
Explicit-enumeration based Verification made Memory-efficient

Ratan Nalumasu,
Ganesh Gopalakrishnan 1

{ratan,ganesh}@cs.utah.edu
University of Utah,

Dept, of Computer Science,
Salt Lake City, UT 84112, USA

UUCS-95-006

Department of Computer Science
University of Utah

Salt Lake City, UT 84112, USA

February, 1995

Abstract
We investigate techniques for reducing the memory requirements of a model
checking tool employing explicit enumeration. Two techniques are studied in
depth: (1) exploiting symmetries in the model, and (2) exploiting sequential
regions in the model. The first technique resulted in a significant reduction in
memory requirements at the expense of an increase in run time. It is capable
of finding progress violations at much lower stack depths. In addition, it is
more general than two previously published methods to exploit symmetries,
namely scalar sets and network invariants. The second technique comes
with no time overheads and can effect significant memory usage reductions
directly related to the amount of sequentiality in the model. Both techniques
have been implemented as part of the SPIN verifier.

S u p p orted in part by NSF Awards MIP 9215878 and ARPA Contract N-0003995-
C0018

E x p l i c i t - e n u m e r a t i o n b a s e d V e r i f i c a t i o n m a d e M e m o r y - e f f i c i e n t

R a ta n N a lu m a su ,
G an esh G o p a la k r ish n a n *

D epartm ent of Com puter Science,
University of Utah, Salt Lake City, UT 84112

{ratan,ganesh}@cs.utah.edu

February 24, 1995 '

A b strac t

We investigate techniques for reducing the memory requirements of a model checking tool
employing explicit enumeration. Two techniques are studied in depth: (1) exploiting symmetries
in the model, and (2) exploiting sequential regions in the model. The first technique resulted
in a significant reduction in memory requirements at the expense of an increase in run time.
It is capable of finding progress violations at much lower stack depths. In addition, it is more
general than two previously published methods to exploit symmetries, namely scalar sets and
network invariants. The second technique comes with no time overheads and can effect signif
icant memory usage reductions directly related to the amount of sequentiality in the model.
Both techniques have been implemented as part of the SPIN verifier.

K eyw ords: Formal Methods, Verification, Model Checking

1 I n t r o d u c t i o n

With the growing complexity of hardware and software, the need to formally verify them is
being increasingly felt. Among the options available today, two of the prominent ones are
based on deduction and model-checking [8]. Although both methods have their proponents,
model-checking [3] is preferred when a relatively high degree of automation is desired, and when
one-of-a-kind reactive behaviors are involved. Model-checking can be carried out either via
im plicit enumeration where the state graph is implicitly traversed using (for example) BDD-
methods or via explicit enumeration where the state graph is explicitly traversed and processed
using graph algorithms. Both these approaches have their own strengths. Also, both methods
suffer from state explosion [16], combating which forms a central research problem. This paper
is about combating state explosion in explicit-enumeration-based verification.

S p ace/T im e Tradeoffs D uring Explicit E num era tion

Explicit enumeration forms the basis for a number of tools that have been used with great success
in validating several real-life protocols [12, 10, 11]. One problem with explicit enumeration is
that the available amount of memory often decides the size of the problem that can be handled;
most explicit-enumeration-based tools give 100% “coverage” till this limit is reached, and give
0% coverage once this limit is exceeded. Designers combat this abrupt loss of coverage in several
ways; almost always, they use techniques such as throwing away irrelevant states, reducing the
dimensions of the arrays involved, etc. [12]. Although this is essential in any verification

‘ Supported in part by N SF award MIP 9215878 and A PR A Contract N-0003995-C0018

approach, there are cases where even after problem-size reductions the number of states exceed
the available amount of memory.

Most tools in this area “prefer time over space”— i.e., given a choice between running out
of memory and giving slower responses, they prefer the latter. A justification for this attitude
is that verification “jobs” can (and are) often run as background jobs, and designers are often
willing to patiently wait for these jobs to come back with their answers, provided (according to
their experience), their patience will (almost always) be rewarded. These ideas are key to our
approach.

P ro m e la /S P IN , S u p ertrace , and Two S tate-space Search '

A simple and yet powerful method for effecting this “space/time tradeoff’ is used in an explicit-
enumeration-based tool called SPIN [11], Strictly speaking, SPIN employs two techniques for
effecting the space/time tradeoff: (1) supertrace, in which a “randomized” pruning of the state
graph is effected; (2) two state-space method, in which only the amount of stack growth gen
erated during a normal recursive depth-first search needs to be saved1. The experience of the
SPIN user-community (including us) tells that these methods work well in practice, and can
scale up to large problem sizes. In addition, descriptions of the system to be verified using SPIN
can be provided in a high-level programming language called Promela. Promela is based on
an asynchronous computational model which embodies powerful sequential and concurrent pro
gramming constructs that help the designer translate his/her thoughts about the protocols being
verified into Promela with minimal semantic distance. For these reasons, the work reported in
this paper is about enhancing the performance of the Promela/SPIN system.

Even with the use of supertrace and the two state-space method, SPIN suffers from state
explosion, mainly due to the sheer complexity that real-life systems have. There are two main
reasons for state explosion: interleaved concurrent execution, and the size of the data-state
space. In this paper, we are mainly concerned with the latter. Our research in this direction
was motivated by the fact that we are currently faced with the problem of verifying a large
distributed memory multiprocessor in which multiple identical components exist at all levels.
It is essential that we capitalize on the existence of these sym m etries and avoid enumerating
identical states repetitiously. The importance of exploiting symmetries is a widely studied
problem, and is described in the next section.

C om paring M ethods for Exploiting S ym m etries

There are many techniques available for exploiting symmetries. Three prominent categories of
methods are (1) scalar sets [13], (2) homomorphic reductions [15], and (3) network invariants

^ In the scalar-set method, a non-traditional data type (actually a non-traditional family of
data types) called the scalar set is employed. A scalar set is a set with a finite and fixed number
of elements. The elements of a scalar set, essentially, support only four operations: (1) equality
testing, (2) inequality testing, (3) for-all, and (4) there-exists. As an example of usage of a
scalar-set, consider an array A whose elements are treated identically by the protocol being
verified. One would then index A using an index variable of type scalar-set. One would then
only be able to test whether two index variables are the same or not, and either step through
all the array locations using for-all or choose an arbitrary array index using there-exists. This
information can be used by the verification tool to cut down the state space explored. In [13],
it has been shown that scalar-sets are very useful in practice.

Another method for exploiting symmetries employed in tools such as COSPAN [10] is that of
homomorphic reductions. In one instance of this approach, the system being verified is simplified
by examining its sub-component(s), identifying those that are subject to state explosion, and
replacing them by simplified sub-components that are equivalent with respect to the properties
being verified.

‘Plus a sm all overhead, actually

2

The network invariant method is a family of methods concerned with proving properties
about arbitrarily sized networks. In one approach of this type [16], a network PI I . . . of processes
is represented by a more general description of the form P I I Q where Q represents a network of
an arbitrary number of P’s. If a process such as Q (called the “network invariant”) can be found,
the task of verification is greatly simplified. In another approach, a network of the form PI I . . .
is replaced by an equivalent network of the form PN . The existence of a network invariant has
been widely studied [1, 16]. In yet another approach [2], given a finite-state model, a quotient
model that takes the symmetries in the problem into account is found, and used as the basis for
model checking.

A drawback of scalar-sets that we have identified is that there are some situations which call
for more than the four operations supported by scalar-set data objects. In the second example
used in this paper, that of the Rollback Chip described in Section 4, the so called written bits
(WB) array is indexed by two counters (called CMF and OMF) that are incremented in a
modulo fashion. It is the jo in t behavior of WB, CMF, and OMF that reveals symmetries. As
an example, the state (CMF=0,OMF=0,W B=“ones-only-at-position-0”) happens to be the same
as the state (C M F=l,O M F=l,W B =“ones-only-at-position-l”) because both these situations are
observationally equivalent as far as the RBC operations are concerned. If CMF and OMF were
implemented as variables of type scalar-set, they cannot be used to index WB and at the same
time be subject to modulo-increment operations which are carried out on them in the RBC
design. Such symmetries are closer in spirit to the notion of representation invariants captured
in works such as [9]. In this paper, we present our technique called state normalization for
exploiting symmetries at this level.

The homomorphic reduction approach is more general than the method we propose, but not
as direct and simple to apply. Although network invariants methods are elegant and some of
the results in this area are quite powerful [4], these methods have, hitherto, been demonstrated
only for simple classes of behaviors. For systems of the size and complexity we are interested
in tackling, it is not clear how difficult it will be to find suitable network invariants or quotient
models.

O ur C o n tribu tion : S ta te N orm alization

In this paper, our contribution is a simple method called state normalization. In this method,
the designer identifies the symmetries in the system manually, and expresses them as rewrite
rules on system states. Then, when the SPIN verifier runs, these rewrite rules are repeatedly
invoked on each new state generated until a normal form system-state is obtained2 The search
continues with respect to normal form states, and all un-normalized states are discarded. Our
results show that the method introduces only a low overall time overhead and effects a dramatic
reduction in the number of states generated.

We have implemented state normalization as an extension to the SPIN verifier. We report
experimental results obtained in the context of two non-trivial examples. The first example is
concerned with distributed locking and was manually derived from an actual C /C +-1- implemen
tation being developed by the systems group in our Department. Section 3 introduces state
normalization with the help of this example.

The second example is concerned with verifying the Rollback Chip which was developed by
our group several years ago [7] and is an IFIP WG 10.5 benchmark contributed by the second
author. A functional/equational manual proof of correctness has been completed for the RBC [7].
Our present exercise of re-describing RBC in a reactive system description language is consistent
with the manner in which system design refinement happens in formal design approaches: an
initial functional description is gradually transformed into a more reactive version that embodies
scheduling- and resource-related details. (See [6] for a case study of functional derivation followed
by reactive process derivation.) The RBC example is detailed in Section 4.

2This rewriting process always terminates; depending on efficiency considerations, the designer may not always
want to attain unique normal forms.

3

Because of the emphasis on implementation efficiency, the SPIN verifier compiles each
Promela specification annotated with verification assertions into C-code and runs this C-code,
rather than interpret Promela directly. In our current prototype, the state normalization proce
dures are coded in C and included with the above C-code. Writing normalization procedures in
the C language is an error-prone activity; hence, we have come up with a scheme to automate
this process, which is described in Section 5.

The rest of the paper is organized as follows. An overview of SPIN, the two state-space
method, and supertrace is provided in Section 2. This is followed by a detailed look at state
normalization via two examples (Sections 3 and 4). The normalizer is detailed in Section 5.
Concluding remarks are provided in Section 6 .

A n O v e r v i e w o f S P I N

SUPERTRACE
Hashing can alias states
thereby rendering DFS partial

A : Accept labels
P : Progress labels

A stack is
kept tor
effecting DFS

EXAMPLE ILLUSTRATING TWO STATE-SPACE METHOD

2*24-1

Figure 1: Overview of SPIN and Supertrace

Figure 1 provides an overview of supertrace. An automaton representing the joint execution of all
the components of the concurrent system being verified is generated through the asynchronous
product operator. An example of a product automaton is given in Figure 1. The graph of this
automaton is elaborated depth-first. The size of the automaton graph is cut down via pruning
which is achieved as follows. Each new state generated is hashed into the index-space of a one
dimensional bit-array called the “bit-bucket” hash-table, H. Suppose the current state is S, and
has successors 5,- — Supertrace computes the index k at which Si falls, and if H[k] is already
set, it is assumed that Si has already been visited; the search then continues with 5',-+i. On the
other hand, if H[k] is not set, the depth-first elaboration is continued at 5,-. A “randomized”
pruning of the state-space naturally occurs through hash collisions. For small problem sizes, a
regular hash table with linked-list buckets can be employed, which will then give full coverage.
SPIN supports this option also; one could view full-search as an extreme case of supertrace
(amount of pruning equals zero).

SPIN supports four basic kinds of checks: local (state) assertions, deadlocks, progress loops,

4

and accept cycles. State assertions establish safety properties. Any number of assertions can be
placed in the user’s Promela code, and these will be checked when control reaches that state.
Deadlocks are automatically detected and reported by SPIN when a state without a successor
is generated. Progress loops are loops in the state graph indicated by labels that begin with
keyword progress (shown as “P” in the figure). For a system to be free from livelocks, its
execution must be confined to one of its progress loops. Accept loops are opposite in sense:
executions traversing an accept loop are considered “bad”. They correspond to the acceptance
condition of a Biichi automaton that captures an undesirable infinitary execution (for instance,
unfair selection). Stack-growth during supertrace depends on the length of an execution path
before a state is deemed to have been revisited by supertrace.

Checking for progress loops and accept cycles by building the entire state-graph is highly
memory intensive. SPIN avoids this complexity by using the two state-space method, an example
illustrating which appears to the right of Figure 1. Suppose we would like to detect and report
the non-progress loop F, B, C, D, E, F (state “P” indicates the progress loop). A naive algorithm
to detect non-progress loops during the depth-first search phase proves to be very inadequate
[11]. SPIN uses modified depth-first search which works as follows on our example: when state
B is revisited, it builds the subgraph rooted at the state immediately prior to the revisited state
(state F in our example) in its entirety, in “the heap”. In our example, let us say that depth-first
search generated A, B, C, D, E, F, and B. At this point, the first path to be built in the heap
is F, B, P. This path is abandoned because it includes the progress label “P”. The next path
built in the heap is F, B, C, D, E, F, and this path is reported as being a non-progress loop.

Thus, instead of building the entire state-graph, the two state-space method needs to, at
a time, build only the amount of state contained in the depth-first stack plus a piece of the
state graph rooted at the revisit-point. State normalization is aimed at reducing the size of
the depth-first search stack and the number of entries (including collisions) made into the hash
table.

3 S t a t e N o r m a l i z a t i o n I l l u s t r a t e d o n a L o c k i n g P r o t o c o l

The basic idea behind state normalization is extremely simple: (1) manually identify states
that are equivalent, (2) select one of the states as the normal form, and (3) whenever a state
is generated during depth-first search, normalize it if it is not already so. Note that if an

Figure 2: A Caveat During Normalization

unnormalized state is generated as part of the regular depth first search, it is not acceptable
to just ignore that state and continue the search, hoping that the normalized form of the same
state will be eventually generated. This is explained with aid of an example in Figure 2 where
I is the initial state, state N1 is the normalized form of the state U l, N2 is the normalized form

5

of state U2, and N3 is the normalized form of the state U3. If the the un-normalized states
are just discarded, then U1 will be discarded, and hence N2 will never be generated. N l, an
equivalent state of U l, will be generated, and explored. However U2, the successor of N l, is also
discarded because U2 is not a normal form. Thus the search never visits N3 or its equivalent
form U3. Hence, whenever an un-normalized state is generated, it is necessary to normalize it
and pursue it, rather than discard it rightaway.

Equivalences among states are induced by the symmetries in the system being verified. It is
standard practice to require the designer to identify the symmetries in a system [12, 10, 2], Most
of the symmetries in concurrent systems are self-evident {e.g., Figure 3). This processor topology

Figure 3: The Multiprocessor Supporting the Locking Protocol

is typical of many concurrent protocols. The global state of such a system is a tuple of the states
of the individual processing nodes plus the state of the medium (or “bus”). Any specific state
that arises can always be normalized by taking processor 1 (for example) as the reference point.
For example, in a truly symmetric system, the situation of processor 2 having sent a request to
processor 3 and expecting a response from it can be rewritten into an equivalent situation with
processor 1 playing the role of processor 2, and processor 2 playing the role of processor 3. We
now proceed to present the details of the locking protocol and the state normalization function
used.

3.1 D eta ils o f th e L ocking P ro to co l
Acquire

po==m e
locked < - 1

po <> me
send req(po.me)

recv granted(Q)
queue <- Q

locked <- 1

queue == /i.\1
send grantedft) to h

locked <- 0
po <- h

queue == empty
locked <- 0

Handle

recv req(me,x)
po <> me
send req(po,x)

po == m e A locked == 0
po < - x
recv req(me,x)
send granted({}) to x

recv req(me,x)
append x to queue

Figure 4: State Machine Describing the Locking Protocol

A system of N processors communicate by sending message through a medium. The processors
coordinate among themselves to gain access to a shared resource protected by means of a lock.

6

Every processor maintains “probable owner”; a variable pointing to the processor (possibly
itself) which in its view is owning the lock (variable po of Figure 4). The lock is said to be
owned by a processor if and only if the probable owner is itself. The lock itself can be in one
of the two possible states at the owner: available or held. In Figure 4, states labeled C are
part of the critical section implemented by the locking protocol while those labeled NC and
W are outside this critical section. When processor p wants access to this critical section, it
will execute the Acquire process which first checks whether the lock is currently owned by p
(the check “po = = me”). If it is, then the lock is set to “held” (locked <— 1), and the critical
section is accessed. If p is not the current owner, a request for the lock is sent to the probable
owner, and p then waits in state W for a granted message. When a request message is received
by processor q, its Handle process is executed. This process checks to see if processor q is the
owner of the lock. If it is not, then the message is forwarded to whom processor q thinks to be
the probable owner. Otherwise, if the lock is currently in the held state (locked = = 1), then the
request is enqueued into the queue maintained by processor q. On the other hand, if the lock is
in the available state (locked = = 0), a granted message is sent to the requester (p) along with
the current queue which is empty ({>; it is an error to find locked = = 0 and the current queue
non-empty).

When the lock is released by the Acquire process, the queue is inspected to see if there are
any enqueued requests for the lock. If there are none, the lock is set to the available state. If
there are pending requests, a granted message is sent to the processor whose identity is at the
head of the queue (h). This message also carries the rest of the queue (t). The probable owner
is set to h and the locked status is cleared.

Each process in the state machine of Figure 4 is coded as one proctype in Promela. The
communication medium is modeled as a collection of ports, one port per process. The ports are
order-preserving, and their sizes are picked so as to make all send operations non-blocking. The
queues (called “queue” in Figure 4) are modeled as chan data type. Since a transition of an
acquire process can’t be taken simultaneously with a transition of a handle process on the same
node, the two processes co-ordinate by using a semaphore called ‘mutex’. (Semaphore ‘mutex’
is different from the variable ‘locked’, since mutex is a regular semaphore on a uniprocessor,
while variable ‘locked’ is distributed on multiple nodes. Also, to achieve the atomicity needed
to implement the test-and-set of ‘mutex’, the atomic construct of Promela is used.)

3.2 P ro p er tie s C hecked and R esu lts
The following properties were established:

1. At most one process is in the critical section implemented by the protocol (i.e., in state
C) at any given time.

2. The protocol is deadlock-free.

We also tried to establish global progress, defined as the ability of at least one of the processors
to be eventually in state C starting from any point in time. SPIN reported that global progress
was not being met, and gave the error trace shown in Figure 5.

The following table summarizes the performance of state normalization (N) relative to un
normalized executions (U). “Depth reached” was the stack depth-bound set for each SPIN run,
“nStates” was the total number of states visited, and “Time” was the elapsed time reported by
the Unix command tim e, in seconds.

Properties Depth reached nStates Time
U/N
U /N

Safety
Safety

100/100
300/300

37704/19240
293560/178546

1.5/4.0
11.7/35.7

U /N
U /N

Progress
Progress

100/100
300/300

246/246
246/246

0.06/0.09
0.07/0.12

7

Processor PO is the current owner of the lock, and Processor P I and Processor P2 point to P 0 through their
probable-owner variable. At this time, the medium, and all the queues are empty.

1. P I sends a request to P 0 for the lock.

2. Upon receipt of this request, PO sends a granted message to P I. In addition, it sets its probable-owner variable
to P I. (At this point, there is a temporary cycle in the probable-owner chain between PO and P I . Though
this cycle is meant to vanish, it m ay not always, as we will see shortly.)

3. Concurrently P 2 also sends a request to PO.

4. PO receives this request from P 2 and forwards it to P I, given that PO’s probable-owner variable is set to P I.

5. P i ’s Handle process acts on the request forwarded by PO before P i ’s Acquire process can act on the granted
message sent in step 2. This causes the Acquire process to block.

6. The handle process of P I continues to run, and forwards the request message from P 2 to PO, since P i ’s
probable owner is still pointing to PO.

7. PO forwards the message again to P i , which again interferes with the reception of granted message at P I (just
as it did in step 5). This process repeats. (Had the granted message been serviced, the probable-owner cycle
would have vanished.)

Figure 5: Error Trace

For Progress properties, both methods visited the same number of states before finding the
error. The un-normalized execution time is always lesser than the normalized execution time
which is to be expected in any method that tries to trade-off time for space. Also, upon deeper
examination, it was found that the process of normalizing a state (details given in Section 5)
itself consumed about 89% of the total execution time. Techniques to reduce the time taken to
normalize states need to be investigated.

It is worth noting that normalization can help detect progress violations at much lower search
depths. This is due to the fact that with normalization, the depth-first search procedure used
by SPIN does not stack equivalent states.

4 S t a t e S a v i n g b y E x p l o i t i n g S e q u e n t i a l i t y

We now illustrate our second state-saving technique on a different category which applies to
systems that are fairly deterministic in nature, and are typically derived from a procedu
ral/functional description. Examples of this category are data-intensive modules such as mem
ory management units, various tabular data structures, and the like. In particular, we pick
an example called the Rollback Chip for which we have, in our prior work, come up with a
functional/equational specification and verified correctness using verification conditions gener
ated from a computational induction scheme [7]. Our asynchronous synthesis group is currently
actively engaged in trying to reimplement the RBC by detailing its operations to include more
scheduling and resource sharing information. In a formal sense, this is a process of conducting
design refinements [14] in a functional framework, and leading through a process/reactive frame
work. (An example of our past work in this area in deriving a pipelined multiplier is reported
in [6].)

4.1 O verview o f th e R B C Sp ecification

RBC [5] is a simple memory management unit designed to speed up the process of state saving
and rollback in distributed discrete event based simulation using Time Warp. For the purpose
of this paper, its functionality can be understood as follows. The RBC behaves like an abstract
data type object with interface operations reset to initialize the RBC, mark and rollback to
change the address mapping function, and read to map a given logical address to a physical

8

address. All these operations have a purely functional description given in [7], where a proof
of correctness (using equational reasoning) of the refinement of the RBC architecture has been
reported. The Promela version of the RBC system was arrived at by modeling each RBC
operation through a proctype. Invoking an operation is achieved by a message to the process
associated with the operation, and waiting for a reply from the process.

Symmetries in this example cannot be exploited using scalarsets for reasons explained on
Page 3. However, our normalization technique does work, as it is based on explicitly normalizing
states. We do not elaborate upon state normalization in the context of the RBC example, as it
has already been illustrated on the locking protocol. Instead, in this section, we look at another
method to cut down memory requirements which is based on exploiting purely sequential regions
of the RBC operations.

4.2 R esu lts ,
Despite scaling the problem size down, the RBC model couldn’t be completely verified due
to the high number of reachable states. One problem identified was that the SPIN run time
system was saving state after executing each statement of a process. However, this state saving
is necessary only if there are multiple enabled threads in an execution. In case of the RBC,
however, only one thread is enabled at any given time. (This was because the Promela version
was a direct translation of the functional description given in [7]. Successive refinements of this
Promela version will have much more concurrency; however, in these versions also there would
be occasional sequential regions.) This fact can be exploited by not saving states in-between
the individual steps contained in a sequential region. This resulted in a sixfold reduction in
memory requirements. More specifically, the unoptimized version needed a depth of 350 just to
visit every single statement of the protocol while the optimized version could achieve the same
effect with a depth of only 55. A total of 18646 states were stored in the optimized version,
while a total of 97947 states were stored in case of the unoptimized version. With a hash table
of size 218, the former produced only 641 collisions, while the later produced 60,973 collisions.

5 I m p l e m e n t a t i o n o f t h e N o r m a l i z e r

We now describe details of the normalizer with respect to the locking protocol. This protocol is
symmetric with respect to the processor IDs. However, because of interdependencies between
the processors through their “probable owner” variables, the normalizer is somewhat involved.
These dependencies also extend through the message queues and other data structures.

A simplified version of the normalizer is shown in Figure 6. In this figure, LESS-THAN
corresponds to an arbitrary partial order chosen by the user with respect to which the normal
izations are performed. Function normalize “sorts” the positions of the processors in the state
vector according to the partial order LESS-THAN. Whenever the partial order is violated, the
normalizer exchanges the processors involved. It first exchanges the local variables, and then
proceeds to examine the dependencies introduced by the probable owner variable and adjusts
them accordingly. Then dependencies through the messages in the medium are traced, and
normalized suitably.

In our current SPIN prototype implementing normalizations, the code in Figure 6 was man
ually written. As this process is error-prone, we are in the process of developing a compiler that
can take a high level description of the symmetries and automatically generate the normalizer
code. For instance, the locking protocol would be described as shown in Figure 7.

In Figure 7, queues are represented as a list of processor-ids and the medium by “from:<ID>,
to:<ID>, message<BODY>”. Notation [P /{el -> e l ’, e2 ->e2’, ...}] means every occurrence of el
is replaced by e l ’ and every occurrence of e2 is replaced by e2’ in P (all replacements are done
concurrently). If e l = e2, then e l ’ and e2’ must end up being equal.

Given such a rewrite rule, the system creates a partial order function compare(ij) which
returns '<’, “= ’, or “>’. If multiple rewrite rules are present, one compare function is generated

9

function normalize (state)
{ for i := 1 to number_of.processes do

for j := i +1 to number.of.processes do
if LESS-THAN(processor[i], processor[j]) then

— Exchange value ’i ’ with ’j ’
— F irst exchange the local variables,
temp := local_variables (processor [i]);
local_variables(processor[i]) := local_variables(processor[j]);
local_variables(processor[j]) := temp;

— Now adjust any dependencies throuh probable.owner
— or the queue.
for k := 1 to number.of.processors do

if (processor[k].probable_owner==i) then
processor[k].probable.owner := j;

e ls if (processor[k].probable_owner==j) then
processor[k].probable.owner := i;

end i f ;
foreach element (e in processor[k].Queue) do

if (e = i) then
replace e with j

e ls if (e = j) then
replace e with i

endif;
end do e;

end for k;

— Now check the medium state ,
foreach message (m in medium) do

if (DesinationOf(m)== i) then
DesinationOf(m) := j;

e ls if (DesinationOf(m) == j) then
DesinationOf(m) := i;

endif;
end do m;
foreach message (m in medium) do

if (SourceOf(m)== i) then
SourceOf(m) := j;

e ls if (SourceOf(m) == j) then
SourceOf(m) := i;

endif;
end do m;

end if ; — if LESS-THAN
end for j ;
end for i;

}

Figure 6: The Normalizer

10

{ (forall X
(Processor[X].po = P), (processor[X].Queue = Q))

(medium = H)
}
EQUALS — Exchange processor i with processor j

— for some arbitrary i , and j .
{

(Processor[X] .po = [P/{i->j, j-> i}]),
(Processor[X].Queue=[Q/{i->j, j-> i}])»
(medium = M/{ from:i->from:j, from:j->from:i,

to :i-> to : j , to :j-> to:i})
>

Figure 7: High-Level Description of Symmetries

per rule. Compare(ij) applies the rewrite rule, and then checks to see if the new vector is less
than, equal, or greater than the original vector. If Compare(ij) returns “>’ then the original
vector is considered to be in normal form. If Compare(i j) returns the rewrite rule has no
effect on the current state. If Compare(ij) returns “<’ then the rewrite rule is applied, and the
new vector is considered to be in normal form.

This normalization is not confluent when more than one rewrite rule is present, in that two
state vectors which are equivalent under the rewrite rules might not be reduced to the same
normal form. However, when only one rewrite rule is present, the process is confluent. In
general, finding the normal form for a state is known to be an NP-complete problem [2].

6 C o n c l u s i o n s a n d F u t u r e W o r k

The results of Section 3 demonstrate that exploiting the symmetries can result in a significant
improvement in the usage of available memory. It is therefore very important to exploit such
symmetries to be able to verify large concurrent systems. This technique is more general than
scalar sets [13] or network invariants [16]. While not as general as homomorphic reductions [15],
it is simpler, and straightforward to apply. Also, Section 4 demonstrates that identifying the
sequential regions of a protocol can result in significant savings in memory.

In Section 5 we presented a technique to translate high-level rewrite rules into a low-level
normalization routine. This technique needs to be further investigated and implemented. It
would also be useful to provide an automatic procedure to (1) identify the symmetries in a
system and (2) check that the rewrite rules are consistent.

R e f e r e n c e s

[1] Felice Balarin and Alberto L. Sangiovanni-Vincentelli. On the automatic computation of
network invariants. In Computer-Aided Verification, pages 234-246, Stanford, CA, June
1994.

[2] E. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic model checking.
In Computer Aided Verifcation, pages 450-163, Elounda, Greece, June 1993.

[3] Edmund Clarke, Allen Emerson, and Arvind Sistla. Automatic verification of finite-state
concurent systems using temporal logic. ACM Transactions on Programming Languages
and Systems, 8(2):244-263, 1986.

[4] E. Allen Emerson and Kedar S. Namjoshi. Reasoning about rings. In Proc. of the 21st
Annual Symposium on the Principles of Prog. Langs. ACM, 1994.

11

[5] Richard M. Fujimoto, J. -J. Tsai, and Ganesh Gopalakrishnan. Design and evaluation of the
rollback chip: Special purpose hardware for time warp. IEEE Transactions on Computers,
41(1):68—82, January 1992.

[6] Ganesh Gopalakrishnan and Venkatesh Akella. A transormational approach to asyn
chronous high-level synthesis. In VLSI’93, number 2, September 1993. Grenoble, France.

[7] Ganesh C. Gopalakrishnan and Richard Fujimoto. Design and verification of the rollback
chip using HOP: A case study of formal methods applied to hardware design. ACM Trans
action on Computer Systems, 11 (2):109—145, May 1993.

[8] Aarti Gupta. Formal methods: A survey. Formal Methods, 1994.
[9] John V. Guttag, Ellis Horowitz, and David R. Musser. Abstract data types and software

validation. Communications of the ACM, 21(12): 1048—1064, December 1978.
[10] Z. Har’El and R.P. Kurshan. Software for analysis of coordination. In Proc. In t’l Conference

on System Science, 1988.
[11] Gerard Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

[12] Alan Hu, David Dill, Andreas Drexler, and Han Yang. Higher-level specification and
verification with BDDs. In Computer Aided Verification, pages 82-96, Montreal, Canada,
June 1992.

[13] C. Norris Ip and David L. Dill. Better verification through symmetry. In In t’l Conference
on Computer Hardware Description Language, 1993.

[14] Steven D. Johnson. Synthesis of Digital Designs from Recursion Equations. The MIT
Press, 1984. An ACM Distinguished Dissertation-1983.

[15] Robert P. Kurshan. Formal verification of coordinating processes. Mathematics Research
Center, AT&T Bell Labs Murray Hill, NJ, 1994.

[16] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Press, 1993.

12

