
Abstract

ARC AND PATH CONSISTENCY REVISITED'

Roger Mohr and Thomas C. Henderson 2

CRIN
BP 239

54506 Vandoeuvre (France)

UUCS-85-101

6 August 1985

Mackworth and Freuder have analyzed the time complexity of several constraint

satisfaction algorithms [4]. We present here new algorithms for arc and path consistency

and show that the arc consistency algorithm is optimal in time complexity and of the

same order space complexity as the earlier algorithms. A refined solution for the path

consistency problem is proposed. However, the space complexity of the path consistency

algorithm makes it practicable only for small problems. These algorithms are the result

of the synthesis techniques used in ALICE (a general constraint satisfaction system) and

local consistency methods.

, This work was partially supported under an ADI contract.

2This work was done while the author was visiting professor at the University of Nancy I. Permanent

address: Department of Computer Science, University of Utah, Salt Lake City, Utah 84112

1. Introduction

We define a constraint satisfaction problem as follows:

N = {i,j, ... } is the set of nodes, with INI = n,

A = {b,c,- .. } is the set of labels, with IAI = a,

E = {(i,j) I (i,i,) is an edge in NxN}, with lEI = e,

Ai = {b I bEA and (i ,b) is admissable},

R, is a unary relation, and (i ,b) is admissable if R,(i,b),

R2 is a binary relation, and (i,b)-(j,c) is admissable if R2(i,b,j,c)i.

The constraint satisfaction problem is to find all n-tuples in An which satisfy the given

relations.

Several authors have presented algorithms to solve this problem. However, since the

problem is NP-complete, it has been suggested by others that a preprocessing or filtering

step be applied before the backtracking or search procedures [4, 5, 6, 1, 21. Although

node, arc and path consistency algorithms do not usually res.ult in a solution, they do

eliminate any labels failing to satisfy a minimum of consistency constraints. Such

techniques have found wide application in artificial intelligence, pattern recognition and

image analysis.

It has been shown by Mackworth and Freuder [4] that the worst case running time for

their algorithms for arc and path consistency are bounded above by O(ea 3) and O(n 3a5),

respectively. We give arc and path consistency algorithms wh~ich are bounded above by

O(ea2) and O(n3a3), respectively. Moreover, the space re!quirements, although not

negligible, are of the same order as Mackworth's algorithms.

The node consistency condition consists only in checking tllhe unary relations on the

differents nodes and keeping in the domain of each node \U,alue satisfying this unary

constraint. Arc consistency checks the consistency of labels ,for each couple of nodes

linked by a binary constraint and removes the labels that cannot satisfy this local

condition.

Path consistency algorithms ensure that any pair of labelilll9s (i,b)-(j,c) allowed by a

2

direct relation is also allowed by all paths from i to j. It has been proven that for

complete graphs, path consistency is equivalent to consistency of every path of length 2;

therefore, this is equivalent to checking the consistency of every triple. Each graph can

always be replaced by an equivalent graph by adding the true constraint between the

nodes which are not connected.

The key idea of algorithm AC-3 given by Freuder and Mackworth is, when a label is

removed from node i, to consider only the edges (i,j) because they are the only ones

whose arc consistency may be effected by the change. The same idea applies for path

consistency: when a pair of labelings is removed, the algorithm PC-2 considers only the

length-2 paths that are related to the nodes of this pair. Therefore, algorithm AC-3 has

complexity O(ea 3) instead of O(ena 3) for the brute force algorithm AC-l. PC-2 is of

complexity O(a5n3) whereas PC-l is O(a5n5).

Our improvement is based on the technical aspect of the ALICE system [Lauriere78].

ALICE was designed to solve most combinatorial problems using a unified and general

strategy. However, it is not possible to express in this system that we want only to

eliminate labels that are locally inconsistent. Carefully looking at how ALICE runs on this

problem shows that it automatically applies the algorithm AC-4 we describe in section 2.

Then it starts to find a solution to the complete problem by using - loosely speaking

- backtracking. In fact, it applies AC-4 at each stage of backtracking.

2. Arc Consistency

If we consider arc consistency intuitively, we find that it is based on the notion of

support. Suppose we are considering label b at node i. As long as b has a minimum of

support from the labels at each of the other nodes j (j not equal to i), b is considered a

viable label for node i. But once there exists a node at which no remaining label satisfies

the required relation with b, then b can be eliminated as a possible label for node i.

The algorithm that we propose makes this support evident by assigning a counter to

each arc-label pair. Such pairs are denoted by [(i,j),b] and indicate the arc from i to j with

label b at node i. In addition, for each label c at node j, the set Sjc is constructed, where

Sjc = {(i,b) I c at node j supports b at node i}; that is, if c is eliminated at node j, then

counters at [(i,j),b] must be decremented for each b supported by c. Finally, we use a

3

table, M, to keep track of which labels have been deleted from which objects, and a list,

List, to control the propagation of constraints. The algorithm for arc consistency is given

in Figure 1. Assume node consistency has already been assured.

1 M:= 0; Sib:= Empty_set;
2 for (1, j) E E do
3 for b E A. do

I

4
5
6

begin
total := 0;

List

for c E A. do
J

if R(i,b,j,c) then begin 7
8
9
10
11
12
13

total := total+l;
Append (S. ,(i, b» ;

JC
end

if total = 0 then M[i, b] : = 1;
else counter[(i,j),b] := total;

end;

14 initialize List from M;

15 while List not Empty_set do
16 begin
17 choose (j,c) from List and remove (j,c) from List;
18 for (i,b) E S. do

JC
19 begin
20 counter[(l,j),b]:= counter[(i,j),bJ-1;
21 if counter[(i,j),b] = 0 and M[i,b] = 0
22 then begin
23 Append(List, (i,b»;
24 M[i,bJ := 1;
25 end;
26 end
27 end.

Figure 1. Optimal Complexity Arc Consistency Algorithm AC-4

It is easy to see that line 7 of the innermost loop of the data structure initialization part

of the algorithm can be executed at most ea 2 times. Thus, the number of elements in the

sets Sjc is on the order of ea 2. Since line 12 is executed at most ea times, the total

4

number of counters is of the order ea; furthermore, since the value of total is bounded by

a, then the maximum value for a counter is a. Line 14 simply puts the unique (i,b) pairs

into list form; this requires order na time. Our measure of time complexity for the

algorithm is the decrementing of a counter; note that the counters and decrement lists

encode in a fixed way the binary relations. Thus, this measure is consistent with that of

Freuder and Mackworth.

Now consider lines 15-27. A global consideration of the counters shows that if they

never go negative, then there are at most

ea
~ a ea 2

i= 1

decrementations. Another way to see this is to consider the bounds on the two loops at

lines 15 and 18. First, we remark that a label is eliminated at most once from an object

because the matrix M "remembers" that fact. Now, given that label c has been eliminated

from node j, the only labels that can be affected are those at nodes i which have an edge

to j. Let d j be the vertex degree at node j; then since j can appear at most a times at line

17, and since there are at most d.a elements of S. for given j, we have that line 20 can
J JC

be executed at most

n
~ ada

J
j=l

n

a2 ~ d.
J

j=l

Since the lower bound time complexity for arc consistency is {l(ea 2) and the upper bound

time complexity for AC-4 is O(ea 2). we have an optimal algorithm. We have already

shown that the space required is on the same order as that required to define the

relations.

We do not claim that there are no faster algorithms; the one we suggest here can be

obviously improved: in step 1 we can remove from Ai each b for which we have found

that there is no more consistent labelling; this reduces the size of the S· and therefore
J,C

reduces the complexity of steps 1 and 2. However this is not a major improvement for

the worst case. For planar graphs e is of O(n). AC-4 will run in O(na 2) and AC-3 in

O(na 3) and both are linear in the number of nodes.

5

2.1. Correctness of AC-4

We outline here the key steps for a complete proof of the correctness of AC-4. The

same approach can be used to prove AC-3.

1. each label deleted from A. is not admissible for arc consistency;
I

2. algorithm AC-1 is correct;

3. let us suppose that AC-l has already removed the labeling {(ip,b p) I p=l, ... ,m}
and that AC-4 also removes them; let (i,b) be the next labeling removed by
AC-1. Then prove that (i,b) will also be removed by AC-4. Then by induction
AC-4 removes at least as many labelings as AC-1.

2.2. Space Complexity of AC-4

The sets Sib can be represented as linked lists and therefore use a space proportional to

their number of elements: 0(ea 2}. The set M has to be represented by an array of bits

and therefore its size is O(na}. We have at most O(ea} counters. Therefore, the total

space required is 0(ea 2}. On real problems our algorithm never reaches its upper bound

in space.

It should be noted that each algorithm must represent the graph and the possible labels

for each of its nodes. This leads us to a minimal space requirement bounded by O(e +

na}. Algorithm AC-3 needs exactly this minimum upper bound.

3. Path Consistency

Montanari [51 proved that, for a complete graph, path consistency is equivalent to path

consistency for all length-2 paths. If a graph is not complete it can be completed by

adding edges with the always true relation. Therefore, the PC-l algorithm examines only

these short paths. We need to use the notation of PC-l: the relation between i and j is a

Boolean matrix R .. whose rows correspond to the possible labels for i and the columns to
I.J

the possible labels for j.

Algorithm PC-1
begin

yn= Hj

repeat
begin

yO = yn

for k in N do

/* copy of the different matrixes */

for i in N do
for j in N do

6

y .. k = y. k-l and Y k-l.y k-l.y k-l
I,J I,J j,k k,k k,j

end
until yn = yO;
Y = yn

end

The body of the inner loop of PC-1 updates the relation matrixes Y .. by deleting the pair
I,J

of labels that are illegal because no legal label for k is consistent with them.

A similar approach can be used to find a lower complexity path consistency algorithm

(see Figure 2). The maximum number of times line 12 will be executed is on the order of

n3a3. (Remember that for this path consistency algorithm to work requires that the graph

be complete; i.e., e = n(n-1)/2.) Likewise, a global consideration shows that if the

counters never go negative, then since there are at most order n3a3 counters and each

has a maximum value of a, then line 26 can be executed at most order n3a3 times. On

the other hand, if we examine the loop bounds, we see that the while loop is executed at

most na times since a given node can only appear once for each label. Finally, the for

loop is bounded by the size of each Skd which is of order n2a2 Taking the product, we

have that line 26 is executed at most order nan 2a2 = n3a3 times.

The space complexity is however very large: the number of counters is

~ IAjlxlAjl x I{k in NI k-i,k-j}1
(i,j) in NxN

The sum of the size of the different sets Sk,d is bounded by:

~ I A.I x I A·I x I Ak I < n3a3
1 J

(i,j,k) in NxNxN,k-i,k-j

The space complexity of the whole algorithm is O(n 3a3). Because step 2 runs exactly in

O(n 3a3) for a consistent network, this algorithm is truly cubic in its behavior.

Some optimization in space and time can be achieved. First, as was already mentioned

in [3], when exploring the length-2 paths, we can limit ourselves to the paths (i,k,j) with

i <j. This divides space and time by 2. Secondly, in step 2 we can update A. and A. each
1 J

time one of (i,b) or (j,c) is put into M.

M .- 0; Skb:= Empty_set; List
2 for (i, j) E E do
3 for k= 1 ,n do
4 for b E Ai do

7

Empty_set;

5 for c E Aj such that R(i,b,j,c) do
6 begin
7 total := 0;
8 for d E Ak do

9
10
11
12
13
14
15
16
17
18
19

if R(i,b,k,d) and R(k,d,j,c)
then begin

total := total+1;
Append (Skd' « i, j) ,b, c)) ;
end;

if total = 0 then begin

end;

20 initialize List from M;

M[i,b] := 1;
MU,c] := 1;
end;

else counter[(i, j) ,k, b,c]

21 while List not Empty_set do
22 begin
23 choose (k,d) from List and remove (k,d) from List;
24 for « i, j) ,b, c) E Skd do
25 begin
26 counter[(i,j),k,b,c]:= counter[(i,j),b,c]-1;
27 if counter[(i, j) ,b, c] = 0
28 then begin
29 if M[i , b] = 0 then begin

total;

3(5 end; M[i,b] 1; Append(List, (i,b»;
31 end;
32 if M[j, c] = 0 then begin
33 MU,c] 1; Append(List, (j,c»;

36 end;
37 end.

Figure 2. Reduced Complexity Path Consistency Algorithm PC-3

8

3.1. Improvement for "Empty" Graphs

Usually graphs, used in image applications for instance, are far from complete graphs

and have their number of edges linear in the size of the node number. So let us suppose

here that we have O(n) edges. Introducing the true relation between the not connected

edges we are therefore increasing heavily the complexity. For instance, the result of

TrueRR . can be computed in the obvious way in 0(n2): I,k k,k k,)

1* Truej,k(b,c) <=> b in Aj and c in Ak */

result = false;
for c in A. do

)

if there exists d in Ak such that Rk,j(d,c) then
for b in A. do result(b,c) = true

I

This algorithm runs in 0(a 2) instead of 0(a 3). The same can be stated for the product

where the last term is a True matrix. If we have two True matrixes, Le., we have to

compute True. :Rk kTruek ' the computation is reduced to test if Ak is empty or not: this is
I,), ,)

performed in 0(1). In fact this "computation" does not have to be performed. If Ak is

empty the algorithm can stop: there is no solution! For this reason the length-2 paths

using only True relations can be discarded in PC-l and PC-2. Thus, we reduce the

number of the length-2 edges from 0(n2) to O(n); this reduces the complexity of PC-1

and PC-2 by a factor n.

For PC-3 this approach discards in step 2 all the k which are chosen and have to be

connected at least to i or j. Therefore, only 0(n2) triples (i,j,k) will be considered. The

complexity is reduced here also by a factor n.

4. Conclusion

We have provided an optimal algorithm for arc consistency. We reduced the complexity

of path consistency, but it still remains open whether the algorithm PC-3 is optimal. It is

not obvious that any path consistency algorithm has to examine for each triple of nodes

all possible labels in the worst case; if the answer is yes, then PC-3 is optimal.

For practical cases, AC-4 is easy to implement; however, it uses more space that AC-3.

PC-3 is also easy to implement, however it may use a huge amount of space and

therefore has to be run carefully. From our point of view, having a network consistency

problem to solve, we prefer to run the ALICE system; using an AC-4 like algorithm at

9

each level of decision, it will run very fast on "common world" network problem providing

the complete solution.

10

References

[1] Gaschnig, John.
Performance Measurement and Analysis of Certain Search Algorithms.
Technical Report CMU-CS-79-124, Carnegie-Mellon University, May, 1979.

[2] Haralick, R., Davis, L., Rosenfeld, A. and Milgram, D.
Reduction Operations for Constraint Satisfaction .
Information Sciences 14:199-219, 1978.

[3] Mackworth, A.K.
Consistency in Networks of Relations .
Artificial Intelligence 8:99-118,1977.

[4] Mackworth, A.K. and E.C . Freuder.
The Complexity of Some Polynomial Network Consistency Algorithms for

Constraint Satisfaction Problems .
Artificial Intelligence 25 :65-74, 1985.

[5] Montanari, U.
Networks of Constraints : Fundamental Properties and Applications to Picture

Processing.
I nformation Sciences 7:95-132, 1974.

[6] Rosenfeld, A., R. Hummel and S. Zucker.
Scene Labeling by Relaxation Operations.
I EEE Transactions on Systems, Man, and Cybernetics SMC-6(6):420-433, June,

1976.

