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Mackworth and Freuder have analyzed the time complexity of several constraint 

satisfaction algorithms [4]. We present here new algorithms for arc and path consistency 

and show that the arc consistency algorithm is optimal in time complexity and of the 

same order space complexity as the earlier algorithms. A refined solution for the path 

consistency problem is proposed. However, the space complexity of the path consistency 

algorithm makes it practicable only for small problems. These algorithms are the result 

of the synthesis techniques used in ALICE (a general constraint satisfaction system) and 

local consistency methods. 
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1. Introduction 

We define a constraint satisfaction problem as follows: 

N = {i,j, ... } is the set of nodes, with INI = n, 

A = {b,c,- .. } is the set of labels, with IAI = a, 

E = {(i,j) I (i,i,) is an edge in NxN}, with lEI = e, 

Ai = {b I bEA and (i ,b) is admissable}, 

R, is a unary relation, and (i ,b) is admissable if R,(i,b), 

R2 is a binary relation, and (i,b)-(j,c) is admissable if R2(i,b,j,c)i. 

The constraint satisfaction problem is to find all n-tuples in An which satisfy the given 

relations. 

Several authors have presented algorithms to solve this problem. However, since the 

problem is NP-complete, it has been suggested by others that a preprocessing or filtering 

step be applied before the backtracking or search procedures [4, 5, 6, 1, 21. Although 

node, arc and path consistency algorithms do not usually res.ult in a solution, they do 

eliminate any labels failing to satisfy a minimum of consistency constraints. Such 

techniques have found wide application in artificial intelligence, pattern recognition and 

image analysis. 

It has been shown by Mackworth and Freuder [4] that the worst case running time for 

their algorithms for arc and path consistency are bounded above by O(ea 3) and O(n 3a5), 

respectively. We give arc and path consistency algorithms wh~ich are bounded above by 

O(ea2) and O(n3a3), respectively. Moreover, the space re!quirements, although not 

negligible, are of the same order as Mackworth's algorithms. 

The node consistency condition consists only in checking tllhe unary relations on the 

differents nodes and keeping in the domain of each node \U,alue satisfying this unary 

constraint. Arc consistency checks the consistency of labels ,for each couple of nodes 

linked by a binary constraint and removes the labels that cannot satisfy this local 

condition. 

Path consistency algorithms ensure that any pair of labelilll9s (i,b)-(j,c) allowed by a 
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direct relation is also allowed by all paths from i to j. It has been proven that for 

complete graphs, path consistency is equivalent to consistency of every path of length 2; 

therefore, this is equivalent to checking the consistency of every triple. Each graph can 

always be replaced by an equivalent graph by adding the true constraint between the 

nodes which are not connected. 

The key idea of algorithm AC-3 given by Freuder and Mackworth is, when a label is 

removed from node i, to consider only the edges (i,j) because they are the only ones 

whose arc consistency may be effected by the change. The same idea applies for path 

consistency: when a pair of labelings is removed, the algorithm PC-2 considers only the 

length-2 paths that are related to the nodes of this pair. Therefore, algorithm AC-3 has 

complexity O(ea 3) instead of O(ena 3) for the brute force algorithm AC-l. PC-2 is of 

complexity O(a5n3) whereas PC-l is O(a5n5). 

Our improvement is based on the technical aspect of the ALICE system [Lauriere78]. 

ALICE was designed to solve most combinatorial problems using a unified and general 

strategy. However, it is not possible to express in this system that we want only to 

eliminate labels that are locally inconsistent. Carefully looking at how ALICE runs on this 

problem shows that it automatically applies the algorithm AC-4 we describe in section 2. 

Then it starts to find a solution to the complete problem by using - loosely speaking 

- backtracking. In fact, it applies AC-4 at each stage of backtracking. 

2. Arc Consistency 

If we consider arc consistency intuitively, we find that it is based on the notion of 

support. Suppose we are considering label b at node i. As long as b has a minimum of 

support from the labels at each of the other nodes j (j not equal to i), b is considered a 

viable label for node i. But once there exists a node at which no remaining label satisfies 

the required relation with b, then b can be eliminated as a possible label for node i. 

The algorithm that we propose makes this support evident by assigning a counter to 

each arc-label pair. Such pairs are denoted by [(i,j),b] and indicate the arc from i to j with 

label b at node i. In addition, for each label c at node j, the set Sjc is constructed, where 

Sjc = {(i,b) I c at node j supports b at node i}; that is, if c is eliminated at node j, then 

counters at [(i,j),b] must be decremented for each b supported by c. Finally, we use a 
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table, M, to keep track of which labels have been deleted from which objects, and a list, 

List, to control the propagation of constraints. The algorithm for arc consistency is given 

in Figure 1. Assume node consistency has already been assured. 

1 M:= 0; Sib:= Empty_set; 
2 for (1, j) E E do 
3 for b E A. do 

I 

4 
5 
6 

begin 
total := 0; 

List 

for c E A. do 
J 

if R(i,b,j,c) then begin 7 
8 
9 
10 
11 
12 
13 

total := total+l; 
Append (S. ,(i, b» ; 

JC 
end 

if total = 0 then M[ i, b] : = 1; 
else counter[(i,j),b] := total; 

end; 

14 initialize List from M; 

15 while List not Empty_set do 
16 begin 
17 choose (j,c) from List and remove (j,c) from List; 
18 for (i,b) E S. do 

JC 
19 begin 
20 counter[(l,j),b]:= counter[(i,j),bJ-1; 
21 if counter[(i,j),b] = 0 and M[i,b] = 0 
22 then begin 
23 Append(List, (i,b»; 
24 M[i,bJ := 1; 
25 end; 
26 end 
27 end. 

Figure 1. Optimal Complexity Arc Consistency Algorithm AC-4 

It is easy to see that line 7 of the innermost loop of the data structure initialization part 

of the algorithm can be executed at most ea 2 times. Thus, the number of elements in the 

sets Sjc is on the order of ea 2. Since line 12 is executed at most ea times, the total 
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number of counters is of the order ea; furthermore, since the value of total is bounded by 

a, then the maximum value for a counter is a. Line 14 simply puts the unique (i,b) pairs 

into list form; this requires order na time. Our measure of time complexity for the 

algorithm is the decrementing of a counter; note that the counters and decrement lists 

encode in a fixed way the binary relations. Thus, this measure is consistent with that of 

Freuder and Mackworth. 

Now consider lines 15-27. A global consideration of the counters shows that if they 

never go negative, then there are at most 

ea 
~ a ea 2 

i= 1 

decrementations. Another way to see this is to consider the bounds on the two loops at 

lines 15 and 18. First, we remark that a label is eliminated at most once from an object 

because the matrix M "remembers" that fact. Now, given that label c has been eliminated 

from node j, the only labels that can be affected are those at nodes i which have an edge 

to j. Let d j be the vertex degree at node j; then since j can appear at most a times at line 

17, and since there are at most d.a elements of S. for given j, we have that line 20 can 
J JC 

be executed at most 

n 
~ ada 

J 
j=l 

n 

a2 ~ d. 
J 

j=l 

Since the lower bound time complexity for arc consistency is {l(ea 2) and the upper bound 

time complexity for AC-4 is O(ea 2). we have an optimal algorithm. We have already 

shown that the space required is on the same order as that required to define the 

relations. 

We do not claim that there are no faster algorithms; the one we suggest here can be 

obviously improved: in step 1 we can remove from Ai each b for which we have found 

that there is no more consistent labelling; this reduces the size of the S· and therefore 
J,C 

reduces the complexity of steps 1 and 2. However this is not a major improvement for 

the worst case. For planar graphs e is of O(n). AC-4 will run in O(na 2) and AC-3 in 

O(na 3) and both are linear in the number of nodes. 
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2.1. Correctness of AC-4 

We outline here the key steps for a complete proof of the correctness of AC-4. The 

same approach can be used to prove AC-3. 

1. each label deleted from A. is not admissible for arc consistency; 
I 

2. algorithm AC-1 is correct; 

3. let us suppose that AC-l has already removed the labeling {(ip,b p) I p=l, ... ,m} 
and that AC-4 also removes them; let (i,b) be the next labeling removed by 
AC-1. Then prove that (i,b) will also be removed by AC-4. Then by induction 
AC-4 removes at least as many labelings as AC-1. 

2.2. Space Complexity of AC-4 

The sets Sib can be represented as linked lists and therefore use a space proportional to 

their number of elements: 0(ea 2}. The set M has to be represented by an array of bits 

and therefore its size is O(na}. We have at most O(ea} counters. Therefore, the total 

space required is 0(ea 2}. On real problems our algorithm never reaches its upper bound 

in space. 

It should be noted that each algorithm must represent the graph and the possible labels 

for each of its nodes. This leads us to a minimal space requirement bounded by O(e + 

na}. Algorithm AC-3 needs exactly this minimum upper bound. 

3. Path Consistency 

Montanari [51 proved that, for a complete graph, path consistency is equivalent to path 

consistency for all length-2 paths. If a graph is not complete it can be completed by 

adding edges with the always true relation. Therefore, the PC-l algorithm examines only 

these short paths. We need to use the notation of PC-l: the relation between i and j is a 

Boolean matrix R .. whose rows correspond to the possible labels for i and the columns to 
I.J 

the possible labels for j. 

Algorithm PC-1 
begin 

yn= Hj 

repeat 
begin 

yO = yn 

for k in N do 

/* copy of the different matrixes */ 



for i in N do 
for j in N do 
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y .. k = y. k-l and Y k-l.y k-l.y k-l 
I,J I,J j,k k,k k,j 

end 
until yn = yO; 
Y = yn 

end 

The body of the inner loop of PC-1 updates the relation matrixes Y .. by deleting the pair 
I,J 

of labels that are illegal because no legal label for k is consistent with them. 

A similar approach can be used to find a lower complexity path consistency algorithm 

(see Figure 2). The maximum number of times line 12 will be executed is on the order of 

n3a3. (Remember that for this path consistency algorithm to work requires that the graph 

be complete; i.e., e = n(n-1)/2.) Likewise, a global consideration shows that if the 

counters never go negative, then since there are at most order n3a3 counters and each 

has a maximum value of a, then line 26 can be executed at most order n3a3 times. On 

the other hand, if we examine the loop bounds, we see that the while loop is executed at 

most na times since a given node can only appear once for each label. Finally, the for 

loop is bounded by the size of each Skd which is of order n2a2 Taking the product, we 

have that line 26 is executed at most order nan 2a2 = n3a3 times. 

The space complexity is however very large: the number of counters is 

~ IAjlxlAjl x I{k in NI k-i,k-j}1 
(i,j) in NxN 

The sum of the size of the different sets Sk,d is bounded by: 

~ I A.I x I A·I x I Ak I < n3a3 
1 J 

(i,j,k) in NxNxN,k-i,k-j 

The space complexity of the whole algorithm is O(n 3a3). Because step 2 runs exactly in 

O(n 3a3) for a consistent network, this algorithm is truly cubic in its behavior. 

Some optimization in space and time can be achieved. First, as was already mentioned 

in [3], when exploring the length-2 paths, we can limit ourselves to the paths (i,k,j) with 

i <j. This divides space and time by 2. Secondly, in step 2 we can update A. and A. each 
1 J 

time one of (i,b) or (j,c) is put into M. 



M .- 0; Skb:= Empty_set; List 
2 for (i, j) E E do 
3 for k= 1 ,n do 
4 for b E Ai do 

7 

Empty_set; 

5 for c E Aj such that R(i,b,j,c) do 
6 begin 
7 total := 0; 
8 for d E Ak do 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

if R(i,b,k,d) and R(k,d,j,c) 
then begin 

total := total+1; 
Append (Skd' « i, j) ,b, c) ) ; 
end; 

if total = 0 then begin 

end; 

20 initialize List from M; 

M[i,b] := 1; 
MU,c] := 1; 
end; 

else counter[ (i, j) ,k, b,c] 

21 while List not Empty_set do 
22 begin 
23 choose (k,d) from List and remove (k,d) from List; 
24 for « i, j) ,b, c) E Skd do 
25 begin 
26 counter[(i,j),k,b,c]:= counter[(i,j),b,c]-1; 
27 if counter[ (i, j) ,b, c] = 0 
28 then begin 
29 if M[ i , b] = 0 then begin 

total; 

3(5 end; M[i,b] 1; Append(List, (i,b»; 
31 end; 
32 if M[j, c] = 0 then begin 
33 MU,c] 1; Append(List, (j,c»; 

36 end; 
37 end. 

Figure 2. Reduced Complexity Path Consistency Algorithm PC-3 
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3.1. Improvement for "Empty" Graphs 

Usually graphs, used in image applications for instance, are far from complete graphs 

and have their number of edges linear in the size of the node number. So let us suppose 

here that we have O(n) edges. Introducing the true relation between the not connected 

edges we are therefore increasing heavily the complexity. For instance, the result of 

TrueRR . can be computed in the obvious way in 0(n2): I,k k,k k,) 

1* Truej,k(b,c) <=> b in Aj and c in Ak */ 

result = false; 
for c in A. do 

) 

if there exists d in Ak such that Rk,j(d,c) then 
for b in A. do result(b,c) = true 

I 

This algorithm runs in 0(a 2) instead of 0(a 3). The same can be stated for the product 

where the last term is a True matrix. If we have two True matrixes, Le., we have to 

compute True. :Rk kTruek ' the computation is reduced to test if Ak is empty or not: this is 
I,), ,) 

performed in 0(1). In fact this "computation" does not have to be performed. If Ak is 

empty the algorithm can stop: there is no solution! For this reason the length-2 paths 

using only True relations can be discarded in PC-l and PC-2. Thus, we reduce the 

number of the length-2 edges from 0(n2) to O(n); this reduces the complexity of PC-1 

and PC-2 by a factor n. 

For PC-3 this approach discards in step 2 all the k which are chosen and have to be 

connected at least to i or j. Therefore, only 0(n2) triples (i,j,k) will be considered. The 

complexity is reduced here also by a factor n. 

4. Conclusion 

We have provided an optimal algorithm for arc consistency. We reduced the complexity 

of path consistency, but it still remains open whether the algorithm PC-3 is optimal. It is 

not obvious that any path consistency algorithm has to examine for each triple of nodes 

all possible labels in the worst case; if the answer is yes, then PC-3 is optimal. 

For practical cases, AC-4 is easy to implement; however, it uses more space that AC-3. 

PC-3 is also easy to implement, however it may use a huge amount of space and 

therefore has to be run carefully. From our point of view, having a network consistency 

problem to solve, we prefer to run the ALICE system; using an AC-4 like algorithm at 
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each level of decision, it will run very fast on "common world" network problem providing 

the complete solution. 
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