
How to Search for Millions of Queens 1

Rok Sosic and J un Gu

UUCS-TR-88-,9D8 02..'>

Department of Computer Science
University of Utah

Salt Lake City, UT 84112

Feb. 1988
Rev. Dec. 1989, Feb., Mar., Apr. 1990

Summary

The n-queens problem is a classical combinatorial problem in artificial intelligence (AI)
area. Since its simplicity and regular structure, this problem has widely been chosen as
a testbed to develop and benchmark new AI search problem-solving strategies in the AI
community. Due to its inherent complexity, so far even very efficient AI search algorithms
can only find a solution for n-queens problem with n up to about 100. In this manuscript
we present a new probabilistic local search algorithm which is based on a gradient-based
heuristic. This efficient algorithm is capable of finding a solution for over 1,000,000 queens
in several CPU hours on a 25Mhz Motorola 68030 computer.

Keywords: Artificial intelligence (AI), combinatorial search, gradient-based heuristic,
local search, the n-queens problem, nonbacktracking search, fast search algorithm.

lThis research has been supported in part by the University of Utah research fellowships, in part by the
Research Council of Slovenia, in part by the 1987-88 and 1988-89 ACM/IEEE academic scholarship awards.

1

1 Introduction

The n-queens problem is a classical combinatorial problem in AI search area. We are not

interested primarily in the n-queens problem per se, but rather as a relatively simple yet

nontrivial case study and testbed in which to explore general issues, principally the issue

of designing efficient AI search algorithms and predicting their performance [4, 9]. Due to

the exponential growth of the search load in the n-queens problem, in present day even very

efficient AI search algorithms can only handle the complexity (i.e., find out a solution) for

about 100-queens [9]. There is little progress in exploring the n-queens problem for larger

sizes during the last decade.

In this manuscript we give a new probabilistic local search algorithm which is based on a

gradient-based heuristic. This algorithm is capable of providing a solution for over 1,000,000

queens in several CPU hours on a 25Mhz Motorola 68030 computer. We believe that this

new algorithm, its search technique, and the results of the n-queens problem may shed light

on understanding other constraint-based AI search problems.

In Sections 2 and 3, the n-queens problem and the basic techniques to solve the n-queens

problem are briefly introduced. Our new algorithm and its search technique for the n-queens

problem are described in Section 4. We show the run-time behavior of this new algorithm

and its comparisons with other previous work in Section 5. The conclusions are given in

Section 6.

2 The N -Queens Problem

The 4-queens problem is the simplest instance of the n-queens problem. This problem is

to place four queens on a 4 x 4 chessboard so that no two queens attack each other. That

is, no two queens are allowed to be placed on the same row, the same column, or the same

2

diagonal. In the general n-queens problem, a set of n queens is to be placed on an n X n

chessboard so that no two queens attack each other.

In the following discussion, we assume that each row will be occupied by one queen only.

Four queens in the 4-queens problem are labeled with the numbers 1 through 4. Any possible

solution of the 4-queens problem can be represented as the 4-tuple (ql, ... , q4) where qi is a

column position on which the queen in the i-th row is placed.

3 Techniques to Solve the N -queens Problem

One method for solving the n-queens problem which systematically generates all possible

solutions is known as backtracking search. A search problem involving backtracking can be

represented in a (search) tree representation. As shown in Figure 2, for the 4-queens problem,

each 4-tuple forms a possible path from the root to a leaf node in the search tree.

Here we start with the first column and first row, and assign to it the first queen from

the 4-tuple. Then ,we select the second queen from the 4-tuple and assign it to the second

row such that no queens attack. We continue with the placement of the next queen from

the 4-tuple to the next row until all queens are placed. If at any point we run out of column

positions for a queen to be placed, we simply go back one step (backtrack), chose another

conflict-free column position on the previous row, and continue the process. If we are able

to assign column positions to all the queens then we have found a solution; otherwise, there

are no solutions.

In the 4-queens problem, the backtracking search tree consists of only 2 leaf nodes (2

solutions). One of the solutions and a partial search tree in this case are shown in Figures 1

and 2.

There are many variations of backtracking search that improve search efficiency, for

3

1. 1

5. 1

2

3

2. 1 • • • •
• • 2

6. 1

3. 1

2
7. 1 • • • • • • • 2

4. 1

2
8. 1 • 3

2

3

• • 4

Figure 1: A Backtracking Solution for the 4-Queens Problem

4

(2,4, 1,3) (3, 1,4, 2)

Figure 2: A Partial Search ,Tree for the 4-Queens Problem

5

example, backmarking, backjump, partiallookahead, and forward checking [2, 3, 4, 5J. Since

the nature of backtracking search is exponential in time, however, none of them are able to

solve the large size n-queens problem. Recent results indicated that we could only solve the

n-queens problem with n up to about 100 [8, 9J.

In general the upper bound on backtracking search effort is exponential in n (the depth

of the search tree). The capability of backtracking search is thus insignificant for large size

n-queens problems. It is therefore desirable to investigate some alternative search approaches

in which there is no backtrack overhead involved. In next section, we give a new probabilistic

local search algorithm that is based on a gradient-based heuristic. The algorithm runs in

polynomial time and does not use backtracking at all. It is capable of finding a solution for

over 1,000,000 queens within a reasonably short time period.

4 A Fast Algorithm for the N -Queens Problem

Let:

1. 7r(i) (i = 1, ... , n) be a permutation for integer numbers 1, ... , n, and

2. {rowi, colUmn 7r(i)} (i = 1, ... , n) be n coordinates of positions for n queens on a chess­

board.

Since there is only one queen to be placed on each row, rOWi can be represented by

index i, and the exact position of the n queens on the chessboard can fully be specified by

the column numbers of the n queens (an n-tuple). This n-tuple of column numbers can be

represented in a linear array of size n. That is, let {column7r(i)} , or abbreviated as {7r(i)}

(i = 1, ... , n), be the n positions of n queens on a chessboard.

For any permutation, the above formulation of queens' positions guarantees that no two

queens will attack each other on the same row or the same column. The problem then

6

1. function queen...search(queen : array [1..n] of integer)
2. begin
3. repeat
4. Generate a random permutation of queenl to queenn ;

5. forall i, jj where queeni or queenj is attacked do
6. if swap(queeni,queenj) reduces collisions
7. then perform...swap(queeni, queenj);
8. until no collisions;
9. end;

Figure 3: A Fast N -Queens Search Algorithm

remains to resolve any collisions among queens that may occur on the diagonals.

Our new algorithm is shown in Figure 3. At the beginning of a search, a random per-

mutation of the column positions of the queens is generated. This initial permutation of

column positions generally produces collisions among queens on the diagonals. The amount

of collisions can be counted by tracing each negative (slope) diagonal line (See Figure 4a)

and each positive (slope) diagonal line (See Figure 4b), using an unique method as described

below.

Let i be a row index and j be a column index, then the sum of both indexes is constant

on any negative diagonal line, and the difference of both indexes is constant on any positive

diagonal line. The values of the sum on different diagonal lines are different, so are the

values of differences. Corresponding to row index i and column index j, since the column

positions of n queens are specified by a permutation 7r, the sum is calculated as i + 7r(i) and

the difference as i - 7r(i), for i = 1, ... , n.

For the n-queens problem, there are 2n - 1 negative diagonal lines and 2n - 1 positive

diagonal lines on the chessboard (See Figure 4a and Figure 4b). There is an array of size

2n - 1, called dl, that keeps tracking of the number of queens, i.e., the number of collisions,

on each of the 2n - 1 negative diagonal lines. If there are k queens on the mth negative

7

.':~;\.%t.r:'

a) constant sum of indexes
on a negative slope diagonal

'<>-

1---+--+---II---+---t--+-<:;;:;.I£
fll

1---+--t---II---+--+---".(:.~~.:L---+---11

':!!.~"

4#'"
b) constant difference of indexes

on a positive slope diagonal

Figure 4: A Characterization of Diagonals

diagonal line, there are k - 1 collisions on this diagonal line. The number k - 1 is written

into the mth element of the d1 array. Similarly, we choose another array with size 2n - 1,

called d2 , for 2n - 1 positive diagonal lines.

As described in Figure 3, a random permutation of the column positions for n queens is

generated at the beginning of the search. This initial permutation generally generates some

collisions on diagonals. The amount of collisions on diagonals is counted and stored into

A gradient-based heuristic, as shown in Figure 5 (i.e., lines 5-7 in Figure 3), plays an

important role in this fast queen search algorithm to navigate the search activity through a

simple local search. The main idea behind this heuristic is to swap a pair of queens so that

the total number of collisions (on both negative and positive diagonals) is reduced. Before a

swap action is taken, a local search is performed. We must first determine the "direction" to

proceed, i.e., the "gradient direction" in the search space that points to the direction that

the number of collisions among queens can be reduced. The idea is pretty simple. Before and

8

1. repeat
2. swaps_performed := 0;
3. for i in [l..n] do
4. for j in [(i + l) .. n] do
5. if queeni is attacked or queenj is attacked then
6. if swap(queeni,queenj) reduces collisions then begin
7. perform...swap(queeni, queenj);
8. swaps_performed := swaps_performed + 1;
9. end;
10. until swaps_performed = 0;

Figure 5: A Gradient-Based Heuristic

after the swap of a pair of queens, the number of collisions on the diagonals are compared.

If a swap of a pair of queens reduces the amount of collisions, the swap action is performed;

otherwise, no action is taken.

In the fast search algorithm, this gradient-based heuristic is applied for all possible pairs

of two queens (see Figure 3) until there is no collisions left, that is, a solution is found. If no

solution could be found for that initial permutation, a new permutation is generated and a

new search process is started.

The swap action incrementally updates arrays dl and d2 • Since one queen can affect at

most two diagonals, one negative diagonal and one positive diagonal, and correspondingly

at most two values in arrays dl and d2 , i.e., i + 7r(i) and i - 7r(i) are affected. A swap of two

queens can affect at most eight diagonals: four for both "source" queens and four for both

"destination" queens. In order to test if a swap reduces the number of collisions we need

only to check these eight diagonals. The number of operations in a swap action is therefore

constant and obviously does not depend on n. This test operation and a possible subsequent

swap operation are repeated for all possible pairs of queens until a solution is found. If no

more swaps can be performed and there are still collisions existing, a new permutation is

9

invoked. The implementation of above algorithm is straightforward.

The running time of the algorithm can be estimated as follows. The generation of a ran­

dom permutation (line 4 in Figure 3) can be done in linear time [7]. The testing and swap

operations (lines 5-9 in Figure 5) can be evaluated in constant time regardless of the board

size as described above. Thus the number of testing and swap operations determines algo­

rithm performance. At the worst case, each iteration of the repeat loop in Figure 5 requires

O(n2) evaluations since there are two for loops (lines 3-4 in Figure 5). Since each execution

of the repeat loop must decrease the number of collisions, which is at most n -1, the upper

bound on the running time of the gradient-based heuristic is O(n3). Experimental results

presented in the next section show that the actual running time is in practice approximately

O(n log n).

5 Results and Comparison

There is very little literature in which some real simulation or execution results of an n-queens

problem could be found. In addition, there have seldom been any results that were obtained

on a clear comparable basis. Thus it is obviously infeasible for one to make any absolute

comparisons and derive any firm conclusions. In what follows next, we list some results we

have found so far together with the explanation of their specific problem instances (e.g.,

algorithm, solution category, implementation language, machine architecture, and result,

etc.).

5.1 Backtracking-Based Search

Table 1 gives real algorithm execution statistics for three special consistent labeling algo­

rithms [5] to search for one solution for the n-queens problem. The algorithms were pro­

grammed using Common Lisp and were run on an HP BobCat workstation. To reduce the

10

Table 1: Backtracking Algorithms to Search for One Solution for the N-Queens Problem
(Time Unit: seconds).

I Number of Queens n 5 7 9 11 13 15

1. Full Lookahead 3.06 17.44 75.00 193.32 421.16 806.06
2. Partial Lookahead 2.04 10.22 45.02 112.86 240.84 445.46
3. Forward Checking 1.02 3.46 18.16 28.82 53.66 76.82
4. Speedup (3 vs. 1) 3.00 5.04 4.12 6.71 7.84 10.49
5. Speedup (3 vs. 2) 2.00 2.95 2.48 3.92 4.49 5.80

performance variation caused by different factors (language, machine, etc.), speedup figures

are also illustrated in Table 1. The last row shows the speedup figures between the forward

checking algorithm and the fulllookahead algorithm.

Table 2 shows the real algorithm running results obtained within a logic programming

environment (implemented inside an MU-Prolog interpreter on a DEC V AX -785 machine)

for several constraint satisfaction algorithms. The results for forward checking (Fe) (in

the second row) are better than those in Table 1 for n ::; 14. This work indicates that logic

programming can be used to solve small size n-queens problem with an efficiency comparable

to those codes written in imperative languages [6].

Stone and Stone [9] indicate that they found one solution for 96-queens problem using

MIN search in less than 5 seconds. It takes the most costly MIN search 1,100 seconds to

find one solution for the 93-queens problem.

5.2 Our Fast Search Algorithm

Among a good number of features we have studied, the following several experiments are of

our particular interests. We summarize some experimental data below .

• Real execution time of the algorithm;

11

Table 2: Logic Programming of CLP to Search for the First Solution for the N-Queens
Problem (Time Unit: seconds).

N umber of Queens n 4 6 8 10 12 14 16 96
1. Standard Backtracking 0.11 0.68 3.40 4.38 14.81 130.92 813.64
2. Forward Checking (FC) 0.10 0.46 1.53 1.70 4.22 34.03 185.78
3. Generalized FC (GFC) 0.09 0.25 0.74 0.91 2.08 12.26 70.07

4. GFC with Fail-First 0.09 0.29 0.77 0.57 1.74 1.73 1.09 36.23

• Number of initial collisions generated by a random permutation;

• The maximum number of queens on the same diagonal in a random permutation; and

• The probabilistic behavior of the algorithm.

1. Real execution time of the algorithm.

The real execution time of our fast search algorithm that was programmed in C and run

on a NeXT computer (with a 25 MHz Motorola 68030 processor) is illustrated in Table 3.

Since our algorithm takes polynomial time, it is incomparably faster than any presently

best-known AI search algorithm which all run in an exponential time. Due to the memory

limitation of our computer, the largest problem size we are able to run is 500,000.

2. Number of initial collisions generated by a random permutation.

The second observation was made on the number of collisions generated by a random

permutation (See Table 4). This indicates the maximum number of swaps which may be

required in order to find a solution. The results collected in Table 4 were averaged based on

100 random permutations. Theoretically, at most n - 1 collisions are possible on a board

of size n, when all n queens are aligned on the same diagonal. So the number of collisions

which must be resolved may increase only linearly in n. It is indicated from numerous real

algorithm runs that the ratio between the number of collisions and the board size n in a

12

Table 3: A Fast N-Queens Search Algorithm to Search for a Random Solution on a NeXT
machine with a 25Mhz Motorola 68030 Microprocessor (Average of 10 Runs; Time Units:
seconds)

N umber of Queens n 10 100 11,000 110,000 1100,000 1 500,000 I
Time of the 1st run < 0.1 0.4 2.1 27.7 1,098.4 7,500
Time of the 2nd run < 0.1 0.2 1.9 38.2 1,081.2 9,065
Time of the 3rd run < 0.1 < 0.1 1.8 42.6 997.6 12,617
Time of the 4th run < 0.1 < 0.1 3.1 34.9 979.9 11,730
Time of the 5th run < 0.1 < 0.1 1.9 34.3 1,286.4 9,934
Time of the 6th run < 0.1 < 0.1 2.4 31.2 992.3 9,198
Time of the 7th run < 0.1 0.2 1.9 41.2 1,425.5 9,789
Time of the 8th run < 0.1 0.3 3.3 36.5 1,235.4 11,142
Time of the 9th run < 0.1 0.1 2.3 52.4 1,285.7 11,788
Time of the 10th run < 0.1 < 0.1 2.1 35.1 1,285.4 8,300

I Ave. TIme to Fmd a Solution I < 0.1 I 0.1 2.3 37 1,167 10,106

Table 4: Number of Collisions Among Queens in a Random Permutation (Average of 100
Permutations)

1 Number of Queens n 1 10 1 100 1 1,000 110,000 1 100,000 1 500,000 1

1 Num. of Collisions/n 1 0.486 1 0.523 1 0.5277 1 0.5283 1 0.528694 1 0.528511 I

random permutation approaches 0.5285 with increasing n up to 500,000. Individual sample

runs have shown a very small deviation from this number. Numbers in Table 4 actually

present an upper bound on the number of swaps that may be performed in order to find a

solution from an initial random permutation.

3. The maximum number of queens on the same diagonal.

As illustrated in Table 5, the maximum number of queens that attack each other on the

same diagonal line was also analyzed. A total of 100 random permutations were generated

for each board size shown and the maximum number of queens on one diagonal was recorded.

The minimal and maximal values from these 100 permutations are very close. That is, the

13

Table 5: Maximum Number and Minimum Number of Queens on the most Populated Diag­
onal in a Random Permutation (Average of 100 Runs)

I Number of Queens n 110 1100 11,000 110,000 1100,000 I 500,000 I
Minimum
Maximum

7
7

7
9

9
9

Table 6: Permutation Statistics (Average of 10 Runs)

10
10

N umber of Queens n 110 1100 11,000 I 10,000 1100,000 I 500,000 I
Solution in the First Permutation 2 6 8 10 10 10

Max. N urn. of Permutations 10 3 2 1 1 1

collisions among queens on diagonals are fairly evenly distributed. There are no specific

diagonals that contain a large number of queens.

4. The probabilistic behavior of the algorithm.

Table 6 and Table 7 were obtained from 10 sample algorithm runs. The algorithm is

probabilistic. If the algorithm could not find a solution from a given random permutation,

a new permutation is required and the algorithm starts a new search.

Table 6 shows some probabilistic behavior regarding how successful is the algorithm in

finding a solution from an initial random permutation. The solution in the first permutation

represents, among 10 sample algorithm runs, the number of times a solution is found based on

Table 7: Swap Statistics (Average of 10 Runs)

Number of Queens n I 10 I 100 I 1,000 I 10,000 100,000 500,000

Num. of Pairs Tested 353 13,525 253,671 4,827,973 110,186,345 967,924,234
N urn. of Swaps Tested 198 2,385 15,116 166,215 2,034,907 11,447,508

14

an initial (the first) permutation. The maximum number of permutations is, within 10 sample

algorithm runs, the maximum number of permutations that were required to find a solution

in one program run. It can be seen that the number of required permutations decreases with

increasing n. For n equals to 100, the algorithm succeeded in the first permutation in 6 of 10

sample runs. At the worst case, only 3 permutations were required. For n equals to 10,000

or larger, the algorithm always finds a solution at the first permutation.

Table 7 shows parts of the program of which the most time was spent. The number of

pairs tested gives a total number of pairs checked for collision (line 5 in Figure 5). The number

of swaps tested indicates a total number of calls to the swap testing (line 6 in Figure 5).

6 Conclusion

An efficient fast search algorithm that is able to find a solution for millions of queens is

presented. The algorithm runs in a polynomial time as compared to exponential time of the

present AI search algorithms. This performance is achieved because of the application of a

clever gradient-based heuristic within a local search.

15

References

[1] W. Ahrens. Mathematische unterhaltungen und spiele. B. G. Teubner, Leipzig, 1918-21

(in German).

[2] R. Dechter and J. Pearl. Network-Based Heuristics for Constraint-Satisfaction Problems.

A rtificial Intelligence, 34: 1-38, 1988.

[3] J. Gaschnig. A Constraint Satisfaction Method for Inference Making. In Proceedings of

12th Annual Allerton Conf. Circuit System Theory, 1974.

[4] J. Gaschnig. Performance Measurements and Analysis of Certain Search Algorithms.

PhD thesis, Carnegie-Mellon University, Dept. of Computer Science, May 1979.

[5] R. M. Haralick and G. Elliot. Increasing Tree Search Efficiency for Constraint Satisfac­

tion Problems. Artificial Intelligence, 14:263-313, 1980.

[6] P. V. Hentenryck. Constraint Satisfaction in Logic Programming. The MIT Press, Cam­

bridge, 1989.

[7] L. E. Moses and R. V. Oakford. Tables of Random Permutations. Stanford University

Press, 1963.

[8] H. S. Stone and P. Sipala. The Average Complexity of Depth-first Search with Backtrack­

ing and Cutoff. IBM J. Res. Develop., 30(3):242-258, May 1986.

[9] H. S. Stone and J. M. Stone. Efficient Search Techniques - An Empirical Study of The

N-Queens Problem. IBM J. Res. Develop., 31(4):464-474, July 1987.

16

