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Summary 

The n-queens problem is a classical combinatorial problem in artificial intelligence (AI) 
area. Since its simplicity and regular structure, this problem has widely been chosen as 
a testbed to develop and benchmark new AI search problem-solving strategies in the AI 
community. Due to its inherent complexity, so far even very efficient AI search algorithms 
can only find a solution for n-queens problem with n up to about 100. In this manuscript 
we present a new probabilistic local search algorithm which is based on a gradient-based 
heuristic. This efficient algorithm is capable of finding a solution for over 1,000,000 queens 
in several CPU hours on a 25Mhz Motorola 68030 computer. 
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1 Introduction 

The n-queens problem is a classical combinatorial problem in AI search area. We are not 

interested primarily in the n-queens problem per se, but rather as a relatively simple yet 

nontrivial case study and testbed in which to explore general issues, principally the issue 

of designing efficient AI search algorithms and predicting their performance [4, 9]. Due to 

the exponential growth of the search load in the n-queens problem, in present day even very 

efficient AI search algorithms can only handle the complexity (i.e., find out a solution) for 

about 100-queens [9]. There is little progress in exploring the n-queens problem for larger 

sizes during the last decade. 

In this manuscript we give a new probabilistic local search algorithm which is based on a 

gradient-based heuristic. This algorithm is capable of providing a solution for over 1,000,000 

queens in several CPU hours on a 25Mhz Motorola 68030 computer. We believe that this 

new algorithm, its search technique, and the results of the n-queens problem may shed light 

on understanding other constraint-based AI search problems. 

In Sections 2 and 3, the n-queens problem and the basic techniques to solve the n-queens 

problem are briefly introduced. Our new algorithm and its search technique for the n-queens 

problem are described in Section 4. We show the run-time behavior of this new algorithm 

and its comparisons with other previous work in Section 5. The conclusions are given in 

Section 6. 

2 The N -Queens Problem 

The 4-queens problem is the simplest instance of the n-queens problem. This problem is 

to place four queens on a 4 x 4 chessboard so that no two queens attack each other. That 

is, no two queens are allowed to be placed on the same row, the same column, or the same 

2 



diagonal. In the general n-queens problem, a set of n queens is to be placed on an n X n 

chessboard so that no two queens attack each other. 

In the following discussion, we assume that each row will be occupied by one queen only. 

Four queens in the 4-queens problem are labeled with the numbers 1 through 4. Any possible 

solution of the 4-queens problem can be represented as the 4-tuple (ql, ... , q4) where qi is a 

column position on which the queen in the i-th row is placed. 

3 Techniques to Solve the N -queens Problem 

One method for solving the n-queens problem which systematically generates all possible 

solutions is known as backtracking search. A search problem involving backtracking can be 

represented in a (search) tree representation. As shown in Figure 2, for the 4-queens problem, 

each 4-tuple forms a possible path from the root to a leaf node in the search tree. 

Here we start with the first column and first row, and assign to it the first queen from 

the 4-tuple. Then ,we select the second queen from the 4-tuple and assign it to the second 

row such that no queens attack. We continue with the placement of the next queen from 

the 4-tuple to the next row until all queens are placed. If at any point we run out of column 

positions for a queen to be placed, we simply go back one step (backtrack), chose another 

conflict-free column position on the previous row, and continue the process. If we are able 

to assign column positions to all the queens then we have found a solution; otherwise, there 

are no solutions. 

In the 4-queens problem, the backtracking search tree consists of only 2 leaf nodes (2 

solutions). One of the solutions and a partial search tree in this case are shown in Figures 1 

and 2. 

There are many variations of backtracking search that improve search efficiency, for 
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Figure 1: A Backtracking Solution for the 4-Queens Problem 
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Figure 2: A Partial Search ,Tree for the 4-Queens Problem 
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example, backmarking, backjump, partiallookahead, and forward checking [2, 3, 4, 5J. Since 

the nature of backtracking search is exponential in time, however, none of them are able to 

solve the large size n-queens problem. Recent results indicated that we could only solve the 

n-queens problem with n up to about 100 [8, 9J. 

In general the upper bound on backtracking search effort is exponential in n (the depth 

of the search tree). The capability of backtracking search is thus insignificant for large size 

n-queens problems. It is therefore desirable to investigate some alternative search approaches 

in which there is no backtrack overhead involved. In next section, we give a new probabilistic 

local search algorithm that is based on a gradient-based heuristic. The algorithm runs in 

polynomial time and does not use backtracking at all. It is capable of finding a solution for 

over 1,000,000 queens within a reasonably short time period. 

4 A Fast Algorithm for the N -Queens Problem 

Let: 

1. 7r(i) (i = 1, ... , n) be a permutation for integer numbers 1, ... , n, and 

2. {rowi, colUmn 7r(i)} (i = 1, ... , n) be n coordinates of positions for n queens on a chess­

board. 

Since there is only one queen to be placed on each row, rOWi can be represented by 

index i, and the exact position of the n queens on the chessboard can fully be specified by 

the column numbers of the n queens (an n-tuple). This n-tuple of column numbers can be 

represented in a linear array of size n. That is, let {column7r(i)} , or abbreviated as {7r(i)} 

(i = 1, ... , n), be the n positions of n queens on a chessboard. 

For any permutation, the above formulation of queens' positions guarantees that no two 

queens will attack each other on the same row or the same column. The problem then 
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1. function queen...search(queen : array [1..n] of integer) 
2. begin 
3. repeat 
4. Generate a random permutation of queenl to queenn ; 

5. forall i, jj where queeni or queenj is attacked do 
6. if swap(queeni,queenj) reduces collisions 
7. then perform...swap(queeni, queenj); 
8. until no collisions; 
9. end; 

Figure 3: A Fast N -Queens Search Algorithm 

remains to resolve any collisions among queens that may occur on the diagonals. 

Our new algorithm is shown in Figure 3. At the beginning of a search, a random per-

mutation of the column positions of the queens is generated. This initial permutation of 

column positions generally produces collisions among queens on the diagonals. The amount 

of collisions can be counted by tracing each negative (slope) diagonal line (See Figure 4a) 

and each positive (slope) diagonal line (See Figure 4b), using an unique method as described 

below. 

Let i be a row index and j be a column index, then the sum of both indexes is constant 

on any negative diagonal line, and the difference of both indexes is constant on any positive 

diagonal line. The values of the sum on different diagonal lines are different, so are the 

values of differences. Corresponding to row index i and column index j, since the column 

positions of n queens are specified by a permutation 7r, the sum is calculated as i + 7r( i) and 

the difference as i - 7r(i), for i = 1, ... , n. 

For the n-queens problem, there are 2n - 1 negative diagonal lines and 2n - 1 positive 

diagonal lines on the chessboard (See Figure 4a and Figure 4b). There is an array of size 

2n - 1, called dl, that keeps tracking of the number of queens, i.e., the number of collisions, 

on each of the 2n - 1 negative diagonal lines. If there are k queens on the mth negative 
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Figure 4: A Characterization of Diagonals 

diagonal line, there are k - 1 collisions on this diagonal line. The number k - 1 is written 

into the mth element of the d1 array. Similarly, we choose another array with size 2n - 1, 

called d2 , for 2n - 1 positive diagonal lines. 

As described in Figure 3, a random permutation of the column positions for n queens is 

generated at the beginning of the search. This initial permutation generally generates some 

collisions on diagonals. The amount of collisions on diagonals is counted and stored into 

A gradient-based heuristic, as shown in Figure 5 (i.e., lines 5-7 in Figure 3), plays an 

important role in this fast queen search algorithm to navigate the search activity through a 

simple local search. The main idea behind this heuristic is to swap a pair of queens so that 

the total number of collisions (on both negative and positive diagonals) is reduced. Before a 

swap action is taken, a local search is performed. We must first determine the "direction" to 

proceed, i.e., the "gradient direction" in the search space that points to the direction that 

the number of collisions among queens can be reduced. The idea is pretty simple. Before and 
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1. repeat 
2. swaps_performed := 0; 
3. for i in [l..n] do 
4. for j in [(i + l) .. n] do 
5. if queeni is attacked or queenj is attacked then 
6. if swap(queeni,queenj) reduces collisions then begin 
7. perform...swap(queeni, queenj); 
8. swaps_performed := swaps_performed + 1; 
9. end; 
10. until swaps_performed = 0; 

Figure 5: A Gradient-Based Heuristic 

after the swap of a pair of queens, the number of collisions on the diagonals are compared. 

If a swap of a pair of queens reduces the amount of collisions, the swap action is performed; 

otherwise, no action is taken. 

In the fast search algorithm, this gradient-based heuristic is applied for all possible pairs 

of two queens (see Figure 3) until there is no collisions left, that is, a solution is found. If no 

solution could be found for that initial permutation, a new permutation is generated and a 

new search process is started. 

The swap action incrementally updates arrays dl and d2 • Since one queen can affect at 

most two diagonals, one negative diagonal and one positive diagonal, and correspondingly 

at most two values in arrays dl and d2 , i.e., i + 7r(i) and i - 7r(i) are affected. A swap of two 

queens can affect at most eight diagonals: four for both "source" queens and four for both 

"destination" queens. In order to test if a swap reduces the number of collisions we need 

only to check these eight diagonals. The number of operations in a swap action is therefore 

constant and obviously does not depend on n. This test operation and a possible subsequent 

swap operation are repeated for all possible pairs of queens until a solution is found. If no 

more swaps can be performed and there are still collisions existing, a new permutation is 
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invoked. The implementation of above algorithm is straightforward. 

The running time of the algorithm can be estimated as follows. The generation of a ran­

dom permutation (line 4 in Figure 3) can be done in linear time [7]. The testing and swap 

operations (lines 5-9 in Figure 5) can be evaluated in constant time regardless of the board 

size as described above. Thus the number of testing and swap operations determines algo­

rithm performance. At the worst case, each iteration of the repeat loop in Figure 5 requires 

O(n2 ) evaluations since there are two for loops (lines 3-4 in Figure 5). Since each execution 

of the repeat loop must decrease the number of collisions, which is at most n -1, the upper 

bound on the running time of the gradient-based heuristic is O(n3 ). Experimental results 

presented in the next section show that the actual running time is in practice approximately 

O(n log n). 

5 Results and Comparison 

There is very little literature in which some real simulation or execution results of an n-queens 

problem could be found. In addition, there have seldom been any results that were obtained 

on a clear comparable basis. Thus it is obviously infeasible for one to make any absolute 

comparisons and derive any firm conclusions. In what follows next, we list some results we 

have found so far together with the explanation of their specific problem instances (e.g., 

algorithm, solution category, implementation language, machine architecture, and result, 

etc.). 

5.1 Backtracking-Based Search 

Table 1 gives real algorithm execution statistics for three special consistent labeling algo­

rithms [5] to search for one solution for the n-queens problem. The algorithms were pro­

grammed using Common Lisp and were run on an HP BobCat workstation. To reduce the 
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Table 1: Backtracking Algorithms to Search for One Solution for the N-Queens Problem 
(Time Unit: seconds). 

I Number of Queens n 5 7 9 11 13 15 

1. Full Lookahead 3.06 17.44 75.00 193.32 421.16 806.06 
2. Partial Lookahead 2.04 10.22 45.02 112.86 240.84 445.46 
3. Forward Checking 1.02 3.46 18.16 28.82 53.66 76.82 
4. Speedup (3 vs. 1) 3.00 5.04 4.12 6.71 7.84 10.49 
5. Speedup (3 vs. 2) 2.00 2.95 2.48 3.92 4.49 5.80 

performance variation caused by different factors (language, machine, etc.), speedup figures 

are also illustrated in Table 1. The last row shows the speedup figures between the forward 

checking algorithm and the fulllookahead algorithm. 

Table 2 shows the real algorithm running results obtained within a logic programming 

environment (implemented inside an MU-Prolog interpreter on a DEC V AX -785 machine) 

for several constraint satisfaction algorithms. The results for forward checking (Fe) (in 

the second row) are better than those in Table 1 for n ::; 14. This work indicates that logic 

programming can be used to solve small size n-queens problem with an efficiency comparable 

to those codes written in imperative languages [6]. 

Stone and Stone [9] indicate that they found one solution for 96-queens problem using 

MIN search in less than 5 seconds. It takes the most costly MIN search 1,100 seconds to 

find one solution for the 93-queens problem. 

5.2 Our Fast Search Algorithm 

Among a good number of features we have studied, the following several experiments are of 

our particular interests. We summarize some experimental data below . 

• Real execution time of the algorithm; 
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Table 2: Logic Programming of CLP to Search for the First Solution for the N-Queens 
Problem (Time Unit: seconds). 

N umber of Queens n 4 6 8 10 12 14 16 96 
1. Standard Backtracking 0.11 0.68 3.40 4.38 14.81 130.92 813.64 
2. Forward Checking (FC) 0.10 0.46 1.53 1.70 4.22 34.03 185.78 
3. Generalized FC (GFC) 0.09 0.25 0.74 0.91 2.08 12.26 70.07 

4. GFC with Fail-First 0.09 0.29 0.77 0.57 1.74 1.73 1.09 36.23 

• Number of initial collisions generated by a random permutation; 

• The maximum number of queens on the same diagonal in a random permutation; and 

• The probabilistic behavior of the algorithm. 

1. Real execution time of the algorithm. 

The real execution time of our fast search algorithm that was programmed in C and run 

on a NeXT computer (with a 25 MHz Motorola 68030 processor) is illustrated in Table 3. 

Since our algorithm takes polynomial time, it is incomparably faster than any presently 

best-known AI search algorithm which all run in an exponential time. Due to the memory 

limitation of our computer, the largest problem size we are able to run is 500,000. 

2. Number of initial collisions generated by a random permutation. 

The second observation was made on the number of collisions generated by a random 

permutation (See Table 4). This indicates the maximum number of swaps which may be 

required in order to find a solution. The results collected in Table 4 were averaged based on 

100 random permutations. Theoretically, at most n - 1 collisions are possible on a board 

of size n, when all n queens are aligned on the same diagonal. So the number of collisions 

which must be resolved may increase only linearly in n. It is indicated from numerous real 

algorithm runs that the ratio between the number of collisions and the board size n in a 
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Table 3: A Fast N-Queens Search Algorithm to Search for a Random Solution on a NeXT 
machine with a 25Mhz Motorola 68030 Microprocessor (Average of 10 Runs; Time Units: 
seconds) 

N umber of Queens n 10 100 11,000 110,000 1100,000 1 500,000 I 
Time of the 1st run < 0.1 0.4 2.1 27.7 1,098.4 7,500 
Time of the 2nd run < 0.1 0.2 1.9 38.2 1,081.2 9,065 
Time of the 3rd run < 0.1 < 0.1 1.8 42.6 997.6 12,617 
Time of the 4th run < 0.1 < 0.1 3.1 34.9 979.9 11,730 
Time of the 5th run < 0.1 < 0.1 1.9 34.3 1,286.4 9,934 
Time of the 6th run < 0.1 < 0.1 2.4 31.2 992.3 9,198 
Time of the 7th run < 0.1 0.2 1.9 41.2 1,425.5 9,789 
Time of the 8th run < 0.1 0.3 3.3 36.5 1,235.4 11,142 
Time of the 9th run < 0.1 0.1 2.3 52.4 1,285.7 11,788 
Time of the 10th run < 0.1 < 0.1 2.1 35.1 1,285.4 8,300 

I Ave. TIme to Fmd a Solution I < 0.1 I 0.1 2.3 37 1,167 10,106 

Table 4: Number of Collisions Among Queens in a Random Permutation (Average of 100 
Permutations) 

1 Number of Queens n 1 10 1 100 1 1,000 110,000 1 100,000 1 500,000 1 

1 Num. of Collisions/n 1 0.486 1 0.523 1 0.5277 1 0.5283 1 0.528694 1 0.528511 I 

random permutation approaches 0.5285 with increasing n up to 500,000. Individual sample 

runs have shown a very small deviation from this number. Numbers in Table 4 actually 

present an upper bound on the number of swaps that may be performed in order to find a 

solution from an initial random permutation. 

3. The maximum number of queens on the same diagonal. 

As illustrated in Table 5, the maximum number of queens that attack each other on the 

same diagonal line was also analyzed. A total of 100 random permutations were generated 

for each board size shown and the maximum number of queens on one diagonal was recorded. 

The minimal and maximal values from these 100 permutations are very close. That is, the 
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Table 5: Maximum Number and Minimum Number of Queens on the most Populated Diag­
onal in a Random Permutation (Average of 100 Runs) 

I Number of Queens n 110 1100 11,000 110,000 1100,000 I 500,000 I 
Minimum 
Maximum 

7 
7 

7 
9 

9 
9 

Table 6: Permutation Statistics (Average of 10 Runs) 

10 
10 

N umber of Queens n 110 1100 11,000 I 10,000 1100,000 I 500,000 I 
Solution in the First Permutation 2 6 8 10 10 10 

Max. N urn. of Permutations 10 3 2 1 1 1 

collisions among queens on diagonals are fairly evenly distributed. There are no specific 

diagonals that contain a large number of queens. 

4. The probabilistic behavior of the algorithm. 

Table 6 and Table 7 were obtained from 10 sample algorithm runs. The algorithm is 

probabilistic. If the algorithm could not find a solution from a given random permutation, 

a new permutation is required and the algorithm starts a new search. 

Table 6 shows some probabilistic behavior regarding how successful is the algorithm in 

finding a solution from an initial random permutation. The solution in the first permutation 

represents, among 10 sample algorithm runs, the number of times a solution is found based on 

Table 7: Swap Statistics (Average of 10 Runs) 

Number of Queens n I 10 I 100 I 1,000 I 10,000 100,000 500,000 

Num. of Pairs Tested 353 13,525 253,671 4,827,973 110,186,345 967,924,234 
N urn. of Swaps Tested 198 2,385 15,116 166,215 2,034,907 11,447,508 
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an initial (the first) permutation. The maximum number of permutations is, within 10 sample 

algorithm runs, the maximum number of permutations that were required to find a solution 

in one program run. It can be seen that the number of required permutations decreases with 

increasing n. For n equals to 100, the algorithm succeeded in the first permutation in 6 of 10 

sample runs. At the worst case, only 3 permutations were required. For n equals to 10,000 

or larger, the algorithm always finds a solution at the first permutation. 

Table 7 shows parts of the program of which the most time was spent. The number of 

pairs tested gives a total number of pairs checked for collision (line 5 in Figure 5). The number 

of swaps tested indicates a total number of calls to the swap testing (line 6 in Figure 5). 

6 Conclusion 

An efficient fast search algorithm that is able to find a solution for millions of queens is 

presented. The algorithm runs in a polynomial time as compared to exponential time of the 

present AI search algorithms. This performance is achieved because of the application of a 

clever gradient-based heuristic within a local search. 
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