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Abstract

Three-dimensional model-based computer vision uses geometric models of objects and sensed data to 
recognize objects in a scene. Likewise, Computer Aided Geometric Design (CAGD) systems are used to 
interactively generate three-dimensional models during the design process. Despite this similarity, there 
has been a dichotomy between these fields. Recently, the unification of CAGD and vision systems has 
becom e the focus of research in the context of manufacturing automation.

This paper explores the connection between CAGD and computer vision. A method for the automatic 
generation of recognition strategies based on the geometric properties of shape has been devised and 
implemented. This uses a novel technique developed for quantifying the following properties of features 
which com pose models used in computer vision: robustness, completeness, consistency, cost, and 
uniqueness. By utilizing this information, the automatic synthesis of a specialized recognition scheme, 
called a Strategy Tree, is accomplished. Strategy Trees describe, in a systematic and robust manner, the 
search process used for recognition and localization of particular objects in the given scene. They consist 
of selected features which satisfy system constraints and Corroborating Evidence Subtrees which are 
used in the formation of hypotheses. Verification techniques, used to substantiate or refute these 
hypotheses, are explored. Experiments utilizing 3-D data are presented.
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1. In trod u ction
Computer vision has been an active research area for over 20 years. In the past, emphasis was on low 

level processing such as intensity and signal processing to perform edge detection. More recently, 
models of objects and knowledge of the working environment have provided the basis for driving vision 
systems. This is known as model-based vision. The pursuit of the fully automated assembly environment 
has fueled interest in model-based computer vision and object manipulation. This involves building a 3-D 
model of the object, matching the sensed environment with the known world and determining the position 
and orientation of the recognized objects. The goal is to provide a solution to the problem of visual 
recognition in a well-known domain.

In the automation environment, recognition schemes and representations have typically been 
constructed using ad hoc techniques. Although objects used in the assembly process are designed with 
a CAD system, generally there is no direct link from the CAD system to the robotic workcell. This means 
the recognition systems are constructed independently of the CAD model database. What is desired is a 
systematic approach for both the generation of representations and recognition strategies based on the 
CAD models. Such a system provides an integrated automation environment. Figure 1 shows such an 
integrated system. As can be seen, the system is com posed of several components: a CAD system, a 
milling system, a recognition system and a manipulation system. In this paper, the automatic generation 
of recognition strategies based on the CAGD model is studied. It has also been determined that the use 
of shape, inherent in CAGD models, can also be used to drive the recognition process. Others have been 
studying portions of this system. Recent work by Ho has focused on the generation of computer vision 
models directly from a CAGD model [2,8].

The work described here investigates the use of geometric knowledge in constructing strategy trees. 
These trees provide a robust mechanism for recognition and localization of three dimensional objects 
(occluded as well as non-occluded) in typical manufacturing scenes. The run time matching of 3-D 
models to a scene can be expensive. If the search technique is optimized, cost can be decreased, 
thereby improving run time performance. One way to accomplish such optimization is by the off line 
examination and evaluation of the 3-D model.

1.1. Related W ork
One of the first researchers to study the automatic synthesis of general recognition strategies was 

Goad [5]. He was concerned with automatic programming for 3-D model based vision. His work 
generated a recognition scheme for matching edges based on a general sequential matching algorithm. 
His algorithm proceeded in three steps: (1) predict a feature, (2) observe (match) a feature, and (3) 
back-project (refine the object hypothesis based on step 2). These three steps form a template which is 
used by the automatic programming phase. He used a unit sphere to gather loci of viewangles (camera 
positions) which represent orientations of the object. His work differs from that described here in that he 
obtained 3-D interpretations of 2-D intensity images rather than 3-D sensor data. The only features used 
were straight edges from intensity images and the search trees were generated from a template and
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Figure 1. Integrated Automation Environment

ordered by hand rather than automatically. His system didn't consider partial occlusion. However, this 
was a major contribution since it was one of the first attempts to automate the generation of recognition 
schemes.

Another influential project was the 3DPO system by Bolles and Horaud [3]. This work is the 3-D 
generalization of the Local Feature Focus method [4], Their system annotates a CAD model producing 
what is called the extended CAD model. From this model, feature analysis is performed to determine 
unique features from which to base hypotheses. The focus feature in their system is the dihedral arc. 
When the recognition system finds a dihedral arc, it looks for nearby features which are used to 
discriminate between model arcs with similar attributes. From these, an object’s pose is hypothesized 
and subsequently verified. The work here work closely parallels the 3DPO system. However, focus 
features were hand chosen in 3DPO as were the local features used for discrimination.

Recently, Ikeuchi has explored the use of interpretation trees for representation of recognition 
strategies [9]. His system uses the concept of visible faces to generate generic representative views, 
called aspects. From this set of aspects, an interpretation tree is formed which discriminates among the 
different aspects. His system uses a variety of object features such as: EGI, face inertia, adjancency 
information, face shape, and surface characteristics. Most of these features are based on planar faces.
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A very specific interpretation tree is generated for an object using a set of object specific rules. The rules 
were selected by hand rather than generated automatically. There doesn't appear to be any algorithmic 
approach for the application of the rules to discriminate between the aspects. The branching on the tree 
seem s to be a function of the particular aspects chosen rather than being based on the geometric 
information in the model.

The system developed in this paper incorporates ideas from all of the systems described above. 
However, the system isn't dependent on a certain class of features but rather can be extended to include 
many classes of features not implemented at this time. The system also performs automatic selection of 
features based on a set of constraints: feature filters. These features are used to form a strategy tree 
which provides a scheme for hypothesis formation, corroborating evidence gathering and object 
verification. The flexibility of this approach makes it significantly different from related work.

Our main goal of is the automatic synthesis of recognition system specifications for CAD-based 3
Dimensional computer vision [7]. Given a CAD model of an object, a specific, tailor-made system to 
recognize and locate the object is synthesized.

To attain this goal, the following problems have been solved:
1. Geom etric Knowledge Representation: The use of geometric data is central to a strong 

recognition paradigm. Weak methods can only be avoided when better information is 
available. The Alpha_1 B-spline model allows the modeling of freeform sculptured 
surfaces. To obtain the geometric features of interest for 3-D recognition, techniques for 
the transformation to a computer vision representation have been developed.

2. Automatic Feature Selection: The part to be recognized or manipulated must be 
examined for significant features which can be reliably detected and which constrain the 
object’s pose as much as possible. Moreover, such a set of features must cover the object 
from any possible viewing angle. In solving the feature selection problem, a technique is 
available for synthesizing recognition systems. This produces much more efficient, robust, 
reliable and comprehensible systems.

3. Strategy Tree Synthesis: Once a robust, complete and consistent set of features has been 
selected, a search strategy is automatically generated. Such a strategy takes into account 
the strongest features and how their presence in a scene constrains the remaining search.
The features and the corresponding detection algorithms are welded, as optimally as 
possible, into a search process for object identification and pose determination. The 
automatic synthesis of search strategies is a great step forward toward the goal of 
automated manufacturing. Generation of strategies is constrained, not only by the feature 
selection process but, by the actual task to be accomplished. Thus, strategies for a specific 
task might not be as strong when applied to a different task; strategies are task specific.

The remainder of this paper explains how these three components can be exploited to automate the 
process of selecting proper features and recognition schemes for specific goals. Algorithms are 
described which were developed for feature selection and which give supporting evidence for their 
formulation. Lastly, strategy trees are defined, their use in specific domains is explained, and a technique 
for the automatic generation of these search trees is given.
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2. G e o m e tr ic  K n o w le d g e  R e p r e se n ta tio n
Computer vision utilizes object models in a different manner than computer graphics or CAGD. In 

CAGD, the models must contain information about the 3-D object for rendering, performing finite element 
analysis, milling and other processes. Computer vision is concerned with recognition of the objects from 
sensory data. CAGD models must contain information for the local design operations such as what 
shape to extrude or what is the profile curve for a sweep operation. Features used in construction of 
models are implicitly rather than explicitly used in the CAGD representation. For example, a dihedral 
edge formed from two adjoining surfaces isn’t modeled as an edge per s e  but as two surfaces with 
adjacency information.

With computer vision models, the ability to index into an object model for the purpose of recognition is 
needed. For example, if a 30 degree dihedral edge of length 4 inches is detected in a scene, it is 
necessary to determine which 30 degree dihedral it matches in the model. One approach is to index into 
the model and extract all 30 degree dihedral edges with similar attributes (length, adjacent faces, etc.). 
Some way to represent this information is required. We propose to use intrinsic features as the interface 
between CAD and vision. Recent research by Ho has examined the generation of several classes of 
computer vision models directly from a CAGD system [8].

In the experimental system developed here, a modified winged-edge model [1] is used as the interface 
between CAD and vision, where relationships between features are explicit in the model. It is extended 
for inclusion of non-planar surfaces. In addition to special mechanisms for matching, access to the 
geometric knowledge of the object is required for the automatic generation of strategy trees. From this 
modified winged-edge description, an index on feature attributes can be generated which can quickly and 
efficiently access the geometric knowledge contained in the model. The edge and surface information 
used in the aspect computation, provides additional geometric knowledge. In this case, it is necessary to 
know which edges or surfaces are self-occluded by the object from a particular viewpoint. When not fully 
visible, the knowledge of the extent of occlusion can be used in determining the potential of the feature for 
use in the matching process.

3 . A u to m a tic  F eatu re  S e le c t io n
Several kinds of knowledge are required for feature selection. Geometric knowledge permits the 

selection of a complete and consistent set of features, while the sensor knowledge provides information 
on the robustness and reliability with which such features can be extracted. On the other hand, domain 
specific information about the task can be used to select feature extraction algorithms based on their 
complexity, robustness, etc.

Object recognition techniques are based for the most part on geometric features of the objects to be 
recognized. This includes comers, edges and planar faces for polyhedra, as well as points, arcs of 
distinct curvature and regions of constant curvature for sculptured surfaces. Other features such as axes 
of inertia, profile curves, surface texture properties, reflectance, etc. can also be used. Another area of 
current research in CAD systems is the possibility of designing by feature, which could include process
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The feature selection process can be viewed as a set of filters applied to the complete original set of 
features of an object (see Figure 2).

knowledge. Such capabilities would facilitate the feature selection process for object recognition.

O riginal
S e t F i lt e r s

Figure 2. The Feature Selection Process
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S e t

Filters select and rank features; order of application is important. Conceptually, the filters remove 
features from the input, in order of application, which do not meet the filter’s criteria. The goal here is to 
automate and optimize this filtering process. The filters select features based on the following qualities;

• rare - histogram the features; rare features are useful for quickly identifying the object; these 
features make good root nodes in a search tree.

• robust - measure of how well the features can be detected; error and reliability.

• co s t  - measure of complexity (space and time) for computing feature.

• com plete - does set of features cover all possible views of the object.

• con sisten cy  - how completely does feature characterize object pose; (i.e., how many DOFs 
are unresolved); how well does the feature differentiate between objects; measure of 
likelihood of correctly identifying the object.

3.1. Rare Features
The first filter in the feature selection phase is used to determine the uniqueness or commonality of 

features. This can be tuned to filter out either common features or unique features. Model features are 
histogrammed according to occurrences. This occurrence histogram can be used to select those features 
which rarely or often occur depending on the system needs.
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3.2. R obust Features
There are two types of feature robustness a system can quantify: the robustness of a feature itself and 

the robustness of the extraction techniques which are applied to obtain the feature. Furthermore, 
features should be dependable with respect to artifacts in the scene. For example, concave dihedral 
edges can occur whenever a polyhedron is placed upon another polyhedron; moreover, this is likely to 
occur due to occlusion in a polyhedral scene. On the other hand, the likelihood of a convex edge being 
formed as an artifact of occlusion is very low. The knowledge of such robustness, or lack thereof, can be 
incorporated into the Robust Feature filter. -

3.3. C om plete Features .
Three dimensional models define the entire object, yet, during scene analysis only a single view is 

available, or possibly multiple views, but not a complete view. How then, can the model be matched with 
the sensed data from the scene? Unless special fixturing is used in the manufacturing environment, we 
must assume that the pose of the object in the scene is unknown. One solution is the use of aspect 
graphs. An aspect graph is a representation of an object’s topology; thus it captures all viewpoints of an 
object [12]. The aspect is the topological appearance of the object from a particular viewpoint. Slight 
changes in the viewpoint change the size of features, edges and faces, but do not cause them to appear 
or disappear. When a slight change in viewpoint causes a feature to appear or disappear, an event takes 
place. An aspect graph, or visual potential graph, is formed by representing aspects as nodes and events 
between aspects as paths between corresponding nodes. Several researchers have developed 
algorithms for the construction of aspect graphs, however, the size of the graphs poses computation 
limitations to their use [10,13].

We use a discrete approximation by placing a tessellated sphere around the model, where each of the 
polygons represents a different viewpoint. The tessellation can be made arbitrarily fine, thus obtaining 
any desired granularity. Since the distance of the sensor from the work space is known a priori, and the 
sensor's physical characteristics (focal length, sensing field size, etc.) are also known, it is possible to 
position the sphere to correspond to the sensor’s position.

An icosahedral tessellation of a unit sphere is used and then the tessellated sphere is uniformly scaled 
to the proper size. In experiments, it has been found that a tessellation of 80 fully covers the set of 
aspects. If the tessellation is subdivided to 320 cells, same apparent aspects are obtained, but they are 
spread across many more cells. Each tessellation cell, called a tessel, can be thought of as a feature 
accumulator. That is, all object features which are visible from a tessel (i.e., that viewpoint and distance 
from the model) are recorded. Tessels which contain the same features are merged into the same 
aspect. When no more tessels can be merged, the minimal aspect set for the model/sensor pair is 
reached. Each aspect corresponds to a topologically different viewpoint; since all possible viewpoints are 
considered, complete coverage of the model is achieved.

This is similar to what Ikeuchi does in the generation of viewpoints for his interpretation trees [9]. 
However, the technique described here differs from his in that he uses a CAD system to generate 60
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views and then, by hand, combines views with similar aspects where the only features considered are 
faces.

Our method can be further refined by including knowledge of the sensing characteristics determined in 
the Robust Feature phase of the process. If it is determined that a feature can't be reliably detected when 
the sensing angle reaches a certain position, this knowledge can be used to eliminate features from 
tessels.

3.4. C ost o f  Features
The expense of feature computation can by divided into two classifications: time and space. However, 

time is usually the more critical element. Thus, in the experiments the cost in time of feature 
computations is of greatest concern. The amount of time for feature calculation is determined by both the 
algorithms which are available and the hardware at hand. Certain feature computations can occur at the 
hardware level making those features more attractive (faster) to obtain. In addition to the possibility of 
specialized hardware, there is a trade off between speed and reliability of feature detection algorithms. 
Such knowledge needs to be utilized in this filter.

3.5. C onsistent S ets  o f  Features
Although features may fulfill the requirements of the above filters for a specific workcell and task 

configuration, they may not discriminate between views of the object or between different objects. A 
feature set is considered consistent if it possesses the necessary geometric information to distinguish 
between aspects. Symmetric objects pose problems for this type filter since multiple aspects appear 
similar to the system. The consistency filter forces the set of features to be strong enough to form a 
hypothesis.

The geometric information contained in features differs with feature type. It is desirable to use features 
which make available the maximal amount of pose information possible. One way to measure geometric 
content is in terms of degrees of freedom, DOF, which remain unknown after a feature is matched to the 
model.

3.6. U se o f  the Filters
When used in combination, these filters provide the mechanism with which to build a strategy tree. The 

task requirements may be such that the result of these filters is the null set of features. This can be 
dependent on the order in which the filters are applied to the complete feature set. For example, if the 
fitter for rare features determines that a 1/4 inch dihedral edge is the best feature and is applied prior to 
the robustness filter, that dihedral might not be accepted by the robustness filter since it is so small. 
Thus, the set of features would be null after the application of the robustness filter. Whereas, if the 
robustness filter is applied first, it wouldn’t accept such features and when the rare filter is applied to the 
features accepted by the robustness filter, it would determine a different set of features as being best. 
The order of application is to be determined by knowledge of both the task to be accomplished and
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Since there is this possibility of null feature sets when filters are applied such that they absolutely 
eliminate features, the filters need to be applied in a relative manner. That is, the filters should rank the 
features rather than just eliminate those which don't meet the criteria. If the features are ranked by the 
filters, null sets should never occur. However, the order of application is still important.

4 . S tra te g y  T ree  S y n th e s is  *
Strategy trees describe the search strategy used to recognize and determine the pose of objects in a 

scene. This is a generalization of a hierarchical classifier or decision tree. The use of strategy trees 
permits one to exploit knowledge of relations between the geometric features in the models. Such trees 
also define a sequence of measurements or evaluations of the scene data so as to eliminate certain 
classifications at particular nodes.

Figure 3 is an overview of how strategy trees are used in the system. The system consists of two 
parts: the off-line model analysis and strategy generation and the run time environment. The CAD model 
is analyzed in terms of the geometric knowledge needed for object recognition. This geometric 
information, which is analyzed by the feature selection process, is used by the strategy tree builder to 
produce the core of the run time recognition system. During run time, the strategy tree provides the 
search structure and control for the hypothesis generator. By using the information provided from the 
feature extractors and the strategy trees, the hypothesis generator attempts to hypothesize pose 
descriptions for recognized objects in the scene. These hypotheses are verified for correctness and a 
description of recognized objects and their poses are the end result.

Another benefit of the tree structure is the inherent parallelism of trees. This occurs whenever there is 
a branch; thus, trees with greater breadth will, in general, have higher inherent parallelism. The 
sequentiality of trees refers to the depth of paths in the tree. Strategy trees are shallow trees with many 
branches in the first two levels. Thus, there is a great deal of inherent parallelism in these trees.

The matching strategy consists of two phases: the hypothesis generation phase and the hypothesis 
verification phase. This recognition technique is known as hypothesize and verify. The hypothesis 
generation phase is controlled by the strategy tree and the verification phase substantiates or refutes the 
hypotheses generated from the strategy tree. As will becom e apparent in the next subsection, the 
confidence of a hypothesis can be increased at the hypothesis generation phase which has two effects: 
increased cost of hypothesis generation and decreased cost of the verification phase. Conversely, the 
confidence in an initial hypothesis can be decreased, thereby expediting the hypothesis generation 
phase, which increases the computational expense of the verification phase.

experience.
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Figure 3. Overview of Strategy Trees

4.1. D escription  o f  Strategy T rees
A strategy tree consists of three major parts:

1. The Root - Which represents the object to be recognized.

2. Level 1  Features - Which are the strongest set of view independent features chosen for 
their ability to permit rapid identification of the object and its pose.

3. Corroborating Evidence Subtrees. CES - Whose purpose is twofold: they direct the search 
for corroborating evidence that supports the hypothesis of the level 1 features and they 
direct the search for geometric information to completely determine the pose prior to 
hypothesis generation.

Strategy trees determine the procedure a recognition system follows for object recognition. There will be 
at least one strategy tree for each model under consideration. If a model is used in a different task or 
environment, there could possibly be a different strategy tree for each of those tasks. The level 1 
features are selected using the feature filters. These conform to the requirements which constrain the 
task, environment, and model yet contain the strongest geometric information which leads to a solution. 
The corroborating evidence subtrees, CES, are constructed using geometric information derived from the
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4.2. C onstruction  o f  Strategy Trees
A method is now needed for extracting the features of interest from the aspects. The level 1 nodes of 

the strategy tree are built from these features. Recall, that an aspect is a feature accumulator which 
forms a topologically equivalent set of features from multiple viewpoints. The Aspect Coverage Algorithm, 
shown in Figure 4, is used to form level 1 nodes by extracting the best, unique features from the aspects.

A lgorithm  Define Ai to be the set of all features contained in the ith aspect, where

0 < i <  number-of-aspects. Define the operation, to denote set difference. Define, / ,  
to be a level 1 node containing a set of unique features, pc»sibly a singleton' set, which 
permit rapid identification of the object and its po6e.

For each Ai
D  =  fl Dij where D tJ = Ai -  Aj (i /  j)  and AjS not yet examined 

if D  /  0, then
chose/from  D 

if D  =  9 and no Dij = 0, then
select /  to be the onion of 1 element from each Dij and use them as a set 

if Dij =  9 for some j, then
Ai C Aj so do nothing

Figure 4. The Aspect Coverage Algorithm

When D not the empty set, it means there is at least one feature which is contained in all the aspects. 
Thus, that feature is used as a level 1 node. In the case where D is null but all the D,jS are not empty, 
there is a combination of features which uniquely spans the aspects. Thus, a set of features for the level 
1 node is used. In the last case, where the Dy is null for some /, then D will also be null. Additionally, it is 
known that the aspect, A; is completely contained in aspect Aj. A{ must be a subset of Aj because the set 
difference is null and if the two aspects, Aj and Aj, contained the exact same elements, they would have 
been merged at the tessel stage. Since Aj is contained in Aj, a level 1 node is not created at this point. 
Rather, this aspect will be covered by the level 1 node generated from aspect Aj.

Once the level 1 nodes are built, it is necessary to generate the CES, Corroborating Evidence 
Subtrees. The CESs simply substantiate that a hypothesis should be generated based on a feature 
matching a level 1 node. Sufficient evidence must be found that a correct hypothesis is being made 
before a hypothesis for the verification phase to validate is generated. This process serves two purposes: 
find spatially local supporting evidence for the level 1 feature and completely constrain the object's pose. 
Which features are used in this local corroboration is dependent on which class of feature(s) the level 1 
node contains.

Occlusion becom es a factor during the determination of the CES strategy. Since dihedral edges and 
arcs provide the most consistent information (solve the most DOFs), they are used for level 1 nodes more

CAD model.

9
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often than regions or curved surfaces. Edges and arcs are com posed of a starting point, an ending point, 
and the connecting edge or arc. When forming a strategy to handle occlusion for these features, both 
ends of the feature must be considered since it can't be known a priori which end is occluded. Generally, 
lour cases are considered when forming the subtrees lo r  local feature corroboration: (1) detected feature 
is not occluded, (2) one end of detected feature is occluded, (3) other end of detected feature is occluded, 
or (4) both ends of detected feature are occluded. For some features, such as faces or regions of 
constant curvature, there is no concept of direction; hence, the end conditions check can be replaced with 
adjacency information. '

There are several rules which are implemented to control the construction of the CES level. These 
rules are feature dependent and are expandable should other classes of features be included in the 
system (e.g., generalized cylinders).

• Dihedral Edge rules are:
* First look for another dihedral edge nearby which matches the model.

* Failing this, look for an appropriate 2-D comer.

* Failing this, use the approximate areas of adjacent faces.

• Dihedral Arc rules are:
* First look for another dihedral edge nearby which matches the model.

* Failing this, look for an appropriate 2-D comer.

* Failing this, look for the surface type of adjacent faces or other attributes of the 
adjancent regions (area, radius of cylinder).

• Planar Region rules are:
* First determine the orientation of the adjacent faces.

* Failing this, look for a nearby dihedral edge which matches the model.

* Failing this, look for an appropriate 2-D corner.

• Curved surface rule is:
* Determine surface types of adjacent surfaces

A CES is generated for every feature in the model which has similar attributes as the level 1 node. For 
example, suppose the level 1 node is a dihedral edge of included angle 30° and a dihedral edge in the 
scene is detected with an included angle close to 30°. A CES is generated for all 30° angles in the 
model. In other words, an attempt is made to determine which 30° dihedral was detected. The use of 
corroborating evidence focuses the search strategy by pruning unattractive paths at an early stage of the 
search.

4.3. U sage o f  Strategy Trees
The strategy tree guides the search through possible solutions. When a level 1 node is matched in the 

strategy tree and it is supported by the Corroborating Evidence Subtrees, then a hypothesis is generated. 
The hypothesis is passed to an object verifier which determines whether the hypothesis is valid within 
some confidence level.
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The combinatorial explosion of the matching process is controlled by the use of heuristics. For a 
detected feature to match a level 1 node, it must satisfy the following rules:

1. The attributes in the detected feature must be less than or equal to the attributes in the 
model (i.e., the length of a detected edge must not be longer than a model edge, area of a 
detected surface must not be greater than the area of the model, the included angle of a 
dihedral arc must be within some range of the model).

2. If the detected feature is not occluded, the attributes must be within some tolerance of the 
model's values.

These simple rules greatly reduce the possible matches to the level 1 features. The check "less than or 
equal to” for feature attributes is used due to the possibility of occlusion. In dealing with 3-D data, 
perspective doesn’t alter the measurable attributes. Even with occlusion, a feature cannot appear larger 
(longer for edges, larger area for surfaces) than the original model. '

In the above method, occlusion must be detected in the range data. Three simple cases suffice to 
determine whether occlusion is present or not. These tests are performed at the boundary of the 
detected features (i.e., dihedral edge - endpoints, surface/face - bounding edges).

1. Feature ends with a jump edge. In this case, look at the relationship between the feature 
and the part of the scene which forms the jump edge (scene-jump):

a. feature is nearer than scene-jump. Implies N on-occluded

b. scene-jump is nearer than feature. Implies O ccluded

2. Feature ends with a shadow edge. This is an unfortunate artifact of triangulation systems. 
However, this is the prevalent class of 3-D sensor in use at research labs at the present. It 
is unfortunate because the cause of the shadow edge is unknown. It could be the shadow 
is caused by the actual edge of the object (e.g., the back-top edge of a cube), or is caused 
by occlusion, or is caused by a non-occluding object casting a shadow on the feature in 
question. Since the cause is not known, it must be considered occluded even though it may 
not be. Implies O ccluded

3. Feature ends with neither a shadow edge nor jump edge. It is known conclusively that the 
feature is N on-occluded.

Once a level 1 node has been matched using the heuristics described above, and a determination 
made as to whether the feature is occluded or not, the local CES can be evaluated, as prescribed by the 
strategy tree. This local evidence gathering limits the number of hypotheses generated and passed to the 
object verification phase by determining whether a hypothesis is justified by the local evidence. If there 
isn’t supporting local evidence, as prescribed by the strategy tree, then that level 1 match fails and the 
detected feature is marked as unmatched. If there is enough local supporting evidence, a hypothesis is 
generated for the object verification phase to accept or reject.

Two forms of verification have been examined: structural and pixel correlation. Structural verification 
refers to verifying spatial relations among the features which should be present in the scene. This is 
similar to relational graph matching in 2-D. Pixel correlation refers to the verification technique of 
matching predicted depth, pixel by pixel, in a generated image and the sensed image. This corresponds 
to template matching in 2-D.

Either of these methods provides for verification. This follows the hypothesis verification techniques



used by others [4 ,3 ,11 ]. One of three states is assigned to the match of the hypothesized feature or

• positive evidence When the observed feature or depth is approximately the same as 
predicted. This means the observed object matches the transformed model in the predicted

• neutral ev idence When the observed feature or depth is closer to the sensor than the 
predicted one. This seem s counterintuitive but it simple means that the predicted 
feature/depth can ’t be observed because something is possibly blocking sight of the object.
In the presense of occlusion, it can’t be determined whether the difference between the 
prediction and the scene is due to an incorrect hypothesis or due to an occluding object.
This also holds for shadow pixel/region in the range image for the same reason.

• negative evidence When the observed feature or depth is much farther from the sensor 
than the predicted one. This definitely points to an incorrect hypothesis since the observed 
feature/depth is not occluded but is not where it should be.

If these measures are accumulated for the predicted range image or structural features, the hypothesis
can be quantified and accepted or rejected accordingly. This quantification provides a measure of

The concepts which have been outlined above have been implemented in an experimental system. 
This section describes the sensing and computational environment. The synthesis of strategy trees is 
demonstrated with an example polyhedron. The equipment used for the experiments consisted of a 
Technical Arts 100A White Scanner, DEC VAX class processors and an HP Bobcat. The images used in 
the experiments are part of the the Utah Range Database which was compiled for standardization of 
research on range images for the research community [6]. Feature computation was coded on a VAX 
750 in C. The automatic generation of strategy trees and the matcher were coded on an HP Bobcat in HP

Range data was obtained with the White Scanner 100A which returns actual Cartesian data. The 
structured light is a laser beam which is spread into a plane of light and directed onto the work space. 
The sensing mechanism is a GE CCD camera with a 240 x 240 image.

A polyhedron, called poly_1, was designed using the Alpha_1 design system. Of course, this simple 
polyhedron doesn ’t exploit the freeform power of Alpha_1 but suffices as an example of how the system 
functions. Starting with a primitive object, a parallelpiped, planes of intersection are defined with which to 
remove portions of the primitive. For poly_1, two portions are removed, and this is accomplished with the 
set difference of two planes and the primitive. Figure 5 shows the polyhedron rendered using Alpha_1.

The construction of the hierarchical winged-edge model from the CAD model is quite simple. Form an 
object consisting of faces which consist of edges which consist of vertices. Figure 6 shows the labeled 
edges of this winged-edge model. The edge numbering is used throughout the remainder of this chapter. 
Table 1 lists the dihedral edges for poly_1. Table 2 lists the faces for poly_1. These are used by the



Figure 5. Poly_1 Rendered by Alpha_1

feature selection process as well as in the generation of strategy trees. Note the grouping of the edges in 

Table 3 denoted by the horizontal lines. Due to noise in the data and error in the feature extraction 

methods, the system can’t discriminate on angle value alone. Thus, dihedrals are grouped together if 

they are within 5 degrees of each other.

5.2. Aspect Generation
In order to determine coverage of the object, aspects must be determined. In generating views of an 

object from various viewpoints, hidden line or hidden surface removal is necessary to determine which 

features are visible. Aspects are formed by merging tessels which are topologically equivalent. Figure 7 

shows the 26 different aspects formed for poly_1 by merging the 80 tessels.
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edge angle length adjacent faces
4 45.8 5.99 1 6
0 42.6 1.4 0 6
6 76.09 1.52 1 4
7 134.19 5.84 1 3
1 132.48 2.45 0 1
5 132.5 1.53 1 2
2 137.33 0.28 0 3
21 90 7.1 5 6
15 90 5.5 3 5
19 90 3.41 4 6
14 90 2.25 3 4
3 90 2.18 0 5
20 90 1.48 4 5
9 90 1.45 2 6
10 90 0.5 2 4

Table 1. Edge Attributes in Poly_1

face area normal poly type
0 1.8225 -0.678 0.000 0.735 convex
1 13.9725 -0.240 0.676 0.697 convex
2 0.3625 0.000 1.000 0.000 convex
3 6.9438 0.000 0.000 1.000 convex
4 4.4643 1.000 0.000 0.000 convex
5 9.2925 0.000 -1.000 0.000 convex
6 18.5328 0.000 0.000 -1.000 convex

Table 2. Face Attributes in Poly_1

5.3. Feature Selection
The next step in the process is the evaluation of features. The filters are applied to the complete set of 

features. For the rare filter, a feature histogram is used to determine which features don't occur often in 
the model. Table 3 shows the histogram for the angle of all dihedral edges.

Robustness must be determined with respect to both the sensor and the suite of algorithms used. 
Through experimentation, it has been determined, for the sensor configuration used here, that an edge 
length under 1.0 inch can’t be reliably detected. Similarly, if a face is below a certain size, its surface area 
can’t be reliably detected, nor can the pointwise normals or the dihedral edges which form the face. This 
is because too few data points are sampled on such a small face.

Dihedral edges were selected as the most consistent feature since they solve 5 DOFs. For this reason, 
the consistent filter ranks dihedral edges as the best level 1 feature.

The ability of the strategy tree to provide a path for recognition given an arbitrary object orientation is 
assured through the use of the aspect generation. Thus, the complete filter must be sure that at least one



Figure 7. Aspects for Poly_1

0-35 35-55
angle in 

55-65 65-82.5
degrees
82.5-100 100-125 125-145 145-360

0 2 0 1 8 0 4 0

Table 3. Histogram of Dihedral Edges

feature from every aspect is included as a level 1 node. It is desirable to use features which are visible 
from the greatest number of different viewpoints.

Feature cost has not been incorporated at this time. It is clear that algorithmic cost could be included 
via Logical Sensors and this is an area of future research.
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5.4. Strategy Tree Synthesis
The order of application of these filters affects the generation of the level 1 nodes. Incorrect application 

of the suite of filters will generate an inefficient strategy tree. It must be stressed that a correct strategy 
tree will be built, but that the tree will be far from optimal. If the application of the filters absolutely drops 
features from the set, it is possible to generate a null set of features. For example, the histogram given in 
Table 3 includes all dihedral edges; even those which do not have an acceptable level of robustness. If 
the rare filter is applied first, edge 6 is selected as the most unique feature since only one of these edges 
occurs in the model. However, this edge is adjacent to a small face; thus the robustness filter would 
remove this edge. The only solution at this point is to generate a strategy tree with a backup strategy 
formed from a feature which is less consistent than a dihedral edge (the feature selected by the 
consistent filter). An example of such a feature and strategy is to look for planar faces and the associated 
relations between them.

Since strategy tree synthesis is automated, it is desirable to minimize the possibility of the null feature 
set and non-optimal level 1 nodes. This is accomplished by ranking the features with the filters. Thus, 
each filter produces a ranked list of the current feature set. As the strategy tree is built, the application of 
filters now means to choose the feature with the highest rank from that set.

The order in which the filters are applied was determined through experimentation. It has been found 
that if the complete filter is applied first, the desired coverage is assured. From this filter, a set of aspects 
is produced which contains visible features. Level 1 features are selected for the strategy tree such that 
all aspects are represented by a level 1 node. However, one feature might be visible from multiple 
aspects. Using the histogram, form a set of the features which are contained in the greatest number of 
aspects (highest histogram value), possibly a singleton set. From this set of features, use the rare filter to 
determine which of these features are unique. From the ranked set of unique features, use the 
robustness filter to rank the robustness of each of these features. Select the feature which is most 
robust. If this feature is robust enough, then use it as a level 1 node. If it isn’t robust, repeat the 
algorithm for the next lowest histogram value. When a level 1 node is generated, remove, from the set of 
aspects, all the aspects which contain this feature. Recompute the histogram with the remaining aspects 
and repeat. Either a set of level 1 nodes has been generated which spans the entire set of aspects or 
there are aspects remaining which contain only non-robust features. In the latter case, a weaker level 1 
node must be formed for each of these aspects. This level 1 node will contain a feature which is not the 
most consistent type of feature. In this case, rather than having a dihedral edge as a level 1 node, the 
back up strategy is to match a face. At this point, the CES can be built.

One corroborating evidence subtree is generated for each dihedral edge which has attributes similar to 
the level 1 node. For example, for the level 1 node, edge 7, a CES must be formed for each of the edges 
in the 125-145 range. The reason for this is that when a 135° edge is located it should match one of 
these edges, but which one isn’t known until corroborating evidence is gathered.

The next branch in each CES is determined by looking at the ends of the dihedral edge to determine if
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they are occluded. Recall that occlusion is determined by the end type of a particular edge. Shadow is 
assumed to be occluded, jump edge depends on whether it is an occluded jump or a non-occluded jump 
edge. All others are non-occluded.

In the non-occluded case, use the rules described above for the type feature which forms the particular 
level 1 node. In the example, most level 1 features are dihedral edges so the dihedral rules are used. 
The rules are applied in the following order:

1. Attempt to find a dihedral edge close to the endpoint of the current edge. If found, use this 
to quickly form a hypothesis.

2. Attempt to find the local 2-D comers. If found, these can help determine which hypothesis 
should be formed. For example, if a 135° edge is located, the adjacent 2-D com er can help 
to determine which, if any, of the 125-145 edges have been located.

3. Use the areas of the adjacent faces and relations between them to generate a hypothesis.
Figure 8 shows the strategy tree for poly_1. The edges are represented by their edge number in the 
model. Note that there is a CES for each dihedral edge which is similar to the level 1 node. These are 
derived from Table 2. For level 1 node 7, edges 1 ,5 , and 2 all have similar dihedral angles. Thus, there 
is a CES for each of these edges as well as edge 7. Note that the same CES can appear under multiple 
level 1 nodes. When matching, the rules on attribute similarity are used to invoke these CESs. Figure 9 
shows the Corroborating Evidence Subtree for the dihedral edge 7. Note that there are 4 possible 
branches shown for clarity. The non-occlusion branch is com posed of an OR of the partial occlusion 
cases. Thus, during run-time, the results of the partial occlusion are used by the non-occlusion branch.

5.5. R ecogn ition
Now that the off-line procedure is completed, the usage of strategy trees can be demonstrated with an 

example of matching. A range image is obtained and low-level 3-D feature extraction performed on that 
data. The object is scanned, in this case poly_1. Figure 10 shows the data for poly_1 from the Utah 
Range Database. This is an unsmoothed image with bad data points missing. A 3 x 3 Gaussian mask is 
used to smooth the image and replace missing data points with an average of surrounding points.

From this data, the pointwise intrinsic features are computed for the object: surface normals and 
surface curvature. Figure 11 shows the surface normals for the object. Figure 12 shows the labeled 
curvature for poly_1. Since this is a polyhedral object, the planar face finder is used to develop a surface 
representation. Figure 13 shows the results of the planar face finder. Table 4 lists attributes of the 
planes which were located. Two dihedral edges are located using the dihedral edge finder. These edges 
correspond to edge 7 and edge 1 in the model.

Now the strategy tree shown in Figure 8 can be used. The level 1 features in the strategy tree are the 
dihedral edges: 7 ,1 9 ,1 4 , 3 ,4 ,1 ,  0, 21, 6, 20, and 9. The dihedral edges located in the scene are shown 
in Table 5. (The corresponding model edges are included to help the reader.) The system has not 
matched the dihedral edges at this point. By comparing these attributes with those listed in Table 5, the 
reader will notice that the attributes calculated for dihedral edge 5 are indeed erroneous. This is because 
the bordering face is too small to reliably recover attributes from the sensed data.
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Figure 8. Strategy Tree for Poly_1

The detected edge A is too short for reliability so it won’t be used. The detected edge D has an angle 
which doesn ’t match the model so it won’t be used in the matching process. Detected edges B and C 
both have angles with in the 130-140 range. These edges match 2 different level 1 nodes each: model 
edge 7 and model edge 1. The first determination in the strategy tree is to check for similarity. If a 
detected edge is larger than a model edge, the match fails. Detected edge C fails to match the level 1 
node: edge 1, because the length is too long. Next the check for occlusion takes place. Detected edge B 
is non-occluded at both endpoints and detected edge C is occluded at one endpoint. Since it has been 
determined that detected edge B is a non-occluded edge, the attributes must be close to the model for a
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Figure 9. Corroborating Evidence Subtree for Edge 7

match to succeed. For this reason, edge B fails to match the level 1 node: edge 7. Thus, only one 
Corroborating Evidence Subtree is invoked for each of the level 1 nodes which have been matched: edge 
7 and edge 1.

The CES strategy first looks for an adjancent dihedral. In both cases, a dihedral is found. For the level
1 node: edge 7, the dihedral used as corroborative evidence is detected edge B. Whereas for the level 1 
node: edge 1, the dihedral used as evidence is detected edge C. These two dihedrals are sufficent to 
solve all 6 DOFs and each of these forms a hypothesis at this point.
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Figure 10. Scan Data for Poly_1

Figure 11. Surface Normals for Poly_1

face area norma] centroid
1 5.799 -0.024 0.018 0.995 1.699 -2.101 -1.150
2 13.116 -0.630 0.226 0.741 -0.022 -2.324 -1.917
3 0.181 -0.128 0.899 0.391 1.177 1.167 2.342
4 0.259 -0.695 0.588 0.392 0.710 0.858 2.473
5 1.618 -0.448 -0.490 0.744 -0.904 -5.675 -2.070

Table 4. Attributes of Located Planes

Since both the hypotheses are the same, the verifier only needs to check one. An image is formed 
with the hypothesized transform applied to the model and the perspective transform of the sensor applied
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detected edge Edges Located Model Edge
edge name angle length edge nvmber

A 138.393° 0.2339 2
B 136.546° 2.4619 1
C 139.558° 5.7732 7
D 150.477° 0.8748 5

Table 5. Dihedral Edges Located in Scene .

to that result. For every pixel in the image, the z-depth is determined. Pixelwise evidence gathering can 

now be performed. The positive, negative and neutral evidence is combined to verify or refute the match. 

For the hypothesized transform, the hypothesis is correct in this case. This is shown in Figure 14.

Although the example is a polyhedral object, extensions to non-polyhedral objects are underway. If 

occlusion occurs in the scene, more CESs would be invoked to corroborate possible matches. The use of 

this approach with multiple objects merely requires running the recognizers in parallel.

I
I
I
h

Figure 12. Points of Curvature for Poly_1

6. C o n c lu s io n s  a n d  F uture W ork
It has been shown that the automatic generation of recognition strategies is possible. A method is 

presented which analyzed the geometric information of an object to determine the best strategy for 

recognition within the constraints of the sensing environment and the task. Using this information, a 

recognition system, a strategy tree, is produced which effectively matches models with sensed data. The 

strategy tree generation is performed automatically with minimal assistance from the user. The strategy 

tree provides a model based approach for the recognition and location of objects using 3-D  sensing 

techniques. These strategy trees are formed using the following feature filters: robust, complete, 

consistent, unique, and cost effective. Using these filters, a strategy is formed which includes the use of 

corroborating evidence to substantiate hypotheses at formation time thereby increasing the speed for
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Figure 13. Planar Regions for Poly_1

Figure 14. Model Overlayed on Sensed Image

recognition.

Many areas of future research remain open. One primary area of future research is the exploration of 

3-D feature extraction with emphasis on efficient routines. The feature extraction techniques used in this 

research were relatively slow when compared to the matching time. Faster feature extraction would 

enhance such a system. Research into the use of other 3-D features should also be an active area. The 

application of these concepts to other representations, such as generalized cylinders, should be explored. 

Other computer vision representations, as they become available, for freeform surfaces should be 

incorporated into the feature selection and strategy generation process.

Another area is the use of knowledge-based techniques for the synthesis of recognizers. Specific rules 

have been outlined which govern the automatic generation of strategy trees. These rules could be 

implemented in a more general framework such as an expert system. Such as system could reason
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about tasking information. The representation of algorithmic information provides an vast area of 
untapped research opportunities. The use of Logical Sensor Specifications seem s to be a good approach 
to the problem and should be investigated.

\
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