenient oona, the ooaponent wires sre paired, snd either wire 
csn be pulled without pulling on the other. In the right pair, corresponding 
to strlot oons. the wires sre bound, snd pulling either wire effectively pulls 
both.

Figure 5-20 Illustrstes the difference between lenient snd non-lenlent oons 
through a wiring analogy. If we view the sros on uhleh vslues flow ss wires, 
then In the non-lenlent version, the two wires are wrspped together. Fulling 
on elthar output wire pulls both of the Input wires, snd the output wire 
doesn't respond inless both Input wires sre free. In the lenient version, 
pulling on sn output wire pulls the corresponding Input wire. Independent of 
the other Input wire's oonneotlon.
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5.3.11. Data tjrp« ordering affaata degree of conourrenoy.
The greeter asynohrony, and hanoa conourrenoy, available with lanlant aona 
■anlfasts Itself In another way. It allows us to us* tha traa orderlnt for 
our data type (aaa Saotlon 3.2). aa opposed to a flat ordarlnt. Iha traa 
ordering lapllaa a flnar train of observable atap In tha produotion of data 
objaota than doaa tha Hat ordarlng of tha aaae objaeta. With tha flat 
ordarlng, thara la an all-or-nothing behavior of aaoh funotlon, l.a. tha only 
allowable prograaalon of a value la froa totally undaflnad to oaaplataly 
defined In ona atap. In contrast, tha traa ordarlng allows an Infinity of 
gradatlona, lnoludlng tha possibility of an lnflnlta aarlaa of approilaatlona, 
nona of Uiloh a«ar arrlvaa at a ooapletely daflnad objaet, but aaoh of whloh 
la ltsalf uaaful. Hanoa tha data typa ordering aarvea aa a valuable lndloator 
of tha granularity and hanoa tha degrea of attalnabla oonaurrancy.

5.3.5. Lanlant oona anhanoas eaynohrony.
Wa Motion that lanlant oona automatically lnoludaa tha oapablllty of 
achieving graatar asynohrony In strea»>orlented computation* than do atraaa 
operatora Uiloh ara restricted to prooass atrean ltaas In atrlot order. This 
asynohrony In turn lessens the constrslnts on the ooaputatlon, thereby 
producing aore opportunities for oonourrent evaluation. Suoh dlffarenoes In 
■odes of Interpretation have been obnerved, for eiaaple, In tArvlnd and 
Costalow 78) which Mentions an 'unraveling Interpreter*. Suoh an Interpreter 
Is, In fsct, laplled by a language aaaantlos whloh provides a lenient, rather 
than strict, oona operator.

Thera Is s plasslng oonnectlon between the lenlant oona oonventlon snd the 
spllclnt effeot of grsph gr—mw produotlona. It lndloataa that we say 
raatrlot our attention to auilllary nodes with only one Input and one output 
aro, alnoe any niaber of area aay be coded and decoded using oona and aeleot. 
As long ss lenient oona la used, the affeot Is the saaa. Iha diagram of 
Figure 5-21 Illustrates.



Flgura 5*21: Replaoing luilllarUa with auilllarlts having only on* Input and 
on* output arc: (a) Original production; (b) Replaocaaant for antaoadent; (o) 
Maw production
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5.3.6. Transparent funotlona allow programmer oontrol of oonourreqoy.
Tha final dlaeuaaion of thla aaotlon oonoerna tha exertion of greater oontrol 
ovar tha amount of conoia’rency actually realized In evaluation. Lot ua aasuna 
tha demand-driven aohene diacuased aarllar. laiuia further that we have ooded 
the productlona for aoae computation. A property of the demand~drlven acheme 
la that it will never begin evaluating aoae object until it ha a determined 
that the object la actually needed. However, the programmer may well know 
that certain objecta are ultimately going to be needed prior to their need 
being perceived by the evaluator. To allow theaa needa to ba Injected aa 
additional demands, we oan provide a apeoial operator, par. Thla will be a 
generic operator with any nissber of argiaienta. Ita definition allows it to be 
rather tranaparent functionally:

P*r(l1. *2........  in) « *1
However, its effect on the demand evaluator will be to propegate demand to all 
of its argiaienta immediately. Thla will have the effeot of anticipating the 
need for those argiaiente and forcing them to be recognised aa oonourrently 
evaluable.

figure 5*22: Uae of par

A typical use of par, to evaluate the argiaienta for an auxiliary node



•onourrant with It* aipanalon, la ahoun In Flgura 5-22.

A dual (robin lnvolvaa an obaarvad 'tlat-tpMi tradeoff". It taka* mor» 
apaoa to aupport oonourrant aotlvltlaa, dlraotly proportional to tha nuabar of 
auob aotlvltlaa. It alfht tharafora ba daalrabla to hava an oparator whloh 
raduoaa conourranoy, tharaby raduolng aaaory raqulraaanta. Thla oan ba dona 
by lntantlonally aaquanolng tha evaluation of oparatlona whloh oould otharwlaa 
ba avaluatad oonourrantly. Iha daflnltlon of auoh an oparator la

( “n If il * 7. 12 * .............. 1

T othamlaa

For tha daaand avaluator, aaq dcaanda aaoh arguaant In turn, aoaawhat Ilka our 
oond Maa apaolflad to do. Only uhan ail dcaanda haya baan aatlaflad doaa It 
raturn lta laat valua. k uaa of aaq, dcplotad In Flgura 5-23, la to pravcnt 
axpanalon of a produotion until a\l of lta argtaanta ara raady.
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Flgura 5-23: U» of aaq

Malthar aaq nor par la approprlata In aoaa altuatlona. For aiaapla. If ona 
uantad all arguaanta to ba raady bafora aipandlng a production, but uantad tha 
arguaanta to ba avaluatad conourrantly, than an oparator auoh aa apar (for
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•trlot par) oould ba used. Hie funotlonal definition of a par ia alallar to 
that of a*q, but deaanda propagate to all erguaenta concurrently. '

Othar alallarly uaaful operators ara undar ourrent lnoeatlgatlon. k olean 
atyle of programing aeeaa to rasult from Initially using lanlant operators aa 
auoh aa poaalbla, than “overlaying" on tha prograa oparatora auoh aa aaq and 
par for (raatar control. Iha varletlea of auoh oparatora seea to point to a 
naad for an oparatlonal aeaantloa to "overlay" tha danotational aeaantloa of 
funotlonal languagea. Ihla raaalna a toplo for futura lnvaatlgatlon.

5.3.7. Varlatlona on oparatora affaot demand-driven execution.
It la worth noting tha alnllarlty batwaan par and oparatora auoh aa tha 
parallal conditional and parallal or (Kleene 52), [Paterson and Hawltt 70). 
For brevity, wa dlsouaa only tha flrat of thaaa.

Our oond operator haa been daflnad In Saotlon 1.2. It la poaalbla to davlaa a 
dlffarant operator, poond, which haa an affaot alallar to par In that it 
deaanda all of lta arguaenta, plua an additional aapaot tAiloh glvaa daflnad 
raaulta In aoaa oaaaa where oond doca not. Iha definition la

Hare ■ la aoaa "weak equality* predloate. that la. It doaa not teat true 
equality of lta arguaenta. but rather aoaa weaker relationship Oilch lapllea 
equality, auch aa beln« the aaaa atorage atruoture.

pcoad(i.y.x) *

1

1

x

T

If x * 'nil*

If x > ’nil1
If y « x

If i  i  t and act y ■ x

J,

Figure 5-2*: ( reduction possible for poond but not for oond
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Suoh • fora of equality tak«i plMt, for example, in the graph reduotlon rule 
shown in Figure 5-24. The reason why true equality la not eleoted for ■ la 
that the foraer would generally be an unooaputable predloate.

i i  aentloned, poond will give aore lnforaation (in the aenae of the data type 
ordering) than oond. It appeara, however, that thla benefit will be reaped 
only rarely in praotloe. Since poond requlrea propagation to all argwenta, 
yet will often be unable to a aka use of the value of one of thea, it aeeas 
that poond will generate aore work than it eaves, unless a superfluity of 
otherwise Idle processors IS avalleble. The uae of poond-like operatora for 
gaining parallelisa Is disoussed in [Frledaen and Wise 76).

To suMvlze this suthor's opinion. It is generally aore efficient to rely on 
•trlot operatora to introduce oonoirrent deaande for values known to be 
essentlsl than to use pcond-like operatora whloh will only yield beneflta in a 
aaall nuiber of oases.

5.4. Anolllery Applioationa ■
We aentlon In this section an additional application of the funotion greph 
concept, where by "applloatlona" we aean other aodela which aay be viewed aa 
Instances of function grsphs. Ihese sppllostions fsll within the reela of the 
“general” theory. In that they do not have a dlreot correspondence with an 
execution aodel. The Intended result of such s pursuit is thst aet hods being 
developed for proving properties of function grsphs sre then applicable to 
theae applications.

Figure 5-25: Funotion of a node of a graph operating on languagea



5.1.1. Ud| im|« theory uni funotton-graph ldtai,
One application la to forwl lenguegea (I.e. sets of atrlnga over i  finite 
alphabet). In tha language context, nodes of i funotlon gnph »re viewed u  
funotlona on languages. Specifically, eech node with n input trot !• the 
union of n languages, each foraed by concatenating to aaoh eeaber of tha input 
language the atrlng which labels the arc. Thus, tha function of tha node 
ahoun in Flgura 5-25 vi have

9a

It has long been understood thst flnlta-atata languages can be represented by 
labelled directed graphs without use of productions, or equivalently, by 
"regular expressions" [Kleene 56). Similarly, oonteit-frea languages can ba 
repreeented by a kind of graph graaaar called e ayntax jraph (of. [Keeker 71). 
(Hoare and Ulrth 731). Ve aiaply wish to point out thst suoh raprasentationa 
can be viewed as function grsphs if properly interprated, and that tha 
corresponding interpretation of the deteralnaoy thaorea la that In which tha 
least flxed-pointa sre Just the languages genarated.

Figure 5-26: A funotlon graph representable by a regular axpreaalon

Consider tha laballad graph repreeentation of tha non-deteralnlstlo 
finite-atate aeohlne in Figure 5-26. To aaa the oonnaction with languages, 
notloo that in tha lntarpretation of tha noda atata above, we have an equation 
auoh aa

r<L,, Ly. Lj) > L,» U Lyb U Lxo

L « G(L)

uh.r*

C(L) iL g U U .
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0*<*> > L0 U (Lo U (Lo U .. ..)•  )■ >• 

uhloh la usually denoted

Lo •'
In tha notation of regular expressions. By auoh reasoning, Me aea that tha 
funotlon desoribed by any graph la rapraaentabla by a regular expression, a 
raault attributed to [Klaene 56).

If we allow productions In addition to the type of operator ahoun In Figure 
5-25, It is known (Reeker 71] that the funotlon la not generally rapraaentable 
by a regular expression, but In faot requires the greater power of a ayntax 
graph (equivalently, a context-free greaser).

5.5> Iodeterminaoy
Me have observed the Determlnaoy Theorem for funotlon grephs, whloh states 
that eaoh greph determines unique output velues on eaoh of lte aros. given 
pertlouler lnitlsl values on its Input sros. Howevar, It is knoun that there 
are perfeotly reaaonable computational ayatems which do not enjoy auch 
determinecy properties. An often olted example la that of an airline 
reservation aystem, wherein the net reault, the eat of passengers depertlng of 
a given flight, might well be dependent on Internal aystem timings, even given 
a fixed set of requests for seata.

Tha difference between indeterminacy and "non-determinism" should be 
mentioned. Hon-determinism refers to the system choosing one of saverel 
notions In a manner "local" to the behavior of the system. Suoh behavior 
■lgbt well be prevalent In all of the aystems diaoussed in thla paper. On the 
other hand. Indeterminacy la a global phenomenon whloh aays that the overell 
outoome of a aystem*a exeoution may be one of aeverel or meny possibilities.

Although suoh Indeterminate aystems hove been the result of some study (cf. 
[Plotkln 76), (Smyth 78], [Keller 78s], (Koslnskl 79)). no satlafaotory

But in bavi already represented the solution of thla equation aa •
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icniral theory has btcn developed analogous to th* one presented m far. Tha 
operational (i.e. state-transition) daaorlptlon of Indeterminate operatora la 
usually fairly ilaplt, yat attempts at describing them ss functions ovar thalr 
input hlstorias hsvs been unsuccessful.

As an example, consider tha marge operator» It operates on two inooalng 
stresas of values snd produoes s stresa which is a shuffle of the two Input 
streaaa. A given pair of input atreaas asy well hava aany different shuffles,
e.g. the sequenoe s b shuffled with o d yields

s b e d,
. e o b d, *

i  o d b, 
o abd,
o e d b,

Md

o d a b

Here then Is an example of Indeterminacy.

5.5.1. Indeterminate operators challenge conventional Intuition.

Figure 5-27: Splitting involving amb

Reinterpreted here in the context of funotion graphs, [Henneaay and Ashcroft 
77J illustrate that referential transparency, as exemplified by the splitting 
rule, is destroyed when indetermlnete operstors sre sllowed* For atemple.
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consider in operator amb [HoCarthy Ob] wtilob la defined by
(« If i  * 1

y If y i 1(
with aab(i,y) being Indeterminately i or y If both expressions hold. To see 
where referentlel transparency falls, oonaldar tha expreaalon

Depending on utiathar tha laft or tha right graph In Flgura 5-27 la uaed, tha 
possible rasulta could elthar ba In tha sat 12, 4) or In tha sat 12, 3, M. 
(Hard 7*] consldera additional ramifications of amb-llka funotlon*. 
Similarly, [Giordano T9) shorn that tha oyola removal raault described In 
Saotlon 5.1 doas not work with lndetermlnste operetors.

[Keller T8a) observed that (rapha uhloh Incorporate merges oan exhibit 
snomslles when we atteapt to define a funotlonal sementlos for verge. For 
example, when a aerie occur* In a oyole. It la poaslble to eihlblt ahufflaa of 
lta ultimate Inputs whloh ara lmpoaslble as ultimate output!. Froa thla 
arguaant, ona can further ooncluda that a aarga oannot be deaorlbed aa a 
function on any product of any two data types. Instead, a funotlonal 
daaorlptlon of Marge aust take Into aocount relationships between lteas In the 
two atraaas whloh occur because of tlalng within the aystaa.

S.5.2. Soae lndeteralnaolaa are benign.
t class of systeas lnteraedlete between two eitreaes Is thst In whloh there 
srs loosl lndeteralneoles In streeas of output values, yet s unique ultlaste 
value Is slwsys produced on outputs of lntsrest. ft psrsdlga for hsndllng such 
osses Is to stteapt to modify the ordering pert of soae of the dots types In 
auoh s wsy thst tha operstors beooae continuous functions with rsspect to the 
modified ordering, then spply the deterainacy thaorea. When the dateralnaoy 
theorem can be applied, the verification of the ayatea oan ba reduced to the 
verification of selected sequent1si executions, kn sxaaple of thla approaoh 
appears In [Keller 78b).

aab(1,2) * sab(1,2)
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5.6. Proof Nethoda ,
Ho it «iatln( aethoda of oorreotneaa proving oan be oouohed in teraa of proofs 
for funotion graphs. Ukewlae, for aost known proof aethoda sppllosbls to 
funotion grsphs, thsr* srs slao known inatanoea of suoh asthods whloh hsvs 
been spplicd to aor* spsolflo aodcls. 1h« on* thing ws feel is to b* gslnsd 
in sttsapting to expreaa s progrsa graphically Is thst th* lsttsr viewpoint 
asy suggest sdditlonsl svenues of sttsck for proofs. In this aeotlon, we 
present proof aethoda apeoifioelly froa the graph viewpoint.

5.6.1. Induotive proofs ooae in several Interrelated foraa.
1ny general proof aethod whloh deela auaoeaafully with infinite objaota, a.g. 
general data typea and funotlona repreaented by graph (ramare, ia going to 
use aoae fora of lnduotion. Ihere ere aeveral oatenalbly different foraa of 
induotion, naaely:

1. Induction on the data objects which are arguaenta to funotlona.

2. Induction on tha atruoture of the prograa.

3. Induction on the aequenoe of atepa tekan in exeoution of tha 
prograa.

Despite these apparant dlffarencee, the foraa of induotion are often oloaely 
related and aoaatlaaa tha dlffaranoa le only one of viewpoint.

For exaaple, tha olaaa of data objeota of intarast is oftan repreaentable 
using a (perhaps non-daterainlatic) production idtioh generataa the olaaa. So 
induotion on tha atruotura of a generating prograa aight ba used to gat the 
aaaa effect as induotion on data. Slallarly, if wa ara allowed to traat our 
grsphs aa data, aa haa alraady baan dona to aoae extent in the dlacusslon of 
enveloping, then we aight well find that Induotion on prograaa is eaaentlally 
induotion on data objeota repreaentlng prograaa. Finally, wa oan often aodel 
the exeoution aequanoaa of n prograa as a data-type in another oloaely-related 
prograa, so thst Induotion on eitoution aequenoea aay aleo ba turned into 
Induotion on data.

Tha acope of thla paper doas not parait an exhaustive survey of Inductive
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■athoda and their olaaalfloatlon. Inataad, we nust ba oontant with • fat* 
eiMplaa of bow lnduotlva proof* can ba parforned In tha funotlon fraph 
oontext.

5.6.2. lnforaatlon and proof orderings iaf dlffar. .
Lot us befln with a dlaousslon of lnduotlon on data. We have airaady 
asntlonad that tba notion of a data typo lnoludaa an ordarlm on tha ncabera 
of lta doaaln. To do lnduotlon, wa alao naad an ordarlnf, but tha two 
orderInfa naad not oolnolda. Mora stringently. tha type of ordarlnf naadad 
for data lnduotlon nuat ba an lnduotl»a ordarlm. l.a. a partial ordarlnf < 
with no lnflnlta daaoandlnf ohaln,

*0 > *1 * *2
Thla proparty la naoaaaary baoausa of tha way In whloh lnduotlon procaada, 
l.a. by naans of a basis snd an lnduotlon stap.

If wa ara attempting to prova a proparty P for all neabers of a data typa, 
than In tha basis wa prova P(«) for all nlnlaal eleaents s. whars by nlnlaal 
wa ntan that thara Is no y suoh that y < l. Suoh elaaenta nust ailat, bacausa 
If wa start with an arbitrary eleaent and rtpeatadly choosa "saaller" 
alaaanta, foralnf a daaoandlnf chain, than tha ohaln cannot dascand foravar 
(dua to tha ordarlnf balnf Inductive) and tharafora nust atop st s alnlasl 
alaaant. -

In tha Induction stap. wa assuaa that s Is sn srbltrary non-nlnlnal alaaant of 
tba data typa. Wa show that

If for aach y < x wa have P(y), 
than alao P(x)

Kara tha first llna la oallad tha lnductlva hypothesis snd tha second Is tha 
lnduotlva oonoluslon. This partloular version of ttit lnduotlon step aotually 
aabodlea tha basis ss wall. In thst for s nlnlaal aleaant x. wa nust prove 
P(t) directly. We aeparate the basis or tha proof froa the lnduotlon step In 
order to decoapose the dlsousslon by treatlnf only non-nlnlnal eleaanta i In
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the lnduotion atap. Onoa tha baala and Induction atap are_ ahoun, tha 
oonolualon ia that P(i) holda for every poaslbla I in tha dcaaln.

The oatoh in this form of proof la the generallty of tha lnduotion atap. It 
■oat uork for all non-alnlaal i. Iha eaae with uhloh thia Bay ba proved 
governa tha oholoa of tha lnduotlva ordarlng, uhloh aay ba quite unlike the- 
inforaatlon ordering of the data type.

5.6.3. Ctaaple of Data lnduotion:
Consider the function aua_streaa defined in Figure 2-1. Suppoae that tha 
input atraaa to tha funotlon la

* I, *2• *3< ••••
We uant to show that the output atreea

H. V2 . 13........
has tha property

Here ue can use data induction, ohooalng our Inductive ordering aa tha prefli 
ordering on atraaaa.

Is a baala, ue auppoae that I ia the null atraaa. Iha property clearly holda 
In thla case, aa tha output la alao tha null atreaa, according to tha 
definition of aua_atreaa.

hi the Inductive atap, auppoae that i la not tha null atreaa and the property 
holda for all s uhloh are proper prefliea of i .  In particular, i has aoae 
non-taro ninbir of coaponenta, aay 1, and tha property holda for tha prefli of 
length 1 - 1. Hore preoiaely,

>l_l • If ♦ *2 ♦ *3 ♦ •••• ♦ *1-1 

The i-1**1 coaponent of the atraaa output of the add_atreaaa Mill therefore be 
*1-1 ♦ <1* But thla ooaponant la also tha Ith ocaponent of tha output 
y. Hanoa



105

Tl ■ it ♦ «2 ♦ »3 ♦ ♦ *1
Combining the abova with tha lnduotlva hypothesis. wa hava tha lnduotlva 
eonolualon.

Tha Inductive proof method abova la only partially ooaplata, aa wa hava 
assumed thus far that tha Input at rasa 1 la flnlta. To uka It ooaplata. wa 
■list obaarva that tha truth of tha oonolualon for an lnflnlta 1 follows froa 
Ita truth for all Its flnlta prefliea. In thla example, tha obaarvatlon 
Indeed holda. To aaa why, auppoaa that tha atatement la trua for all flnlta
1 , but thara la an lnflnlta i auoh that for aoaa 1 It la not trua that

*1 ■ 11 ♦ *2 ♦ 13 ♦ . . . .  ♦ »1 
Than olaarly tha oonolualon auat also fall whan tha flnlta prafli of langth 1 
of y la tha Input, which la a contradlotlon.

5.6.4. Admissibility makaa proofs work for lnflnlta objaota.
Iha quality of a predicate P, that tha truth of P on lnflnlta objecta follows 
froa Ita truth on msaller flnlta trunoatlons. Is oalled admissibility. It la 
a apaolal ossa of tha oonoept of oontlnulty of funotlona on data typas aa 
dlaoussad earlier. In partloular, If wa view a pradlcata as a function Into 
tha data type with doaaln (trua, false) which has tha ordering true < false, 
than oontlnulty with raapaot to thla typa la tha same as admissibility.

It la aasy to oonstruot aiaaplaa of pradloataa whloh ara not admissible In the 
abova Sanaa. Consider, for aiaapla, the natural nuebers, with Infinity added, 
snd the nuaerlo ordering. Let P(i) be "1 la finite*. Then the baals P(0) 
holds and tha Inductive atap holds for flnlta 1 . Al so tha lnduotlva hypothesis 
holds for Infinity. However, tha Inductive oonolualon most oartalnly doaa not 
hold for Infinity. Hence this P Is not admlsslbls.
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5.6.S.- Proof* for sequential programs oan ba oaat aa funotlon graph proof a.
Ua now dlacuaa lnduotlon on execution aaquanoaa. In particular, wo dlaousa 
axaoutlon of flowohart prograaa, and show how Interpret thla fora of Induction 
aa Induction on data in the funotlon graph aodel. A typloal and widely uaed 
veralon of lnduotlon on exeoutlon sequenoee la one uaed to prove that an 
assertion about the valuea of prograa variablea holda when the prograa 
terminates, assuming that another assertion about the values of thoae 
variablea held when the prograa started. Thla aethod ia widely attributed to 
(Floyd 671* although its essenoe appeared in (Corn 591. To apply the method, 
it ia oTten neoeasary to add other aaaertiona about the valuea of variablea at 
other polnta in the prograa.

To view the above aethod in the function graph model, we think of eaoh 
flowchart statement as s function on the set of aets of prograa variable 
states. For example, if the variablea are (x, y, x), then the aro data type 
is the set of all sets of values which csn ba aasimed by the triple (x, y, x) • 
Each statement correspond a to a funotlon on this set of sets. For example, 
corresponding to the ststement

x :« y ♦ x

we have the function F given by

F(3) • l(x', y, x) I (I, y, x) In 3, x* • y ♦ xl

A similar viewpoint oan be uaed to see that conventional "flowchart programs'1 
are Juat apeoial typea of funotlon grapha. In thla oaae, the data type le 
that of aets of state vectors, I.e. vectors of values aaslgned to variables of 
the program. Tha ststement nodes of such a prograa are Just funotions on 
these aets. For example, an assignment statement

x :■ F(x)

fatten viewed this way is a funotlon G defined by

G(S) • (F(x) I x In 3)
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for any Ht S of atata vectora. . . .

Slallarly, tha atria of two nouohart arrows la tha union of tha two aeta of 
atata veotora. In equivalent viewpoint la that of predicate tranaforaara 
[Dljkatra Til. alnca a predloate In auoh a prograa la the aaae aa a aat of 
atata veotora.

(Hoar a 69) Introduced a aethod for ailoaatizlng tha Introduction of 
aaaartlona. He lndloatad how ailoaa oould ba preaented which generete atoalo 
stataaanta aoooapanlad by aaaartlona and how rulaa of lnfarenoe oould ba uaad 
to (enerata ooapound atataaenta aoooapanlad by aaaartlona. Thla aathod oould 
therefore be oonaldared Induction on proiraa atructura. We wlah to lndloate 
that a alallar approaoh oan be used for funotlon (rapha. Thla approaoh la a 
generalliatlon of Hoare'a In that It oan be applied to data typea other than 
aeta of aete of prograa atatea.

5.6.6. Aaaartlonal proof aethoda eitand to funotlon grapha.
He aay aoooapany any funotlon graph with an aaaertlon ebout lta Input/output 
relation. Thla alght ba deooapoied Into an Implication whloh lnvolvea a 
hypotheala about the Ingoing value and a oonolualon about the outgoing value, 
but other foraa of aaaartlona are poaalbla. For atoalo funotlona. tha 
allowable aaaartlona are derived ad hoo froa the aeaantloa of thoae funotlona. 
For non-atoalo funotlona, coapoaltlon rulaa auat be developed which derive the 
aaaertlon for the funotlon froa the aaaartlona for lta oonatltuanta.

In eieaple for a aarlea Interconnection of two grapha la ahown In Figure 5-28. 
In tha aaae that the aaaartlona are deooapoaed Into the type of implication 
mentioned above, we have e alapler ooapoaltlon rule, es ahown In Figure 5-29. 
Slallarly, whan one oparator la a oond, we aay uaa the rule In Figure 5-30.

5.6.7. Filed point Induction provea propertlaa of funotlona.
6 vary laportant rule la tha filed point Induction rule, which glvea us a way 
of proving propertlea of reouralvely defined funotlona. Iha rule la ahown In 
Figure 5-31. leoalllng that H*(G) ia tha function ooaputed by tha recuralve
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Fi|ur« 5-28: Composition rule for i  Mr Us intsrooonsotion
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1bfar

Figure 5-29: Special oase of the composition rule for series interconnection

i
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Flgur* 5-30: Composition rule for oond



produotion with antecedent 0 in Figure 2-19* the rule aays that to prove aoae 
property f for h"(0), it auffioea to prove

1. Baala: Kf), trtiere f repreaenta the funotlon whloh alwaya hat the 
value undefined.

2. lnduotion step: For arbitrary f, assuming P(f), ahow P(H(f)).

If we were to view a reouraive produotion aa an application of a graph to a 
value, aa dlaouaaed in Seotlon 5.2, then fixed point induction beooaea a oaae 
of data induction, with the prograa (i.e. funotlon graph) aa data.

Fixed point lnduotion on functions aoaetiaes falla to prove defining 
propertlea of funotlona. For exaaple, If w» were to atteapt to use it on the 
aua_atreaa exaaple above, we would take P(f) to be f(«t, x2.........) > H,
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*\+*2» ....... Homvtr, fixed point induotion Mould foil slnoe the
bails, P(T) is fslse. (It is interesting to nots, bo waver, thst the Induotion 
step succeeds.)

On the other hsnd, fixed point induotion is often useful for proving 
properties possessed by s funotion other then the defining properties. Ve 
conclude this section with en example.

Exsmple: Let AS sbbrevlste the funotion edd_stresms defined in Figure 2*9 snd 
let SS sbbrevlste the function sm__stresm defined In Figure 2*1. Suppose us 
wljh to prove the following:

TheoreM: For sll solid otresMS i, y,

SS(AS(x. y)) ■ AS(SS(x). SS(y))

By s solid atresN, we Mesn s one-level stresM in whloh no component oan be t. 
For convenience, we re-deflne oons to be semi-strlot, thst Is oons(T, x) is 
equsted with 1 for every x. The reason for doing so is thst the 
trsnsforMstions which follow fell without this re-definltlon. This does not 
preclude the possibility of a stream whloh is InooMplete st the end, e.g. 
cons(s, oons(b, ?)) Is the solid stresM sb...

Figure 5-32: TWo grsphs to be shown equivslent

A graphloal presentation of the theoren is given by sssertlng the equivslenos 
or the two grsphs shown In Figure 5-32. We shall prove the theorem using 
fixed point induction.
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Fl(ur« 5-33: Two grsphs aiiuiid to be equivalent

taring th« oourtt of the theorem, we ahall appeal to tha equivalence of tha 
two graphs In Figure 5-33. The latter equivalence oan be proved In a Banner 
analogous to the theorem, but the proof la auoh simpler.

Figure 5-3*: Graphs to be show) equivalent by fixed point Induction, where 
H(g) is the consequent of g In Figure 5-3b.
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Figure 5-35: Basis of the fixed point lnduotlon

Figure 5-36: lnduotive hypothesis of the fixed point induction
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Figure 5-37; Inductive oonolusion of the fixed point lnduotlon. leads to
the troneforaed greph in Figure 5-3B.
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Ve appall to the fixed point lnduotion principle to pro** the iqiditliMi of 
the graphs In Flgura 5—3*1. Iha basla la tha equivalence of tha graph* In 
Flgura 5-35, where T la tha constant funotlon tdtoaa value la tha null atraaa. 
Tha aqulvalanoa of these grapha follows froa tha definition of A3, alnoa 
U(t, T) > oona(T, T) ■ 1, aeoordlng to our ra-daflnltlon of eoaa.

Iha Induction atap aaauaea the aqulvalanoa of tha grapha la Flgura 5-36 and 
provaa tha equivalence of those aaae graphs, esoept with f replaoed bjr 11(0 . 
The reaulta of thate replaoeaenta are ahotai la Flgura 5-37.

Iha left graph In Flgura 5-37 la ahown equivalent to the right one by the 
aerlaa of tranaforaatlona In Flgura 5-38. The Justlfloatlona are aa follows:

a. Definition of U.

b. Definition of head, tall, 
o. Equlvalenoa In Flgura 5-33.
d. Definition of 43.
e. Inductive hypothaalt.’

f. Folding.

g. Definition of U and folding.
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Flgur* 5-38: TrMKforaatlona used In dtrlvlng th* lnductlv* oonoluilon 
(eontlniwd .Mit 2 pagta) .
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<. Poatlude

6.1. Iddltlonel Mstorloel Material
The literature of engineering H lneti, particularly eleotrloel engineering 
and oontrol theory, haa aeen aany uaea of (raphloal aodela for funotlon-baaed 
ayateaa. See, for wupli, [Zedeh and Daaoar 63], Mhleh dlaausses a version 
of tha deteralneoy thaorea for general ayatraa. Many (raphloal aodela for 
date-flow ([Conatantlna 68], [Adaas 68], [lodrlguex 69], [Saror TO]) have baan 
deaorlbed In tha eoaputar aolanoe lltaratura, tha orlilnal or uhloh aaaaa to 
ba [Karp and Nlllar 66]. In Boat of thaaa, tha (raphe have played a rather 
etetlo role, lnatead of being dynaaloally atruoturable entltlea. Many of 
theae etatlo aodala are surveyed in [Baer 781. t different ostagory of aodel 
la beaad on atate-tranaltlon behevlor. These aodala are not aurvayad here, 
but eiaaplea aay be found In [Petri 66], [Karp and Nlllar 69], and [Keller 
76].

[Churoh (1] lntroduoed the laabda-oelculua, on uhloh aany aodele of funotlonal 
progreaalng are baaed. Ihe graph aodal presented hare la aora ganaral In that 
It provide* a looping atructure uhloh oan not be dlreotly rapreaented In tha 
laabda oalculua. [Broun 62] prophaalaa tha use of eppllcatlve languagaa for 
tha exploltetlon of parallel prooaaalng oapablllty. (Boha 66] dlaausses the 
relationship between a graphloal aodal and reouralon equations. [Patll 67] 
dlaousiea parallel evaluation In a graphical laabda oaloulua aodal.

Iha fixed point theory la due to [Klaane 52] with subsequent ganarallxatlon by 
Soott, for exaapla [Scott 70, 71, 76]. [Patll 70] praaanta a deteralnaoy 
thaorea for ona-level atraaa-based ayateaa uhloh la alallar to a related proof 
In [Zadeh and Daaoar 63]. (Kahn 70 dlaaussea flxad-polnt aaaantloa In a 
aodal uhloh oould ba oonaldered either graphloal or equatlonal, but without 
tha rlohneaa of Llep operatora and data atruoturea. The letter ware 
Introduced Into a graph aodal In [Keller 771. [Adaaa 68] praaanta a aodal 
with Uap-llke operatora, but having a aaaantloa auoh lass rloh than tha one 
preaented here. Systems baaed on equations, without functions as dsts
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objects, art dliouisad in [O'Donnell 77). [Turner 791 usee i  ri]ii«d graph 
nodal to represent recursion.

The um of epplioetive lin|ua|«i to iapleaent unbounded structures has been 
desoribed in [Lsndln 60, [Kahn 7*), (Burge 75). (Friedaan end Wise 76], 
(Henderson end Norrla 76]. The lsst two give sketches of oorreotness proofs 
for their evaluators, which sre sequentisl. [Vulllealn 7*3 diso usees issues 
of optlaellty of evaluation rules for recursive fuootlons. [Bunaeaa, et el. 
80) describes the use of a functionsi lsngusge end laxy evaluation in databsse 
epplloetiona. Other sspects of sppllcstlve languages sre discussed, for 
exeaple, in [Landin 65], [Evens 681, (Backus 76], [Iverson 79)* snd [Sleep 
80).

As this aanusorlpt was being revised, [Henderson 80) aade its eppeeranoe. It 
is s highly-reooaaended book, with additionsl exaapies of the use of 
indeterainaoy snd use of functions es vslues. Grsphs sre used to a Halted 
extent, but their eveluetlon is executed differently than we hsve suggested, 
snd the notion of enveloping is not used.

Graph Models have long held eppeel for representing computing systems in Uiloh 
the processing loed is distributed eaong dlstlnot physlosl units. The thrust 
or aost work on distributed processing hss been in the direction of 
process-baaed systeas, i.e. those involving the intercoaaunlcetion of aultlple 
sequential processes [Conway 63), (DIJkstra 68), (Kahn and HaoQueen 77), 
(Hoare 781, eto. Lately, there has been increased interest in what alght be 
teraed teak-besed systeas. Instesd of using "tssk" as a synonjp for 
■process*, we propose adopting a different aenae of the foraer: e fundeaental 
unit of work involving the coaputatlon of soae stoaio funotion. Hence 
task~bssed systeae generally lend theaselves to the expression of a finer 
grain of concurrency that do process-bssed systeas.

Tesk-based systeas hsve been discussed [Dennis 69 )« [Frledasn and Vise 78), 
(Hewitt 77), and [Hewitt end Baker 78), although aore work aeeas to hsve been 
done on high-level lenguages then st the iapleaentatlon level. [Arvlnd and
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Goatelow 77). [Davis 7Ba), and [Dannie and Hlauoaa 74). deaorlbe aoae 
lapleaentatloa aapeota of these ayataaa. Tha oonvaralon of oonvantlonal 
prograaa to data flow prograaa for tha purpoaa of aitraotlng paralltllaa la 
tha aubjeot of [Uraehltr 73). in lapleaentatlon of FGL haa bttn dlacuaaed In 
[Keller, Undatroa, and Fatll 79). .

[Grelf 75) and tFranoax 79) dlaouaa proof aathoda for taak-baaad ayataaa. 
[Terk 70), [Nanna 70, and [Stoy 77), aaong othara, dlaouaa proofa for g'anaral 
aodala rapraaantabla by flxad point aaaantloa. A proof aathod baaad on tall 
recurelon la preaented In [Marurklewlox 71]. [Nllnar 72] dasorlbaa a 
atchanlutlnn of fliad-polnt Induction. [Boyar and Haora 75] dlacuae 
aechanlratlon of data Induotion In Llap prograaa.

i.2. Conolualona
Ua hava praaanted a ganaral graph aodal baaad on funotlona ovar data typaa and 
lndloatad hoy tha aodal oan ba uaad to rapraaant dynaaloally-atrueturad 
parallal and recuralve ooaputatlona, Including lnterooaaunloatlon between 
ooaputlng aodulaa. Froof aathoda and varloua typaa of tranaforaatlona uera 
dlaouaaed. Ua al so Indicated how tha grapha theaaelvea cculd ba uaad aa data 
objaota.

Although thla aodal haa baan found uaaful In davaloplng an aiacutlon aodal for 
a highly oonourrant aaohlna archltaotura, ua ara alao aiplorlng varlatlona of 
It aa both a hardware and ao ft wara development tool. Although othar graph 
aodala hava baan proposed In thaaa contaita, ua faal that funotion baaad 
aodala ara particularly relevant, elnoe rather than Just eaploylng grapha aa a 
ayntaotlo entity, our aodel can alao aaalgn a aeaantlo Interpretation to each 
graph. Thla feature la eitreaely uaaful In progreaalva raflneaeat, alnoa It 
oan avoid having to aultch aodala aa tha level of deaorlptlon bacoaea aore 
detailed.

He hava avoided advooatlng the uaa of a graphloal acdlua aa the aole aeana of 
ooaaunlcatlon. A textual veralon of our FGL haa been developed [Keller, et
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•1. 60] and aeeaa aort ustibl« for ooaaunloatlng proiran onoe they ara 
developed. However, tha us*fulness of a graphical praaantation for Initial 
devtlopitnt and enhancing conceptual understanding aannot ba denied.

Preliminary work has baan dona in tha usa of a graphical foraalla in proofs 
of correctness, Such a foraalisa off ara tha advantage of battar visualIration 
over conventional linaar foraula repreaentatIons, whloh ara prone to errora. 
For exaaple, wa ho pa to apply tha technique to proofs of storage aanageaent 
sigorithas. An initial attempt at foraallting thla applloatlon appears In 
[Mori 791.
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