
Im p le m e n ta tio n an d C h a ra c te r is t ic s
O f R u le -b ased S y ste m

F o r T h e F in ite E le m e n t A n a ly s is

Hyo Jong Lee1

U U C S -8 9 -0 0 2

Department of Computer Science
University of Utah

Salt Lake City, UT 84112 USA

A u gu st 2 8 , 1990

1This was supported in part by DARPA (DAAK1184K0017 and N00014-88-K-0688). All opinions, find
ings, conclusions or recommendations expressed in this document are those of the author and do not neces
sarily reflect the views of the sponsoring agencies.

1 Introduction 1

2 Backgrounds for Exp e rt System s 2

2.1 Successful Expert Systems . • • ̂ ..._.. • • _ 2

2.2 Knowledge Representation..3

2.2.1 Semantic N e t3

2.2.2 Rule Based System3

2.2.3 Frame Based System ...4

2.3 F R O B S , a Building To o l..4

Contents

3 Im p le m e n ta tio n 5

3.1 System O v e r v ie w ... 5

3.2 U se r-frie n d lin e s s ... 7

3.3 Internal Representation and R u l e s .. 8

3.4 Control Flow of EFEM .. 12

3.4.1 Checking Input G e o m e try ... 14

3.4.2 G etting Boundaries for R e g io n s ... 15

3.4.3 Setting a Dimension for Each B o u n d a r y ... 16

3.4.4 Setting Adjacency In f o rm a t io n ... 18

3.4.5 Analyzing Uniform M e s h e s .. 18

3.4.6 Generating Optim al M esh es.. 19

4 C o n c lu s io n 20

4.1 M e th o d o lo g y 20

4.2 Comparison to Existing S y s t e m s ... 21

4.3 Future W ork .. 21

4.4 S u m m a r y ... 22

i

1 T h e Integrated Feature-Level Expert S y s t e m .. 6

2 A Sample Rule Generates Uniform M eshes... 12

3 T h e Process Sequence of EFEM .. 13

4 A Case that Needs M ultiple Dimension Sizes (a) A Given Problem Dom ain (b) Meshes
by a Single Dimension (c) Meshes by M ultiple Dimension . . . _JL_. __ 17

List of Figures _

4

ii

Abstract

It ia well known that the analysis of process for the finite element method is tedious and error-
prone steps. Considering the importance of the task of engineering analyses, such as structural
analysis, heat transfer, fluid flow simulation, and electromagnetic potential, many researchers
have tried to develop better and easier systems.

Meanwhile, expert systems have been developed in various areas, such as D E N D R A L, M YC IN ,
and XCO N . There are two main reasons for developing expert systems. First, an expert system
can facilitate the dissemination of vital knowledge to a certain organization with a reasonable
cost. Second, an expert system does not suffer from human~problems such as confusion so thafit
can apply appropriate rules to the problem. It is obvious that development of an expert system
for finite element mesh generation can save both time and money in the finite element analysis
process.

A rule-based system for optimal finite element mesh generation, E F E M has been developed
and implemented in powerful interactive solid modeler. Because required knowledge is translated
into rules, it is not required to know detail information about the finite element analysis processes
or computer science to test structural analysis. The implementation of the E F E M has been
analyzed.

1 In tro d u ctio n

T h e artificial intelligence technique has been widely used to reduce hum an beings’ burden and
increase the efficiency of works, knowledge engineers have developed rule-based systems to solve
problems in various areas, such as prediction, diagnosis, design, planning, m onitoring, debugging,
instruction, and controlling systems. T h e artificial intelligence software has had great success since it
moved from the laboratory into the real world. In fact the general tendency of software development
goes from conventional program m ing techniques to artificial intelligence (A I) approaches that created
expert systems. Because of ease and efficiency of A I approaches, the demand for expert systems
is rapidly increasing. Pressman [Pre87] pointed out that using artificial intelligence techniques in
software engineering has a great advantage. As an example, V A X family com puter’s line configurator
XCON saves Digital Equipm ent Corporation $18 m illion annually [W il86]. T h e ideal expert system
can finish tasks thoroughly and correctly, because it does not feel fatigue and cannot become confused
with facts if knowledge is provided by appropriate expertise and knowledge acquisition is done
correctly. Therefore, users of the expert system are benefited by greater speed, fewer errors, reduced
cognitive load, increased adaptability and robustness. Fo r example, an efficient expert controller
can adaptively govern the behavior of a problem domain system [FW L 8 3]. In order to achieve this,
the expert control system interprets the current situation, reasons the future, diagnoses the cause of
expected problems, formulates a remedy and monitors its execution to ensure success.

As the success of an expert system has been demonstrated w ith results of the XCON, the
expert system for the finite element analysis can save analysts both time and money. T h e prototype
expert system, EFEM (E x p e rt System for Fin ite Elem ent Mesh generation) has been developed
and implemented in this thesis. T h e knowledge required for the finite element analysis has been

1

1

translated into the knowledge base of EFEM and the top-loop control program of the whole system,
called inference engine, generates optima] meshes for the specified problem domain designed by a
solid modeler. Th u s, EFEM will disseminate vital knowledge of the finite element analysis into
industry w ith reasonable cost.

2 Backgrounds for E x p e rt Systems

In the previous section* the brief in tro d u c tio n s how the applications of expert systems had
spread in various categories of problems was described. In order to understand the answer bet­
ter, it is necessary to look at the difference between conventional programming and expert system
techniques. Conventional programming deals w ith the problems that have known algorithms or pro­
cedures [W il86]. On the other hand, expert systems can be defined as problem solving programs with
computer models of expert reasoning to accomplish high level performance in a specified problem
domain. In this technique the problem-solving approach is heuristic rather than algorithmic.

In the real world mo6t problem-solving tasks involve uncertainty. For an example, it is very
ambiguous to generate optimal meshes for an object, of which structural analysis is required to main­
tain enough strength. Th is uncertainty can be represented and resolved better in expert system
programming than conventional programming techniques. In expert system development, knowl­
edge is processed by an inference engine, while data are processed by looping in the conventional
programming technique.

T h e second reason that knowledge engineers should develop expert systems actively is that
expert systems can provide a means of codifying crucial knowledge in a certain field [FAM *86].
Knowledge limitations are often found in any organization. If the knowledge is absolutely necessary
to achieve progress of the organization, it should be supplied to those groups w ithin the organization
that want to apply it in some way. In that case expert 6y6tems can be easily transported with
affordable cost. Th e followings are a few examples to realize the importance of developing expert
systems.

2.1 Successful Expert Systems

In the early days expert systems dealt w ith simple systems that had the heuristic skill to
find goal states in playing games. However, recently many groups of researchers are trying to 6olve
real-life problems with realistic models of reasoning rather than, simply generalized problem solving.

DENDRAL began in 1965 to help solve the difficult problem of interpreting molecular struc­
tures from mass spectrographic information. A lthough algorithms existed to generate all possible
molecular structures, the exhaustive search was extremely expensive. DENDRAL had the knowledge
of expert chemists in rules who could search for satisfactory answers.

MYCIN was a successful expert system utilized for medical practice since the project began
1972. It gave advice on diagnosis and therapy for bacterial infectious diseases. Necessary medical

2

knowledge was encoded in terms of production rules involving certainty factors, which helped doctors
to accommodate probabilistic reasoning. It also gave the reasons for its decisions in terms of its rule.
A rule acquisition system also allowed users to add new rules and change existing ones.

XCON is one of the most mature and successful expert system application since it configured a
VAX-11/780 in 1980. Digital Equipm ent Corporation spent about 50 man-yeare to develop XCON.
XCON saves D E C $18 million annually [W il86]. It configures the V A X computer fam ily system
by checking that the order is complete and then determining the spatial arrangement of over 5000
different components. -XCON uses a bottom -up approach that begins with knowledge about compo-------
nents like voltage, amperage, pin-type, and the number of ports, and tries to produce configuration
w ithin the constraints imposed by the properties of the components and relationships among them.
New knowledge was added from time to time to handle a wider class of data and to introduce new
subtasks. T h e maintenance of thi6 system is relatively easier than that of conventional programming.

2.2 Knowledge Representation

T o place experts’ knowledge into an expert system, knowledge should be structured as natural
by as possible. T h e mo6t widely used schemes are semantic net, rule based representation, and frame
based representation [Wat86].

2.2.1 Semantic N etln the semantic net technique, knowledge is represented on a network structure
of nodes and their links, called arcs. Objects, concepts, or events can be placed in nodes, while their
relationships between nodes are defined in arcs. Although the semantic net scheme has advantages
such as the ability to detect similarities in the meaning of sentences that are closely related but
have different structures, it has the disadvantage of not showing the correct meaning of nodes. As
an example, nodes labeled edge may have the meaning class o f all edges, or concept o f edge, or a
specified edge. Th u s it is realized that this scheme lacks a logical and heuristic adequacy [Jac86].

2.2.2 Rule Based SystemRules provide a formal way of representing recommendations, directions,
or strategies using I F condition THEN action statement. W hen the I F portion(prem we), of a rule is
matched by the lacts in a forward chaining system, the action specified by the THEN portion is fired so
that inference chains are produced continuously. T h e firing of the rule m ay add new knowledge into
the knowledge base. Th is technique has two distinctive chaining mechanisms, forward chaining and
backward chaining. In forward chaining, the search for new information proceeds in the direction
of THEN portion, i.e., the system uses the premise to derive the information of THEN portion. In a
backward chaining system, the system only executes rules that are relevant to establishing a goal
part. It tries to prove the goal. I f it cannot prove the goal directly, it establishes other facts, subgoals,
which will prove the original goal. Rule system also provides an environment that is easy to debug
and maintain.

3

2.2.3 Frame Based SystemFrames are data structures for representing stereotyped situations, which
are grouped together. Each frame has m ultiple slots that hold attributes, and each 6lot m ay have
local procedures attached to it. Procedures are executed when changes happen in the slot. There
are three types of procedures based on when they are executed. T h e y are If-Added, If-Deleted, and
If-Needed and are executed when new information is added into the slot, when existing information
is deleted from the slot, and when the slot is accessed for new information, respectively. Th is is very
useful and powerful for problem domains where expectations about slot value play an im portant role
in problem solving.

2.3 FROBS, a Building Tool

Once a knowledge engineer identifies problems and has clear concepts about the problem with
its control mechanisms, Waterman [Wat86] pointed out that the mo6t difficult task is to select tools
to build expert systems. It is common to encounter several types of difficulties when trying to build
an expert system. Some of them are the scarcity of resources, the limits of artificial intelligence
technology, and the length of time [Wat86]. T h e first two are related to the building tool. If a
knowledge engineer could select appropriate tools as needed, it means he/she has overcome mo6t
of the problems. Th u s , the selection of expert system building tool is very im portant. T h e tool
must help the knowledge engineer to map key concepts into formal representation using one or more
representation schemes discussed in previous section.

In developing EFEM , FROBS (F R + O B S) [M KK87,Mue87a,M ue88,M ue87b] was selected to
represent the knowledge base. FROBS was developed by the Utah PASS (Portable Artificial Intel­
ligence Support System) group at the Com puter Science Department of University of U tah . It was
designed to take the best of the frame base system (F R) and the object oriented system (O B S) and
combine them into a Lisp environment. It is written in Hewlett Packard Com m on Lisp and Portable
Com m on Lisp Subset (PCLS) [SL86] that was developed by the same group. PCLS covers the
subset of Common Lisp embedded in Portable Standard Lisp (P S L), the Lisp language used in the
designing the interface of A lphaJ , Shape Editor. Th u s , selecting FROBS provides a complete Lisp
environment that is known as the most suitable for expert systems. Meanwhile, it is consistent with
the geometric modeler. FROBS supports methods and allows users to do rule-based programming
inside a frame system. A module of FROBS will be the basic building block of the expert system.
Each module contains class F R O B S and methods of the class that can manipulate a class. Th is will
be discussed in more detail with examples in the next chapter. FROBS has distinct differences in
comparison with other object systems. First, methods of FROBS can be invoked by using a function
call style. Second, FROBS allows context based multiple inheritances. T h ird , it supports the frame
world by allowing multiple valued slots. Finally, it can hide information completely from other users
by using private slots and methods. Furthermore FROBS can continuously update the knowledge
base that is im portant for reasoning, 6ince the system also provides a rule system.

T h e development of an expert system for the finite element analysis is closely related to a
few other systems. T h e expert system has been built on the top of the Alphtul geometric modeler
[Alp88b,Alp88a] being developed by the A lphaJ group at the Departm ent of Com puter Science,
University of Utah, and will interact with a separate finite dement analysis package, to get optimal
meshes simultaneously. A s was already discussed in the previous sin tion, FROBS has been selected
as a tool to build EFEM.

Figure 1 shows the integrated feature-level expert system for the finite element analysis. Th e
thick solid boxes represent the parts of EFEM that are not implemented in a conventional program­
m ing technique.

It is im portant to represent models precisely in order to get the best analysis results. Th u s ,
the geometric modeler-aided mesh generator has the advantage of being able to represent problem
domains completely and uniquely and to provide user fric-ndly interaction. Because the Alpha.1
geometric modeler represents models by the boundary representation method, models can be kept
in an evaluated form so that the finite element analysis package m ay be applied to them directly.
Since the Alpha.1 modeler utilizes the tensor product nonuniform rational B-spline representation,
every surface has four boundaries, which is compatible w ith the input format of the finite element
analysis package used.

Although the Alpha.1 modeler has some disadvamages compared to the C S G tree based geo­
metric modeler, it can represent a wider variety of complex models from two-dimensional to three­
dimensional in terms of surfaces, such as airplanes, automobiles, and various mechanical parts. It
also provides a high quality graphical capability that is very useful for postprocesses, such as dis­
playing the deformation of a shape or strain energy distribution field along w ith an original shape.
Because ihe^AlphaJ geometric modeler has all integrated capabilities from preprocesses to post­
processes, EFEM interacts w ith them and generates optimal finite element meshes self-adaptively.
Therefore, EFEM does not need to ask users for tedious information to analyze, although several
packages intermingle in a complicated way as shown in Figure 1.

ADINA (A utom atic Dynam ic Incremental Nonlinear Analysis) [A D I8 1], from ADINA Engi­
neering, Incorporated, is a well-known commercial finite element analysis package. ADINA cooper­
ates with the A lphaJ geometric modeler in that ADINA can generate better results w ith the input
of quadrilateral meshes. It also allows users to specify different orders of shape function in the same
element such that the element can have side nodal points, which unavoidably occur in the process
of subdivision or refinement of surfaces by the geometric modeler. As was discussed earlier, the
stress of most material is linearly proportional to the energy. ADINA supports quadrilateral meshes
that provide good accuracy with reasonable cost to analyze objects. T h e quadrilateral elements are
also generated by the A lphaJ geometric modeler. T h e usage of the ADINA package is completely
covered by EFEM such that a user does not even realize when ADINA is invoked and it is not

3 Implementation

3.1 System Overview

5

Figure 1: The Integrated Feature-Level Expert System

required for a user to know how to use the package. _

T h e characteristics of the FROBS, expert system building tool, was briefly explained in the
previous chapter. It was also discussed that Sh&pe Editor and FROBS were built on the Portable
Standard Lisp (P 5 L) and the Portable Com m on Lisp Subsets (P C L S) , respectively. Because some
6ymbol names of P C L S are conflicting w ith ones of P S L, all package symbols defined in the P S L
package 6hould be used with a package qualifier inside P C L S package, and vice versa. A user can
access both the Sb&pe Editor and the FROBS by calling them w ith their qualifier whenever it is
necessary. More detail usage w ill be described in a later section. _______

3.2 User-friendliness

It is expected that two groups of people would use the EFEM. One group is made up of
people who are familiar with finite element analysis but not with computer-aided geometry or expert
systems. T h e other group is made up of people who axe familiar with computer graphics or modeling
objects but not w ith finite element analysis. A n intelligent computer graphic hacker m ay not be
knowledgeable in the area of finite element analysis. O n the other hand, someone w ho knows finite
element analysis may not be skilled in designing models.

Th e system rationale of EFEM discussed in the previous section shows that the working
environment of EFEM is quite complex. T h u s , one of the mo6t im portant goals of EFEM is to
provide a user-friendly system. T h e system should be easy enough to use for a technician who does
not have the background of computer science or a computer scientist who is not skilled in the finite
element analysis. T h a t is, the information needed to use a good expert system should be as simple
as possible.

Mo6t early finite element analysis packages such as A D IN A , N A S T R A N [R H M 7 2], and N O N ­
S A P [U n i72] are difficult to use, although they have great power to 6olve various classes of problems.
Some investigators [SD R 88,W P W W 87,R ud88,B en88] have developed new techniques try in g to re­
duce the difficulty in the input preparation of preprocessing for finite element models. However,
there are still a number of problems with their systems.

Firstly, most packages have been designed based on menu driven interaction. However, the
menus are four or five levels deep, making it very confusing for a novice to select the proper sequence
of menu items. It is also easy to overlook incomplete attributes that must be defined for the
analysis. T h e user realizes the problem when the analysis process encounters errors. Secondly, the
mesh generation technique is a node-oriented method rather than an object-oriented m ethod. For
example, a move operator has to be used in order to model a dented square plate after a perfect
square has been modeled. Obviously, it is desirable to extract nodes from a model in order to achieve
better accuracy in speed. In this technique it is also necessary to label nodes or elements in order
to specify referenced nodes or elements. T o deal with labeling of nodes or elements i6 very tedious
and error-prone when the object is big or complicated. Th ird ly , it is very difficult to specify element
sizes in case composite curves are used. In existing systems, if a boundary consists of multiple
curves, the proper element size must be specified for each curve in order to build accurate boundary

7

curve segments. It is & time consuming process to set an appropriate element num ber for every
curve. Finally, extensive knowledge about the finite element analysis is required to generate optimal
meshes. SUPERTAB [SDR88] utilizes the strain energy and deformation to solve this problem, but
it is still necessary to modify nodes m anually to generate reasonable optimal meshes.

Therefore, EFEM has been built Euch that a user does not need to specify difficult information.
T h e prim ary inputs in EFEM are the geometric definition of an object model and analysis-dependent
information. Once the analysis-dependent information has been specified, EFEM generates the
optimal meshes by itself.

3.3 Internal Representation and Rules

EFEM reads a modeled object with a list format so that a user calls a main function efem to
read geometric information such that (efem g e o m e tric -ty p e l is t -o f -g e o m e t r y) . I f the geometry
entity is a point or a curve, l is t -o f -g e o m e t r y should be a nested list to accept four points or four
curves forming a quadrilateral element. As an example, input for a thin I-shaped alum inum plate
that will be discussed in a later section is shown as

(efem '2 d (l i s t (l i s t p s l :P l p s l:P 2 p s l:P 3 p s l:P 4)
(l i s t p s l :P 3 p s l:P 4 p s l:P 5 p s l :P 6)))

T w o regions of planar domain were specified by lists of points. Because the points were defined
in P S L, they are referred to by a package name qualifier, p s l :. Once EFEM recognizes the geometry,
it stores the information into the basic building block of FROBS, a module that was mentioned in
the previous section. A module consists of a class and all of its associated methods. EFEM has
three distinct classes, Geometry, Region, and Analysis, based on its functionality.

Class Geometry copies geometric information from Shape edit and decides which boundary
type is appropriate such as top, bottom , left, and right. Class Region has slots that are related with
nongeometric information such as material properties, constraints, and loading information. Once
it gets all required information, it creates new symbols for PSL packages. Class Analysis is one that
controls top-loop level analysis sequence. It has slots about symmetric properties, criterion surfaces,
and information about the next job Etate. Definition of Class Geometry, Class Region, and Class
Analysis look like:

; ; define c la ss of geometry
(d e f-c lass geometry E IL

: s lo ts (type typeOk
heading dname id
dim geometryLeng
pa pb pc pd in te rP t
stop doneGeom

; type of geometry
; Adina re lated s lo ts
; geometry dimension
; ve rtice s
; contro l s lo ts

8

edgel edge2 typeEdgel
surface
(convex T)
(boundingBox H IL)
(in te rP tT r ia l 0)
(p m list V IL)
(checkld 0)
(t r ia l MIL) ..
(knownPts V IL)
(tempFinPts H IL)
(consistO k ’Unknown)
(fin P ts H IL)
(finBdy N IL)
(dispBdy ’ Unknown)))

edges of region
ragion curfaca
the ragion is convex in it ia l ly
bounding box c lo t
in te rsectio n point
vertex type based on lo cation
tag fo r racognizing four points
i o f the t r ia l of find ing edge______________ .
l i s t of known points
teaporary l i s t of known points
tag fo r consistency of adgas
l i s t of f in a l points
l i s t of f in a l boundaries
tag fo r d isp laying option

; ; define c la ss of region ,
(d e f-c lass region n il
: s lo ts (id ; ragion id

topBdy ; boundary s lo ts fo r top,
bottomBdy ; bottom,
le ftB d y ; le f t , and
rightBdy ; rig h t
bdyOk ; tag fo r checking the proper boundary l i s t
meshDensity ; mesh density type
tTobDim ; dimension of boundary from top to bottom
lTorDim ; dimension of boundary from le f t to rig h t
topN ; neighbor inform ation of top boundary
botN ; of bottom boundary
le ftN ; of le f t boundary
rightN ; of rig h t boundary
m ateria l ; m ateria l id e n tific a tio n
young ; m ateria l property, Young’ s nodule
poisson ; Poisson’ s ra t io ,
th ickness ; th ickness of m ateria l
loadVec ; loading inform ation, a given loading vector
coraerL ; corner sat of loading
bdyL ; boundary sa t of loading
loading ; f in a l loading value
topCons ; displacement co n stra in t, top co n stra in t,
bottomCons ; bottom,
leftCons ; le f t , and
rightCons ; rig h t

9

tConsSst
bConsSet
lConsSet
rConsSet
startA nal
)

:mv (re g io n !))

given constra in t set onto top boundary,
bottom boundary,
le f t boundary, and
rig h t boundary

tag fo r ready sta te of s ta rt ana lysis

; f in a l region l i s t

; ; define c la ss of a n a ly s is ,
(d e f-class an a lysis n il

(genUniform generate uniform mesh
orgDomain o rig in a l domain
unifHesh uniform mesh
symXaxis symmetricP w ith respect to Z ax is
symYaxis symmetricP w ith respect to Y ax is
symZaxis symmetricP w ith respect to Z ax is
dispUniform d isp lay uniform mesh
fem lnFile fem input f i le name
TEMPSLOT temporary fo r ed iting input f i le
adinaOutFile adina output f i le
evalUniform evaluate uniform
highest the highest s tra in energy from evaluation
dispScale d isp lay sca le
drawDeform name of deformation f i le
c ritS ca le sca lin g fa cto r fo r drawing c rite rio n
b u ild C ritS rf bu ild a c r ite rio n surface
d isp C ritS rf tag fo r d isp laying c rite rio n s r f
workDomain domain cu rren tly working with
subd ivC rit subdivision c r it ic a l value fo r optimal
newDomain domain fo r nearoptimal mesh
femlnFileNO fem input f i le fo r near optimal
TEHPSL0T2 temporary
adinaOutFileNO adina output f i le name fo r optimal
evalNO tag fo r evaluation of optimal mesh
noMesh name of near optimal mesh
nextJob next job sta te
rerun rerun fo r a new loading vector
render render option
renderObj a rendering object
tryAnother generate another near optimal mesh
»

10

Defining a class does not build an actual instance of the class. A n actual instance is created by the
method of the Class Geometry that looks like:

; ; nake an instance o f point or curve re lated geometry c la s s .
(def-method ({c la s s geometry} forsGeomPtCrv)
(name typo heading dname d in geometryLeng pa pb pc pd)
(le t ((In stance (new-instance* I s e l f)))
(s e tf (type Instance) type) -------------- - - - - - ---
(s e tf (heading Instance) heading)
(s e tf (dname Instance) dname)
(s e tf (dim Instance) dim) ' •
(s e tf (id Instance) name)
(s e tf (geometryLeng Instance) geometryLeng)
(s e tf (pa Instance) pa)
(s e tf (pb Instance) pb)
(s e tf (pc Instance) pc) .
(s e tf (pd Instance) pd)
Instance))

; ; make an instance of surface re lated geometry c la ss .
(def-method ({c la s s geometry} formGeomSrf)
(name type heading dname dim geometryLeng)
(le t ((In stan ce (nev-instance* I s e l f)))
(s e tf (type Instance) type)
(s e tf (heading Instance) heading) '
(s e tf (dname Instance) dname)
(s e tf (dim Instance) dim)
(s e tf (geometryLeng Instance) geometryLeng)
(s e tf (doneGeom Instance) ’ Unknown)
(s e tf (id Instance) name)
In stan ce))

; ; other methods re lated w ith geometry c la s s .
(def-method ({c la s s geometry} incCheckld)()
(a sse rt-va l I s e lf ’ checkld (1+ (checkld I s e l f))))

(def-method ({c la s s geometry} copyKnown)(Order)
(a sse rt-va l I s e lf ’ knownPts (nth Order * *F in P ts L is t)))

(def-method ({c la s s geometry} getSharedPts)(Pa Pb Pc Pd KnownPList)
(a sse rt-va l I s e lf ’ edgel (memberPt Pa Pb Pc Pd KnownPList)))

11

; ; ; Rule fo r generating uniform meshes fo r two dimension.
(d ef-ru le generateUniformHeshFor2D
:type ((Treg ion reg ion)(Tanalysis analysis)(Tgeom etry geometry))
: lo ca l ()
; ; i f geometry dimesion is 2D, ana lysis is begun, and uniform mesh
; ; is not generated ye t,

:pr«m ((dim?geometry 2dX _ ------ ------------------
(s ta r t in a l ?region yes)
(genUniform ?an a lysis notYet))

; ; then generate uniform mesh by c a llin g gen2DUniformMesh and f i l l
; ; the s lo t such that the unifoxm mesh is generated.
:conc (atomic

(p rin tRu le "Generating uniform mesh fo r 2 D ..'X ")
(gen2DUniformMesh (reg ion! (regClass 0)))
(a sse rt-va l ?an a lysis 'genUniform 'Done)))

Figure 2: A Sample Rule Generates Uniform Meshes

One of most powerful feature of FROBS is that FROBS provides its own forward chaining rule
system built in. Since forward chaining rules are data driven, rules that satisfy current knowledge
base can be triggered and trigger another rule simultaneously. Th u s , EFEM completes the whole
analysis cycle by one assertion of a slot value. T h e rules of FROBS consist mainly of premise and
conclusion such as the general rule system, which was discussed in the knowledge representation
section, Figure 2 shows the rules that generate the uniform mesh for two-dimensional objects. Its
premise checks three conditions: if the dimension type is two-dimensional; if the region is created
properly, and if the uniform mesh is not ever created. If all three conditions are satisfied, the rule
invokes a function that generates uniform mesh and updates the knowledge base as the uniform
mesh is created.

3.4 Control Flow of EFEM

Since a rule is translation of logical thought, it is im portant to the logical sequence of EFEM
to write correct rules. T h e prim ary control flow of EFEM is extracting boundaries from the designed
model, building regions with the boundaries, setting regional dimension and adjacency information,
generating and analyzing the uniform mesh, and generating optimal meshes. After executing one
cycle of these stages, EFEM m ay regenerate the next optimal meshes as the user wants. T h e sequence
of control flow is shown Figure 3 and the main functionality of each part will be explained later.
EFEM may generate optimal meshes with different critical values of subdivision of criterion surface
or restart another analysis w ith new loading information.

U S E R INTERFACE::

Repeat

Figure 3: Th e Process Sequence of EFEM

13

3.4.1 Checking Input GeometrySince the A lphas modeler utilizes the tensor product nonuniform
rational B-spline representation, every surface must have four boundaries in order to be compatible
with the input format. It is possible that a user m ay input erroneous geometry. EFEM checks
the validity of input geometry before it 6tarts the analysis process to prevent wasting computer
time. Although mo6t difficulties of executing EFEM have been avoided, there are still two potential
problems for a user because the input geometry must be a satisfactory format for both ADINA
and Alpha-1 that utilizes the tensor product nonunifonn rational B -spline representation: a region
must consist of four vertices to form a quadrilateral region and the quadrilateral region must be
convex. T h e former error can be detected by-counting the num ber of vertices and this portion o n l y --------
is checked in 6hell analysis cases because it is assumed that the shell surface has been designed in an
appropriate way. In order to determine the type of polygon such as convex or concave, the bounding
box of the input geometry must first be calculated by a rule in following pseudo code:

I F th e re is any c la s s geometry
and the typ e o f the geometry i s convex
and the bounding box o f the geom etry is not c a lc u la te d

THEN c a lc u la te th e bounding box by c a l l in g a f u n c t io n , boundingBox
and f i l l th e s lo t o f a bounding box

T h e bounding box of a region is useful to get a diagonal intersection point of the region and
to find boundary attribute types. T h e rule for calculating diagonal intersection point is triggered as
soon as the bounding box slot of a region is defined and gets the intersection point of the diagonals
of the bounding box. T h e pseudo code of the rule looks like:

IF th e re is any c la s s geometry
and the ty p e o f the geom etry i s convex
and the bounding box o f th e geom etry i s d e fin e d
and the d ia g o n a l in t e rs e c t io n p o in t i s n o t c a lc u la te d

THEN c a lc u la te the d ia go n a l in t e r s e c t io n p o in t by c a l l i n g a
fu n c tio n g e t ln te r P t

and f i l l th e s lo t o f th e d ia g o n a l in t e r s e c t io n p o in t

T h e two rules discussed above control the top-loop sequence, while the actual process such as
calculation of a bounding box or an intersection point are done by Lisp functions.

After the diagonal intersection is calculated, four vertices of input geometry are compared with
the point and a plus-minus list (p m L is t) is formed based on the relative locations of four vertices that
represent top left, top right, bottom left, and bottom right. Fo r example, if the X and Y coordinates
of a vertex are greater than the ones of a diagonal intersection point, the pm List becomes plus-plus
and the vertex should be a top right point. A rule checkConvex sim ply checks the plus-minus slot of
a region. If a pm List contains only unique combinations, it means that four vertices are di'trihnlod

14

in the right positions. However, if the p m List contains the same combinations, it means that the
polygon i6 concave because the diagonal intersection point i6 not inside the bounding box. If the
boundaries of the first region are set properly, the other boundaries of later regions can be easily
arranged. W hen input geometry is composed of the arbitrary number of m ultiple regions, it i6
necessary to define a rule that triggers EFEM to 6can the next regions until all regions have final
vertex lists that are consistent with each other. T h e rule in pseudo code looks like:

I F t b « r « i i s o r t than on* c la s s o f geom etry _ ________ _
and the f i n a l edges o f the f i r s t geom etry are d e fin e d
and the bounding box o f th e n e x t geom etry is n o t d e fin e d

TEEN co n tin u e to d e fin e bo undaries o f th e next geom etry

3.4.2 G etting Boundaries for Regionslf geometry has been input correctly, boundaries are extracted
from the defined object. Each boundary w ill have a unique identification number along w ith geo­
metric information. If an object is defined by points, a boundary w ill be defined for every two points
after a curve is created. If the line class entity has been utilized for the defined object, a boundary
list will be constructed directly from curves. However, a line and an arc entity will generate a curve.
If a surface defines an object, the four boundaries w ill be extracted from the surface directly.

Each boundary has its own type, such as top, bottom , left, and right. T h e orientation of
each boundary must be consistent throughout the whole geometric definition. One of the im portant
tasks of EFEM is to decide an arbitrary consistent boundary set because it is difficult to find the
consistent boundary type in complex geometry. Since the four vertices of each region are listed in
order in the slot of a final point list during the stage of checking geometry, the boundary can be
easily extracted from the final points such that the first two points, the last two points, the first
and the third point, and the second and fourth point decide top, bottom , left, and right boundaries,
respectively. T h e boundary extracting rules can be coded as follows:

IF th e re is a c la s s geometry
and e ve ry p o in t is arranged c o r r e c t ly
and the boundary o f the geom etry i s n o t b u i l t y e t

THEN b u i ld boundary l i s t by c a l l i n g a f u n c t io n , getBdyFromObj
and f i l l th e s l o t o f a f i n a l boundary

Finally, a simple rule can show a user the boundary configuration drawing if all boundaries
are 6et correctly, such as:

I F th e re is a c la s s geometry
and the boundary o f the geom etry i s d e fin e d
and boundaries are n o t d is p la y e d y e t

THEN d is p la y bo undaries by c a l l in g a f u n c t io n , d is p A H B o u n d a rie s
and f i l l th e s lo t o f d is p la y e d boundary w ith ’ done*

15

W hen a raer needs to specify information that is related to boundaries such as loading vectors
and displacement constraints, the drawing can help a user to easily set the correct information.

In the prototype implementation it was assumed that an object was a list of convex polygons.
Once every boundary is set properly, the creation method of Class Region builds an instance of every
region with the boundary.

3.4.3 Setting a Dimension for Each B o un da ryTh e dimension is the num ber of elements in the
-row and column direction of the uniform meshes in the analysis. “Sinee the^ optiaaJ meshes will
eventually be generated from the initial uniform mesh, the size of uniform meshes is not a main
issue here. However, it is desirable to set dimensions that form square-shaped elements as much as
possible, because the strain energy distribution is calculated based on the initial uniform meshes and
EFEM uses the S E D for generation of optimal meshes. Although the second optimal meshes can
be generated in the next cycle, the criterion surface with initial S E D will be used again. Th u s, the
knowledge bases that tweak the region shape have been designed such that the size will be chosen
that makes element shapes close to squares. Th is allows a U6er to get reasonable variation of S E D
field results with initial uniform meshes.

For an example, if the given geometry consists of three regions shown in (a) of Figure 4, the
single dimension, 4 x 4 will create uniform meshes shown in (b) of the same figure. Because EFEM
checks the given geometry first, it will generate multiple dimension size, such as 8 x 4, 4 x 4 and 4
x 12 for three different regions, and the resulting meshes are shown in (c) of the 6ame figure.

FROBS provides the knovn clause in rule premises so that a rule can fill slots interactively. A
mesh density can be selected interactively by a rule using the knovn clause in the following pseudo
code:

IF there is a c la ss region
and the boundaries are defined co rre ctly _
and a mesh density is selected in in te ractive mode

THEN f i l l the s lo t of a mesh density

T o avoid difficulty of setting appropriate dimensions, three different mesh densities, coarse,
normal, and dense, are provided and the number of each density can be changed by a user. In some
cases, it is necessary to set it to an irregular size. Therefore, EFEM also allows a user to set to
arbitrary dimensions. A fter mesh density is set to appropriate dimension sizes, all region lists can.
be filled as follows:

IF there is a c la ss geometry and a c la ss region
and the bounding box of the geometry is defined
and mesh density of the region is defined

THEN ca lcu la te mesh s ize by c a llin g a function , getDim
and f i l l the s lo t of dimensions of height and width

16

Figure 4: A Case that Needs M ultiple Dimension Sizes (a) A Given Problem Dom ain (b) Meshes by
a Single Dimension (c) Meshes by M ultiple Dimension

3.4.4 Setting Adjacency Informationln this level, EFEM sets adjacency relationships into the slots
of region attributes. Th is can be done by rules that scan every region sequentially in order to
find adjacent boundaries. For example, a rule that finds top neighbors can be coded based on the
following pseudo code:

IF there i i a c la s i geometry and a c la ss region
and the region is the f i r s t one
and the top neighbor of the region is not defined

THEN fin d top neighbors by c a llin g a function getTopHeighbor . ~
and f i l l the s lo t o f a top neighbor

For every boundary, if there is a shared boundary edge, EFEM will insert the region iden­
tification into its neighbor slot. A t this level, slots of each region related to analysis dependent
information and material are furnished by user’s input triggering rules that have knovn clauses. For
example, the Young’s module or Poisson’s ratio can be specified by a rule that may look like:

IF there is a c la ss region
and m aterial name is selected in in te ra c tive mode

THEN f i l l the s lo ts of a m aterial name, Young's module,
and Poisson’ s ra tio

3.4.5 A nalyzing Uniform MeshesUniform meshes are generated with the information of boundary
and mesh size described in the above steps. T h e uniform mesh generation rule may look like:

IF there is a c la ss geometry, a c la ss region, and ■
a c la ss ana lysis

and ana lysis is begun -
and uniform mesh is not defined yet

THEN generate uniform meshes by c a llin g a function , genUniformMesh
and f i l l the s lo t of uniform meshes

T h e rules actually call PSL functions like most other rules in order to subdivide a surface
uniformly. T h e uniform meshes m ay or may not be optimized initially. A t this 6tage, simple rules
are triggered to extract nodal data of the uniform meshes generated and invoke the finite element
analysis package, ADINA automatically. T h e rules can be defined by the following pseudo codes:

IF there is a c la ss an a lysis and a c la ss geometry
and uniform mesh is generated —
and ana lysis input f i le is not extracted

THEN w rite nodal inform ation into a f i le by ca llin g a

18

_ fun ctio n , writeFemln
and f i l l the s lo t of an input f i l s name

IF there is a c la ss analysis
and nodal data are extracted fo r an an a lysis

THEN c a ll an an a lysis package
and f i l l the s lo t of an output f i le name

EFEM w ilT evaluate the analysis result in terms of number of elements, num ber of nodes,
total degree of freedom, S E D , and maximal stress value for each axis. T h is interpretation m ay be
compared w ith the analysis result of optimal meshes later in order to see the efficiency of the optimal
meshes. T h e evaluation rule can be coded shown in the following pseudo code:

IF there is a c la ss analysis
and the evaluation of mesh is not done yet

THEN evaluate mesh by c a llin g a function , execFemEval
and f i l l the s lo t of an evaluation tag

In this 6tep, the distorted shape is also drawn in AlphaLl data format so that the uniform
mesh can be visualized w ith the distorted shape.

3.4.6 Generating O ptim al MeshesThe main philosopy about generating optimal meshes is based on
the strain energy distribution (SED) [S G A 8 0 ,Y F R C 8 7]. A uniform and coarse mesh is synthesized
with the variation of the SED used to generate the optimal meshes. In this approach, SED or
displacement will be im portant criteria in the placement of key nodal points, although SED has
been used here. A criterion surface can be built by adding S E D into the original geometry w ith a
rule as follows: ~

IF there is a c la ss analysis
and the problem domain of ana lysis is defined
and next job is not 'q u it'

THEN bu ild a c rite rio n surface by c a llin g b u ild C rite rio n
and f i l l the s lo t of a c rite rio n surface

Dom ain geometry will be subdivided and refined based on the variation of SED in this level.
A user m ay need to input the criterion value for subdivision. If the variation of the SED is larger
than the subdivision criterion value, EFEM will continue to subdivide the problem domain until the
S E D i6 less than the subdivision critical value. New domains with optimal nodes are then generated
for two-dimensional and shell objects. T h e rule invoking an Alpha^l function can be coded from:

IF there is a class analysis and a class geometry

19

and the problem domain of the ana lysis is defined
and the new domain is not defined yet

THEN generate the new domain by c a llin g a function , getNevDomain
and f i l l the s lo t of the nev domain

Th is step leads EFEM to generate optimal meshes. In this stage, a user m ay control the
criterion value to get better results. T h e synthesized optimal meshes are displayed and analyzed
for the efficiency of the mesh as was described earlier regarding uniform m esh for every iteration.
A t this level an analysis cycle is completed, and other analyses can be performed to generate new
optimal meshes or to test a new loading vector, if it is necessary. A n y change of criterion values
or loading vectors cause EFEM to trigger some rules that control the execution such as changing
loading vectors, changing a subdivision critical value, and rerunning for the new loads. These rules
6imply update the related slots so that rules that are affected by the slots are triggered. For example,
the pseudo code of the rerunning for the new loads can be:

IF there is a c lass ana lysis and a c la ss region .
and the rerun s lo t of ana lysis is sp ecified by a

nev load option
THEN ask a nev load to a user

and f i l l the s lo t of a load

4 Conclusion

It has been pointed that the problem of conventional finite element analysis package is still
a time-consuming and error-prone step. Furtherm ore, it requires that a user have background
knowledge of both computer-aided geometry and finite element analysis.

In this paper rule-based system for finite element analysis (EFEM) has been developed to
overcome the difficulties of structural analysis processes and to spread the finite element analysis
expertise. EFEM has been implemented as a hybrid of an interactive geometric modeler, a finite
element analysis system, and an object oriented frame language. In order to avoid the possibility of
user’s error, every top-loop control sequence is translated into a rule base that consists of over 80
rules. T h e expert’6 knowledge of the finite element is implemented as three different kinds of classes:
a geometry class, a region class, and an analysis class based on class characteristics.

4.1 Methodology

As the forward chaining rules were triggered by changes of related slot values, the triggering
of the first rule updates the knowledge base. It triggers other rules as well. Mo6t rules are triggered
once in every cycle of analysis, since the rules define the control of sequential top-loop. Th e average

20

total number of triggered rules for meet analysis is 75. T h e rule system provided an environment
that made it easy to maintain the program, to debug the problem, and to change tasks, if necessary.
T o analyze an object, a user only needs to load geometric information into EFEM . Th e n EFEM asks
object-dependent information such as loading vectors and displacement constraints and generates
optimal meshes self-adaptably, while the rules of EFEM handle the correct analysis sequences.

Meanwhile, the control of the top-loop is easily governed by the rule based system; the al­
gorithmic approach has a great advantage in solving some low-level processes such as calculating
a-bounding box, subdividing a B-spline surface, or drawing a uniform mesh. T h u s , the algorith­
mic approach to generate optimal meshes was adapted to handle low-level processes in this system.
A great number of rules has been reduced because mo6t low-level processes were handled by Lisp
functions.

T h e first analysis with uniform mesh calculates deformation and generates a criterion surface
that is the result of synthesizing the strain energy distribution (S E D) with the problem in domain
geometry, such that the strain energy value takes place in the fourth component of the geometry field.
Th is criterion surface is recursively subdivided into four subsurfaces until the S E D over subsurfaces
is less than the specified critical value. T h e optimal mesh was constructed for the final state of
subdivided criterion surfaces.

4.2 Comparison to Existing Systems

It was tedious and error prone to use early finite element analysis packages because of their poor
interfaces. Recently some packages such as NAVGRAPH [Ben88] and SUPERTAB [SDR 88] tried to
solve the difficulties of early systems. However, their interfaces have disadvantages such as deeply
nested menu items or a node-oriented mesh generation approach rather than an object-oriented one.
W hile other systems require extensive knowledge to generate optimal meshes, EFEM can handle
many tedious steps easily. However, most general purpose analysis packages have a wider selection
of problem domains such as beam, truss, thick shell and fluid flow besides the two-dimensional plate
and shell, while EFEM supports the latter domains only.

4.3 Future W ork

EFEM shows that the rule based system approach to the finite element analysis, the prepro­
cessor especially, is very appropriate and helpful to m any users. Considering the performance of
EFEM , however, it would be good to improve the system in terms of speed. Although the computer
time ratio of EFEM and ADINA is not high, the computer tim e of EFEM could be reduced more
by rearranging nodal points by finding the minimal bandwidth. EFEM would be more powerful if
the problem domain was larger as mentioned in a previous section. T h e beam or truss structure is
often found in industry. T h e expert system approach introduced in this thesis may be also applied
to other nonstructural areas such as heat transfer or fluid flow problems. Another possible improve­
ment of this system for future work is to build the capability to combine uniform meshes and optimal

21

meshes, if necessary. If the maximum strain energy does not occur where the boundary curve is a
higher order than the linear, the optimal mesh has poor accuracy in boundary approximation. This
occurred in the example of a spoon analysis. Although very dense meshes were formed in the joint
areas of the bowl and the handle, very coarse meshes were also formed inside the bowl so that the
boundary approximation was not good. Other future work is to apply the same technique to the
volumetric analysis.

4.4 Sum m ary _ r —

Th is approach demonstrates that an expert system can be applied to generate optimal mesh in
an efficient and intelligent way. Since analysis through an expert system does not require technical
knowledge about the finite element analysis process, the implemented rule base generates optimal
mesh with few interactions. After the first optimal mesh has been generated, other optimal mesh
is easily generated by changing the critical value of the subdivision. Furtherm ore, the rule system
demonstrated that the different analyses on the same object can be done easily by controlling rules.
Considering the difficulties of existing systems, it is expected that the knowledge based system would
contribute substantial benefits to industrial areas.

22

References

[ADI81] ADINA Engineering. ADINA Uter’t Manual. ADINA Engineering, Inc., Sept. 1981.

[Alp88&] Alpha. 1 Group. AlphaJl System Manual. University of Utah, January 1988.
[Alp88b] Alpha. 1 Group. AlphaJ Uter’t Manual University of Utah, January 1988.
[Ben88] Benzley. N AVGR APH Uter’t Manual. Brigham Young University, Provo, August 1988.
[FAM*86] M. Freiling, J. Alexander, S. Messick, S. Rehfuss, and S. Shulman. Starting a Knowledge

Engineering Project: A Step-by-Step Approach. The A l Magazine, 6(3):150-164, 1986.

[FWL83] Eayes-Roth Frederick, D. A. Waterman, and D. B. Lenat. Building Expert Systems. Addison-
Wesley Publishing Company, Inc., Wokingham, England, 1983.

[Jac86] Peter Jackson. Introduction to Expert Systems. Addison-Wesley Publishing Company, Inc.,
Wokingham, England, 1986.

[MKK87] Eric Muehle, Robert Kessler, and Jed Krohnfeldt. Efficient Structures for Knowledge-based
Applications. Technical Report, University of Utah, Sept. 1987.

[Mue87a] Eric Muehle. FROBS: A Merger of Two Knowledge Representation Paradigms. Master’s thesis,
University of Utah, December 1987.

[Mue87b] Eric Muehle. FROBS Manual. University of Utah, February 1987. Utah PASS Project OpNote
87-09.

[Mue88] Eric Muehle. FROBS User Guide. University of Utah, March 1988. Utah PASS Project OpNote
87-05.

[Pre87] Roger S. Pressman. Software Engineering - A Practitioner’s Approach. McGraw-Hill Book
Company, New York New York, 1987.

[RHM72] Ed. R . E . MacNeal. The N ASTRAN Theoretical Manual National Aeronautical and Space
Administration, April 1972.

[Rud88] B W Rudd. Impacting the Design Process Using Solid Modelling and Automated Finite Element
Mesh Generation. Computer-Aided Design, 20(4):212-216, May 1988.

[SDR88] SDRC. I-D EA S Supertab, Engineering Analysis User’s Manual. Structural Dynamics Research
Corporation, 1988.

[SGA80] Mark S. Shephard, Richard H. Gallagher, and John F. Abel. The Synthesis of Near-Optimum Fi­
nite Element Meshes with Interactive Computer Graphics. International Journal for Numerical
Methods in Engineering, 15:1021-1039, 1980.

[SL86] S. Shebs and S. Looeemore. Portable Common Lisp Subset User’s Guide. University of Utah,
May 1986.

[Uni72] University of California. NONSAP - A Structural Analysis Program for Static and Dynamic
Response of Non-linear Systems. Technical Report, University of California, Berkley, March
1972.

[Wat86] Donald A. Waterman. A Guide to Expert Systems. Addison-Wesley Publishing Company, Inc.,
Reading, Massachusetts, 1986.

23

[Wil86] C. Williams. Expert Systems, Knowledge Engineering, and AI Tools - An Overview. IEEE
Expert, l(4):66-70, 1986.

[WPWW87] P. Ward, D. Patel, A. Wakeling, and R. Weeks. Application of Structural Optimization Using
Finite Elements. Computer-Aided Design, 19(3):148-156, April 1987.

[YFRC87] Wu-chien J . Yen, Russell D. Fish, Richard F. Riesenfeld, and Elaine Cohen. An Algorithmic
Approach Toward Near-Optimum Finite Element Meth Generation. Technical Report, Dept, of
Computer Science, Univ. of Utah, June 1987. (27 Pages).

24

