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The Architecture of DDM1: A Recursively •

Structured Data Driven Machine

Professor A. L. Davis 
" Computer Science Department

University of Utah 
Salt Lake City, Utah 84112

ABSTRACT "

An architecture for a highly modular, recursively structured class 

of machines is presented. DDM1 is an instance of such a machine structure, 

and is capable of executing machine language programs which are data driven 

(data flow) nets. These nets may represent arbitrary amounts of concurrency 

as well as arbitrary amounts of pipelining. DDMl is a fully distributed 

multi-processing system composed of completely asynchronous modules. The 

architecture allows for limitless physical extensibility without neces

sitating special programming or special hardware to support individual 

machines of widely varying sizes. DDMl is capable of automatically and 

dynamically allocating concurrent tasks to the available physical resources. 

The essential characteristics of the highly parallel, pipelined machine 

language are also described along with its method for execution on DDMl.



I

DDMl* (Data Driven Machine #1) was built in an attempt to investi

gate some ideas about machine organization to support very high levels 

of concurrency. The machine language programs of DDMl are called Data 

Driven Nets or DDN's. DDN's were originally described in the author's 

thesis [1], and later refined in [2], and [3]. DDN's are similar to the 

net representations developed by Dennis [4] and Rodriguez [5]. The main 

advantages of DDN's over these other net representations are in the lack 

of distinction between control and data tokens, and a more general selec

tion of primitive elements. The result is increased simplicity and clarity 

of the net programs. A linearized encoding of DDN's is the actual machine 

language of DDMl. The highly parallel, distributed, and asynchronous 

nature of DDN's implies that an efficient executing engine for these nets 

should possess similar characteristics. Other goals for a data driven 

machine are that it be efficient and economical with respect to current 

technology.

A recursive architecture was chosen to meet the above criteria. In 

defining a new set of guidelines for recursive machines and computing 

technology, Glushkov, et. al [6] proposed with uncanny accuracy, for these 

purposes, the following principles:

PI. Recursive machines contain a limitless number of levels of machine 

language.

I . In tro d u ctio n

*Note: DDMl is a module of the architecture described here, and was built 

while the author was at Burroughs ASDO. DDMl was completed in July 1976 
and now resides at the University of Utah where the project is continuing 

under Burroughs support.
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P2. All program elements for which operands are available are to 

be executed.

P3. Memory structure should be reprogrammable in order to convert 

the structure of data and programs as required by internal level changes.

P4. There should be no limit to the number of allowed machine elements.

P5. These machines should have a flexible, reprogrammable structure.

Pi and P2 are direct fits with the choice of a recursive architecture 

for a data driven machine. By recursively structured, it is meant that 

at any level of the architecture the structure at that level is the same 

as the structure at any other level. In a binary tree for example the 

structure at any node is that there is the possibility for a single parent 

node and two child nodes.

Recursive architectures actually imply P4 and the ability of the 

machine structure to be extensible. A modular extensible structure is 

extremely attractive in a cost sense for todays LSI component technology. 

Each new LSI module is very expensive to create but reproductions of these 

modules are very cheap. By minimizing the number of module types and 

allowing these types to be used repetitively in an extensible recursive 

structure, the resulting cost structure becomes very attractive. Further

more the ability of such a machine structure to fulfill the needs for 

machines of all sizes, implies that support efforts may be limited to 

a single class of machines. The obvious goal is to do this in a way that 

machine performance increases at a reasonable rate as the size and cost 

are increased. For DDMl's architecture there is no physical limit to the 

number of modules or the number of recursively organized levels that may 

exist in a particular machine.
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A number of parallel machine projects operating under sequential 

control have generated considerable doubt that centrally controlled 

parallel machines can be efficient. Such systems suffer the further 

disadvantage in that they cannot be arbitrarily extended without running 

into electrical problems such as clock skew. These problems can only 

be overcome by special tuning of the circuits for larger structures, which 

in turn decreases the efficiency attainable by an individual module. This 

situation can be resolved by a new principle.

P6. Modules of recursively structured machines should function in 

a fully distributed asynchronous manner.

Fully distributed systems are defined here to have two principal 

characteristics:

Cl. At no time can a module of a fully distributed system determine 

the total system state.

C 2 . A fully distributed system is incapable of enforcing simultaneity . 

in its distributed modules.

Cl does not imply that a module functions with no information about what 

is happening in other parts of the system. It does mean that a module 

cannot rely on another part of the system being in a certain configuration 

at any particular time. C2 augments this idea. For distributed systems, 

simultaneity cannot physically be enforced (except in trivial cases where 

for example it might be said that some boolean variable V becomes false 

simultaneously with V becoming true). This results in the necessity for 

modules to function only on the basis of the module's own local time, 

hence the term self-timed or asynchronous modules. The asynchronous pro

tocol chosen for the self-timed modules of DDMl is the standard four-cycle
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request acknowledge scheme. The benefit of these self-timed modules and 

the recursive structure of the machine is that modules may be added with

out limit and no special hardware modules, tuning, or programs need be 

added to support these arbitrarily larger structures.

Another major goal of DDMl is to place many of the current operating 

system functions into the hardware in order to increase system efficiency. 

Most parallel machine projects to date have required either that programs 

be written to take advantage of a particular hardware configuration, or 

that a configuration dependent compile operation be done prior to execu

tion. Resource allocation is done dynamically and automatically by the 

DDMl hardware and depends on the available concurrency in the executing 

process and the availability of physical resources.

The architecture of DDMl nicely fits the stated principles. It fits 

P5 in that the architecture is flexible in a logical sense but not in 

a physical sense as in the machines advocated by Miller [7]. DDMl's 

architecture is a fully distributed, asynchronous, recursive structure 

capable of containing an unlimited number of modules. The number of actual 

module types however is limited to five. Machines of this architecture are 

felt to be more efficient and cost effective than other data flow architec

tures, [8] and [9] respectively.
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Only the essential characteristics of the DDN machine language will 

be presented here. Details of the language can be found in [3].

DDN's are cyclic, bipartite graph structures consisting of a collec

tion of cells and a collection of directed data paths interconnecting 

these cells. Quantum units of information called data items travel over 

the data paths from one cell to another. Data items are typed and may 

be anything such as program, message, vector, scalar, etc., and are 

variable in length. Data paths function as FIFO storage devices when 

more than one data item is present. The lengths of these queues are 

constrained operationally within DDMl by the availability of physical 

resources. It will suffice to consider data paths as queues of finite 

but indefinite length. There are several types of DDN cells in the actual 

machine language. These cell types allow such program constructs as calls 

(open, closed, and recursive), conditionals, arbitration, iteration, 

distribution of data items, deterministic merging, and synchronization.

The semantics associated with cell types will be abstracted here by simply 

assigning a cell function or name (describing the cell's function) to 

each individual cell.

When a certain set of a cell's input data paths (called the firing 

set) contain at least one item, that cell is said to be fireable. A cell 

fires at some finite, but unspecified time after it becomes fireable.

This notion of a finite, but unspecified delay is essential if the schema 

is to fit within the functional framework of a fully distributed asyn

chronous environment. When a cell fires the set of items comprising the 

firing set (the head items on the firing set data paths) are destroyed, 

and a set of resultant data items are placed on some set of output data

I I .  C h a r a c te r is t ic s  o f  the Machine Language
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paths. The values of these resultant items and the selection of data 

paths on which they are placed, depend upon the cell function. No 

assumption is made about the relation between the times at which the items 

appear on the output data paths or the order in which they appear. A 

cell is said to have fired only after all of the firing set data items 

have been destroyed and all output items have been placed on the desired 

output paths.

There are several methods of implementing the management of data 

items under the above firing strategy using pointers and other forms of 

shared storage. All these common storage methods are rejected here because 

they limit the ability of the resulting system to function in a fully 

distributed manner. For any DDN, consider the situation where a cell A 

produces output items and places them on a data path which leads to cell B. 

The storage associated with the data path is considered to be local to B. 

Only cell A has the access permission to place data items in that storage 

when space is available. If space is not available then cell A must wait 

to complete its firing until space is freed in B's domain to hold the 

incoming data item. Implicit in this scheme is the existence of request- 

acknowledge communication protocols between cells, or between cells and 

data path FIFO stores. The placement of an output item corresponds to the 

movement of a piece of information from the local environment of A to the 

local environment of B. This locality of information guarantees that 

programs written as DDN's are side effect free. It also implies that 

storage can be physically distributed rather than central or shared. This 

is nice from both a cost and a performance standpoint for semiconductor 

storage mechanisms, which unlike disk and core find no advantage when

-  6 -



Under this distributed storage implementation the individual data 

items are considered physical storage entities as well as logical entities. 

This coupled with the destruction of data items in a firing set implies 

that if a particular data item is to be used concurrently in more than 

one place in the net, then that data item must be explicitly copied and 

sent to the multiple local domains where it will be used. Similarly if 

an item is to be used in the same place in a net but at several different 

instances of time (as would be the case in DDN iterative structures), 

then that data item must be copied or regenerated at each instance of 

usage and fed back into the net for successive use. The cases where these 

copies must be made depend upon the algorithm under construction. The 

mechanism for providing these copies could be a special primitive' or merely 

the ability for any cell output to be copied an arbitrary number of times. 

In D D N 1s the latter approach was taken. Linguistically the choice is 

irrelevant except as a matter of style. Operationally however the special 

primitive suffers the disadvantage of greatly increasing the number of 

primitive operations that must be executed in a particular program. The 

advantage is that the sites where this copying activity takes place could 

also be distributed. For DDN's the disadvantage was felt to be too great 

(Dennis [4] has taken the other approach).

Figure 1 shows a simple abstract DDN program and snapshots of its 

execution. Small letters denote data items and capital letters denote 

cell functions. The firing set for cells A, B, and C is the set of all 

input data paths, and all cells have a single output, which is copied and 

placed on all output paths (cell A's output is copied and sent for possible 

concurrent use to B and C).

massed in  a s in g le  a rea .
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time t. time t, s t,>t_1 1 0

time t ^ i t2>t1 time t3 : t3>t2

Figure 1: Sample Abstract DDN Program

This simple example illustrates the asynchronous and distributed nature 

of the schema, as well as the inherent possibilities for two types of
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concurrency. B and C are concurrent activities in that they are independ

ent operations but at time t A, B, and C are all fireable. A can be 

fired concurrently with B and C because of the capability for pipelined 

operation which is made possible by the FIFO data paths.

The firing rule for DDN cells implies that the snapshot history of 

Figure 1 is not unique. For example, between time t^ and t^ C could have 

fired but didn't. DDN's could be considered non-deterministic because 

no unique execution history can be determined. Cl and C2 actually imply 

that this is a possibility in fully distributed systems. However the 

following two properties do hold for DDN's:

DPI: Data items are persistent. Once placed on a data path items

remain there until destroyed as a consequence of being in the 

firing set of a firing cell. .

D P 2 : The FIFO organization of the data paths guarantees that the 

order of the items in any path cannot change.

DPI and DP2 are necessary but not sufficient conditions to guarantee that 

DDN's are deterministic in the sense that they are output functional,

i.e. that the order and values of the output data items of a DDN is deter

ministic. A DDN containing a cell with the function, "pick a random input 

item and put it on a random output path", would not be output functional.

The cell types for DDN's have been chosen so that it is possible to deter

mine by topological examination whether a given DDN is output functional 

or not.

To facilitate a substitution rule a DDN process (D P P ) is defined 

to start with a single initial cell and terminate in a single final cell.

This facilitates definitions about active and inactive processes as well 

as topological determination of certain net properties. As in any programming
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language, it is possible to define illegal or meaningless DDP's. In 

analysis similar to compile type error analysis, the following topological 

statements about DDP's can be made:

1) whether or not the DDP may hang (i.e. is it possible for no cell 

to be fireable before the DDP outputs have been produced).

2) whether or not the DDP is safe for output functional operation 

in pipelined situations.

Facilities for dealing with error situations are also provided by the

use of a special valued data item. Such correctness analysis is of increased

importance for any asynchronous schema since there is no guarantee that

subsequent "debug" executions will proceed in exactly the same manner.

Such analysis is facilitated by the side effect free nature of DDN's and

because influence is transparent in net programs.

The internal representation of DDN's in DDMl is a variable length

character string. Elements of the character string are also variable

length character strings. The basic structure of this representation

is described in the following BNF productions.

<DDN>::=(<NET NAME>(<CELL LIST>))
<CELL LIST>::=<CELL>|<CELL><CELL LIST>
<CELL>::=(<CELL TYPE>(<INPUT SLOT><OUTPUT LIST>))

<INPUT SLOT>::=(<INPUT M A P > (<INPUT LIST>))
<INPUT LIST>::=<INPUT>|<INPUT><INPUT LIST>
<OUTPUT LIST>::=<OUTPUT>|<OUTPUT><OUTPUT LIST>

<OUTPUT>::= ̂ DESTINATION LIST>)
D E S T I N A T I O N  LIST>::=<DESTINATI0N>|<DESTINATION><DESTINATION LIST> 

<DESTINATI0N>::=(<CELL LOCATION>)

where <CELL L0CATI0N>, <INPUT>, <INPUT MAP>, <NET NAME>, and <CELL TYPE>

are all variable length, well nested, parenthesized strings containing

the appropriate information. Furthermore < INPUT MAP> is a character string

o f  len g th  equal to  the number o f  <INPUT>'s in  the <INPUT LIST>. Each
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character indicates the presence status of its associated input. The 

advantage of this variable length field structure is that it allows for 

convenient representation of nets of varying sizes. It also conveniently 

describes cells of arbitrary numbers of inputs and outputs, and any number 

of multiply copied outputs. This variable length character string is then 

interpreted during execution as described in section IV by the hardware 

of DDMl in a character serial fashion.

The only sequencing rule for DDN programs is that of data dependency.

A consumer of a data item must wait for the data item to be produced.

This sequencing rule is in some sense the weakest possible and therefore 

DDN's are inherently highly concurrent descriptions of an algorithm. The 

concurrency is further enhanced by the ability of DDN's to be pipelined. 

This, combined with the asynchronous local autonomy of individual cells, 

makes it a simple task to decompose a DDN and distribute the smaller pieces 

(one or more cells) to sets of distributed physical resources. As such, 

DDN's serve as an excellent low level (it is not intended that anyone 

should program directly in DDN's) representation for distributed machine 

systems.
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The architecture consists of sets of asynchronously communicating 

modules. The communication discipline is the standard four phase request- 

acknowledge protocol, which takes place on a two wire control link. The 

control link is used to sequence the activity on its associated data b u s . 

This situation is illustrated and interpreted in Figure 2. A complete 

four cycle exchange takes place on a per character basis.

I I I .  The A rc h ite c tu re

SENDER

n wire data bus

request

acknowledge

RECEIVER

2 wire control link

REQUEST

ACKNOWLEDGE

data data sender receiver

idle
bus received clear clear
valid

.

(idle)

Figure 2: Asynchronous communication path 

and protocol interpretation
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This protocol is not strictly speed independent in that it assumes that 

the relative propagation delays of the bus and the link lie within certain 

limits. A truly speed independent signaling scheme (Unger [10]) requires 

considerably more logic to implement. Typically the bus and link delays 

are comparable and the above protocol is considered to be sufficient for 

this architecture.

The basic computational unit of the architecture is a processor-store 

element (PSE). A PSE consists of a processor module P_ and its associated 

local storage module £. Any PSE can execute any machine language program 

providing that it has a sufficient amount of storage. No module that is 

not a PSE can perform this function. The architecture is a recursively 

organized set of these PSE's. The recursive definition of the structure 

is: .

<PSE > : :=<P ><S > 
n n n

<S > : :=<ASU > 
n n

<P >::=<AP > I<AP ><PSE GROUP > 
n n ' n n+1

<PSE GROUP >::=<PSE >|<PSE ,><PSE GROUP
n+1 n+1 1 n+1 n+1 -

where subscripts denote the recursive level at which the module physically 

resides. <AP> is an atomic processor module, which has no further sub

structure (contains no PSE's). Similarly an atomic storage unit <ASU> 

has no PSE substructure. The width of a <PSE GR0UP> has a physical bound. 

For DDMl this bound is eight. The structure is depicted in Figure 3.
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PSE
n

Figure 3: Recursive definition of PSE at level n

This structure allows a convenient notion for hierarchical distributed 

storage organization. Any S or ASU may consist of an arbitrary amount of 

storage of any desired medium. It will be seen that higher levels of 

PSE's are considered logically superior to lower level PSE's. As such, 

it is advantageous if at higher levels the S's (ASU's) are slower and 

larger than the S's (ASU's) of lower levels. The interface and functional 

ability of any ASU (regardless of size, speed, and level) is the same.

The structure also allows for an arbitrary amount of P's that can be used 

concurrently. It is important to note that all AP's are identical regard

less of level. However, the P's at higher levels will be more powerful 

(contain more substructure) than the P's at lower levels. More substructure 

implies more internal concurrent processing capability.

When viewed non-recursively this structure is simply a tree structure

with a single root and a possibility for eight sons at any node. Each

node of the tree is a PSE and capable of executing any machine language

program. The leaf nodes have no substructure and therefore consist of

an AP and an ASU. At each node the fern out is fixed but the depth of the

tree is arbitrary. In this manner the architecture allows any desired
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number of PSE's to be configured for a given machine. The desired goal 

is for machine performance to improve with the addition of more PSE's.

There are a number of ways to enforce this logical tree structure 

onto a collection of PSE's. The expense of crossbar switches vary as 

the square of the connected elements. For this architecture complete 

connectivity is not needed and also crossbars are not nicely extendible.

Bus structures are also not indefinitely extendible in a convenient 

manner. Bus conflict would also drastically reduce actual parallelism 

in the machine. A goal of this architecture is to be able to support 

as much parallelism as PSE resource availability and the program permit. 

Therefore in DDMl a simple 1 to 8 switch was chosen as the interface 

unit between successive levels of PSE's. The result is that the physical 

and logical recursive structure are the same. The structure is also 

fixed and cannot be dynamically changed. Upward traveling messages are 

passed on by the switch in an arbiter like manner. Downward going messages 

contain header fields which indicate their destination. This header 

is deleted by the switch as the message is passed. Downward and upward 

messages are dealt with by independent hardware, and therefore are controlled 

concurrently.

In keeping with the style for the internal representation of the 

machine language, information is passed between PSE's as messages which 

are variable length character strings. This character serial nature of 

the machine has the following advantages: ,

1) Hardware modules are made simpler and more applicable for LSI 

implementation due to the reduced pin count.

2) Hardware communication paths are more general in that variable 

length information units can be transmitted as varying numbers
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of fixed width base characters. This facilitates a hardware 

substitution strategy for modules. Each module can interpret 

the variable length message and perform the indicated function. 

These advantages aid in greatly reducing the cost of the hardware modules. 

Some low level performance is lost by doing everything serially. The 

philosophy is to regain that lost performance many times over by providing 

a systems organization that allows for highly concurrent levels of activity.

Since DDMl is merely a research prototype machine, a very simple 

4 bit character set was chosen as the base alphabet. This 16 character 

alphabet includes the 10 digits, "(", , and "MARK".

"MARK" is a special character whose semantics change with the context. 

Similarly a simple arithmetic scheme was chosen. DDMl does only integer 

arithmetic on sign magnitude, variable length integers.

Physical queues are placed between levels of PSE's in order to 

facilitate pipelining and increase physical module independence. Without 

queues the sender of a message would need to wait until the receiver 

could take the message. With queues, the message may be placed in the 

queue and both receiver and sender are free to proceed with their respective 

activities concurrently. If a queue becomes full, then the sender must 

wait until the receiver has freed up enough queue space. The new message 

can then be deposited and the sender would be able to resume further 

processing. If queue sizes are adjusted so that a sender only rarely 

is required to wait for space then the system would be well tuned for 

efficient processing. Optimal queue size depends on the process and the 

type of data items. It is therefore impossible to guarantee that no waiting 

will occur. The important thing is to insure that the system doesn't 

deadlock. This is insured in DDMl by the strict hierarchical control 

and the restricted process structure.
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A b lo ck  diagram o f  the PSE s tru c tu re  i s  shown in  F ig u re  4.

Father PSE

Son PSE's

All paths, except for the path between the ASU and the AP, are 6 wire 

paths (a 2 wire request-acknowledge control link and the 4 wire, character- 

width data bu s ) .

The variable length, character serial message structure and net 

representation indicates that the ASU should be a highly flexible storage 

structure. Further requirements are that the ASU deal with pipelining 

of data items and their continual destruction upon cell firings. In 

order to increase the efficiency of the PSE, all of the storage management 

functions are performed internally by the ASU. The ASU appears as a
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variable field length file system, which directly executes the following 

commands on its tree organized file structure:

a) INITIALIZE - initializes all submachines and fills the store 

with free space.

b) SKIP - cursor skips over field currently under the cursor.

c) INSERT - inserts character or file prior to the character or 

file pointed to by the cursor.

d) DELETE - deletes character or file pointed to by the cursor.

e) ASSIGN - assigns a character or a file to the character or file 

pointed to by the cursor.

f) READ - reads the character or file pointed to by the cursor.

g) POPL - positions the cursor to the top location of the local 

origin stack and pops the stack.

h) PUSHL - pushes the current cursor position to the local origin 

stack.

i) SHIFT - increments the cursor.

j ) AINDEX - (absolute index) accepts node index vector and positions 

the cursor, starting at the first character in the ASU.

K) RINDEX - (relative index) does similar indexing operations 

starting from current cursor position.

The free space is managed automatically on all commands, as required, 

by the ASU hardware.

The ASU of DDMl is a 4k 4 bit character store using random access 

static storage devices. The ASU is organized so that dynamic storage 

media can be easily accommodated. RAM store was chosen to minimize the
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number of variables affecting performance measures. A black box view 

of the ASU is shown in Figure 5.

ASU

Figure 5: ASU Interface Structure

The error condition lines continually indicate whether an unrecoverable 

error has occurred or not. The state of these lines indicate the following 

conditions:

1) NO ERROR

2) FIXED SPACE AREA EXCEEDED (OVERFLOW)

3) ILLEGAL INDEX VECTOR

4) ERROR (ALL OTHER ERROR TYPES)

The mapper is an indexing speed up device and is an optional attachment 

to the ASU.
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The in te r n a l s tru c tu re  o f  the ASU i s  shown in  F ig u re  6.

Figure 6. ASU Internal Structure

The soft control consists of a self-timed microprocessor-like control 

unit, a read/write microcode store, and a condition-select unit. The 

condition-select affects the contents of a condition register which 

cam then be manipulated under program control. The soft control sequences 

operations for the submachines and also controls flow through the micro

code. Submachines can be activated concurrently and all submachine 

instructions are controlled asynchronously. Submachines perform such 

functions as local-origin stack control, buffering for freespace, counting 

for index purposes, read/write control, etc. This structure provides 

a convenient mechanism for experimentation in that algorithms for storage 

management are easily changed in the microcode. Actual ASU hardware is 

easily changed by addition or removal of the asynchronous submachines
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All target locations in the ASU are found by a node index vector 

into the tree organized file structure. Such an ordered file structure 

is possible because of the choice of internal representation for the 

resident DDN programs. The use of index vectors and the dynamic nature 

of the ASU make absolute addresses useless. Such a mechanism requires 

large amounts of scanning to be done during indexing. There is a high 

probability of accessing certain nodes (i.e. those corresponding to a 

DDN cell) in the file structure. The mapper dynamically maintains valid

absolute addresses for ASU file nodes down to a certain depth in the file\
tree. The map depth is selectable but currently not under program control. 

The 18 line mapper interface indicates ASU state information to the 

mapper. The mapper also monitors many of the ASU to AP lines. The storaqe 

of absolute ASU locations in the MAP corresponds to the preorder structure 

of the file tree. Preliminary statistical measurements on DDMl indicate 

that the mapper speeds up indexing operations by a factor of 12.

The AP is intended to execute DDN programs composed from cells 

of 7 basic cell functions: synchronize, arbiter, operator, iteration 

control, call control, distribute, and select. The operator cell function 

is further subdivided into a set of operator codes. These are:

MONADIC

1) NEGATE

2) ABSOLUTE VALUE

3) BOOLEAN NOT

4) TYPE OF FILE (SUBSTRUCTURE OR NOT)

' 5) SIZE (COUNT NUMBER OF ITEMS IN A FILE)

and changing some in s t r u c t io n  decode ROM's.
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6) REMOVE OUTSIDE PARENS ON MESSAGE

7) ADD OUTSIDE PARENTS TO MESSAGE 

DYADIC

8) ADD

9) SUBTRACT

10) MAXIMUM

11) MINIMUM

12) MULTIPLY by 10N

13) CATENATE

14) SPLIT AT Nth ITEM

15) INDEXED READ

16) EQUAL

17) NOT EQUAL

18) LESS THAN

19) LESS THAN OR EQUAL

20) GREATER THAN

21) GREATER THAN OR EQUAL

TRIADIC 

22) INDEXED WRITE 

The basic internal structure of the AP is the same flexible structure 

chosen for the ASU. In DDMl the AP contains twice as many submachines 

as the ASU. The AP submachines perform such functions as arithmetic and 

relational operators, balance counting on message and ASU structures, 

an internal queue control called the AGENDA QUEUE (its use will be 

described in the next section), operand buffering, index counting, etc.

A more detailed description of the hardware of DDMl can be found 

in [li] and ,[12] .
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I

When a message corresponding to a DDN program enters a PSE at any 

level, the PSE may take one of two actions:

1) DECOMPOSITION AND ALLOCATION: if the PSE has substructure and

if there exists some set of concurrent subnets in the DDN process, 

then the PSE may split the DDN and send the concurrent subnets 

to the next lower level PSE's.

2) EXECUTION: if the PSE has no subresources, o £  if there is no 

exploitable concurrency in the DDN, then the PSE executes the 

DDN at that level.

In addition to decomposition of the DDN, automatic resource allocation 

is done by placing concurrent subprograms in available physical resources.

To aid the decomposition process, a structural description header may 

precede the incoming DDN in the message structure. This additional storage 

cam greatly reduce time required for decomposition decisions in the PSE.

In addition, each PSE must contain information about the number of available 

PSE's and the sizes of their respective stores. Problems would result 

if a DDN were sent to a PSE that was too large to fit in its local store. 

Only the local store size of immediate subresources is known. This insures 

the recursive nature of the decomposition process.

The decomposition process takes some time. It is important that 

the speed up gained by extra concurrency resulting from the decomposition 

is not overshadowed by the time to decompose. Experiments have indicated 

that a "first fit" decomposition is almost always better than a "best fit" 

decomposition strategy.

IV. Modus Operandi
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When a DDN is to be executed by a PSE, the DDN to be executed arrives 

as a message via IQ and is loaded by AP into ASU. The data items which 

cause cells of the net to become fireable also arrive as messages via 

the IQ. When a data item arrives, the message contains two subfields;

1) the destination, and 2) the value. The processor interprets the 

destination which is a DDN cell, and finds that cell in the ASU. If the 

incoming data item does not make the receiving cell fireable, then the 

item is stored in the appropriate place in the receiving cell. If the 

incoming data item makes the cell fireable then the processor fires the 

cell immediately, using the data item as needed. This scheme removes the 

need to place a field in store that is only going to be immediately read 

out and destroyed. When the processor produces a result, it formats a 

separate message of the form, (<DESTINATION><VALUE>), for each copy of 

the result that is needed. If the receiving cell for the message is not 

in the local store then the message is an external message and is placed 

in the OQ or SWITCH. If the receiving cell is in the local store then 

the message is an internal message and is sent to the agenda queue (AQ).

After the AP has delivered all the result messages, it will accept messages 

from the SWITCH, the AQ, and the IQ (in descending order of priority.

All AQ, IQ, and SWITCH result messages have the same format, and are processed 

in exactly the same manner as above. The priority scheme implies that as 

much work as possible is done in the low level fast areas of the machine 

before any new work is accepted from above. The only exception is the 

master clear signal which resets and initializes everything.

The processing algorithm can simply be viewed at the higher level as 

the processing of coroutines. One coroutine is the incoming message and 

the other coroutine resides in the ASU.
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A number of other types of messages are also interpreted. The only 

one of importance here is the message used to borrow storage space from 

a parent. There are unexpected situations which can cause a PSE's local 

store to overflow. When this happens the PSE can logically borrow storage 

from a parent resource. This process may be repeated recursively. If 

the highest level PSE runs out of store then nothing more can be done.

At this point the DDN under execution requires more storage than the 

system can provide and therefore cannot be executed. When storage is 

borrowed, performance of the system degrades drastically. It is there

fore important to have a resource allocation strategy which minimizes 

such instances.
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An architecture and systems framework for a fully distributed machine 

system has been presented which allows an unlimited number of processing 

elements to be combined in an asynchronous, recursive structure. The 

system is arbitrarily extensible and requires no special programming or 

hardware tuning to support extensions of any size. The system is capable 

of doing dynamic automatic resource allocation and can support very high 

levels of concurrent activity and pipelining. Regular use of a very few 

number of generic module types and the character serial nature of the 

processing scheme make system elements attractive for LSI implementation.

The redundancy of processing elements makes a fail soft system possible.

Disadvantages of the system are:

1) The hard-wired, fixed-tree structure prohibits reallocation of 

unused PSE's to other branches of the architecture where these 

PSE's might be needed. This limits resource utilization in certain 

instances.

2) Redundant storage is required to facilitate decomposition.

3) The architecture doesn't take full advantage of the pipelining 

possibilities of the machine language.

DDMl, a version of the PSE structure, has actually been implemented 

and successfully executes programs in the DDN machine language. The work 

reported here on the function and structure of the ASU was based on some 

earlier work in this area by R. S. Barton, and G. Hodgman of Burroughs 

Corporation.

V. C onclusions
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