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Abstract 

Multi-sensor systems pose the problem of how to coherently and efficiently treat the 

data provided by the various sensors. However, the availability of greater numbers of 

sensors also broadens the ability to build fault tolerant sensor systems. We define a 

framework in which sensors can be abstractly defined in .terms of computational 

processes operating on the output from other sensors. Such processes are called logical 

sensors. Logical sensors make sensor configuration and integration easier and facilitate 

reconfiguration of sensor systems so that fault tolerance can be both expressed and 

achieved. 
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1. Introduction 

Both the availability and need for sensor systems is growing, as is the complexity in 

terms of the number and kind of sensors within a system. For example, most pattern 

recognition systems to date have been designed around a single sensor or a small 

number of sensors, and ad hoc configuration techniques have been used for sensor 

integration and operation. In the future, however, such systems must operate in a 

reconfigurable multi-sensor environment; for example, there may be several cameras 

(perhaps of different types), active range finding systems, tactile pads, and so on. In 

addition, a wide variety of sensing devices of different kinds, including mechanical, 

electronic, and chemical, are available for use in sensor systems, and a sensor system 

may include several kinds of sensing devices. Thus, in a multi-sensor system, the need 

to develop a coherent and efficient treatment of the information provided by many 

sensors, particularly when the sensors are of various kinds, becomes paramount. 

The emergence of multi-sensor systems is one of the principal motivations for logical 

sensor specification. In addition, multi-sensor systems present a challenging opportunity 

to turn what is in one case a source of weakness (the number and variety of sensors) 

into a source of strength in terms of building fault tolerant sensor systems. This is the 

issue which we concentrate on in this paper. Other motivations include: the benefits of 

data abstraction and modularity, and the benefits of a hardware/software transparency so 

that smart sensors can easily replace software. 

In single sensor systems, backup sensors would generally be duplicates of the failed 

sensor, or would be "functionally equivalent" to it. By "functionally equivalent" we mean 

that the backup sensor performs similarly to the failed sensor. However, having sensors 

which are to act solely as backups is not only expensive, but may also be difficult due to 

physical space limitations. Stopping the system in order to replace a sensor limits the 

effectiveness of this fault tolerance mechanism in sensor systems which are expected to 

run continuously or near-continuously. One answer to this problem lies in extending our 

view of "functionally equivalent." We concentrate on determining whether data is 

functionally equivalent, rather than determining if physical sensors are functionally 

equivalent. We take this approach to maximize the possibility of using sensors which are 

already doing duty in the system to produce data which is "equivalent" to that which the 

failed sensor would have produced. For example, the kind of data produced by a physical 
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laser range finder sensor could be "functionally equivalent" to that produced by two 

cameras and a particular stereo program. Thus. one backup for the laser range finder 

could be a module composed of the two cameras and the stereo program. As this 

example illustrates. backups may well, not be simple replacement of sensors • but 

replacements which involve one or more sensors. and one or more software modules. 

Thus. in order to take advantage of the greater opportunities for building fault tolerant 

sensor systems. it is necessary to express the replacement of a single sensor with a 

sensor-software "package" to the system. In addition. the user may need guidelines to 

help determine "functional equivalence." The Logical Sensor Specification Language 

makes use of data abstraction to build "packages" and to express fault tolerance. We 

explain how this is accomplished by the Logical Sensor Specification Language and 

describe the extensions which implement fault tolerance and which will help users design 

sensor systems with a greater degree of fault tolerance. We note that the inherent 

hardware/software transparency has been exploited as the basis for a uniform approach 

to fault tolerance mechanisms. We show how these extensions. together with this 

uniform approach. can also constitute a tool for automatic sensor system specification. 

2. Logical Sensors 

Logical Sensors constitute one major component of the Multi-sensor ~ernel ~ystem 

(MKS). MKS has been proposed as an efficient and uniform mechanism for dealing with 

data taken from several diverse sensors [1. 2. 3. 5]. MKS has three major components: 

low-level data organization. high-level modeling. and logical sensor specification. The 

first two components of MKS concern the choice of a low-level representation of real

world phenomena and the integration of that representation into a meaningful 

interpretation of the real world. and have been discussed in detail elsewhere [5]. The 

logical sensor specification component aids the user in the (re)configuration and 

integration of data such that. regardless of the number and kinds of sensing devices. the 

data is represented consistently with regard to the low-level organization and high-level 

modeling techniques that are contained in MKS. However. a use for logical sensors is 

evident in any sensor system which is composed of several sensors or where sensor 

reconfiguration is desired. and the logical sensor specification component may be used 

independently of the other two MKS components. 
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Multi-sensor systems can present a user with a confusing plethora of details concerning 

both the sensors and associated software. However, not every detail is important in 

every sensor system. Logical sensors are a means by which to insulate the user from 

unnecessary details, and thereby allow the user to concentrate on the information which 

is actually necessary to determine system configuration. This is accomplished by 

creating "packages" of sensors, and allowing only some information about the package to 

be visible to the rest of the system. Going back to our earlier example, the ~ of data 

produced by the physical laser range finder sensor was also the type produced by the 

two cameras and the stereo program. This similarity of output result renders the 

alternate methods functionally equivalent, and is more important than details concerning 

the methods themselves. Logical sensor specification allows the user to ignore such 

differences of how output is produced, and treat different means of obtaining "equivalent" 

data as "Iogically" the same. We note, however, that from the fault tolerance viewpoint, 

type of output alone may not be enough to determine "functional equivalence" and hence 

a logical sensor should have visible features other than type. 

A logical sensor is defined in terms of four parts: 

1. A logical sensor name. This is used to uniquely identify the logical sensor. 

2. A characteristic output vector. This is basically a vector of types which 
serves as a description of the output vectors that will be produced by the 
logical sensor. Thus, the output of a logical sensor is a set (or stream) of 
vectors. each of which is of the type declared by that logical sensor's 
characteristic output vector. The type may be any standard type (eg., real. 
integer), a user generated type, or a well-defined subrange of either. When 
an output vector is of the type declared by a characteristic output vector (i.e .. 
the cross product of the vector element types), we say that the output vector 
is an "instantiation H of that characteristic output vector. 

3. A selector whose inputs are alternate subnets (below). The role of the 
selector is to detect failure of an alternate and switch to a different alternate. 
If switching cannot be done. the selector reports failure of the logical sensor. 

4. Alternate Subnets. This is a list of one or more alternate ways in which to 
obtain data with the same characteristic output vector. Hence. each alternate 
subnet is equivalent, with regard to type, to all other alternate subnets in the 
list, and can serve as backups in case of failure. Each alternate subnet in the 
list is itself composed of: 

* A set of input sources. Each element of the set must either be itself a 
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logical sensor, or the empty set (null). Allowing null input permits 
physical sensors, which have only an associated program (the device 
driver), to be described as a logical sensor, thereby permitting uniformity 
of sensor treatment. 

* A computation unit over the input sources. Currently such computation 
units are software programs, but in the future, hardware units may also 
be used. In some cases, a special "do-nothing" computation-unit may 
be used. We refer to this unit as PASS. 

A logical sensor can be viewed as a network composed of sub-networks which are 

themselves logical sensors. Communication within a network is controlled via the flow of 

data from one sub-network to another. Hence, such networks are data flow networks. 

3. Fault Tolerance 

The Logical Sensor Specification Language has been designed in accordance with the 

view that languages should facilitate error determination and recovery. As we have 

explained, a logical sensor has a selector which takes possibly many alternate subnets as 

input. The selector determines errors, and attempts recovery via switching to an another 

alternate subnet. Each alternate subnet is an input source - computation unit pair. 

Selectors can detect failures which arise from either an input source or the computation 

unit. Thus, the selector together with the alternate subnets constitute a failure and 

substitution device, that is, a fault-tolerance mechanism, and both hardware and software 

fault tolerance can be achieved. This is particularly desirable in light of the fact that 

"fault tolerance does not necessarily require diagnosing the cause of the fault or even 

deciding whether it arises from the hardware or software" (emphasis added) [4]. In a 

multi-sensor system, particularly where continuous operation is expected, trying to 

determine and correct the exact source of a failure may be prohibitively time-consuming. 

Substitution choices may be based on either replication or replacement. Replication 

means that exact duplicates of the failed component have been specified as alternate 

subnets. In replacement a different unit is substituted. Replacement of software modules 

has long been recognized as necessary for software fault-tolerance, with the hope, as 

Randall states, that using a software module of independent design will facilitate coping 

"with the circumstances that caused the main component to fail" [4]. We feel that 

replacement of physical sensors should be exploited both with Randall's point in view, 

and because extraneous considerations, such as cost. and spatial limitations as to 
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placement ability are very likely to limit the number of purely back-up physical sensors 

which can be involved in a sensor system. 

3.1. Recovery Blocks 

The recovery block is a means of implementing software fault tolerance [4]. A recovery 

block contains a series of alternates which are to be executed in the order listed. Thus, 

the first in the series of alternates is the primary alternate. An acceptance test is used to 

ensure that the output produced by an alternate is correct or acceptable. First the 

primary alternate is executed, and its output scrutinized via the acceptance test. If it 

passes, that block is exited, otherwise the next alternate is tried, and so on. If no 

alternate passes, control switches to a new recovery block if one (on the same or higher 

level) is available; otherwise, an error results. 

Similarly, a selector tries, in turn, each alternate subnet in the list, and tests each one's 

output via an acceptance test. However, while Randall's scheme requires the use of 

complicated error recovery mechanisms (restoring the state, and so on), the use of a 

data-flow model makes error-recovery relatively easy. Furthermore, our user interface 

computes the dependency relation between logical sensors [1]. This permits the system 

to know which other sensors are possibly affected. 

The general difficulties relating to software acceptance tests, such as how to devise 

them, how to make them simpler than the software module being tested, and so on, 

remain. It is our view that some acceptance tests will have to be designed by the user, 

and that our goal is simply to accommodate the use of the test. Unlike Randall, we 

envision the recovery block as a means for both hardware and software fault-tolerance, 

and hence we also allow the user to specify general hardware acceptance te"' s Such 

tests may be based, for example, on data link control information, 2-way handSilaking and 

other protocols. It is important to note that a selector must be specified even if there is 

only one subnet in a logical sensor's list of alternate subnets. Without at least the 

minimal acceptance test of a "time-out," a logical sensor could be placed on hold forever 

even when alternate ways to obtain the necessary data could have been executed . Given 

the minimal acceptance test, the selector will at least be able to signal failure to a higher 

level selector which may then institute a recovery. However, we also wish to devise 

special schemes for acceptance tests when the basis for substitution is replacement. 



6 

While users will often know which logical sensors are functionally equivalent , it is also 

likely that not all possible substitutions of logical sensors will be considered. Thus, we 

are interested in helping the user expand what is considered functionally equivalent. 

Such a tool could also be used to automatically generate logical sensors. We give an 

example logical sensor network in Figure 1. This example shows how to obtain surface 

point data from possible alternate methods. The characteristic output vector of 

Rangefinder is (x:real,y:real,z:real) and is produced by selecting one of the two alternate 

subnets and "projecting" the first three elements of their characteristic output vectors. 

The preferred subnet is composed of the logical sensor Image_Range. This logical sensor 

has two alternate subnets which both have the dummy computational unit PASS. PASS 

does not effect the type of the logical sensor. These alternatives will be selected in turn 

to produce the characteristic output vector (x:real,y:real,z:real,i:integer). If both alternates 

fail (whether due to hardware or software), the Image_Range sensor has failed. The 

Rangefinder then selects the second subnet to obtain the (x:real,y:real,z:real) information 

from the Tactile _Range's characteristic output vector. If the Tactile_Range subsequently 

fails, then the Range finder fails. Each subnet uses this mechanism to provide fault 

tolerance. 

3.2. Ramifications of Fault-Tolerance Based on a Replacement Scheme 

Many difficult issues arise when fault tolerance is based on a replacement scheme. 

Because the replacement scheme is implemented through the use of alternate subnets, 

the user can be sure that the ~ of output will remain constant, regardless of the 

particular source subnet. Ideally, however, we consider that a replacement based scheme 

is truly fault tolerant only if the effect of the replacement is within allowable limits, where 

the allowable limits are determined by the user. As a simplified example, consider a 

sensor system of one camera, A, and a back-up camera, of another type, B. Suppose 

camera A has accuracy of ~ 0.01%, and camera B has accuracy of ~0.04%. If the user has 

determined that the allowable limit on accuracy is ~0.03%, then replacement of camera A 

by camera B will not yield what we call a truly fault tolerant system; if the allowable limit 

is -~0.05%, the replacement does yield a truly fault tolerant system, as it will if the user 

has determined that the system should run regardless of the degree of accuracy. 

As mentioned above, determining functional equivalence may necessitate seeing more 

of a logical sensor than merely its type. This example illustrates this point in that we 
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(x:real,y:real,z:real) 

.---------------------. 
Range_Finder 1 Select 1 

1---------------------1 
1 Project 1 Project 1 
1 1_2_3 1 1_2_3 1 

,---------------------, 
(x:real,y:real,z:real,i:int) / 

/ 
.----------------. 

Image_Range 1 Select 1 

/ 
/ 

/ 
/ 

1----------------1 
1 PASS 1 PASS 1 

/ 
/ 

/ Stereo 

\ 
.----------. 
1 Select 1 
1----------1 
IPASS 1 PASS 1 

/ \ 
. ----------. .-------- . .--------. 
1 Select 1 Stereo 1 Select 1 1 Select 1 
1----------1 1 1--------1 1--------1 
1 P1 1 P2 1 1 Fast 1 1 Slow 1 
1 1 1 1 Stereo 1 1 Stereo 1 
---------- -------- ,--------, 

(x:real,y:real,z:real, 
force:real) 

.--------. 
1 Select 1 Tactile_Range 
1--------1 
1 3-D 1 

Stereo 
2 

(1 : int ,j : int, 
force:real) 

.----------. 
1 Select 1 Tactile Pad 
1----------1 
1 Combine 1 

(i:int, 
j:int, 
level:int) 

(force:real) / \ 
/ 1 ••• \ 

Camera 
1 

.--------. 
1 Select 1 

1--------1 
1 Driver 1 

. --------. 
1 Select 1 
1--------1 
1 Driver 1 
--------

Camera 
2 

.------ . .------. 
1 Select 1 1 Select 1 
1------1 1------1 
IDriverl IDriverl 
------ , , ------ , 

T1 T2 

FIGURE 1: Logical sensor network for Range_Finder. 

. ------
ISelectl 
1------1 
IDriverl , ------

Tn 
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have isolated a need to know more about leaf logical sensors (physical sensors). 

However, we also mentioned that the above example was simplified. Let us now assume, 

in addition, that the user can use a variety of algorithms to obtain the desired final 

output. Suppose one of those algorithms incorporates interpolation techniques which 

could increase the degree of accuracy over camera B's input. In this case, the user may 

be able to use camera B and this algorithm as an alternate subnet and have a truly fault 

tolerant system , even if camera B's output is not itself within the allowable accuracy 

limit. Thus, when we consider a slightly more complex example, we see a general need 

for having features (beside type of output) of logical sensors visible, and a need to 

propagate such information through the system. 

Feature propagation, together with allowable limit information, is needed for 

replacement based fault-tolerance schemes, and constitutes an acceptance test 

mechanism. . In addition, such feature propagation has a good potential for use in 

automatic logical sensor system specification/optimization. For example, consider a work 

station with several sensors. Once various logical sensors have been defined and stored, 

feature propagation can be used to configure new logical sensor with properties in 

specified ranges, or to determine the "best" (within the specified, perhaps weighted, 

parameters) logical sensor system Thus, feature propagation is necessary for both fault 

tolerance and automatic generation of logical sensor systems, and it is our view that the 

basic scheme will be the same in either case. 

4. LSS: An Implementation of Logical Sensors 

A Logical Sensor Specification system, LSS, has been developed and implemented in the 

"e" programming language under UNIX, a registered trademark of Bell Labs. This 

specification system provides a user-interface for interactivly editing sensor systems, 

networks. This system allows the capability of providing alternate subnets for assisting 

the fault-tolerance issue as well as computing the dependency relation between sensors 

as previously mentioned. 

When entering a new system, the user begins by building logical sensors based on the 

physical sensors available. These sensors may be used to construct other logical sensors 

consisting of input vectors from other logical sensors, a computational unit, and a 

characteristic output vector. The user may specify alternate subnets to be selected in 
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case of sensor failure by giving a· computational unit and its various input vectors. All 

alternate subnets for a particular sensor produce the same characteristic output vector. 

The system facilitates interactive editing of sensor systems by allowing the user to either 

delete or modify a particular logical sensor thus modifying subnets. If this alteration 

affects any other sensors in the network, the user is notified of this problem. 

To exemplify this, we present portions of the specification of the sensor system given in 

Figure 1. Figure 2 shows the screen layout after the declaration of the physical device, 

camera_1, used in the logical sensors: LS, Fast_Stereo, and Slow Stereo. This logical 

sensor has no inputs since it is a physical device and is characterized by the output 

vector (x:real,y:real,i:integer). The computational unit is the device driver for the camera. 

There are no alternate subnets specified for this logical sensor. 

LOGICAL SENSOR NAME: camera 1 

ALTERNATE SUBNET 
INPUT SENSOR NAME INPUT VECTOR 

enter command> input camera_1 
Another Subnet? [y or n] n 
enter command> 

PROGRAM ID: camera driver 
CHARACTERISTIC OUTPUT VECTOR 
ELEMENT NAME 

x 
Y 
i 

ELEMENT TYPE 
real 
real 
integer 

FIGURE 2: CRT screen after specifying camera_, 
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Figure 3 demonstrates the specification of Fast_Stereo. This logical sensor is specified 

in terms of two input vectors, from camers_1 and camera _2, the computational unit 

Hfast_ stereoN and the characteristic output vector, (x:reaLy:real.z:rea!.i:integer). This logical 

sensor has no alternate subtrees defined. The asterisks by the input vectors indicate 

which elements are to by used by the computational unit. 

LOGICAL SENSOR NAME: Stereo 1 

----------------------------------------------------------------------------1 
ALTERNATE SUBNET PROGRAM ID: fast stereo 1 

INPUT SENSOR NAME INPUT VECTOR CHARACTERISTIC OUTPUT VECTOR I 
ELEMENT NAME ELEMENT TYPE I 

camera 1 • x x real I 
• y y real I 
• i z real I 

i integer I 
camera 2 • x I 

• y 1 

• i 1 

1 

1 

1 

----------------------------------------------------------------------------1 
enter command> input Stereo_1 
Type 1.1 to Select input or space to skip 
Another Subnet? [y or n] n 
enter command> 

FIGURE 3: CRT screen after specifying Stereo_' 
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Next we'll show the specification for the top level logical sensor Range Jinder. This 

logical sensor has the characteristic output vector (x:real,y:real,z:real) and is composed of 

two alternate subnets. The first alternate subnet is shown in Figure 4. This subnet is 

composed of the input vector, (x:real,y:real,z:real,i:integer), from the logical sensor 

Image_Range and the computational unit "Project 1 2 3 H which will project the first three 

elements of its input vector. 

LOGICAL SENSOR NAME: Range_Finder 

ALTERNATE SUBNET 
INPUT SENSOR NAME INPUT VECTOR 

image_range 
• x • y 

• z 
i 

enter command> input Range_Finder 

PROGRAM 10: Project_1_2_3 
CHARACTERISTIC OUTPUT VECTOR 
ELEMENT NAME 

x 
y 
z 

ELEMENT TYPE 
real 
real 
real 

Type '.' to Select input or space to skip 
Another Subnet? [y or n] y 
enter command> 

FIGURE 4: CRT screen after specifying first subnet of Range Jinder 
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Figure 5 shows the specification of the second alternate subtree which consists of the 

input vector, (x:real,y:real,z :rea!.f:real), from the logical sensor Tactile_Range and the same 

computational unit as the first alternate subnet, "Project 1 2 3". The remaining portions 

of the entire network were defined in a similar way. 

LOGICAL SENSOR NAME: Range_Finder 

ALTERNATE SUBNET 2 PROGRAM ID: Project 1 2 3 
INPUT SENSOR NAME INPUT VECTOR CHARACTERISTIC OUTPUT VECTOR 

ELEMENT NAME ELEMENT TYPE 
tactile_range * x x real 

* y y real 
* z z real 

f 

I 
----------------------------------------------------------------------------1 

enter command> input Range_Finder 
Type ,*, to Select input or space to skip 
Another Subnet? [y or n] n 
enter command> 

FIGURE 5: CRT screen after specifying Range_Finder 

5. Current Research Issues 

We are currently investigating several aspects of logical sensor systems: 

"" Semantics of logical Sensor Systems. Both the operational and denotational 
semantics of logical sensor systems require thorough investigation if the 
fundamental properties of logical sensor systems are to be understood. 

"" Sensor/Algorithm Performance Evaluation. It is crucial in many applications to 
know the effect of passing data of known characteristics through some 
algorithm implemented on a certain architecture. For, example, if an algorithm 
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merges data from two different resolutions, its output most probably is of the 
lower resolution of the two. On the other hand, some algorithms actually 
improve the quality of the data (e.g., subpixel feature detectors in images). 

* Automatic Logical Sensor Generation. Given an expert system on sensors and 
algorithms which work. on those sensors, it may be possible for an AI system 
to demand new logical sensors based on the k.inds of objects or features that 
it needs to detect in the world. The simplest example would be new sensors 
with constants instead of variables for some element of the characteristic 
output vector. E.g., given a logical sensor which detects circles of any radius, 
a logical sensor could be easily generated to detect circles of a fixed radius. 

* Implementation Issues. Finally, there are the issues of efficiency and 
robustness which must be addressed. It is imperative to provide a system 
which performs in real-time and with low probability of unrecoverable error. 
Even the characterization of the probability of error is difficult. 
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