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C A G D - B a s e d  C o m p u t e r  V is io n
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Abstract—Three-dimensional model-based computer vision uses geo­
metric models of objects and sensed data to recognize objects in a scene. 
Likewise, computer aided geometric design (CAGD) systems are used 
to interactively generate three-dimensional models during the design 
process. Despite this similarity, there has been a dichotomy between 
these fields. Recently, the unification of CAGD and vision systems has 
become the focus of research in the context of manufacturing auto­
mation.

This paper explores the connection between CAGD and computer 
vision. A method for the automatic generation of recognition strategies 
based on the 3-D geometric properties of shape has been devised and 
implemented. This uses a novel technique developed for quantifying 
the following properties of features which compose models used in 
computer vision: robustness, completeness, consistency, cost, and 
uniqueness. By utilizing this information, the automatic synthesis of a 
specialized recognition scheme, called a strategy tree, is accomplished. 
Strategy trees describe, in a systematic and robust manner, the search 
process used for recognition and localization of particular objects in 
the given scene. They consist of selected 3-D features which satisfy sys­
tem constraints and corroborating evidence subtrees which are used in 
the formation of hypotheses. Verification techniques, used to substan­
tiate or refute these hypotheses, are explored. Experiments utilizing 
3-D data are presented.

Index Terms—CAD, geometric models, model-based vision, recog­
nition strategies, recognition strategy synthesis.

I. Introduction

C OMPUTER vision has been an active research area 
for over 20 years. In the past, emphasis was on low 

level processing such as intensity and signal processing 
to perform edge detection. More recently, models of ob­
jects and knowledge of the working environment have 
provided the basis for driving vision systems. This is 
known as model-based vision. The pursuit of the fully 
automated assembly environment has fueled interest in 
model-based computer vision and object manipulation. 
This involves building a 3-D model of the object, match­
ing the sensed environment with the known world and de­
termining the position and orientation of the recognized 
objects. The goal is to provide a solution to the problem 
of visual recognition in a well-known domain.

In the automation environment, recognition schemes 
and representations have typically been constructed using 
ad hoc techniques. Although objects used in the assembly 
process are designed with a CAD system, generally there 
is no direct link from the CAD system to the robotic
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workcell. This means the recognition systems are con­
structed independently of the CAD model database. What 
is desired is a systematic approach for both the generation 
of representations and recognition strategies based on the 
CAD models. Such a system provides an integrated au­
tomation environment. Fig. 1 shows such an integrated 
system. As can be seen, the system is composed of sev­
eral components: a CAD system, a milling system, a rec­
ognition system, and a manipulation system. In this pa­
per, the automatic generation of recognition strategies 
based on the CAGD model is studied. It has also been 
determined that the use of shape, inherent in CAGD 
models, can also be used to drive the recognition process. 
Others have been studying portions of this system. Recent 
work by Ho has focused on the generation of computer 
vision models directly from a CAGD model [2], [9].

The work described here investigates the use of geo­
metric knowledge in constructing strategy trees. These 
trees provide a robust mechanism for recognition and lo­
calization of three-dimensional objects (occluded as well 
as nonoccluded) in typical manufacturing scenes. The run 
time matching of 3-D models to a scene can be expensive. 
If the search technique is optimized, cost can be de­
creased, thereby improving run time performance. One 
way to accomplish such optimization is by the off line 
examination and evaluation of the 3-D model.

A. Related Work
One of the first researchers to study the automatic syn­

thesis of general recognition strategies was Goad [6]. He 
was concerned with automatic programming for 3-D 
model based vision. His work generated a recognition 
scheme for matching edges based on a general sequential 
matching algorithm. His algorithm proceeded in three 
steps: 1) predict a feature, 2) observe (match) a feature, 
and 3) back-project (refine the object hypothesis based on 
step 2). These three steps form a template which is used 
by the automatic programming phase. He used a unit 
sphere to gather loci of view-angles (camera positions) 
which represent orientations of the object. His work dif­
fers from that described here in that he obtained 3-D inter­
pretations of 2-D intensity images rather than 3-D sensor 
data. The only features used were straight edges from in­
tensity images and the search trees were generated from 
a template and ordered by hand rather than automatically. 
His system did not consider partial occlusion. However, 
this was a major contribution since it was one of the first 
attempts to automate the generation of recognition 
schemes.
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Fig. 1. Integrated automation environment.

Another influential project was the 3DPO system by 
Bolles and Horaud [4]. This work is the 3-D generaliza­
tion of the local feature focus method [3], Their system 
annotates a CAD model producing what is called the ex­
tended CAD model. From this model, feature analysis is 
performed to determine unique features from which to 
base hypotheses. The focus feature in their system is the 
dihedral arc. When the recognition system finds a dihedral 
arc, it looks for nearby features which are used to discrim­
inate between model arcs with similar attributes. From 
these, an object’s pose is hypothesized and subsequently 
verified. The work here work closely parallels the 3DPO 
system. However, focus features were hand chosen in 
3DPO as were the local features used for discrimination.

Recently, Ikeuchi has explored the use of interpretation 
trees for representation of recognition strategies [10]. His 
system uses the concept of visible faces to generate ge­
neric representative views, called aspects. From this set 
of aspects, an interpretation tree is formed which discrim­
inates among the different aspects. His system uses a va­
riety of object features such as: EGI, face inertia, adjan- 
cency information, face shape, and surface characteristics. 
Most of these features are based on planar faces. A very 
specific interpretation tree is generated for an object using 
a set of object specific rules. The rules were selected by 
hand rather than generated automatically. There does not 
appear to be any algorithmic approach for the application 
of the rules to discriminate between the aspects. The 
branching on the tree seems to be a function of the partic­
ular aspects chosen rather than being based on the geo­
metric information in the model.

The system developed in this paper incorporates ideas 
from all of the systems described above. However, the 
system is not dependent on a certain class of features but 
rather can be extended to include many classes of features 
not implemented at this time. The system also performs 
automatic selection of features based on a set of con­
straints: feature filters. These features are used to form a

strategy tree which provides a scheme for hypothesis for­
mation, corroborating evidence gathering and object ver­
ification. The flexibility of this approach makes it signif­
icantly different from related work.

Our main goal of is the automatic synthesis of recog­
nition system specifications for CAD-based three-dimen­
sional computer vision [8]. Given a CAD model of an 
object, a specific, tailor-made system to recognize and lo­
cate the object is synthesized.

To attain this goal, the following problems have been 
solved.

1) Geometric Knowledge Representations: The use of 
geometric data is central to a strong recognition para­
digm. Weak methods can only be avoided when better 
information is available. The Alpha l B-spline model al­
lows the modeling of freeform sculptured surfaces. To 
obtain the geometric features of interest for 3-D recogni­
tion, techniques for the transformation to a computer vi­
sion representation have been developed.

2) Automatic Feature Selection: The part to be recog­
nized or manipulated must be examined for significant 
features which can be reliably detected and which con­
strain the object’s pose as much as possible. Moreover, 
such a set of features must cover the object from any pos­
sible viewing angle. In solving the feature selection prob­
lem, a technique is available for synthesizing recognition 
systems. This produces much more efficient, robust, re­
liable, and comprehensible systems.

3) Strategy Tree Synthesis: Once a robust, complete, 
and consistent set of features has been selected, a search 
strategy is automatically generated. Such a strategy takes 
into account the strongest features and how their presence 
in a scene constrains the remaining search. The features 
and the corresponding detection algorithms are welded, 
as optimally as possible, into a search process for object 
identification and pose determination. The automatic syn­
thesis of search strategies is a great step forward toward 
the goal of automated manufacturing. Generation of strat­
egies is constrained, not only by the feature selection pro­
cess but, by the actual task to be accomplished. Thus, 
strategies for a specific task might not be as strong when 
applied to a different task; strategies are task specific.

The remainder of this paper explains how these three 
components can be exploited to automate the process of 
selecting proper features and recognition schemes for spe­
cific goals. Algorithms are described which were devel­
oped for feature selection and which give supporting evi­
dence for their formulation. Last, strategy trees are de­
fined, their use in specific domains is explained, and a 
technique for the automatic generation of these search 
trees is given.

II. Geometric Knowledge Representation
Computer vision utilizes object models in a different 

manner than computer graphics or CAGD. In CAGD, the 
models must contain information about the 3-D object for 
rendering, performing finite element analysis, milling, and 
other processes. Computer vision is concerned with rec-
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ognition of the objects from sensory data. CAGD models 
must contain information for the local design operations 
such as what shape to extrude or what is the profile curve 
for a sweep operation. Features used in construction of 
models are implicitly rather than explicitly used in the 
CAGD representation. For example, a dihedral edge 
formed from two adjoining surfaces is not modeled as an 
edge per se but as two surfaces with adjacency informa­
tion.

With computer vision models, the ability to index into 
an object model for the purpose of recognition is needed. 
For example, if a 30 degree dihedral edge of length 4 
inches is detected in a scene, it is necessary to determine 
which 30 degree dihedral it matches in the model. One 
approach is to index into the model and extract all 30 de­
gree dihedral edges with similar attributes (length, adja­
cent faces, etc.). Some way to represent this information 
is required. We propose to use intrinsic features as the 
interface between CAD and vision. Recent research by 
Ho has examined the generation of several classes of 
computer vision models directly from a CAGD system [9].

In the experimental system developed here, a modified 
winged-edge model [1] is used as the interface between 
CAD and vision, where relationships between features are 
explicit in the model. It is extended for inclusion of non- 
planar surfaces. In addition to special mechanisms for 
matching, access to the geometric knowledge of the ob­
ject is required for the automatic generation of strategy 
trees. From this modified winged-edge description, an in­
dex on feature attributes can be generated which can 
quickly and efficiently access the geometric knowledge 
contained in the model. The edge and surface information 
used in the aspect computation, provides additional geo­
metric knowledge. In this case, it is necessary to know 
which edges or surfaces are self-occluded by the object 
from a particular viewpoint. When not fully visible, the 
knowledge of the extent of occlusion can be used in de­
termining the potential of the feature for use in the match­
ing process.

III. A u t o m a t i c  F e a t u r e  S e l e c t i o n

Several kinds of knowledge are required for feature se­
lection. Geometric knowledge permits the selection of a 
complete and consistent set of features, while the sensor 
knowledge provides information on the robustness and re­
liability with which such features can be extracted. On the 
other hand, domain specific information about the task 
can be used to select feature extraction algorithms based 
on their complexity, robustness, etc.

Object recognition techniques are based for the most 
part on geometric features of the objects to be recognized. 
This includes comers, edges and planar faces for poly- 
hedra, as well as points, arcs of distinct curvature and 
regions of constant curvature for sculptured surfaces. 
Other features such as axes of inertia, profile curves, sur­
face texture properties, reflectance, etc., can also be used. 
Another area of current research in CAD systems is the 
possibility of designing by feature, which could include

Filters

Fig. 2. The feature selection process

process knowledge. Such capabilities would facilitate the 
feature selection process for object recognition.

The feature selection process can be viewed as a set of 
filters applied to the complete original set of features of 
an object (see Fig. 2). Filters select and rank features; 
order of application is important. Conceptually, the filters 
remove features from the input, in order of application, 
which do not meet the filter’s criteria. The goal here is to 
automate and optimize this filtering process. The filters 
select features based on the following qualities:

• rare—histogram the features; rare features are useful 
for quickly identifying the object; these features make 
good root nodes in a search tree;

• robust—measure of how well the features can be de­
tected; error and reliability;

• cost—measure of complexity (space and time) for 
computing feature;

• com plete—does set of features cover all possible 
views of the object;

• consistency—how completely does feature character­
ize object pose; (i.e., how many DOF’s are unresolved); 
how well does the feature differentiate between objects; 
measure the likelihood of correctly identifying the object.

A. Rare Features

The first filter  in the feature selection phase is used to 
determine the uniqueness or commonality of features. This 
can be tuned to filter out either common features or unique 
features. Model features are histogrammed according to 
occurrences. This occurrence histogram can be used to 
select those features which rarely or often occur depend­
ing on the system needs.

B. Robust Features

There are two types of feature robustness a system can 
quantify: the robustness of a feature itself and the robust­
ness of the extraction techniques which are applied to ob­
tain the feature. Furthermore, features should be depend­
able with respect to artifacts in the scene. For example, 
concave dihedral edges can occur whenever a polyhedron 
is placed upon another polyhedron; moreover, this is 
likely to occur due to occlusion in a polyhedral scene. On 
the other hand, the likelihood of a convex edge being 
formed as an artifact of occlusion is very low. The knowl­
edge of such robustness, or lack thereof, can be incor­
porated into the robust feature filter.
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C. Complete Features
Three-dimensional models define the entire object, yet, 

during scheme analysis only a single view is available, or 
possibly multiple views, but not a complete view. How 
then, can the model be matched with the sensed data from 
the scene? Unless special fixturing is used in the manu­
facturing environment, we must assume that the pose of 
the object in the scene is unknown. One solution is the 
use of aspect graphs. An aspect graph is a representation 
of an object’s topology; thus it captures all viewpoints of 
an object [13]. The aspect is the topological appearance 
of the object from a particular viewpoint. Slight changes 
in the viewpoint change the size of features, edges and 
faces, but do not cause them to appear or disappear. When 
a slight change in viewpoint causes a feature to appear or 
disappear, an event takes place. An aspect graph, or vi­
sual potential graph, is formed by representing aspects as 
nodes and events between aspects as paths between cor­
responding nodes. Several researchers have developed al­
gorithms for the construction of aspect graphs, however, 
the size of the graphs poses computation limitations to 
their use [11], [14],

We use a discrete approximation by placing a tessel­
lated sphere around the model, where each of the poly­
gons represents a different viewpoint. The tessellation can 
be made arbitrarily fine, thus obtaining any desired gran­
ularity. Since the distance of the sensor from the work 
space is known a priori, and the sensor’s physical char­
acteristics (focal length, sensing field size, etc.) are also 
known, it is possible to position the sphere to correspond 
to the sensor’s position.

An icosahedral tessellation of a unit sphere is used and 
then the tessellated sphere is uniformly scaled to the 
proper size. In experiments, it has been found that a tes­
sellation of 80 fully covers the set of aspects. If the tes­
sellation is subdivided to 320 cells, the same apparent as­
pects are obtained, but they are spread across many more 
cells. Each tessellation cell, called a tessel, can be thought 
of as a feature accumulator. That is, all object features 
which are visible from a tessel (i.e., that viewpoint and 
distance from the model) are recorded. Tessels which 
contain the same features are merged into the same as­
pect. When no more tessels can be merged, the minimal 
aspect set for the model/sensor pair is reached. Each as­
pect corresponds to a topologically different viewpoint; 
since all possible viewpoints are considered, complete 
coverage of the model is achieved.

This is similar to what Ikeuchi does in the generation 
of viewpoints for his interpretation trees [10]. However, 
the technique described here differs from his in that he 
uses a CAD system to generate 60 views and then, by 
hand, combines views with similar aspects where the only 
features considered are faces.

Our method can be further refined by including knowl­
edge of the sensing characteristics determined in the ro­
bust feature phase of the process. If it is determined that 
a feature cannot be reliably detected when the sensing an­

gle reaches a certain position, this knowledge can be used 
to eliminate features from tessels.

D. Cost of Features
The expense of feature computation can be divided into 

two classifications: time and space. However, time is usu­
ally the more critical element. Thus, in the experiments 
the cost in time of feature computations is of greatest con­
cern. The amount of time for feature calculation is deter­
mined by both the algorithms which are available and the 
hardware at hand. Certain feature computations can occur 
at the hardware level making those features more attrac­
tive (faster) to obtain. In addition to the possibility of spe­
cialized hardware, there is a tradeoff between speed and 
reliability of feature detection algorithms. Such knowl­
edge needs to be utilized in this filter.

E. Consistent Sets of Features
Although features may fulfill the requirements of the 

above filters for a specific workcell and task configura­
tion, they may not discriminate between views of the ob­
ject or between different objects. A feature set is consid­
ered consistent if it possesses the necessary geometric 
information to distinguish between aspects. Symmetric 
objects pose problems for this type filter since multiple 
aspects appear similar to the system. The consistency fil­
ter forces the set of features to be strong enough to form 
a hypothesis.

The geometric information contained in features differs 
with feature type. It is desirable to use features which 
make available the maximal amount of pose information 
possible. One way to measure geometric content is in 
terms of degrees of freedom, DOF, which remain un­
known after a feature is matched to the model.

F. Use of the Filters
When used in combination, these filters provide the 

mechanism with which to build a strategy tree. The task 
requirements may be such that the result of these filters is 
the null set of features. This can be dependent on the or­
der in which the filters are applied to the complete feature 
set. For example, if the filter for rare features determines 
that a 1/4 inch dihedral edge is the best feature and is 
applied prior to the robustness filter, that dihedral might 
not be accepted by the robustness filter since it is so small. 
Thus, the set of features would be null after the applica­
tion of the robustness filter. Whereas, if the robustness 
filter is applied first, it wouldn’t accept such features and 
when the rare filter is applied to the features accepted by 
the robustness filter, it would determine a different set of 
features as being best. The order of application is to be 
determined by knowledge of both the task to be accom­
plished and experience; this aspect of our approach merits 
further study.

Since there is this possibility of null feature sets when 
filters are applied such that they absolutely eliminate fea­
tures, the filters need to be applied in a relative manner.
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That is, the filters should rank the features rather than just 
eliminate those which don’t meet the criteria. If the fea­
tures are ranked by the filters, null sets should never oc­
cur. However, the order of application is still important.

IV. Strategy Tree Synthesis

Strategy trees describe the search strategy used to rec­
ognize and determine the pose of objects in a scene. This 
is a generalization of a hierarchical classifier or decision 
tree. The use of strategy trees permits one to exploit 
knowledge of relations between the geometric features in 
the models. Such trees also define a sequence of mea­
surements or evaluations of the scene data so as to elim­
inate certain classifications at particular nodes.

Fig. 3 is an overview of how strategy trees are used in 
the system. The system consists of two parts: the off-line 
model analysis and strategy generation and the run time 
environment. The CAD model is analyzed in terms of the 
geometric knowledge needed for object recognition. This 
geometric information, which is analyzed by the feature 
selection process, is used by the strategy tree builder to 
produce the core of the run time recognition system. Dur­
ing run time, the strategy tree provides the search struc­
ture and control for the hypothesis generator. By using the 
information provided from the feature extractors and the 
strategy trees, the hypothesis generator attempts to hy­
pothesize pose descriptions for recognized objects in the 
scene. These hypotheses are verified for correctness and 
a description of recognized objects and their poses are the 
end result.

Another benefit of the tree structure is the inherent par­
allelism of trees. This occurs whenever there is a branch; 
thus, trees with greater breadth will, in general, have 
higher inherent parallelism. The sequentiality of trees re­
fers to the depth of paths in the tree. Strategy trees are 
shallow trees with many branches in the first two levels. 
Thus, there is a great deal of inherent parallelism in these 
trees.

The matching strategy consists of two phases: the hy­
pothesis generation phase and the hypothesis verification 
phase. This recognition technique is known as hypothe­
size and verify. The hypothesis generation phase is con­
trolled by the strategy tree and the verification phase sub­
stantiates or refutes the hypotheses generated from the 
strategy tree. As will become apparent in the next sub­
section, the confidence of a hypothesis can be increased 
at the hypothesis generation phase which has two effects: 
increased cost of hypothesis generation and decreased cost 
of the verification phase. Conversely, the confidence in 
an initial hypothesis can be decreased, thereby expediting 
the hypothesis generation phase, which increases the 
computational expense of the verification phase.

A. D escription o f  Strategy Trees
A strategy tree consists of three major parts:
1) The Root—Which represents the object to be rec­

ognized.

Fig. 3. Overview of strategy trees.

2) Level 1 Features—Which are the strongest set of 
view independent features chosen for their ability to per­
mit rapid identification of the object and its pose.

3) Corroborating Evidence Subtrees, CES—Whose 
purpose is twofold: they direct the search for corroborat­
ing evidence that supports the hypothesis of the level 1 
features and they direct the search for geometric infor­
mation to completely determine the pose prior to hypoth­
esis generation.

Strategy trees determine the procedure a recognition 
system follows for object recognition. There will be at 
least one strategy tree for each model under considera­
tion. If a model is used in a dilferent task or environment, 
there could possibly be a different strategy tree for each 
of those tasks. The level 1 features are selected using the 
feature filters. These conform to the requirements which 
constrain the task, environment, and model yet contain 
the strongest geometric information which leads to a so­
lution. The corroborating evidence subtrees, CES, are 
constructed using geometric information derived from the 
CAD model.

B. Construction o f  Strategy Trees
A method is now needed for extracting the features of 

interest from the aspects. The level 1 nodes of the strategy 
tree are built from these features. Recall, that an aspect is 
a feature accumulator which forms a topologically equiv­
alent set of features from multiple viewpoints. The aspect 
coverage algorithm, shown in Fig. 4, is used to form level 
1 nodes by extracting the best, unique features from the 
aspects.

When D  is not the empty set, it means there is at least 
one feature which is contained in all the aspects. Thus,
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Algorithm
Define Ai to be the set of all features contained in the ith aspect, where 0 < t < number-of-aspects.Define the operation, —, to denote set difference. Define, /, to be a level 1 node containing a set ofunique features, possibly a singleton set, which permits rapid identification of the object and its pose.
For each AtD = p| Dtj where D,-; = A, — Aj (i < j) if D ̂  0, thenchoose / from D if D = 0 and no D,} = 0, thenselect / to be the union of 1 element from each D,j if D,j = 0 for some j. thenA, C Aj so do nothing

Fig. 4. The aspect coverage algorithm.

that feature is used as a level 1 node. In the case where D 
is null but all the D,;’s are not empty, there is a combi­
nation of features which uniquely spans the aspects. Thus, 
a set of features for the level 1 node is used. In the last 
case, where the D,; is null for some j , then D will also be 
null. Additionally, it is known that the aspect, A , is com­
pletely contained in aspect Aj. A, must be a subset of A; 
because the set difference is null and if the two aspects, 
Aj and Aj, contained the exact same elements, they would 
have been merged at the tessel stage. Since A, is contained 
in Aj, a level 1 node is not created at this point. Rather, 
this aspect will be covered by the level 1 node generated 
from aspect Aj.

Once the level 1 nodes are built, it is necessary to gen­
erate the CES, corroborating evidence subtrees. The 
CES’s simply substantiate that a hypothesis should be 
generated based on a feature matching a level 1 node. Suf­
ficient evidence must be found that a correct hypothesis 
is being made before a hypothesis for the verification 
phase to validate is generated. This process serves two 
purposes: find spatially local supporting evidence for the 
level 1 feature and completely constrain the object's pose. 
Which features are used in this local corroboration is de­
pendent on which class of feature(s) the level 1 node con­
tains.

Occlusion becomes a factor during the determination of 
the CES strategy. Since dihedral edges and arcs provide 
the most consistent information (solve the most DOF’s), 
they are used for level 1 nodes more often than regions or 
curved surfaces. Edges and arcs are composed of a start­
ing point, an ending point, and the connecting edge or 
arc. When forming a strategy to handle occlusion for these 
features, both ends of the feature must be considered since 
it cannot be known a priori which end is occluded. Gen­
erally, four cases are considered when forming the sub­
trees for local feature corroboration: 1) detected feature 
is not occluded, 2) one end of detected feature is oc­
cluded, 3) other end of detected feature is occluded, or 4) 
both ends of detected feature are occluded. For some fea­
tures, such as faces or regions of constant curvature, there 
is no concept of direction; hence, the end conditions check 
can be replaced with adjacency information.

There are several rules which are implemented to con­
trol the construction of the CES level. These rules are 
feature dependent and are expandable should other classes 
of features be included in the system (e.g., generalized 
cylinders).

• D ihedral edge rules are:
— First look for another dihedral edge nearby which 

matches the model.
— Failing this, look for an appropriate 2-D comer.
— Failing this, use the approximate areas of adjacent 

faces.
• D ihedral arc rules are:

— First look for another dihedral edge nearby which 
matches the model.

— Failing this, look for an appropriate 2-D comer.
— Failing this, look for the surface type of adjacent 

faces or other attributes of the adjacent regions (area, ra­
dius of cylinder).

• Planar region rules are:
— First determine the orientation of the adjacent 

faces.
— Failing this, look for a nearby dihedral edge which 

matches the model.
— Failing this, look for an appropriate 2-D comer.

• C urved surface rule is:
— Determine surface types of adjacent surfaces.

A CES is generated for every feature in the model which 
has similar attributes as the level 1 node. For example, 
suppose the level 1 node is a dihedral edge of included 
angle 30° and a dihedral edge in the scene is detected with 
an included angle close to 30°. A CES is generated for 
all 30° angles in the model. In other words, an attempt is 
made to determine which 30° dihedral was detected. The 
use of corroborating evidence focuses the search strategy 
by pruning unattractive paths at an early stage of the 
search.

C. Usage o f  Strategy Trees
The strategy tree guides the search through possible so­

lutions. When a level 1 node is matched in the strategy 
tree and it is supported by the corroborating evidence 
subtrees, then a hypothesis is generated. The hypothesis 
is passed to an object verifier which determines whether 
the hypothesis is valid within some confidence level.

The combinatorial explosion of the matching process is 
controlled by the use of heuristics. For a detected feature 
to match a level 1 node, it must satisfy the following rules.

1) The attributes in the detected feature must be less 
than or equal to the attributes in the model (i.e ., the length 
of a detected edge must not be longer than a model edge, 
area of a detected surface must not be greater than the area 
of the model, the included angle of a dihedral arc must be 
within some range of the model).

2) If the detected feature is not occluded, the attributes 
must be within some tolerance of the model’s values.

These simple rules greatly reduce the possible matches 
to the level 1 features. The check “ less than or equal to” 
for feature attributes is used due to the possibility of oc­
clusion. In dealing with 3-D data, perspective does not 
alter the measurable attributes. Even with occlusion, a 
feature cannot appear larger (longer for edges, larger area 
for surfaces) than the original model.
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In the above method, occlusion must be detected in the 
range data. Three simple cases suffice to determine 
whether occlusion is present or not. These tests are per­
formed at the boundary of the detected features (i.e., di­
hedral edge—endpoints, surface/face—bounding edges).

1) Feature ends with a jump edge. In this case, look at 
the relationship between the feature and the part of the 
scene which forms the jump edge (scene-jump):

a) feature is nearer than scene-jump. Implies nonoc­
cluded.

b) scene-jump is nearer than feature. Implies oc­
cluded.

2) Feature ends with a shadow edge. This is an unfor­
tunate artifact of triangulation systems. However, this is 
the prevalent class of 3-D sensor in use at research labs 
at the present. It is unfortunate because the cause of the 
shadow edge is unknown. It could be the shadow is caused 
by the actual edge of the object (e.g., the back-top edge 
of a cube), or is caused by occlusion, or is caused by a 
nonoccluding object casting a shadow on the feature in 
question. Since the cause is not known, it must be con­
sidered occluded even though it may not be. Implies oc­
cluded

3) Feature ends with neither a shadow edge nor jump 
edge. It is known conclusively that the feature is nonoc­
cluded.

Once a level 1 node has been matched using the heu­
ristics described above, and a determination made as to 
whether the feature is occluded or not, the local CES can 
be evaluated, as prescribed by the strategy tree. This local 
evidence gathering limits the number of hypotheses gen­
erated and passed to the object verification phase by de­
termining whether a hypothesis is justified by the local 
evidence. If there is not supporting local evidence, as pre­
scribed by the strategy tree, then that level 1 match fails 
and the detected feature is marked as unmatched. If there 
is enough local supporting evidence, a hypothesis is gen­
erated for the object verification phase to accept or reject.

Two forms of verification have been examined: struc­
tural and pixel correlation. Structural verification refers 
to verifying spatial relations among the features which 
should be present in the scene. This is similar to relational 
graph matching in 2-D. Pixel correlation refers to the ver­
ification technique of matching predicted depth, pixel by 
pixel, in a generated image and the sensed image. This 
corresponds to template matching in 2-D.

Either of these methods provides for verification. This 
follows the hypothesis verification techniques used by 
others [3], [4], [12], One of three states is assigned to the 
match of the hypothesized feature or pixel with the ob­
served feature or pixel.

• Positive Evidence: When the observed feature or 
depth is approximately the same as predicted. This means 
the observed object matches the transformed model in the 
predicted image.

• Neutral Evidence: When the observed feature or 
depth is closer to the sensor than the predicted one. This

seems counterintuitive but it simply means that the pre­
dicted feature/depth cannot be observed because some­
thing is possibly blocking sight of the object. In the pres­
ence of occlusion, it cannot be determined whether the 
difference between the prediction and the scene is due to 
an incorrect hypothesis or due to an occluding object. This 
also holds for shadow pixel/region in the range image for 
the same reason.

• Negative Evidence: When the observed feature or 
depth is much farther from the sensor than the predicted 
one. This definitely points to an incorrect hypothesis since 
the observed feature/depth is not occluded but is not where 
it should be.

If these measures are accumulated for the predicted 
range image or structural features, the hypothesis can be 
quantified and accepted or rejected accordingly. This 
quantification provides a measure of confidence in the hy­
pothesis.

V. Experiments and Discussion

The concepts which have been outlined above have been 
implemented in an experimental system. This section de­
scribes the sensing and computational environment. The 
synthesis of strategy trees is demonstrated with an ex­
ample polyhedron. The equipment used for the experi­
ment consisted of a Technical Arts 100A White Scanner, 
DEC VAX class processors and an HP Bobcat. The im­
ages used in the experiments are part of the the Utah 
Range Database which was compiled for standardization 
of research on range images for the research community
[7], Feature computation was coded on a VAX 750 in C. 
The automatic generation of strategy trees and the matcher 
were coded on an HP Bobcat in HP Common Lisp.

Range data was obtained with the White Scanner 100A 
which returns actual Cartesian data. The structured light 
is a laser beam which is spread into a plane of light and 
directed onto the work space. The sensing mechanism is 
a GE CCD camera with a 240 X 240 image.

A. Geometric Design
A polyhedron, called p o l y l ,  was designed using the 

Alpha_l design system. Of course, this simple polyhe­
dron does not exploit the freeform power of Alphal  but 
suffices as an example of how the system functions. Start­
ing with a primitive object, a parallelpiped, planes of in­
tersection are defined with which to remove portions of 
the primitive. For poly l, two portions are removed, and 
this is accomplished with the set different of two planes 
and the primitive. Fig. 5 shows the polyhedron rendered 
using Alpha l.

The construction of the hierarchical winged-edge model 
from the CAD model is quite simple. Form an object con­
sisting of faces which consist of edges which consist of 
vertices. Fig. 6 shows the labeled edges of this winged- 
edge model. The edge numbering is used throughout the 
remainder of this chapter. Table I lists the dihedral edges 
for poly l. Table II lists the faces for poly_l. These are
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Fig. 5. Poly l rendered by Alpha_l.

TABLE I 
Edge Attributes in Poly 1

edge angle length ad ja cen t fa ces
4 45.8 5.99 1 6
0 42.6 1.4 0 6
6 76.09 1.52 1 4
7 134.19 5.84 1 3
1 132.48 2.45 0 1
5 132.5 1.53 1 2
2 137.33 0.28 0 3
21 90 7.1 5 6
15 90 5.5 3 5
19 90 3.41 4 6
14 90 2.25 3 4
3 90 2.18 0 5
20 90 1.48 4 5
9 90 1.45 2 6
10 90 0.5 2 4

TABLE II 
Face A i iributes in Poly 1

face area normal poly type
0 1.8225 -0.678 0.000 0.735 convex
1 13.9725 -0.240 0.676 0.697 convex
2 0.3625 0.000 1.000 0.000 convex
3 6.9438 0.000 0.000 1.000 convex
4 4.4643 1.000 0.000 0.000 convex
5 9.2925 0.000 -1.000 0.000 convex
6 18.5328 0.000 0.000 -1.000 convex

used by the feature selection process as well as in the gen­
eration of strategy trees. Note the grouping of the edges 
in Table III denoted by the horizontal lines. Due to noise 
in the data and error in the feature extraction methods, the 
system cannot discriminate on angle value alone. Thus, 
dihedrals are grouped together if they are within 5 degrees 
of each other.

TABLE III 
Histogram of Dihedral Edges

angle in 
0-35 S5-55 55-65 65-82.5

degrees
82.5-100 100-125 125-U5 145-360

0 2 0 1 8 0 4 0

Fig. 7. Aspects for poly_l

B. Aspect Generation
In order to determine coverage of the object, aspects 

must be determined. In generating views of an object from 
various viewpoints, hidden line or hidden surface removal 
is necessary to determine which features are visible. As­
pects are formed by merging tessels which are topologi­
cally equivalent. Fig. 7 shows the 26 different aspects 
formed for poly_l by merging the 80 tessels.

C. Feature Selection
The next step in the process is the evaluation of fea­

tures. The filters  are applied to the complete set of fea­
tures. For the rare filter, a feature histogram is used to 
determine which features do not occur often in the model. 
Table III shows the histogram for the angle of all dihedral 
edges.

Robustness must be determined with respect to both the 
sensor and the suite of algorithms used. Through experi­
mentation, it has been determined, for the sensor config­
uration used here, that an edge length under 1.0 inch can­
not be reliably detected. Similarly, if a face is below a 
certain size, its surface area cannot be reliably detected, 
nor can the pointwise normals or the dihedral edges which
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form the face. This is because too few data points are 
sampled on such a small face.

Dihedral edges were selected as the most consistent 
feature since they solve 5 DOF’s as well as satisfying the 
other selection criteria (e.g., robust, inexpensive, rare). 
For this reason, the consistent filter ranks dihedral edges 
as the best level 1 feature. Other features can be selected 
and used in conjunction with dihedral edges if dihedral 
edges do not suffice for all aspects.

The ability of the strategy tree to provide a path for 
recognition given an arbitrary object orientation is as­
sured through the use of the aspect generation. Thus, the 
complete filter must be sure that at least one feature from 
every aspect is included as a level 1 node. It is desirable 
to use features which are visible from the greatest number 
of different viewpoints.

Feature cost has not been incorporated at this time. It 
is clear that algorithmic cost could be included via logical 
sensors and this is an area of future research.

D. Strategy Tree Synthesis
The order of application of these filters affects the gen­

eration of the level 1 nodes. Incorrect application of the 
suite of filters will generate an inefficient strategy tree. It 
must be stressed that a correct strategy tree will be built, 
but that the tree will be far from optimal. If the applica­
tion of the filters absolutely drops features from the set, 
it is possible to generate a null set of features. For ex­
ample, the histogram given in Table III includes all di­
hedral edges; even those which do not have an acceptable 
level of robustness. If the rare filter is applied first, edge
6 is selected as the most unique feature since only one of 
these edges occurs in the model. However, this edge is 
adjacent to a small face; thus the robustness filter would 
remove this edge. The only solution at this point is to 
generate a strategy tree with a backup strategy formed 
from a feature which is less consistent than a dihedral edge 
(the feature selected by the consistent filter). An example 
of such a feature and strategy is to look for planar faces 
and the associated relations between them.

Since strategy tree synthesis is automated, it is desir­
able to minimize the possibility of the null feature set and 
nonoptimal level 1 nodes. This is accomplished by rank­
ing the features with the filters. Thus, each filter produces 
a ranked list of the current feature set. As the strategy tree 
is built, the application of filters now means to choose the 
feature with the highest rank from that set.

The order in which the filters are applied was deter­
mined through experimentation. It has been found that if 
the complete filter is applied first, the desired coverage is 
assured. From this filter, a set of aspects is produced 
which contains visible features. Level 1 features are se­
lected for the strategy tree such that all aspects are rep­
resented by a level 1 node. However, one feature might 
be visible from multiple aspects. Using the histogram, 
form a set of the features which are contained in the great­
est number of aspects (highest histogram value), possibly 
a singleton set. From this set of features, use the rare filter

to determine which of these features are unique. From the 
ranked set of unique features, use the robustness filter to 
rank the robustness of each of these features. Select the 
feature which is most robust. If this feature is robust 
enough, then use it as a level 1 node. If it is not robust, 
repeat the algorithm for the next lowest histogram value. 
When a level 1 node is generated, remove, from the set 
of aspects, all the aspects which contain this feature. Re­
compute the histogram with the remaining aspects and re­
peat. Either a set of level 1 nodes has been generated 
which spans the entire set of aspects or there are aspects 
remaining which contain only nonrobust features. In the 
latter case, a weaker level 1 node must be formed for each 
of these aspects. This level 1 node will contain a feature 
which is not the most consistent type of feature. In this 
case, rather than having a dihedral edge as a level 1 node, 
the back up strategy is to match a face. At this point, the 
CES can be built.

One corroborating evidence subtree is generated for 
each dihedral edge which has attributes similar to the level
1 node. For example, for the level 1 node, edge 7, a CES 
must be formed for each of the edges in the 125-145 
range. The reason for this is that when a 135° edge is 
located it should match one of these edges, but which one 
is not known until corroborating evidence is gathered.

The next branch in each CES is determined by looking 
at the ends of the dihedral edge to determine if they are 
occluded. Recall that occlusion is determined by the end 
type of a particular edge. Shadow is assumed to be oc­
cluded, jump edge depends on whether it is an occluded 
jump or a nonoccluded jump edge. All others are nonoc­
cluded.

In the nonoccluded case, use the rules described above 
for the type feature which forms the particular level 1 
node. In the example, most level 1 features are dihedral 
edges so the dihedral rules are used. The rules are applied 
in the following order.

1) Attempt to find a dihedral edge close to the endpoint 
of the current edge. If found, use this to quickly form a 
hypothesis.

2) Attempt to find the local 2-D comers. If found, these 
can help determine which hypothesis should be formed. 
For example, if a 135° edge is located, the adjacent 2-D 
corner can help to determine which, if any, of the 125­
145 edges have been located.

3) Use the areas of the adjacent faces and relations be­
tween them to generate a hypothesis.

Fig. 8 shows the strategy tree forpoly l. The edges are 
represented by their edge number in the model. Note that 
there is a CES for each dihedral edge which is similar to 
the level 1 node. These are derived from Table II. For 
level 1 node 7, edges 1,5, and 2 all have similar dihedral 
angles. Thus, there is a CES for each of these edges as 
well as edge 7. Note that the same CES can appear under 
multiple level 1 nodes. When matching, the rules on at­
tribute similarity are used to invoke these CESs. Fig. 9 
shows the corroborating evidence subtree for the di­
hedral edge 7. Note that there are 4 possible branches
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Fig. 8. Strategy tree for poly_l.

Fig. 10. Scan data for polypi.

Fig. 1 I. Surface normals for poly_l.

shown for clarity. The nonocclusion branch is composed 
of an OR of the partial occlusion cases. Thus, during run­
time, the results of the partial occlusion are used by the 
nonocclusion branch.

E. Recognition
Now that the olf-line procedure is completed, the usage 

of strategy trees can be demonstrated with an example of 
matching. A range image is obtained and low-level 3-D 
feature extraction performed on that data. The object is 
scanned, in this case p o l y l .  Fig. 10 shows the data for 
p o l y l  from the Utah Range Database. This is an un­
smoothed image with bad data points missing. A 3 X 3 
Gaussian mask is used to smooth the image and replace 
missing data points with an average of surrounding points.

From this data, the pointwise intrinsic features are com­
puted for the object: surface normals and surface curva-

Points of curvature for poly l.

ture. Fig. 11 shows the surface normals for the object. 
Fig. 12 shows the labeled curvature for poly l . Since this 
is a polyhedral object, the planar face finder is used to 
develop a surface representation. Fig. 13 shows the re­
sults of the planar face finder. Table IV lists attributes of 
the planes which were located. Two dihedral edges are 
located using the dihedral edge finder. These edges cor­
respond to edge 7 and edge 1 in the model.

Now the strategy tree shown in Fig. 8 can be used. The 
level 1 features in the strategy tree are the dihedral edges: 
7, 19. 14,3,4,  1, 0, 21. 6, 20. and 9. The dihedral edges 
located in the scene are shown in Table V. (The corre­
sponding model edges are included to help the reader.) 
The system has not matched the dihedral edges at this 
point. By comparing these attributes to those listed in
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Fig. 13. Planar regions for poly l. Fig. 14. Model overlayed on sensed image.

TABLE IV
Attributes of Located Planes

face area norma cenirotd
1 5.799 -0.024 0.018 0.995 1.699-2.101 -1.150
2 13.116 -0.630 0.226 0.741 -0.022 -2.324 -1.917
3 0.181 -0.128 0.899 0.391 1.177 1.167 -2.342
4 0.259 -0.695 0.588 0.392 0.7100.858 -2.473
5 1.618 -0.448 -0.490 0.744 -0.904-5.675 -2.070

TABLE V 
Dihedral Edof.s Located in Scene

detected edge Edges Located Model Edge
edge name angle length edge number

A 138.393° 0.2339 2
B 136.546° 2.4619 1
C 139.558° 5.7732 7
D 150.477° 0.8748 5

Table V, the reader will notice that the attributes calcu­
lated for dihedral edge 5 are indeed erroneous. This is 
because the bordering face is too small to reliably recover 
attributes from the sensed data.

The detected edge A is too short for reliability so it 
won’t be used. The detected edge D  has an angle which 
does not match the model so it won’t be used in the 
matching process. Detected edges B  and C both have an­
gles with in the 130-140 range. These edges match 2 dif­
ferent level 1 nodes each: model edge 7 and model edge
1. The first determination in the strategy tree is to check 
for similarity. If a detected edge is larger than a model 
edge, the match fails. Detected edge C fails to match the 
level 1 node: edge 1, because the length is too long. Next 
the check for occlusion takes place. Detected edge B  is 
nonoccluded at both endpoints and detected edge C is oc­
cluded at one endpoint. Since it has been determined that 
detected edge B  is a nonoccluded edge, the attributes must 
be close to the model for a match to succeed. For this 
reason, edge B fails to match the level 1 node: edge 7. 
Thus, only one Corroborating Evidence Subtree is in­
voked for each of the level 1 nodes which have been 
matched: edge 7 and edge 1.

The CES strategy first looks for an adjancent dihedral. 
In both cases, a dihedral is found. For the level 1 node: 
edge 7, the dihedral used as corroborative evidence is de­
tected edge B. Whereas for the level 1 node: edge 1, the 
dihedral used as evidence is detected edge C. These two 
dihedrals are sufficient to solve all 6 DOF’s and each of 
these forms a hypothesis at this point.

Since both the hypotheses are the same, the verifier only 
needs to check one. An image is formed with the hypoth­
esized transform applied to the model and the perspective 
transform of the sensor applied to that result. For every 
pixel in the image, the z-depth is determined. Pixelwise 
evidence gathering can now be performed. The positive, 
negative, and neutral evidence is combined to verify or 
refute the match. For the hypothesized transform, the hy­
pothesis is correct in this case. This is shown in Fig. 14.

Although the example is a polyhedral object, exten­
sions to nonpolyhedral objects are underway. If occlusion 
occurs in the scene, more CES’s would be invoked to cor­
roborate possible matches. The use of this approach with 
multiple objects merely requires running the recognizers 
in parallel.

VI. Conclusions and Future Work
It has been shown that the automatic generation of rec­

ognition strategies is possible. A method is presented 
which analyzed the geometric information of an object to 
determine the best strategy for recognition within the con­
straints of the sensing environment and the task. Using 
this information, a recognition system, a strategy tree, is 
produced which effectively matches models with sensed 
data. The strategy tree generation is performed automat­
ically with minimal assistance from the user. The strategy 
tree provides a model based approach for the recognition 
and location of objects using 3-D sensing techniques. 
These strategy trees are formed using the following fea­
ture filters: robust, complete, consistent, unique, and cost 
effective. Using these filters, a strategy is formed which 
includes the use of corroborating evidence to substantiate 
hypotheses at formation time thereby increasing the speed 
for recognition.

Many areas of future research remain open. One pri­
mary area of future research is the exploration of 3-D fea-
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Fig. 16. Bottle normals.

ture extraction with emphasis on efficient routines. The 
feature extraction techniques used in this research were 
relatively slow when compared to the matching time. 
Faster feature extraction would enhance such a system.

Research into the use of other 3-D features should also 
be an active area. The application of these concepts to 
other representations, such as generalized cylinders, 
should be explored. Other computer vision representa­
tions, as they become available, for freeform surfaces 
should be incorporated into the feature selection and strat­

egy generation process. Preliminary results in this area 
are encouraging. The bottle shown in Fig. 15 was de­
signed using Alpha l. A sample of surface normals on 
the model is shown in Fig. 16. The features for such an 
object include surfaces and lines of curvature (surface in­
tersections). The main filter is robustness of their recov­
ery in data from the laser range finder. The robustness 
filter eliminates lines of curvature which are formed by 
surfaces that are too small to be reliably detected in the 
range data. The selected set of features is:

cylinder: (1.203500,4.750000)

curve: (0.880841, 5.839280, 2.000000, 0.726966)

curve: (0.726966, 6.262050, 1.000000, 0.502500)

curve: (0.485000, 9.250000, 2.000000, 0.525000).

Data from a scene with the bottle is shown in Fig. 17, and 
a spatial proximity graph built on those points is shown 
in Fig. 18. Matching to the features can be accomplished 
using techniques for finding lines of curvature in the data 
(e.g., [5]). We are currently working on this.

Another area is the use of knowledge-based techniques 
for the synthesis of recognizers. Specific rules have been 
outlined which govern the automatic generation of strat­
egy trees. These rules could be implemented in a more 
general framework such as an expert system. Such a sys­
tem could reason about tasking information. The repre­
sentation of algorithmic information provides a vast area
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Fig. 18. Bottle spatial proximity graph.

of untapped research opportunities. The use of logical 
sensor specifications seems to be a good approach to the 
problem and should be investigated.
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