
Shared Memory as a Basis for
Conservative Distributed Architectural Simulation 1

Mark R. Swanson
Leigh B. Stoller

E-mail: {swanson,stoller}@cs.utah.edu

UUCS-97-005 •

Departm ent of Computer Science
University of Utah

A b s t r a c t
This paper describes experience in parallelizing an execution-driven architectural simulation

system used in the developm ent and evaluation of the Avalanche distributed architecture. It re
ports on a specific application of conservative distributed simulation on a shared memory platform.
Various com m unication-intensive synchronization algorithms are described and evaluated. Perfor
mance results on a bus-based shared memory platform are reported, and extension and scalability
of the implementation to larger distributed shared memory configurations are discussed. Also ad
dressed are specific characteristics of architectural sim ulations that contribute to decisions relating
to the conservatism of the approach and to the achievable performance.

1 Introduction

Architectural simulation is a valuable tool in the processes of exploring, designing, enhancing and
implementing com puter system s. Execution-driven simulation is especially valuable in gaining an
understanding of an architecture in a dynamic sense, in exploring the interaction of its parts, and in
evaluating macro and micro performance characteristics. In addition, it enables the im plem entation
of working software based on that architecture, allowing software costs, including programming, to
be evaluated concurrent with architectural design.

Accurate architectural simulation is costly, with slowdown factors of 10’s to 1000’s being re
ported for sim ulations of uniprocessors. When sim ulating multiprocessors, as the Avalanche group
is doing, the simulation process is generally slowed down by a factor proportional to the number
of processors sim ulated, by the additional simulation of the interconnect, and by context switching
within the simulator between the simulated processors.

'This work was supported by a grant from Hewlett-Packard, and by the Space and Naval Warfare Systems
Command (SPAWAR) and Advanced Research Projects Agency (ARPA), Communication and Memory Architectures
for Scalable Parallel Computing, ARPA order #B990 under SPAWAR contract #N00039-95-C-0018

1

For research groups developing parallel architectures, exploiting parallelism to speed up the
required architectural simulations is an obvious approach. This paper reports on such a paralleliza-
tion effort and its unusual approach of performing distributed simulation within a shared memory
model.

1.1 T h e A va lan ch e A r c h ite c tu r e

The Avalanche distributed system will be a cluster or network of 32 to 64 workstations[7] inter
connected with a Myrinet network. Its unique aspects lie in providing a communications interface
supporting extrem ely efficient m essage passing and distributed shared memory (DSM) and design
ing that interface to plug in to com m odity workstations. All interactions between processors occur
as com munications over the M yrinet via this interface. The com munications are always initiated
by processor memory references: stores to interface registers in the case of message passing and
cache misses in the case o f DSM . The design o f the Avalanche interface is intended to minimize
all aspects of interprocessor com m unication overhead, with special emphasis on memory hierarchy
effects. To expose these effects, a detailed and quite fine grained simulation is required.

2 T he B ase Sim ulation E nvironm ent

The base uniprocessor simulation environment developed by the Avalanche project is comprised of a
simulator for the HP PA-RISC architecture[5], including an instruction set interpreter, and detailed
simulation modules for the first level cache, the system bus, the memory controller, the network
interconnect, and the com m unications device which is the focus of the Avalanche project’s research.
This environment is called PAint (PA-interpreter)[6] and is derived from the Mint simulator[9].
The simulator is designed to model multiple nodes, consisting o f the modules listed above, and
the interactions between nodes, with em phasis on the effects o f communication on the memory
hierarchies.

PAint schedules tasks to perform simulation events at specified tim es in the future-w ith the
present time being an acceptable degenerate case. Consider modeling a first level cache access.
When an instruction performs a memory reference, a task is scheduled to model the resulting cache
activity. This task would first need to look up the access in the tag rams. To model the tim e cost
of this, it schedules itself to resume after an appropriate delay. W hen the task is again executed,
it performs the tag lookup, and assum ing it succeeds, once again schedules itself in the future to
model the delay involved in accessing the data rams and returns to the scheduling loop. W hen
contention arises for a resource, such as the tag rams, the task requiring access to that resource
will enqueue itself on the resource, and the holder of the resource will schedule that task to execute
when the holder finishes with the resource. It is thus possible that several tasks may be scheduled
concurrently for a particular node, executing both overlapped and interleaved in time, depending
on the interactions of the modeled entities. The com putational granularity of these tasks varies
widely, from one or two m icroseconds to 30 or more microseconds (on the platform discussed in
this paper).

Current simulation time in PAint is the minimum time of the tasks in the task list2. Scheduling
a task is accomplished by inserting it in a list ordered by desired execution time; executing a task
involves extracting the task with the lowest execution tim e from the list and performing the action
described by the task. In sequential PAint, there is but a single task list for all simulated nodes, so

2The data structure used is actually an array of lists. It’s implementation is not crucial to the results described.

2

simulation of nodes is interleaved. A representative time to insert a task on the platform described
here is 775 nanoseconds; representative extraction tim es range from 700 to 1200 nanoseconds.

The driving task in all of this is the instruction execution task, modeled by the n ex t_ ev en t
function. It interprets instructions which ultim ately initiate actions in all of the other modules.
PAint is an exam ple of an execution-driven simulator. It interprets icodes, a pre-decoded form of
instructions. The decoding is performed at program load time. The n ex t_ ev en t task interprets
icodes until it reaches one that potentially results in actions in other modules within its processor
and possibly in other processors. Such an icode is preceded by a special event icode inserted by the
loader. This event breaks the task out of the interpretation loop, suspends the n ex t_ ev en t task,
and causes the scheduling of some other task, such as the cache task described earlier. In PAint,
the m ost com mon events of interest are memory references.

Since the n ex t_ ev en t task may iterate through several instructions each time it is scheduled,
the advance of its time is “chunky.” T hat is, its time will have advanced several machine cycles as a
result of being executed once, and it may be “ahead” of other tasks. This does not result in causality
errors, since it always reschedules at points where external entities, such as other processors, might
influence it.

3 Parallelizing the Sim ulation

The m otivation for developing PPAint (Parallel PAint) was an im m ediate pragmatic one of needing
to run larger sim ulations and run them more quickly. The simulator is a com plex program, tuned for
uniprocessor performance. It was not desirable to either increase its com plexity significantly, nor to
decrease its uniprocessor performance in order to parallelize it, nor was a long term parallelization
effort possible.

A shared memory approach was chosen for three reasons:

1. synchronization costs: at present, basic communication costs between processors in mes
sage passing system s are between one and two orders of m agnitude greater than those in
shared memory system s. It appeared likely that these costs on a message passing platform
would dwarf the actual com putation, resulting in little or no speedups.

2. com plexity: The software cost of building efficient, message based synchronization is also
higher than the m ethods used in the work reported here, which are based on shared variables.

3. availability: an SGI Power Challenge system was available and acquisition of Hewlett-
Packard shared memory multi-processor workstations is planned. In the future, the Avalanche
machine itself, with its distributed shared memory capability, will provide an additional
platform.

In spite of targeting shared memory platforms, PPA int resembles a conservatively-synchronized
distributed simulation with the simulated nodes acting as the logical processes (LPs). The use
of shared memory is limited to (1) maintaining global simulation time, (2) inter-processor task
scheduling, and (3) providing the substrate for the architectural message passing being modeled.

Particular characteristics of multi-processor simulation m otivate this use of a distributed logical
process approach and the choice of the node as the LP:

1. The simulation of individual nodes is naturally independent except for well-defined synchro
nizing events.

3

2. For many of the applications simulated, the work load per simulated node is very similar,
making the node processor an acceptable “unit” for load balancing purposes.

3. M ost simulator data structures are naturally created on a per-sim ulated-node basis and some
are shared by com ponents within the node. LP state is most naturally bounded at the node
boundary.

4. W ithin a node, modules schedule tasks in other modules frequently and often do so with zero
delay; non-instantaneous interaction is a crucial assumption in many distributed simulation
scheduling algorithm s. In making the node the LP, these interactions are encapsulated within
the LP and are handled by normal sequential scheduling algorithms.

5. Tasks are scheduled between nodes relatively infrequently, and always do so with non-zero
delay, enabling use of standard distributed synchronization algorithms.

As a result, PPA int is structured as a collection of slightly modified uniprocessor PA int’s, where each
PAint models one or more simulated nodes. The modifications are largely isolated to initialization
and synchronization code; the com ponent-m odeling modules, with only two minor exceptions,
remain unchanged.

As expected, this approach proved to be economical in terms of im plem entation time. From
initiation of the project to working parallel simulator was a m atter of only a few weeks effort by
a single programmer. T he subsequent performance improvements and experim ents reported here
required only a few more weeks.

3.1 M ain ta in in g C ausality and T im e b etw een S im u lated N o d es

Simulated nodes in the architectural model can only affect one another by sending m essages, either
explicitly in message passing applications or implicitly in the use of DSM . T he inherent latency
of this m essage passing, in terms of simulation cycles, is the basic lookahead factor used to reduce
synchronization between simulation processors. This latency and the resulting lookahead are deter
mined by the nature of the interconnect modeled and the level of accuracy desired from that model.
The interconnect modeled here has a 125 nanosecond delay, on-the-wire, for a single-switch fabric.
T hat translates into 15 cycles for simulated processing nodes with a 120 MHz clock. The lookahead
for a sim ulation that ignores contention in the switch is thus 15 cycles. M any interconnects, in
cluding the one modeled here, would require flit-by-flit modeling to capture such contention effects.
Such fine grained simulation is prohibitively expensive for uniprocessor simulators, but that fine
grain also makes attaining speedup from parallel simulation difficult. Such accuracy is som etim es
required, of course; making it practical is one of the goals of PPAint development.

At a low level, simulated nodes in PAint actually affect each other through the scheduling of
tasks, specifically tasks executing within the network interface model which, in turn, schedules
tasks in the memory system model. The network interface can also effect the simulated processor
directly by interrupting it. Thus explicit communication between simulation processes is isolated
to just a single task scheduling location in the network interface module. The remainder of the
sim ulator, except for initialization code and the task extraction routine, is essentially oblivious to
whether it is running as a parallel program or not.

3.2 T im e M an agem en t

As a distributed sim ulation, PPAint does not maintain a centralized global clock. Each simulation
process m aintains its own time in a clock variable globally visible to all simulation processes. Each

4

simulation process also m aintains a tim e value a t which it needs to synchronize with the rest of
the simulation. The task scheduling loop ex tracts tasks from the local task list, advancing its clock
variable as the schedule tim e of those tasks moves forward. When it reaches a task th a t would
advance its clock beyond the synchronization tim e, it invokes a synchronization algorithm which
does two things: (1) it com putes and returns the tim e for the next synchronization and (2) dequeues
any inter-processor tasks and inserts them into the local task list.

3.3 In ter-P rocess Task O rdering and C ausality

The network m odule discrim inates between tasks it schedules for nodes sim ulated by its own proces
sor and those it schedules for nodes sim ulated on other processors. Tasks bound for o ther processors
are placed on a queue owned by th a t processor; access to th a t queue is protected by a lock. Correct
ordering of task execution is ensured as follows:

• Inter-processor network tasks are constrained to be scheduled with a delay into the fu ture
th a t is greater than the lookahead value.

• A task adding a task to another processor’s queue will not advance its own processor’s tim e
until the queue operation is visible a t the o ther processor.

• After com puting a new synchronization tim e, the synchronization code always moves all inter
processor tasks from the queue into its local task list before allowing the local clock to advance
beyond the old synchronization time.

M aintaining these ordering constrain ts is trivial in a shared memory system th a t provides sequential
consistency. A store into a global variable is known to be logically visible to the other processors
when the store instruction completes. In a system with weaker consistency, it may be necessary to
perform a write barrier between an inter-processor queue operation and the subsequent advance of
the queuing processor’s clock variable.

4 P e r f o r m a n c e R e s u l t s w i t h P a r a l l e l P A i n t

It is widely recognized th a t synchronization and waiting tim e are the m ajor overheads in conserva
tive parallel sim ulations. Not surprisingly, the performance of PPA int, over the range of processor
counts studied, is significantly im pacted by these factors. Several progressively more sophisticated,
bu t still conservative, synchronization algorithm s were implemented in an a ttem p t to to lerate these
load imbalances.

Another common difficulty for m ultiprocessor sim ulations is the frequent synchronization re
quired for accurate sim ulation of the interconnect. Variable-lookahead variants of the synchroniza
tion algorithm s were im plem ented to address this problem.

4.1 E xp erim en ta l T estb ed

All tests were conducted on an SGI Power Challenge with 14 90 MHz R8000 processors and a
common memory of 2 gigabytes. Each processor has 16 kilobyte on-chip d a ta and instruction
caches and a 4 m egabyte unified second level cache. The penalty for a miss to main memory is 53
cycles, while a miss to another cache takes 80 cycles. The sim ulator was compiled with the M IPS
C compiler in 32 bit mode. Micro m easurem ents were obtained using a 21 nanosecond resolution
interval tim er; an average overhead of reading the tim er has been factored out of reported times.

5

M acro (whole program) tim es reported were wall clock tim e as reported by the getrusage() system
call. The tests were not run on a dedicated machine but sim ulated processes did not share processors
with other user processes.

4.2 Synch ron ization A lgor ith m s

Figure 1: The BA RRIER Time Algorithm

m intim e = c lo c k [T h is P r o c e s s o r] ;
f o r (i = 0 ; i < N um ber_o f_ rp rocs; i++)

i f (c lo c k [i] < m intim e)
r e t u r n m in tim e;

r e tu r n m intim e + lo o k ah ead ;

Several synchronization algorithm s were evaluated; four are reported on here. The procedures are
called from a loop which checks to ensure th a t the returned tim e is in its future; if not, it calls the
procedure again. The first is algorithm is BA RRIER (see Figure 1), in which all processors join a
barrier every lookahead cycles. This algorithm is simple to implement, using one c lo c k variable
per processor to hold its sim ulation tim e. The sim ulation tim e need only be updated once per
synchronization epoch, as the processor enters the barrier, minimizing communication tim e. As
other studies have found, this algorithm is prone to high waiting times.

Figure 2: The SIM PLEM IN Time Algorithm

m intim e = c lo c k [0] ;
f o r (i = 1; i < N um ber_o f_ rp rocs; i++)

m intim e = m in (c lo c k [i] , m in tim e);
r e tu r n m in tim e + lo o k ah ead ;

SIM PLEM IN (see Figure 2) is a modified version of BA RRIER th a t trades ex tra com m unication
and more frequent synchronization for waiting tim e. In SIM PLEM IN, each processor determ ines
the minimum simulation tim e across all processors; the lookahead value is added to th is minimum
and, if it is greater than the processor’s current tim e, it continues sim ulating up to th a t tim e. The
ex tra communication cost arises because the processors’ global clock variables m ust be updated
on each cycle for this algorithm to be effective. The ex tra synchronization cost arises because
the window between synchronizations is, on average, significantly less than the lookahead value.
Two conditions are necessary for SIM PLEM IN to outperform BARRIER: (1) the tim e to perform
a synchronization m ust be significantly less than the average tim e spent in sim ulation between
synchronizations, and (2) the cost of com m unicating the clock values m ust be low.

TW OW INDOW (see Figure 3) is an adaptive algorithm . Since interaction between processors
is confined to network com m unication, it is possible to identify impending comm unications some
num ber of cycles before they actually occur. TW OW IND OW com putes a minimum horizon value
over all processors. It is the sum of each processor’s tim e and its current lookahead value, based on
whether or not it is, or soon will be, comm unicating with another processor. Three factors increase
synchronization tim e over the previous algorithm s: (1) the added complexity in com puting the

6

Figure 3: The TWOWINDOW Time Algorithm

horizon = clock [0] + lookahead [0];
for (i = 1; i < Number_of_rprocs; i++)

horizon = min(horizon, clock[i] + lookahead [i]);
return horizon;

horizon, (2) the communication of two values: the processor’s clock and the current lookahead
value, and (3) the dynamic m aintenance of the lookahead values. TW OW IND OW can, of course,
be generalized to an arb itrary num ber of lookahead values, limited by the nature of the simulated
system and the acceptable complexity in determ ining and dynamically m aintaining those values.
Like SIM PLEM IN, it depends on each processor updating its global clock on each cycle.

Figure 4: The CLSTR2W IN Time Algorithm

horizon = clock[ThisClusterBase] + lookahead [ThisClusterBase];
for (i = ThisClusterBase + 1; i < ThisClusterMax; i++)

horizon = min(horizon, clock[i] + lookahead[i]);

Cluster_Horizon[ThisCluster] = horizon;
for (i = 0; i < Number_of.clusters; i++)

horizon = min(horizon, Cluster_Horizon[i]);
return horizon;

CLSTR2W IN (see Figure 4) is a clustered minimum calculation. Processors are grouped into
clusters. Processors within a cluster use one of the algorithm s described above such as SIM PLEM IN
or TW O W IN D O W across the processors within the cluster. A synchronizing processor then posts
its cluster minimum in a per-cluster clock variable. Next it com putes a minimum over the cluster
clocks. For a system of N processors and a cluster size of M, this algorithm decreases synchronization
tim e and comm unication from O(kN) to 0 (k (M + N /M)). For the small system sizes reported
here, the effects are small, but for larger system s CLSTR2W IN should extend the scalable range
of the base algorithm it is applied to. It also can form the basis for clustered clock m anagem ent
in hierarchical, NUMA systems, where both locality and the num ber of sharers can effect the
com m unication cost of a given shared variable.

Figure 5 shows the tim e for these basic synchronization operations, for four and eight processor
runs. All tim es were produced with a load of two sim ulated nodes per processor, each running
an SOR calculation. The times reported were gathered for the initial iteration of the algorithm
a t each synchronization event. This iteration is likely to be the m ost costly, since it incurs the
m ost com m unications cost, in the form of cache misses. It is also representative of the minimum
cost th a t a synchronizing processor m ust pay a t each such event. Also reported is an e ffec tiv e
lo o k a h e a d metric. This is the average num ber of cycles a processor is allowed to advance between
synchronization events. For the BA RRIER case, it is always the lookahead factor, in this case 15.

In evaluating these synchronization tim es, it is useful to consider the average work performed
by one processor in a sim ulated cycle. In the sim ulations ju st reported for 8 processors, the average
task tim e was 10.7 microseconds and on average .45 task was executed every cycle. Consider

Figure 5: Synchronization Operation Timings

Processors Sync
Algorithm

M icroseconds
per sync

Effective
Lookahead

4 BARRIER 5.63 15
4 SIM PLEM IN 5.75 7
4 TW OW INDOW 7.41 13 to 15
4 CLSTR2W IN 9.95 13 to 15
8 BARRIER 9.51 15
8 SIM PLEM IN 10.37 7 to 9
8 TW OW INDOW 13.31 8 to 10
8 CLSTR2W IN 10.35 7 to 9

Figure 6 : Synchronization A lgorithm Comparison

Sync Runtim e Effective Speedup
Algorithm Min:secs Lookahead
BARRIER 5:42 15 3.57
SIM PLEM IN 4:06 3 4.96
TW OW INDOW 3:48 4 to 5 5.35
CLSTR2W IN 3:48 4 to 5 5.35

the m ost expensive synchronization algorithm , TW O W IN D O W . W ith its effective lookahead of
approxim ately 9, the average com putation per synchronization would be 43.3 microseconds or
about 3.25 tim es the average synchronization cost.

4.3 C om parative Effectiveness of the A lgorithm s

Each of the algorithm s described above makes a different tradeoff of comm unication and compu
tation complexity and synchronization frequency. Figure 6 shows the results of tests using 8 real
processors, sim ulating 32 nodes running an SOR program . The basic lookahead tim e is 15 cycles,
while the enhanced lookahead used by the TW O W IN D O W and CLSTR2W IN algorithm is 35 cy
cles. Speedups are calculated based on a uniprocessor version of PAint th a t ran in 20 m inutes 20
seconds.

From these results, the TW OW IN D O W -type algorithm (of which CLSTR2W IN is a variant) is
a clear winner. This happens despite the fact th a t the effective window size declines to only 4 to
5 cycles between synchronizations. Even the very simple SIM PLEM IN algorithm performs much
better than BA RRIER, again in spite of significantly increased synchronization activity.

The real benefit of TW O W IN D O W -type algorithm s, however, lies in their ability to to lerate the
kind of lookaheads required for more accurate network sim ulations. Figure 7 shows performance
as the basic lookahead window is decreased, keeping the enhanced lookahead window constant a t
35. The speedup degrades only m odestly even with a basic lookahead of 1, which should allow
accurate, flit-by-fiit modeling of the interconnect. A program th a t com m unicates more frequently
will see a greater degradation, of course.

Figure 7: Lookahead Tolerance of TWOWINDOW Algorithm

Lookahead Runtim e
Min: Secs

Effective
lookahead

Speedup

15 3:48 4 to 5 5.35
5 3:56 4 to 5 5.17
2 3:52 4 to 5 5.26
1 3:57 4 to 5 5.15

4.4 O verall P erform ance

Figures 8 and 9 report speedups obtained for sim ulations of 3 program s: two successive-over-
relaxation program s (SOR-sync and SOR-async) and a gaussian elimination (GAUSS). These are
modified versions of program s used by [2]. The modifications consisted of replacing the message
passing libraries with ones based on Direct Deposit[8], a protocol suite developed for the Avalanche
system. SOR-sync perform s two basic kinds of communication a t each tim e step: a global reduction
and accum ulation and broadcast of a solution vector. The reduction uses a tree rooted a t simu
lated node 0, while the solution vector operation involves all-to-all com m unication. SOR-async
implements the propagation of the solution vector by having each node broadcast values as they
are computed; the particu lar im plem entation results in a large increase in messages sent and bytes
comm unicated but results in a faster convergence. It still performs the global reduction a t each
tim e step. GAUSS perform s a global reduction a t each step to determ ine the owner of the pivot
row, followed by broadcast of th is row from the owner to all the other sim ulated nodes.

Figure 8 : Speedups Using TW OW IN

Sim ulated
Program

Real
Processors

Simulated
Processors

Runtime Speedup

SOR-sync 1 32 20:20
SOR-sync 2 32 11:24 1.78
SOR-sync 4 32 6:19 3.22
SOR-sync 8 32 3:38 5.35
SOR-sync 1 64 53:20
SOR-sync 2 64 28:51 1.85
SOR-sync 4 64 15:34 3.43
SOR-sync 8 64 9:10 5.82
SOR-async 1 16 19:11
SOR-async 2 16 10:59 1.75
SOR-async 4 16 6:12 3.09
SOR-async 8 16 3:49 5.02
GAUSS 1 32 40:31
GAUSS 2 32 25:42 1.58
GAUSS 4 32 15:05 2.69
GAUSS 8 32 9:53 4.1

9

Real Processors

Figure 9: Speedup Curves using TW OW INDOW

The sim ulator was configured to use the TW OW IND OW synchronization algorithm , using
lookahead values of 35 and 15 cycles. The results are much as one would expect. An increase in
the number of nodes sim ulated per processor results in greater speedup. An increase in the am ount
of communication results in a decrease in speedup; compare SOR-sync against SOR-async and
GAUSS, which have greater am ounts of comm unication.

Figure 10 gives results using an enhanced version of TW OW IND OW , which tracks processors
th a t are targets of com m unication, ra ther than those th a t are sources. This results in a m ore precise
application of the appropriate lookahead value. This becomes im portan t with increasing num ber of
simulated nodes and with applications with relatively high communication to com putation ratios.

Figure 10: Speedups Using Enhanced TW OW IN

Sim ulated
Program

Real
Processors

Simulated
Processors

Runtim e Speedup

SOR-sync 8 64 8:50 6.04
GAUSS 4 32 13:45 2.95
GAUSS 8 32 9:00 4.5

5 S c a l a b i l i t y

Shared memory system s are frequently criticized as lacking scalability. Emerging DSM system s
promise to extend shared mem ory from the current 4 to sixteen processors on high-perform ance
bus-based system s to hundreds of processors. The high cross sectional bandw idth of switch-based
fabrics makes possible th is order-of-m agnitude increase in processor count. Latency of cache misses

10

due to fabric delays and protocol processing are higher, of course, than in bus-based system s such
as the Power Challenge.

The scalability of shared memory distributed parallel simulation such as th a t reported here
rem ains to be seen. The challenges will be in the areas they have always been in d istributed sim u
lation: synchronization and waiting. Synchronization effects should fare no worse for DSM than for
message passing systems, since the underlying com m unications fabrics and transport mechanisms
will likely be identical. Arguably, DSM will do better as a synchronization substra te than message
passing. The frequent updating of each processor’s clock variable is analogous to null messages in
a message based system. The variable serves to coalesce sequences of updates so th a t another pro
cessor always get the single latest clock value when it performs a synchronization. This coalescing
also serves to reduce bandw idth consum ption in the interconnect. For example, the average tim e to
ex tract a task from the task list when using 8 processors sim ulating 64 nodes is 750 nanoseconds,
which is comparable to the tim e in a sim ilar uniprocessor run. This indicates th a t many updates to
the clock variables, which occur within the task extraction procedure, are coalesced, costing only
as much as a local cache access.

A thornier problem is waiting for slow processors. Efficient im plem entations of the shared
memory model offer the opportunity to trade frequent comm unication and synchronization for
decreased waiting. As long as the fundam ental synchronization model remains conservative, of
course, tem porary local load imbalances will lead to waiting. Short of adopting an optim istic
strategy, decreasing the com putational weight of individual tasks, to allow finer-grained scheduling,
offers the best hope of decreasing waiting tim e. Little effort was made in this direction in the work
reported here; it will be undertaken when availability of a larger platform makes it practical.

6 R elated Work

Num erous groups have developed sim ulators for m ultiprocessor architectures. A few of them are
surveyed here.

The W isconsin W ind Tunnel[3] uses direct execution of instrum ented program s on a CM-5, re
sulting in very fast and accurate sim ulation. Interactions between nodes occur only when program s
access shared memory locations, which are transla ted by the underlying simulation system into
message passing events between CM-5 nodes. Processor execution proceeds in lock step using a
conservative window approach, with control returning to the sim ulator a t the end of the window,
or when a non-local memory operation is performed th a t misses in the cache. The CM -5’s fast
reduction operators are used to ensure th a t all processors have reached the end of the current win
dow before proceeding. The main disadvantages of the W W T is the dependence of the sim ulation
environm ent on the CM-5 hardw are and the lack of flexibility in modifying many aspects of the
architecture due to its direct execution nature.

Parallel Proteusfl] performs direct execution sim ulation, using a conservative tim e window
approach. To overcome a small lookahead size resulting from switch level sim ulation, they use
local barriers and predictive barrier scheduling. Local barriers use a nearest neighbor approach to
reduce the number of nodes each processor m ust synchronize with. Predictive barriers reduce the
num ber of required synchronization points by taking advantage of the fact th a t processors need
not synchronize during periods when the sim ulated processors are not comm unicating. This is
another example of increased lookahead, and works well when the sim ulated processes engage in
long com putational periods between com m unication. Both compile-time and runtim e analysis are
employed to predict when sim ulated processors are going to com m unicate.

LAPSE[4] is another sim ulator th a t performs direct execution of instrum ented program s, in this

11

case message passing programs. The granularity of synchronization is larger since there are larger
periods of execution between message events.

Parallel Embra[10] is the simulator most closely resembling PPAint. It, too, executes on a
shared memory platform. It differs from PPAint in using a largely direct-execution model, though
mechanisms are provided to alter the model of most architectural features. Little is published
about it; its synchronization mechanism seems to be a conservative time window approach with
late messages simply being moved into the present.

7 C o n c l u s i o n s a n d F u t u r e W o r k ‘

The development of PPAint has demonstrated that shared memory provides an effective substrate
for distributed architectural simulation. Its most appealing characteristic is the ease with which
synchronization can be implemented and refined. The efficiency of the model encourages experi
mentation writh communication-intensive synchronization algorithms that would be impractical in
a message-based system.

Numerous avenues for continued effort are apparent: evaluating scalability on larger systems,
and on DSM systems in particular; determining which tasks have the largest effect on load im
balance and whether they can be made less “chunky;” evaluating the underlying shared memory
performance, perhaps by simulating PPAint on top of PPAint, to gain insight into the dynamics of
synchronization via shared variables.

R e f e r e n c e s

[1] B r e w e r , E., D ella ro c a s , C ., C o l b r o o k , A ., and W e ih l , W. PROTEUS: A High-
Performance Parallel Architecture Simulator. Tech. Rep. MIT/LCS/TR-516, Massachusetts
Institute of Technology, Sept. 1991.

[2] C h a n d r a , S., L a ru s , J. R ., a n d R o g e r s , A. Where is Time Spend in Message Passing and
Shared-Memory Programs? In Proceedings o f the 6th Sym posium on Architectural Support fo r
Program m ing Languages and Operating S ystem s (Nov. 1994), pp. 61-75.

[3] C h a n d r a s e k a r a n , S., a n d H i l l , M . D. Optimistic Simulation of Parallel Architectures
Using Program Executables. In Proceedings o f the 10th W orkshop on Parallel and D istributed
Sim ulation (May 1996), pp. 143-150.

[4] D ic k e n s , P. M., H e id e lb e r g e r , P., a n d N ic o l , D . M. Parallelized network simulators
for message-passing parallel programs. In M A S C O T S 95 (Jan. 1995).

[5] H e w l e t t - P a c k a r d C o . P A -R IS C 1.1 Architecture and Instruction S et Reference M anual,
February 1994.

[6] St o l l e r , L. B., and Sw a n so n , M. R. PAINT: PA Instruction Set Interpreter. Tech. Rep.
UUCS-96-009, University of Utah, March 1996.

[7] S w a n so n , M. R., D avis, A ., a n d P a r k e r , M. Efficient Communication Mechanisms for
Cluster Based Parallel Computing. In W orkshop on C om m unication and Architectural Support
fo r Network-based Parallel Com puting (C A N P C 97) (February 1997), vol. 1199 of Lecture
N otes in C om puter Science, Springer-Verlag, pp. 1-15.

12

[8] S w an so n , M. R ., a n d S t o l l e r , L. B . D irect Deposit: A Basic User-Level Protocol for
Carpet Clusters. Tech. Rep. UUCS-95-003, University of Utah, March 1995.

[9] V e e n s t r a , J ., and F o w l e r , R. MINT: A Front End for Efficient Simulation of Shared-
Memory M ultiprocessors. In M A S C O T S 1994 (Durham, NC, Jan. 1994), pp. 201-207.

[10] WlTCHEL, E ., AND R o sen b lu m , M . Embra: Fast and Flexible M achine Sim ulation. In
Proceedings o f the 1996 International Conference on Parallel Processing (Aug. 1996), pp. 99
107.

