
THE ARCHITECTURE OF DDM1:

A RECURSIVELY STRUCTURED DATA DRIVEN MACHINE

by

Professor A. L. Davis

UUCS - 77 - 113

TO APPEAR IN PROCEEDINGS OF THE

FIFTH ANNUAL SYMPOSIUM ON

COMPUTER ARCHITECTURE

IN APRIL 1978

October 7, 1977

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Architecture of DDM1: A Recursively •

Structured Data Driven Machine

Professor A. L. Davis
" Computer Science Department

University of Utah
Salt Lake City, Utah 84112

ABSTRACT "

An architecture for a highly modular, recursively structured class

of machines is presented. DDM1 is an instance of such a machine structure,

and is capable of executing machine language programs which are data driven

(data flow) nets. These nets may represent arbitrary amounts of concurrency

as well as arbitrary amounts of pipelining. DDMl is a fully distributed

multi-processing system composed of completely asynchronous modules. The

architecture allows for limitless physical extensibility without neces

sitating special programming or special hardware to support individual

machines of widely varying sizes. DDMl is capable of automatically and

dynamically allocating concurrent tasks to the available physical resources.

The essential characteristics of the highly parallel, pipelined machine

language are also described along with its method for execution on DDMl.

I

DDMl* (Data Driven Machine #1) was built in an attempt to investi

gate some ideas about machine organization to support very high levels

of concurrency. The machine language programs of DDMl are called Data

Driven Nets or DDN's. DDN's were originally described in the author's

thesis [1], and later refined in [2], and [3]. DDN's are similar to the

net representations developed by Dennis [4] and Rodriguez [5]. The main

advantages of DDN's over these other net representations are in the lack

of distinction between control and data tokens, and a more general selec

tion of primitive elements. The result is increased simplicity and clarity

of the net programs. A linearized encoding of DDN's is the actual machine

language of DDMl. The highly parallel, distributed, and asynchronous

nature of DDN's implies that an efficient executing engine for these nets

should possess similar characteristics. Other goals for a data driven

machine are that it be efficient and economical with respect to current

technology.

A recursive architecture was chosen to meet the above criteria. In

defining a new set of guidelines for recursive machines and computing

technology, Glushkov, et. al [6] proposed with uncanny accuracy, for these

purposes, the following principles:

PI. Recursive machines contain a limitless number of levels of machine

language.

I . In tro d u ctio n

*Note: DDMl is a module of the architecture described here, and was built

while the author was at Burroughs ASDO. DDMl was completed in July 1976
and now resides at the University of Utah where the project is continuing

under Burroughs support.

- 1 -

P2. All program elements for which operands are available are to

be executed.

P3. Memory structure should be reprogrammable in order to convert

the structure of data and programs as required by internal level changes.

P4. There should be no limit to the number of allowed machine elements.

P5. These machines should have a flexible, reprogrammable structure.

Pi and P2 are direct fits with the choice of a recursive architecture

for a data driven machine. By recursively structured, it is meant that

at any level of the architecture the structure at that level is the same

as the structure at any other level. In a binary tree for example the

structure at any node is that there is the possibility for a single parent

node and two child nodes.

Recursive architectures actually imply P4 and the ability of the

machine structure to be extensible. A modular extensible structure is

extremely attractive in a cost sense for todays LSI component technology.

Each new LSI module is very expensive to create but reproductions of these

modules are very cheap. By minimizing the number of module types and

allowing these types to be used repetitively in an extensible recursive

structure, the resulting cost structure becomes very attractive. Further

more the ability of such a machine structure to fulfill the needs for

machines of all sizes, implies that support efforts may be limited to

a single class of machines. The obvious goal is to do this in a way that

machine performance increases at a reasonable rate as the size and cost

are increased. For DDMl's architecture there is no physical limit to the

number of modules or the number of recursively organized levels that may

exist in a particular machine.

- 2 -

A number of parallel machine projects operating under sequential

control have generated considerable doubt that centrally controlled

parallel machines can be efficient. Such systems suffer the further

disadvantage in that they cannot be arbitrarily extended without running

into electrical problems such as clock skew. These problems can only

be overcome by special tuning of the circuits for larger structures, which

in turn decreases the efficiency attainable by an individual module. This

situation can be resolved by a new principle.

P6. Modules of recursively structured machines should function in

a fully distributed asynchronous manner.

Fully distributed systems are defined here to have two principal

characteristics:

Cl. At no time can a module of a fully distributed system determine

the total system state.

C 2 . A fully distributed system is incapable of enforcing simultaneity .

in its distributed modules.

Cl does not imply that a module functions with no information about what

is happening in other parts of the system. It does mean that a module

cannot rely on another part of the system being in a certain configuration

at any particular time. C2 augments this idea. For distributed systems,

simultaneity cannot physically be enforced (except in trivial cases where

for example it might be said that some boolean variable V becomes false

simultaneously with V becoming true). This results in the necessity for

modules to function only on the basis of the module's own local time,

hence the term self-timed or asynchronous modules. The asynchronous pro

tocol chosen for the self-timed modules of DDMl is the standard four-cycle

- 3 -

request acknowledge scheme. The benefit of these self-timed modules and

the recursive structure of the machine is that modules may be added with

out limit and no special hardware modules, tuning, or programs need be

added to support these arbitrarily larger structures.

Another major goal of DDMl is to place many of the current operating

system functions into the hardware in order to increase system efficiency.

Most parallel machine projects to date have required either that programs

be written to take advantage of a particular hardware configuration, or

that a configuration dependent compile operation be done prior to execu

tion. Resource allocation is done dynamically and automatically by the

DDMl hardware and depends on the available concurrency in the executing

process and the availability of physical resources.

The architecture of DDMl nicely fits the stated principles. It fits

P5 in that the architecture is flexible in a logical sense but not in

a physical sense as in the machines advocated by Miller [7]. DDMl's

architecture is a fully distributed, asynchronous, recursive structure

capable of containing an unlimited number of modules. The number of actual

module types however is limited to five. Machines of this architecture are

felt to be more efficient and cost effective than other data flow architec

tures, [8] and [9] respectively.

- 4 -

Only the essential characteristics of the DDN machine language will

be presented here. Details of the language can be found in [3].

DDN's are cyclic, bipartite graph structures consisting of a collec

tion of cells and a collection of directed data paths interconnecting

these cells. Quantum units of information called data items travel over

the data paths from one cell to another. Data items are typed and may

be anything such as program, message, vector, scalar, etc., and are

variable in length. Data paths function as FIFO storage devices when

more than one data item is present. The lengths of these queues are

constrained operationally within DDMl by the availability of physical

resources. It will suffice to consider data paths as queues of finite

but indefinite length. There are several types of DDN cells in the actual

machine language. These cell types allow such program constructs as calls

(open, closed, and recursive), conditionals, arbitration, iteration,

distribution of data items, deterministic merging, and synchronization.

The semantics associated with cell types will be abstracted here by simply

assigning a cell function or name (describing the cell's function) to

each individual cell.

When a certain set of a cell's input data paths (called the firing

set) contain at least one item, that cell is said to be fireable. A cell

fires at some finite, but unspecified time after it becomes fireable.

This notion of a finite, but unspecified delay is essential if the schema

is to fit within the functional framework of a fully distributed asyn

chronous environment. When a cell fires the set of items comprising the

firing set (the head items on the firing set data paths) are destroyed,

and a set of resultant data items are placed on some set of output data

I I . C h a r a c te r is t ic s o f the Machine Language

- 5 -

paths. The values of these resultant items and the selection of data

paths on which they are placed, depend upon the cell function. No

assumption is made about the relation between the times at which the items

appear on the output data paths or the order in which they appear. A

cell is said to have fired only after all of the firing set data items

have been destroyed and all output items have been placed on the desired

output paths.

There are several methods of implementing the management of data

items under the above firing strategy using pointers and other forms of

shared storage. All these common storage methods are rejected here because

they limit the ability of the resulting system to function in a fully

distributed manner. For any DDN, consider the situation where a cell A

produces output items and places them on a data path which leads to cell B.

The storage associated with the data path is considered to be local to B.

Only cell A has the access permission to place data items in that storage

when space is available. If space is not available then cell A must wait

to complete its firing until space is freed in B's domain to hold the

incoming data item. Implicit in this scheme is the existence of request-

acknowledge communication protocols between cells, or between cells and

data path FIFO stores. The placement of an output item corresponds to the

movement of a piece of information from the local environment of A to the

local environment of B. This locality of information guarantees that

programs written as DDN's are side effect free. It also implies that

storage can be physically distributed rather than central or shared. This

is nice from both a cost and a performance standpoint for semiconductor

storage mechanisms, which unlike disk and core find no advantage when

- 6 -

Under this distributed storage implementation the individual data

items are considered physical storage entities as well as logical entities.

This coupled with the destruction of data items in a firing set implies

that if a particular data item is to be used concurrently in more than

one place in the net, then that data item must be explicitly copied and

sent to the multiple local domains where it will be used. Similarly if

an item is to be used in the same place in a net but at several different

instances of time (as would be the case in DDN iterative structures),

then that data item must be copied or regenerated at each instance of

usage and fed back into the net for successive use. The cases where these

copies must be made depend upon the algorithm under construction. The

mechanism for providing these copies could be a special primitive' or merely

the ability for any cell output to be copied an arbitrary number of times.

In D D N 1s the latter approach was taken. Linguistically the choice is

irrelevant except as a matter of style. Operationally however the special

primitive suffers the disadvantage of greatly increasing the number of

primitive operations that must be executed in a particular program. The

advantage is that the sites where this copying activity takes place could

also be distributed. For DDN's the disadvantage was felt to be too great

(Dennis [4] has taken the other approach).

Figure 1 shows a simple abstract DDN program and snapshots of its

execution. Small letters denote data items and capital letters denote

cell functions. The firing set for cells A, B, and C is the set of all

input data paths, and all cells have a single output, which is copied and

placed on all output paths (cell A's output is copied and sent for possible

concurrent use to B and C).

massed in a s in g le a rea .

- 7 -

time t. time t, s t,>t_1 1 0

time t ^ i t2>t1 time t3 : t3>t2

Figure 1: Sample Abstract DDN Program

This simple example illustrates the asynchronous and distributed nature

of the schema, as well as the inherent possibilities for two types of

- 8 -

concurrency. B and C are concurrent activities in that they are independ

ent operations but at time t A, B, and C are all fireable. A can be

fired concurrently with B and C because of the capability for pipelined

operation which is made possible by the FIFO data paths.

The firing rule for DDN cells implies that the snapshot history of

Figure 1 is not unique. For example, between time t^ and t^ C could have

fired but didn't. DDN's could be considered non-deterministic because

no unique execution history can be determined. Cl and C2 actually imply

that this is a possibility in fully distributed systems. However the

following two properties do hold for DDN's:

DPI: Data items are persistent. Once placed on a data path items

remain there until destroyed as a consequence of being in the

firing set of a firing cell. .

D P 2 : The FIFO organization of the data paths guarantees that the

order of the items in any path cannot change.

DPI and DP2 are necessary but not sufficient conditions to guarantee that

DDN's are deterministic in the sense that they are output functional,

i.e. that the order and values of the output data items of a DDN is deter

ministic. A DDN containing a cell with the function, "pick a random input

item and put it on a random output path", would not be output functional.

The cell types for DDN's have been chosen so that it is possible to deter

mine by topological examination whether a given DDN is output functional

or not.

To facilitate a substitution rule a DDN process (D P P) is defined

to start with a single initial cell and terminate in a single final cell.

This facilitates definitions about active and inactive processes as well

as topological determination of certain net properties. As in any programming

- 9 -

language, it is possible to define illegal or meaningless DDP's. In

analysis similar to compile type error analysis, the following topological

statements about DDP's can be made:

1) whether or not the DDP may hang (i.e. is it possible for no cell

to be fireable before the DDP outputs have been produced).

2) whether or not the DDP is safe for output functional operation

in pipelined situations.

Facilities for dealing with error situations are also provided by the

use of a special valued data item. Such correctness analysis is of increased

importance for any asynchronous schema since there is no guarantee that

subsequent "debug" executions will proceed in exactly the same manner.

Such analysis is facilitated by the side effect free nature of DDN's and

because influence is transparent in net programs.

The internal representation of DDN's in DDMl is a variable length

character string. Elements of the character string are also variable

length character strings. The basic structure of this representation

is described in the following BNF productions.

<DDN>::=(<NET NAME>(<CELL LIST>))
<CELL LIST>::=<CELL>|<CELL><CELL LIST>
<CELL>::=(<CELL TYPE>(<INPUT SLOT><OUTPUT LIST>))

<INPUT SLOT>::=(<INPUT M A P > (<INPUT LIST>))
<INPUT LIST>::=<INPUT>|<INPUT><INPUT LIST>
<OUTPUT LIST>::=<OUTPUT>|<OUTPUT><OUTPUT LIST>

<OUTPUT>::= ̂ DESTINATION LIST>)
D E S T I N A T I O N LIST>::=<DESTINATI0N>|<DESTINATION><DESTINATION LIST>

<DESTINATI0N>::=(<CELL LOCATION>)

where <CELL L0CATI0N>, <INPUT>, <INPUT MAP>, <NET NAME>, and <CELL TYPE>

are all variable length, well nested, parenthesized strings containing

the appropriate information. Furthermore < INPUT MAP> is a character string

o f len g th equal to the number o f <INPUT>'s in the <INPUT LIST>. Each

- 10 -

character indicates the presence status of its associated input. The

advantage of this variable length field structure is that it allows for

convenient representation of nets of varying sizes. It also conveniently

describes cells of arbitrary numbers of inputs and outputs, and any number

of multiply copied outputs. This variable length character string is then

interpreted during execution as described in section IV by the hardware

of DDMl in a character serial fashion.

The only sequencing rule for DDN programs is that of data dependency.

A consumer of a data item must wait for the data item to be produced.

This sequencing rule is in some sense the weakest possible and therefore

DDN's are inherently highly concurrent descriptions of an algorithm. The

concurrency is further enhanced by the ability of DDN's to be pipelined.

This, combined with the asynchronous local autonomy of individual cells,

makes it a simple task to decompose a DDN and distribute the smaller pieces

(one or more cells) to sets of distributed physical resources. As such,

DDN's serve as an excellent low level (it is not intended that anyone

should program directly in DDN's) representation for distributed machine

systems.

- 11 -

The architecture consists of sets of asynchronously communicating

modules. The communication discipline is the standard four phase request-

acknowledge protocol, which takes place on a two wire control link. The

control link is used to sequence the activity on its associated data b u s .

This situation is illustrated and interpreted in Figure 2. A complete

four cycle exchange takes place on a per character basis.

I I I . The A rc h ite c tu re

SENDER

n wire data bus

request

acknowledge

RECEIVER

2 wire control link

REQUEST

ACKNOWLEDGE

data data sender receiver

idle
bus received clear clear
valid

.

(idle)

Figure 2: Asynchronous communication path

and protocol interpretation

- 12 -

This protocol is not strictly speed independent in that it assumes that

the relative propagation delays of the bus and the link lie within certain

limits. A truly speed independent signaling scheme (Unger [10]) requires

considerably more logic to implement. Typically the bus and link delays

are comparable and the above protocol is considered to be sufficient for

this architecture.

The basic computational unit of the architecture is a processor-store

element (PSE). A PSE consists of a processor module P_ and its associated

local storage module £. Any PSE can execute any machine language program

providing that it has a sufficient amount of storage. No module that is

not a PSE can perform this function. The architecture is a recursively

organized set of these PSE's. The recursive definition of the structure

is: .

<PSE > : :=<P ><S >
n n n

<S > : :=<ASU >
n n

<P >::=<AP > I<AP ><PSE GROUP >
n n ' n n+1

<PSE GROUP >::=<PSE >|<PSE ,><PSE GROUP
n+1 n+1 1 n+1 n+1 -

where subscripts denote the recursive level at which the module physically

resides. <AP> is an atomic processor module, which has no further sub

structure (contains no PSE's). Similarly an atomic storage unit <ASU>

has no PSE substructure. The width of a <PSE GR0UP> has a physical bound.

For DDMl this bound is eight. The structure is depicted in Figure 3.

- 13 -

PSE
n

Figure 3: Recursive definition of PSE at level n

This structure allows a convenient notion for hierarchical distributed

storage organization. Any S or ASU may consist of an arbitrary amount of

storage of any desired medium. It will be seen that higher levels of

PSE's are considered logically superior to lower level PSE's. As such,

it is advantageous if at higher levels the S's (ASU's) are slower and

larger than the S's (ASU's) of lower levels. The interface and functional

ability of any ASU (regardless of size, speed, and level) is the same.

The structure also allows for an arbitrary amount of P's that can be used

concurrently. It is important to note that all AP's are identical regard

less of level. However, the P's at higher levels will be more powerful

(contain more substructure) than the P's at lower levels. More substructure

implies more internal concurrent processing capability.

When viewed non-recursively this structure is simply a tree structure

with a single root and a possibility for eight sons at any node. Each

node of the tree is a PSE and capable of executing any machine language

program. The leaf nodes have no substructure and therefore consist of

an AP and an ASU. At each node the fern out is fixed but the depth of the

tree is arbitrary. In this manner the architecture allows any desired

- 14 -

number of PSE's to be configured for a given machine. The desired goal

is for machine performance to improve with the addition of more PSE's.

There are a number of ways to enforce this logical tree structure

onto a collection of PSE's. The expense of crossbar switches vary as

the square of the connected elements. For this architecture complete

connectivity is not needed and also crossbars are not nicely extendible.

Bus structures are also not indefinitely extendible in a convenient

manner. Bus conflict would also drastically reduce actual parallelism

in the machine. A goal of this architecture is to be able to support

as much parallelism as PSE resource availability and the program permit.

Therefore in DDMl a simple 1 to 8 switch was chosen as the interface

unit between successive levels of PSE's. The result is that the physical

and logical recursive structure are the same. The structure is also

fixed and cannot be dynamically changed. Upward traveling messages are

passed on by the switch in an arbiter like manner. Downward going messages

contain header fields which indicate their destination. This header

is deleted by the switch as the message is passed. Downward and upward

messages are dealt with by independent hardware, and therefore are controlled

concurrently.

In keeping with the style for the internal representation of the

machine language, information is passed between PSE's as messages which

are variable length character strings. This character serial nature of

the machine has the following advantages: ,

1) Hardware modules are made simpler and more applicable for LSI

implementation due to the reduced pin count.

2) Hardware communication paths are more general in that variable

length information units can be transmitted as varying numbers

- 15 -

of fixed width base characters. This facilitates a hardware

substitution strategy for modules. Each module can interpret

the variable length message and perform the indicated function.

These advantages aid in greatly reducing the cost of the hardware modules.

Some low level performance is lost by doing everything serially. The

philosophy is to regain that lost performance many times over by providing

a systems organization that allows for highly concurrent levels of activity.

Since DDMl is merely a research prototype machine, a very simple

4 bit character set was chosen as the base alphabet. This 16 character

alphabet includes the 10 digits, "(", , and "MARK".

"MARK" is a special character whose semantics change with the context.

Similarly a simple arithmetic scheme was chosen. DDMl does only integer

arithmetic on sign magnitude, variable length integers.

Physical queues are placed between levels of PSE's in order to

facilitate pipelining and increase physical module independence. Without

queues the sender of a message would need to wait until the receiver

could take the message. With queues, the message may be placed in the

queue and both receiver and sender are free to proceed with their respective

activities concurrently. If a queue becomes full, then the sender must

wait until the receiver has freed up enough queue space. The new message

can then be deposited and the sender would be able to resume further

processing. If queue sizes are adjusted so that a sender only rarely

is required to wait for space then the system would be well tuned for

efficient processing. Optimal queue size depends on the process and the

type of data items. It is therefore impossible to guarantee that no waiting

will occur. The important thing is to insure that the system doesn't

deadlock. This is insured in DDMl by the strict hierarchical control

and the restricted process structure.

- 16 -

A b lo ck diagram o f the PSE s tru c tu re i s shown in F ig u re 4.

Father PSE

Son PSE's

All paths, except for the path between the ASU and the AP, are 6 wire

paths (a 2 wire request-acknowledge control link and the 4 wire, character-

width data bu s) .

The variable length, character serial message structure and net

representation indicates that the ASU should be a highly flexible storage

structure. Further requirements are that the ASU deal with pipelining

of data items and their continual destruction upon cell firings. In

order to increase the efficiency of the PSE, all of the storage management

functions are performed internally by the ASU. The ASU appears as a

- 17 -

variable field length file system, which directly executes the following

commands on its tree organized file structure:

a) INITIALIZE - initializes all submachines and fills the store

with free space.

b) SKIP - cursor skips over field currently under the cursor.

c) INSERT - inserts character or file prior to the character or

file pointed to by the cursor.

d) DELETE - deletes character or file pointed to by the cursor.

e) ASSIGN - assigns a character or a file to the character or file

pointed to by the cursor.

f) READ - reads the character or file pointed to by the cursor.

g) POPL - positions the cursor to the top location of the local

origin stack and pops the stack.

h) PUSHL - pushes the current cursor position to the local origin

stack.

i) SHIFT - increments the cursor.

j) AINDEX - (absolute index) accepts node index vector and positions

the cursor, starting at the first character in the ASU.

K) RINDEX - (relative index) does similar indexing operations

starting from current cursor position.

The free space is managed automatically on all commands, as required,

by the ASU hardware.

The ASU of DDMl is a 4k 4 bit character store using random access

static storage devices. The ASU is organized so that dynamic storage

media can be easily accommodated. RAM store was chosen to minimize the

- 18 -

number of variables affecting performance measures. A black box view

of the ASU is shown in Figure 5.

ASU

Figure 5: ASU Interface Structure

The error condition lines continually indicate whether an unrecoverable

error has occurred or not. The state of these lines indicate the following

conditions:

1) NO ERROR

2) FIXED SPACE AREA EXCEEDED (OVERFLOW)

3) ILLEGAL INDEX VECTOR

4) ERROR (ALL OTHER ERROR TYPES)

The mapper is an indexing speed up device and is an optional attachment

to the ASU.

- 19 -

The in te r n a l s tru c tu re o f the ASU i s shown in F ig u re 6.

Figure 6. ASU Internal Structure

The soft control consists of a self-timed microprocessor-like control

unit, a read/write microcode store, and a condition-select unit. The

condition-select affects the contents of a condition register which

cam then be manipulated under program control. The soft control sequences

operations for the submachines and also controls flow through the micro

code. Submachines can be activated concurrently and all submachine

instructions are controlled asynchronously. Submachines perform such

functions as local-origin stack control, buffering for freespace, counting

for index purposes, read/write control, etc. This structure provides

a convenient mechanism for experimentation in that algorithms for storage

management are easily changed in the microcode. Actual ASU hardware is

easily changed by addition or removal of the asynchronous submachines

- 20 -

All target locations in the ASU are found by a node index vector

into the tree organized file structure. Such an ordered file structure

is possible because of the choice of internal representation for the

resident DDN programs. The use of index vectors and the dynamic nature

of the ASU make absolute addresses useless. Such a mechanism requires

large amounts of scanning to be done during indexing. There is a high

probability of accessing certain nodes (i.e. those corresponding to a

DDN cell) in the file structure. The mapper dynamically maintains valid

absolute addresses for ASU file nodes down to a certain depth in the file\
tree. The map depth is selectable but currently not under program control.

The 18 line mapper interface indicates ASU state information to the

mapper. The mapper also monitors many of the ASU to AP lines. The storaqe

of absolute ASU locations in the MAP corresponds to the preorder structure

of the file tree. Preliminary statistical measurements on DDMl indicate

that the mapper speeds up indexing operations by a factor of 12.

The AP is intended to execute DDN programs composed from cells

of 7 basic cell functions: synchronize, arbiter, operator, iteration

control, call control, distribute, and select. The operator cell function

is further subdivided into a set of operator codes. These are:

MONADIC

1) NEGATE

2) ABSOLUTE VALUE

3) BOOLEAN NOT

4) TYPE OF FILE (SUBSTRUCTURE OR NOT)

' 5) SIZE (COUNT NUMBER OF ITEMS IN A FILE)

and changing some in s t r u c t io n decode ROM's.

- 21 -

6) REMOVE OUTSIDE PARENS ON MESSAGE

7) ADD OUTSIDE PARENTS TO MESSAGE

DYADIC

8) ADD

9) SUBTRACT

10) MAXIMUM

11) MINIMUM

12) MULTIPLY by 10N

13) CATENATE

14) SPLIT AT Nth ITEM

15) INDEXED READ

16) EQUAL

17) NOT EQUAL

18) LESS THAN

19) LESS THAN OR EQUAL

20) GREATER THAN

21) GREATER THAN OR EQUAL

TRIADIC

22) INDEXED WRITE

The basic internal structure of the AP is the same flexible structure

chosen for the ASU. In DDMl the AP contains twice as many submachines

as the ASU. The AP submachines perform such functions as arithmetic and

relational operators, balance counting on message and ASU structures,

an internal queue control called the AGENDA QUEUE (its use will be

described in the next section), operand buffering, index counting, etc.

A more detailed description of the hardware of DDMl can be found

in [li] and ,[12] .
- 22 - '

I

When a message corresponding to a DDN program enters a PSE at any

level, the PSE may take one of two actions:

1) DECOMPOSITION AND ALLOCATION: if the PSE has substructure and

if there exists some set of concurrent subnets in the DDN process,

then the PSE may split the DDN and send the concurrent subnets

to the next lower level PSE's.

2) EXECUTION: if the PSE has no subresources, o £ if there is no

exploitable concurrency in the DDN, then the PSE executes the

DDN at that level.

In addition to decomposition of the DDN, automatic resource allocation

is done by placing concurrent subprograms in available physical resources.

To aid the decomposition process, a structural description header may

precede the incoming DDN in the message structure. This additional storage

cam greatly reduce time required for decomposition decisions in the PSE.

In addition, each PSE must contain information about the number of available

PSE's and the sizes of their respective stores. Problems would result

if a DDN were sent to a PSE that was too large to fit in its local store.

Only the local store size of immediate subresources is known. This insures

the recursive nature of the decomposition process.

The decomposition process takes some time. It is important that

the speed up gained by extra concurrency resulting from the decomposition

is not overshadowed by the time to decompose. Experiments have indicated

that a "first fit" decomposition is almost always better than a "best fit"

decomposition strategy.

IV. Modus Operandi

- 23 -

When a DDN is to be executed by a PSE, the DDN to be executed arrives

as a message via IQ and is loaded by AP into ASU. The data items which

cause cells of the net to become fireable also arrive as messages via

the IQ. When a data item arrives, the message contains two subfields;

1) the destination, and 2) the value. The processor interprets the

destination which is a DDN cell, and finds that cell in the ASU. If the

incoming data item does not make the receiving cell fireable, then the

item is stored in the appropriate place in the receiving cell. If the

incoming data item makes the cell fireable then the processor fires the

cell immediately, using the data item as needed. This scheme removes the

need to place a field in store that is only going to be immediately read

out and destroyed. When the processor produces a result, it formats a

separate message of the form, (<DESTINATION><VALUE>), for each copy of

the result that is needed. If the receiving cell for the message is not

in the local store then the message is an external message and is placed

in the OQ or SWITCH. If the receiving cell is in the local store then

the message is an internal message and is sent to the agenda queue (AQ).

After the AP has delivered all the result messages, it will accept messages

from the SWITCH, the AQ, and the IQ (in descending order of priority.

All AQ, IQ, and SWITCH result messages have the same format, and are processed

in exactly the same manner as above. The priority scheme implies that as

much work as possible is done in the low level fast areas of the machine

before any new work is accepted from above. The only exception is the

master clear signal which resets and initializes everything.

The processing algorithm can simply be viewed at the higher level as

the processing of coroutines. One coroutine is the incoming message and

the other coroutine resides in the ASU.

- 24 -

A number of other types of messages are also interpreted. The only

one of importance here is the message used to borrow storage space from

a parent. There are unexpected situations which can cause a PSE's local

store to overflow. When this happens the PSE can logically borrow storage

from a parent resource. This process may be repeated recursively. If

the highest level PSE runs out of store then nothing more can be done.

At this point the DDN under execution requires more storage than the

system can provide and therefore cannot be executed. When storage is

borrowed, performance of the system degrades drastically. It is there

fore important to have a resource allocation strategy which minimizes

such instances.

- 25 -

An architecture and systems framework for a fully distributed machine

system has been presented which allows an unlimited number of processing

elements to be combined in an asynchronous, recursive structure. The

system is arbitrarily extensible and requires no special programming or

hardware tuning to support extensions of any size. The system is capable

of doing dynamic automatic resource allocation and can support very high

levels of concurrent activity and pipelining. Regular use of a very few

number of generic module types and the character serial nature of the

processing scheme make system elements attractive for LSI implementation.

The redundancy of processing elements makes a fail soft system possible.

Disadvantages of the system are:

1) The hard-wired, fixed-tree structure prohibits reallocation of

unused PSE's to other branches of the architecture where these

PSE's might be needed. This limits resource utilization in certain

instances.

2) Redundant storage is required to facilitate decomposition.

3) The architecture doesn't take full advantage of the pipelining

possibilities of the machine language.

DDMl, a version of the PSE structure, has actually been implemented

and successfully executes programs in the DDN machine language. The work

reported here on the function and structure of the ASU was based on some

earlier work in this area by R. S. Barton, and G. Hodgman of Burroughs

Corporation.

V. C onclusions

- 26 -

References

1. Davis, A.. SPL - A Structured Programming Language, Ph.D. Thesis,
University of Utah (1972). .

2. Davis, A. Data-Driven Nets - A class of maximally parallel, output-

functional program schemata. Burroughs IRC Report, San Diego (1974).

3. Davis, A. Data Driven Nets - A maximally concurrent, parallel process
representation. Burroughs ASDO Report, San Diego (1977).

4. Dennis, J. B . . First version of a data flow procedure language. Lecture

Notes in Computer Science, 19, Springer-Verlag, New York (1974), 362-376.

5. Rodriguez, J. E.. A Graph Model for Parallel Computation. Technical
Report MAC TR-64, Laboratory for Computer Science, M.I.T. (1969).

6. Glushkov, V. M . , et. al. Recursive Machines and Computing Technology.
IFIPS Proceedings 1974, North Holland, New York.

7. Miller, R. E., and J. Cocke. Configurable Computers: a new class of
general purpose machines. Report RC 3897, IBM, New York (1972).

8. Arvind, and K. P. Gostelow. A computer capable of exchanging processors
for time. Information Processing '77, North Holland, New York (1977).

9. Dennis, J. B., and D. P. Misunas. A computer architecture for highly

parallel signal processing. Proceedings of the ACM 1974 National
Conference, (1974), 402-409.

10. Unger, S.. Asunchronous Sequential Switching Circuits, Wiley & Sons,
New York (1969), 243-252.

11. Davis, A. L.. An overview of data-driven machine # 1 . Burroughs ASDO
Report, San Diego (1976).

12. Barton, R. S., A. L. Davis, et. al. System and method for concurrent
and pipeline processing employing a data driven network. U. S. Patent

No. 3,978,452, issued August 31, 1976.

- 27 -

