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This paper introduces a methodology for mapping algorithmic description 

into a concurrent implementation on silicon. This methodology can help in the 

solution of important problems using a new technique for the representation of 

highly parallel networks. This new approach for the representation of 

computational networks was inspired by the systolic array approach [H.T. Kung

& Leiserson 78], and by the linear approach to computational networks [Cohen 

78]. It creates tools which will enable the creation of new high performance 

implementations as well as verification tools. This approach is more complex 

than the linear approach [Gill 66, Cohen 78], but can also be used to verify 

computational networks.

Speedup in sequential machines can only be achieved by increasing component 

speeds. There is however no reason why implementation of a particular circuit 

should be constrained to a sequential hardware algorithm. Concurrency can be 

exploited in two fundamental ways:

1. Take advantage of the inherently independent operations which can 
be split up and performed at the same time in parallel, and

2. Take advantage of computations which can be performed in a 
pipelining fashion.

For the purpose of this paper we will refer to the concurrent processing of 

independent operations at the same time as horizontal concurrency. We will 

also refer to the pipelined style of concurrent evaluation as vertical 

concurrency. Vertical concurrency can be effective when the inputs are 

recurrent and when the computation is similar for the recurring groups of 

input elements. It subsequently will be shown that this pipelined style of 

computation can be implemented by spreading the computation in the time domain 

or in the space domain. Horizontal concurrency is effective when a 

computation can be decomposed into subcomputations which are independent and 

can run at the same time. The class of problems which can be decomposed into 

subcomputations and for which the input data set is inherently recurrent can 

be implemented very efficiently in hardware. This paper presents a

1 INTRODUCTION
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mathematical method for dealing with this class of problems.

The complexity of some of the problems is such that it is hard to exploit 

vertical and horizontal concurrency using intuition as the only design tool. 

A methodology for transforming the description of the problem into hardware 

implementation would be very useful and could help in the design of new fast 

and efficient circuits. A definition of the rules for this method could be 

used as a basis for an automatic way to implement hardware from the formal 

description of the problem. In order to achieve an optimal design it is 

necessary to define the design objectives. The design objectives can be: 

efficiency, delay, throughput, speed, parts count, modularity, power, 

communication locality, etc.

The transformation from the description of the problem to the special 

purpose hardware can be pursued in two steps:

- Mathematical transformation of the definition of the problem, where 

the result is a final mathematical equation which can be mapped 
directly into hardware. This will be referred to as the 
mathematical transformation step.

- Transformation from the final mathematical form into hardware. This 

will be referred to as the mapping step.

Mathematical Mapping
O ________ trans formation_____ q  q

Mathematical Final Hardware
definition of equation
the problem

Figure 1 : Two steps Transformation 

The desired result of the first step should be such that the subsequent 

mapping transformation will result in a circuit of high performance. The 

final circuit can then be evaluated against the design objectives.

The VLSI trend towards simple repetitive components, and the trend to 

exploit maximum concurrency to increase computational speed, motivates the 

division of a system into modular parts (similar to cellular array). A 

cellular array can be constructed out of independent elements exhibiting local
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control. This approach will result in a modular and expandable system. The 

temporal control of these array like networks can be done in either an 

asynchronous or a synchronous fashion. Synchronous control is inherently 

simpler in a logical sense but there are some physical problems associated 

with distributing clock signals over long paths on silicon. The primary 

problem is that maintaining the clock skew to be within an acceptable bound 

for the synchronous system becomes difficult as the system size is expanded. 

The limitations of synchronous VLSI systems are made worse as the feature size 

scales down and chips become larger. This suggests an asynchronous approach 

where the modular elements are independently timed or self-timed [Seitz 79]. 

It is reasonable to view these self-timed elements as autonomous elements 

which function internally as synchronous circuits, but communication is 

performed between modules in an asynchronous manner. This can be done 

reliably if the clocks of the synchronous modules are stopped synchronously 

and then restarted asynchronously in response to input data arriving from 

other modules. This data-driven approach has been demonstrated in the DDM1 

machine [Davis 77].

Seitz [Mead&Conway 80] has shown that a reasonable physical area for 

encapsulating a synchronous module on silicon corresponds to an equipotential 

region. An equipotential region is an area over which a signal can be 

propagated in a time less then or equal to a single transistor switching time. 

A signal transition which occurs at a rate faster than the switching time of a 

single transistor is not observable by the logical elements of the circuit. 

This implies that the voltages observed at all points along a path in an 

equipotential region can be considered to be equal by the logical elements of 

the circuit. Seitz has also shown that the maximum area of an equipotential 

region scales down roughly linearly with the feature size. At the projected 

limit of the feature size, the maximum number of components that could reside 

in an equipotential region would only be able to perform a few relatively 

simple arithmetic operations. This implies that the elements of a cellular 

array should be designed so that they are required to perform operations on
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the order of relatively simple arithmetic operations.

H.T. Kung [H.T. Kung & Leiserson 78] and S.Y. Kung [S.Y. Kung 80] have 

described methods for combining very simple elements into a system which can 

perform several matrix computations. In this paper, a mathematical approach 

for this class of computational networks is shown. This mathematical approach 

enables checking for correctness and accuracy of these computational networks, 

and aids in the generation of implementation schemes which exhibit both a high 

computation rate and a low delay. This mathematical representation can also 

be used as' a tool which facilitates the search for new computationally 

equivalent structures. An intuitive view of the operation of these 

computational networks is that they are cellular logic arrays through which 

streams of input data pass and are transformed by the array elements to 

generate the desired result streams. These streams, which will be defined 

more formally in the next section, follow directed paths through the 

computational network and do not change direction as they pass through the 

network logical elements. These logical element will subsequently be referred 

as processors or as basic blocks. It is important to note that these 

processors are not general purpose but are specialized logic elements which 

are typically small and simple.

In section 2, the basic mathematical concepts are given along with some 

rules and definitions which are used later in the discussion. Section 3 

presents one-dimensional array implementations of two problems which are given 

as simple examples demonstrating the methodology. Section 4 uses the same 

basic technique, but presents some additional concepts and solutions for two 

dimensional array problems.

Tne main theme is to show a new direction in the representation of 

computational networks. This paper presents some initial results describing 

the solution of some important problems using this new technique for the 

representation of highly parallel networks. The technique represents an 

initial step in finding a method to map an algorithmic description onto a
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2 MATHEMATICAL PRESENTATION OF SEQUENCES

The mathematical notation used in this paper encompasses the use of 

pipelining, concurrency of computation and flow of data in an array of simple 

processors. The array of processors which performs the computation is 

connected by regular fixed communication links, and can therefore form an 

array on silicon.

. This systolic array approach [H.T. Kung & Leiserson 78], uses the idea 

that time and space interleave. The processors can be viewed either as an 

asynchronous system (data driven) or as a synchronous system. For simplicity 

in exposition, the following description will view the operation of these 

arrays as synchronous. This synchronous view implies a time metric which can 

be conceptually divided into clocks, time steps, or cycles. The duration of a 

time step is dependent upon the actual implementation but logically 

corresponds to the maximum time required by a processor to produce its outputs 

from a given input set and communicate these results to their respective 

destinations.

2.1 THE D OPERATOR

D will be defined as a delay operator. When X is a data element at s 

particular point in a computational network, D[X] is defined as the data 

element that was at the same point on the previous time step.

A sequence X (1 ) ,X (2 ) ,X (3 ) , . . • ,X(i-1) ,X (i ) ,X (i+ 1 ) is defined, where X(i) 

precedes the arrival of X(i + 1) by one time step. When the D operator is 

applied to this sequence as described by Cohen [Cohen 78], the following 

relationship holds:

D[X( i)]=X(i-1) (1)

Figure 2 shows the network represented by Equation (1 ) . The D operator may be 

implemented by a simple register. Manipulations of mathematical expressions 

containing the D operator are governed by two rules. Rule 1 is merely a 

recursively expressed form of Equation (1 ) . Rule 2 describes the commutative

concurrent im plem entation on s i l i c o n .
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X ( i ) X (i- l )
D

Figure 2: The delay element [eq. ( 1 )] ;

and distributive properties of the D operator.

Rule 1: A recursive definition of the D operator.

Dn[X(i)]=D{Dn-1 [X (i)]}

Using this recursive definition it is possible to derive:

Dn[X(i)]=X(i-n)

Rule 2: The commutativity of delay and operation.

This paper will deal with functions which obey the equation: 

Di[F(x,y)]=F(Di[x],Di[y])

When F(x,y) is a function such that for every x and y there exists an 

output F (x ,y ), and when the set *2,Y2 preceeds the set x-],yi at the input 

terminals of the system, then F(x2 ,y2) proceeds F (x 1 tYi) that is:

DC x2]=xi
D[y2]=yi
D[F(x2 ,y2 )]=F(xi ,y-|)

(2)

F(x,y)

z

Figure  3 :  The system z = F (x ,y )
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Proof:

Substitution of x1f y-j with D[x2 l, D[y2] in equation (2) results in Rule 2: 

DCFCx^y^lsFCDCx^.DCy!]) (3)

Rules 1 and 2 are general rules which can be applied to all sequences. For 

the purpose of this paper, two more rules will be defined which apply to a 

particular case of band matrices^ (Rule 3)t and full matrices (Rule 4 ) . The 

use of band matrices does not limit the generality of these ideas and can be 

easily extended to full matrices.

Rule

If a band matrix A is fed into (or is an output of) a system through s+r+1 

terminals, where each terminal receives (or produces) a sequence of elements 

along one distinct diagonal of the band matrix [i.e  A (i ,j ) is followed by 

A (i+ I ,j+ 1 ) throughout the computation] then:

Dk[A(i,j)]=A(i-k,j-k)

This rule describes the pipelined nature of such an implementation for 

matrix algorithms.

Rule 4:

When a full matrix B, with a limited number of colunns (M) and an arbitrary 

number of rows, is being fed row by row as shown in Figure 4.

the delay D on each of the inputs obeys the rule:

DJ[B(I,J)]=B(I- j,J)

Remark: In the next two sections, final equations will be derived for 

several problems. The final equation represents the end point of the 

mathematical transformation of the equation which initially defines the

^A band matrix is a matrix where: A (i ,j )= 0 , for i-j>s or j-i>r. The band 

width is r+s+1 (see Figure 5 ).
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BC 4 ,1)  B ( 3 , 1) B (2 ,1) BC1 , 1 ) ----- >

B(M,2) B (3 ,2 )  B (2 ,2) B (1 ,2 )  ----- >

B(M,3) B ( 3 , 3) B (2 ,3 )  B ( 1,3) ----- >

• • • •• • • •

B(M, I)  B (3 , I )  B(2 , I) B (1 , I)  ------>

B(M,M) B(3 ,M) B(2,M) B(1,M) ----- >

Figure M: row feeding of full matrix B

problem. These final equations are clearly not unique as the process of

mathematical transformation can be continued indefinitely. From these final

equations it is possible to construct the computational networks. The final

equation represents a snap-shot of the network. This snap-shot is an

instantaneous view of the state of the computational network. The final

equation describes the relation between sets of inputs and sets of outputs of

the computational network. Typically the output terms are on the left hand

side of the final equation and the input terms are on the right hand side.

The set of input terms have to be a time independent set where:

Definition: A Time independent set (Tl set) is a set, whose elements can 
not be represented as elements of the same stream of data.

A time dependent set (TD set) is a set with elements which can 
be represented as elements of one stream of data.

A stream of data is the set of elements along a directed path 
through nodes of the computational network. Here a node can be 

either a delay or a single operation followed by a delay.

A time dependent form (TD form) is a term describing the time 

dependent set, without using the D operator.

______________  A space dependent form (SD form) factors the description of

the time dependent set into a product of a time independent 

set and a delay.

Example: Consider a band matrix A, where the sequences are of the form 

described in rule 3 . A set in the form A(I,J-m), for varying m, is a time

Definition:

Definition:

Definition:

Definition:
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independent set because it represents elements from different streams of data. 

An input set of the form A(I-m,J-ra), for varying m, is a time dependent set 

because it represents elements of the same stream of data. This A(I-m,J-m) 

set is a delayed version, in time or in space, of A (I ,J ) .  The view of this 

set in the time dependent form [A(I-m,J-ra)] is that by waiting at one point in 

space the members of the set can be viewed over time. In the space dependent 

form (Dm[ A (I ,J ) ] ) ,  it is possible to stop the computational network at a point 

in time (snap-shot) and view the members of the set [A(I-m,J-m)] over a 

directed path' in space.

3 ONE DIMENSIONAL ARRAYS

One-dimensional arrays have been used to implement circuits such as F .I .R . 

filters, polynomial multiplication and division, SAR data processing [Cohen 

78]. Further applications are matrix-vector multiplication, solving triangular 

linear systems, and Discrete Fourier Transforms [H.T. Kung & Leiserson 78]. 

In this section the mathematical rules mentioned in section 2, will be used to 

create an efficient network for matrix-vector multiplication, and to create a 

network which is capable of solving triangular linear systems which are 

represented by triangular band matrices, (see Figure 5 where s=0).

3.1 MATRIX-VECTOR MULTIPLICATION

We consider the problem of multiplying a band matrix A by a vector 

X. Matrix A has a band width of N=r+s+1 (see Figure 5 ). The elements in the 

product Y, can be computed by: 

n+s

Y(n) = 2 "  A(n,m)X(m) (4)
m=n-r

By choosing m=n+s-j, which implies j=n+s-m, and by inverting the order of the 

summation. Equation (4) becomes: 

s+r

Y (n)r^A(n ,n+s- j)X(n+s- j) (5)
j = 0

The computational network represented by Equation (5 ) , requires s+r+1 

additions for each Y(n) every time step. By distributing the summation
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s= l
*

A (1, 1) A (1 ,2) 0 X(1) Y(1)

A (2 ,1) A (2 ,2) A(2,3) X(2) Y(2)

A(3.1) A(3.2) A (3 .3) A (3 .4) X X(3) - Y(3)

A (4 ,2) A (4 ,3) A (4 ,4) A (4 ,5) : :

0 A(5,3) A (5 ,4) 
•

A(5.5)
•

4

Figure 5: Multiplication of a band matrix by a vector’ [eq. (4 )] .

[Cohen 78] over the space domain, it is possible to obtain a more parallel 

solution. Equation ( 6 ) can be derived from Equation (5) using rules 2, and 3t 

shows this distribution.

Y(n) = 5^D^[A(n+j,n+s)X(n+s)] (6)

j=0

Tnis form holds for all values of n. The term delays the product

A(n+j,n+s)X(n+s). Equation (6) can also be written in the form:

Y(n)=A(n,n+s)X(n+s)+D{A(n+1,n+s)X(n+s)+D[A(n+2,n+s)X(n+s)+D(. . ) ] }  (7)

*
The computational network represented by Equation (7 ) is shown in Figure 6 .

A(n+s+r,n+s) A(n+s+r-l,n+s)

'-E

-A

A(n+1,n+s) 
I

T "

A(n,n+s) 
i ' 
i

\  r n
Y (n) Y(n-l)

Figure 6 : Matrix-vector multiplication network [eq. (7)]<

A basic repeated block P can now be defined as shown in Figure 7. Streams 

of data (as defined in section 2 . 1 ) can flow only in the direction labeled x, 

a, and y in Figure 7* Using this basic block, every multiplication is followed
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by an addition operator and a delay element.

x'=D[x] 

a ’=D[a] 

y ’=D[y+ax]

Figure 7: The basic block P

The basic block P will be used throughout this paper. In some cases only a 

subset of the inputs and outputs of P will be used. By using the block P to 

construct the network shown in Figure 6, the network of Figure 8 can be 

generated which represents a delayed version of Equation (6 ) :

s+r

Y(n-1)=D[Y(n)] = ̂ D j+1[A (n+j,n+s)X (n+s)] (8)

j=0

A(n+s+rfn+s) A(n+s+r-l,n+s) A(n+s+r-2,n+s) A(n,n+s)

Figure 8: Matrix-vector multiplication network using 

the basic block P [eq. (7 )] .

In a single time step one colunn of matrix A and one element of vector X are

fed into the network. All of the elements in the pipe perform an operation

every time step, resulting in high throughput and high efficiency.

The result shown in Figure 8 is a simple example of the general 

mathematical method, however an intuitive approach could lead to the same 

result. This is primarily due to the inherent geometric simplicity of 

matrix-vector multiplication.
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3 .2  SOLVING TRIANGULAR LINEAR SYSTEMS

Unlike the matrix-vector multiplication algorithm, which can be intuitively 

approached, the mathematical approach becomes more attractive when applied to 

more complex problems such as solving triangular linear systems.

Let the vector X (Figure 5) represent the unknowns in a set of linear 

equations. Let A represent the coefficient lower triangular band matrix (i .e  

s=0). The elements of the main diagonal of A have to be non zero [ i .e .  

A ( i ,i ) /0  for all i] . Let Y represent the result vector. Equation (6) gives the 

result for Y (n ):

r

Y ( n ) = ^  Dj[A(n+j,n)X(n)] 

j=0

Tne solution for A(n,n)X(n) is given by:

r (9)
A(n,n)X(n) = {Y (n )- ^  Dj[A(n+j,n)X(n)]} 

j=1

Letting B(n)=A(n,n)X(n) and by using Rule 1, Equation (9) can be 

transformed into:

r (10)
B(n)=Dr[Y(n+r)] + ̂ D j[{- A (n + j,n )[1 /A (n ,n )]}B (n )]  

j = 1

The computational network represented by Equation (10) is shown in Figure

Figure 9: Triangular linear sy3tem network [eq. (10 )].



13

Figure 10 shows the same algorithm, implemented using the basic block P 

defined in Figure 7. Using these blocks a delay is associated with each 

multiplication as shown by:

[A (n+j,n )][1/A(n,n)]=D{[A(n+j+1,n+1) } 1/A(n+1,n+1) (11)

Using the association of Equation (1 1 ), Equation (10) becomes:

B(n)=Dr [Y(n+r)]+ $ ! DJ{D[-A(n+j+1,n+1)/A(n+1,n+1) ]B (n)} 

j = 1

(12)

A (n+1,n+l)

Figure 10: Triangular linear system network using 

the basic block P [eq. (10 )] .

Equation (12) implies the broadcasting of A(n+1,n+1). It is possible 

however to construct a different but functionally equivalent computational 

network with only limited broadcasting. The final equation of this limited 

broadcasting network is given by Equation (13) and the corresponding network 

is shown in Figure 11.

(13)
X(n)=Dr [D{Y(n+r+1)/A(n+r+1,n+r+1)}]- 

r

' D>5[D{A(n+j+1 ,n+1 )Dr” J[ 1/A(n+r+1 ,n+r+1)] }X(n) ] 

j=1

The throughput of these computational networks is such that one element of 

the vector X is produced every time step. The number of blocks used to
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l
A(n+r+l,n+r+l)

Figure 11: Triangular linear system network using 

the basic block P [eq. (13)1-

construct these networks is 2r+1 or 2N-1 where N is the width of matrix A

(i .e .  N=r+1, note that s=0 in this case). All of the elements in this network

are kept busy. The inputs for each time step is a colunn of matrix A, and one

element of vector Y. The network delay in Figure 9 is r+2 (for output X) and

is r+1 for the solution given in Figure 11.

Definition: Network delay is the longest acyclic path from an input to an 
output, and is measured in terms of the number of delay 
elements.

The delay can be easily seen in the final equation and is the highest power 

of D in the equation.

M TWO DIMENSIONAL ARRAYS

Two dimensional array problems are much more complex than those which are 

one dimensional. In order to exploit pipelining, the data has to flow in more 

than one direction. H.T. Kung [H.T. Kung 4 Leiserson 78] has shown such a 

computational network which performs matrix-multiplication for band matrices. 

In this section two algorithms for this problem are given which are more 

efficient than those presented by H.T. Kung. An algorithm for solving a set 

of triangular linear systems is also presented.
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U.1 BAND MATRIX MULTIPLICATION 

U.1.1 General approach

Let A and X be band matrices with band widths f'l+si + i, and r2+S2+1 

respectively; and let matrix Y be the product matrix of A and X (see Figure 

12).

V  a,-l •"W*

Figure 12: Band matrix multiplication

One strategy is to try to get one column of the matrix Y as an output of 

the network in every time step. Y(J-n,J) will represent colunn J of matrix 

Y. By changing n it is possible to get all the elements of this colunn [n will

vary from -r=-(r-|+r2 ) to s=si+s2 ]. In the general case:

k2 (14)
Y(J-n,J) = ̂ “  A(J-n,k)X(k,J) 

k=k1

For any specific n, k1 and k2 are the limits of the range of subscripts 

which participate in the term. Equation (1U) can be rewritten as:

M (15)

Y(J-n,J)=£2 A(J-n,J-n-r1+j)X(J-n-r1+ j , J) 

j=0

M+1=r^+s^+1 is the band width of matrix A. As was shown in section 3 .1 , the 

distribution of the summation over the space domain will give:

{
*<».«) ««,» «M)

-  *(7,1) Aft.t) * 1 ,1 }  Atl.i)

M

Y(J- n,J)=]^ DJ[A(J-n+j,J-n-r1+2j)X(J-n-r1+2j,J+j) 
j=0

(1 6 )
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The term A, for varying j and n, is in a time dependent form, as was 

defined in section 2. Multiplying the term A by D'HD--}] will change it to a 

space dependent form. Note that D° for negative n and D“ J are essentially 

predictions (negative delay). To overcome this problem term A will be 

multiplied by Dr+n[D^“^] which is always a positive delay. X is also in a 

time dependent form when j varies. Multiplying term X by will change this

term to a space dependent form as well. Since using the basic block P 

requires that every multiplication must be followed by a delay, Equation (16) 

must then be rewritten to include this delay in the case where j=0. These 

arguments can be combined and mathematically represented as the final equation 

(17 ).

M (17)
D[Y(J- n,J)]=^Dj+ 1[DM-jtDr+n[A( j +r+Mtj +r+Sl+j )]}DM-j[X(j+s1_n+j tj+M)]]

Where:

D[Y(J-n,J)]=Y(J-n-1, J-1)

Definition: A wavefront is a time independent ordered set, such that all 

the elements of the set move the same distance per time step.

A wavefront consists of at most one element from each stream of data.

^ A

Figure 13 shows a wavefront C and its delayed version D[C].

Definition:

D e f i n i t i o n :

Figure 13: Wavefront C and D[C]

A projection operation PJ on a wavefront A is the j-th element 
of this ordered set, e.g PJ[A]=A(j) where 

H ={A (1 ),A (2 ),A (3 )...A (n - 1),A (n )} . PJ[A]=0 for all j such that 
j<1 or j>n.

A shift (by i) operation S* on a wavefront A is^the creation 
of a new wavefront, when the first i elements of A are deleted 
and i null elements are added at the end of the ordered set,
e.g Si [A]={A(i+1) ,A (i+ 2 ) ----,A (n ) , 0 , 0 , . . . , 0 } ,  when
A={A( 1) ,A(2) ,A (3 ) ............A(n) } .

It can be shown that pj{Si[£]}=pj+i[£].



The 3et of elements A(J+r+M,J+r+s-|+j)for j=(0 to M) , will be defined a3 

wavefront A, when A( J+r+M, J+r+s^) is the fir3t element of the set and 

A(J+r+M,J+r+s.|+M) is the last. The set of elements X(J+si-n+j, J+M) for j=(0 

to M) and where n=[-(r-i+r2) to s-|+s2], will be defined as wavefront X Mhen 

X(J+M+r2+M,J+M) is the first element (with a zero value because 

X(J+M-r2+i,j+M )=0 for all i>0) , and X(J-S2 ,J+M) is the last element of the set 

( X(J+M-s2-i, J+M)=0 for all i>0 ) .  Using Shift and Projection operations, 

equation ( 1 7 ) can be written in the form:

M (18)
D [ Y (J ^ n ,J ) ]  = ̂ D j + 1 [ D M-j{P j(D»*+n[A])}DM- j { P M* - j ( s r + n [ x ] ) } ]  

j=°

Where:

Dr+n[A] is the delayed wavefront and 

Sr+n[A] is the shifted wavefront.

With respect to final equation (17 ), tT+n delays the wavefront A, and
A A

delays a particular element of wavefront A, and similarly for wavefront X 

( i .e .  the subscripts of A and X are a function of j ) . delays the partial 

result of Y in the direction of the stream of data Y, which passes through 

addition operations and delay elements. Although it is possible to 

reconstruct the network by using equation (18) we feel that some more tools 

have to be developed to simplify the reconstruction of the network from the 

final equation. Equation (17) will be used as a base for the reconstruction 

of the network.

4 . 1 . 2  C o n s tru c tio n  o f  th e  n e tw o rk .

Tne construction of the network is done in two steps. Using the final 

equation ( 1 7 ) . step 1 deals with the relative orientation of the input
A A

wavefronts A and X. In step 2, the direction of the pipelined result stream Y 

is constructed.

S te p  1 :  O r ie n t a t io n  o f  A and X .

For j=M and r+n=0 [see Equation (17 )] . the element A1 =A( J+r+M, J+s-j+r+M) is
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Figure 14: Orientation of A and X. 

multiplied by the element X'=X(J+s^+M,J+M) as shown in Figure 14 at point 1.

For r+n=1, the wavefront A is delayed by one delay element. The element 

D[A' ]=D[A( J+r+M, J+si+r+M) ], is a part of D[A]. and is multiplied, at point 2 

of Figure 14, by the element X"=X(J+s1+M-1, J+M). X" as well as X' are elements 

of the wavefront X. The same technique can be used for all values of n. This 

step shows that the direction of the stream of data of A is parallel to the 

wavefront X. In the same way it can be shown that the direction of the stream

A

of data of X is parallel to the wavefront A.

As a result of step 1, it is clear that the network will reside on a two 

dimensional grid. A rectangular grid is attractive when the elements are the 

basic blocks P, as shown in Figure 7.

Step 2: The direction of the pipelining of the result Y.

For the case where r+n=0 and for all j , the stream of data of the partial
A

result of Y has to be at the same delay distance from the two wavefronts A and 

X (see Figure 15). Delay distance is measured in terms of the number of delay 

elements. For r+n=1, the path of Y(J+r-1,J) should be an equal delay distance 

from D[A], and from the shifted wavefront X as shown by Equation (1 7 ). This 

process can be proven inductively. Figure 15 shows the approach presented in 

step 2.

The overall network, which can be constructed using these two steps is 

shown in Figure 16, for the case where r-j = 2, s-|=2, r2=1, and S2=2. The result
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wavefront X

N  l\M-j *|delay on elements of X

delay on 
elements of A

direction of
stream of data 

of partial 
result Y

-j-0 
■j-1 
•j-2 
j=M=3 „

r+n-0

--- j«M=3 }1=3 I r+n=*l

Figure 15: The stream of data of the partial results of Y 

matrix Y is such that r=3 and s=4. The inputs at every time step are: one 

column of X, and one row of A. The output is one column of Y on the network 

outputs for every time step (or a row-column combination, when there are no 

delay elements).

MJ+T+M.J+r+M**.)

, ______________________________________________________
f X in colon okWt *

il,-

M N I X I

j x r v i x

X M X I N

\ X v C \

Figure 16: Band matrix multiplication, output Y in columns [eq. (17)]

The shaded elements, shown in Figure 16, function only as delay elements 

and can be eliminated. Note that only the unshaded elements are needed,
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th e re fo re  m atrix  m u lt ip l ic a t io n  can be implemented using  ( r  i+s-j + i ) ( r 2+S2+1) 

e lem en ts . I t  i s  p o s s ib le  to show (Appendix I ) ,  th a t in  order to  produce, in  

one tim e s te p , a s e t  Q o f  outputs co n ta in in g  r+s+1 e lem en ts , where no two 

elem ents are  members o f  the same d ia g o n a l, [ i . e  Q can be one column or one row 

o f  the r e s u l t  m atrix  Y, e t c . ]  the number o f  m u lt ip l ic a t io n s  needed i s

(r-|+ si + 1) (T2+S2+1) .  Note th a t the nunber o f  m u lt ip l ic a t io n s  needed to produce 

the se t  Q in  ons tim e ste p  i s  the same as the number o f  b lo ck s  P used in  the  

im p lem entation . S in ce  the unshaded b lo ck s  in  F ig u re  16 produce the s e t  Q in  

one tim e s te p , t h i s  im p lie s  th a t t h is  network i s  optim al in  e f f ic ie n c y .

The dashed arrow s in  F ig u re s  16 and 17 p o in t in  the d ire c t io n  o f  in c re a s in g  

s u b s c r ip t s  fo r  X, A, and Y. Using a. s im i la r  technique i t  i s  p o s s ib le  to  

c o n s tru c t  a com putational network w hich perform s m atrix  m u lt ip l ic a t io n .  The 

o n ly  d if fe r e n c e  between t h i s  s t ra te g y  and the former one i s  th a t  s-j_ j  appears  

in  the s u b s c r ip t  in  Equation  (15 ) in ste a d  o f  - r - i+ j.

M ( 1 9 )
Y ( J - n , J )  = 5 ^ A ( J - n , J - n + s 1_ j ) x ( j _ n+ s 1- j , J )  

j=0

Using a s im i la r  tran sfo rm atio n  s t y le  on Eq uation  ( 1 9 ) .  when M=r-|+s  ̂ and n 

v a r ie s  from - ( r i +r*2 ) to  s i+ s 2 , the r e s u l t  i s :

M

D [ Y ( J - n ,J ) ]  = 5 T  D^+1tDr+n[A (J+ r+ j, J+ r+ s1)]D M~j[X(J+M +s1_ j _ n tj+M)] }  (20) 
j=0

w here:
D [ Y ( J - n ,J ) ]= Y (J - n - 1 , J - 1 )

F ig u re  17 shows the network rep resen ted  by Equation (2 0 ) .

Both netw orks a ch ie v e  optim al e f f ic ie n c y  fo r band m atrix  m u lt ip l ic a t io n .  

The c o n s tru c t io n  in  both ca se s  i s  supported by the m athem atical approach  

d efined  in  se c t io n  2 . The throughput o f  these com putational networks i s  th ree  

tim es h ig h er then the throughput o f a s im i la r  network presented  by H .T . Kung 

[H .T . Kung & L e is e rs o n  7 8 ] . I t  i s  p o s s ib le  to show, th at s im ila r  netw orks 

can be co n stru cted  which produce a row o f  Y a t  eve ry  tim e s te p .
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Figure 17: Band matrix multiplication, producing the 

output Y in colunns [eq. (20 )] .

V in coluan orUrr

X In colum

4 .2  SOLVING A SET OF TRIANGULAR LINEAR SYSTEMS

4 .2 .1  CASE 1: A X = Y, where A is a triangular band matrix, and X and Y are 

full matrices

A is the coefficient lower triangular band matrix, where the elements of 

the main diagonal are non zero, A (i ,i )^0  for all i .  X is a full matrix, and 

represents the unknowns in the set of equations, and Y is the result full 

matrix with a limited number of colunns and arbitrary number of rows (see 

Figure 12). J will vary from 0 to M, the number of colunns in X.

The element of Y can be computed by: 

r

Y (n ,J )= £  A(n,n-j)X(n-j,J) (21)

• J = 0 .

Using Rule 4 when X is fed into the network in a manner similar to that of 

B in Figure 4:

r (22)

Y ( n ,J ) = ^  DJ[A(n+j,n)X(n,J)] 

j=0
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As shown in section 3-2, it is possible to derive:

r (23)
A (n ,n )X (n , J)=Dr [Y(n+r, J)]-}P DJ[A(n+j,n)X(n,J)]

j=1

The construction of the network is straight forward, and is shown in Figure

Figure 18: Solution for a set of simultaneous equations, 

when A is a triangular band matrix and X and Y are full 

matrices [eq. (23 )] .

4 .2 .2  CASE 2: A X = Y , where A, X and Y are all band matrices

Let A be a triangular band matrix (i .e  s 1=0 ); X and Y are regular band 

matrices (see Figure 12). There is no limitation on the number of rows in the 

matrices. The restrictions on matrix A are the same as those described in 

section 3-2.

An element of Y can be computed by:

Y (I ,J )  = j f  A(I,I- J)X(I- J,J) (24)
j=0
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From equation (24) when the result set is one row at every time step it is 

possible to derive:

Y(L,L+s?-n) = ^A (L ,L- j)X (L- j,L+s?-n) (25)
j=0

By using rule 3 on equation (25 ), the result is : 

r-|

Y(L, L+S2—n) = t A(L—j , L)X(L, L+S2_n+j) (26)

When X(LtL+S2_n) is the unknown row, and M=r-| and where n varies from 0 to 

s2+r2 :

X(L,L+s2-n)r DM[D{Y(L+M+1,L+M+1+s2_n)}/{A(L+M+1tL+M+1)}]- (27)

M

-7 *  DJ[D{—A(L+1+j , L+1)/A(L+1+j,L+1+j)}X(L,L+s2-n+j)] 

j = 1

The construction of the network using the basic block P represented by 

equation (27) is shown in Figure 19, for the case where M=3 and s2+r2+1=5.

Solution ^

Figure 19: Solution for a set of simultaneous equations, 
when A, X and Y are band matrices, using the basic block P [eq. (27 )] .

The shaded blocks in Figure 19 are used only as delay elements. The
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solution represented in Figure 19 is an efficient solution (all the elements 

in the network are kept busy) . The disadvantage of this solution is the 

extensive use of broadcasting in the implementation. A second solution where 

the result is a skewed version of the rows in X will result in a nicely 

pipelined implementation.

Solution 2

From Equation (24) where M=r^+si=r-| since si=0, we can state: 

M

Y(L-n,L+s2- 2n)A(L- n,L- n- j)X(L- n- j,L+s2-2n)
J=0

By using rules 2 and 3i Equation (28) can be transformed into: 

M

Y(L-n,L+s2-2n) = ̂ T  D^[A(L-n+j,L-n)X(L-n,L+s?-2n+j) 

j=0 "

(28)

(29)

When X(L-n,L+s2-2n) is the unknown skewed row, it can be represented as:

X(L-n,L+s2-2n)

M

+ 2 “ DJ

j=1

•

Dn' D

m
»

( pY (L+M+1 - n , L+M+1+s?-2n) 
D ------------- ---

L Dn[A(L+M+1,L+M+1)] _

(30)

DM-j[A( L+M+1, L+M+1)]_
'DJ[X(L-(n-j),L+s2_2 (n-j)]

The construction of the network represented by Equation (30) using the 

basic block P is shown in Figure 20, for the case where M=3 and s2+r2+1=5. 

The shaded blocks in Figure 20 are used only as delay elements. The solution 

presented in this section is efficient and the throughput is high. All the 

elements in the network are kept busy, and perform the same computation every 

time step.
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Figure 20: Processor array for solving a set of triangular linear systems, 
when A, X and Y are band matrices, using the basic block P [eq. (30 )] .

5 CONCLUSIONS

This paper presents a mathematical approach to the solution of some 

important matrix problems. The solutions to these problems are essentially 

cellular arrays of simple elements, which are suitable for VLSI 

implementation. The examples demonstrate solutions which are high 

performance, parallel algorithms with high efficiency and high throughput. 

The main theme is to exploit vertical and horizontal concurrency to reduce 

computation time. The mathematical approach presented here aids in the search 

for new solutions to problems and can also be used to formally verify the 

algorithms. The mathematical approach also leads to more efficient solutions 

than have been previously demonstrated using intuitive methods.
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I .  Number o f  m u l t i p l i c a t i o n s  in  M a tr ix  M u l t i p l i c a t i o n

Let A and X be band matrices with band widths r 1+S1+1 =N-| + 1, and r2+S2+ 1=N2 

respectively. Let matrix Y with a band width r-|+si+r2+S2+1 =N3+1 be the 

product matrix of A and X (see Figure 12). ,

The time independent set Q of elements of matrix Y (with band width r+s+1), 

contains r+s+1 elements, and is a set of elements each of which is associated 

with one distinct diagonal of the result matrix Y.

The number of multiplications needed to calculate the result set Q is shown 

in Figure 21.

APPENDIX

when Y(irj) 
is an element 
of the result 
matrix.

Figure 21: Number of multiplications needed to calculate the set Q

The number of multiplications needed to calculate one element of the upper 

or lower diagonal of Y is one: i . e .  Y (I, I+s1+s2 )=A(I, I+s^Xd+s^i, I+ST+S2 ) and 

Y (I, I-r-|_r2 )=A(I, I-r-| )X(I-r-|, I-r-|-r2 ) respectively. * • *n.

To compute an element from the next diagonal, two multiplication are 

needed. The number of multiplications needed increase linearily as we compute 

elements in diagonals farther away from the upper or lower diagonal, until the 

number of multiplications reaches: min[N 1 + 1 , N2+I ], which is the minimum 

between the number of rows in A and the number of colunns of X.

The number of multiplications F needed to calculate the set Q is the area 

under the graph in Figure 21, i . e :

F = [(N 1+N2+ 1 ) + (N1+N2+1)-2{min(N1 + 1 ,N2+ 1 )}][min(n 1 + 1,N2)] /2
( 3 D

\



Equation (31) can be reduced to:

(32)

F =(Nl+1)(N2+1)

This is the total nimber of multiplications needed to compute the set Q.

27



28

[Cohen 78] D. Cohen.
M athem atical approach to com putational n etw orks.
T e c h n ic a l Report IS I/R R -7 8 -7 3 . In form ation  S cien ce  I n s t i t u t e ,  

1978.
[D a v is  77] A. L . D a v is .

The a r c h it e c t u r e  o f  DDM1: A r e c u r s iv e ly  s tru c tu re d  d a ta -d riv e n  
m achine.

T e c h n ic a l Report UUCS-77-113, U n iv e r s ity  o f  U tah, Computer 
S c ien ce  D e p t., 1977.

[ G i l l  66] A. G i l l .
LINEAR SEQUENTIAL C IRCU ITS.
M cQ-ow -Hill Book Company, New Yo rk , 1966.

[H .T . Kung 4 L e is e rs o n  781
' H .T . Kung, C .L . L e is e r s o n .

S y s t o l ic  a r ra y s  ( For V L S I) .
T e c h n ic a l R ep o rt, Carneg ie-M ellon  U n iv e r s it y ,  1978.

[Mead&Conway 80]
C. Mead, L . Conway.
INTRODUCTION TO VLSI SYSTEMS.
A ddison-W esley P u b lish in g  Company, 1980.

[ S .Y .  Kung 80] S .Y . Kung.
V LSI a r ra y  p ro cesso r fo r s ig n a l p ro c e ss in g .
1980.
P resented  a t  Conference on Advanced Research  in  In teg ra ted  

C i r c u i t s ,  January 28-30, 1980, MIT, Cambridge,
M a ssa c h u se tts .

[ S e i t z  79] C .L .  S e i t z .
S e lf-t im e d  V LSI system s.
In  C .L .  S e i t z ,  e d it o r ,  P roced ing s o f the C a lte ch  Conference on 

V ery Larg e  S c a le  In t e g r a t io n . C a lte c h  Computer sc ie n ce  
Departm ent, Jan u ary , 1979.

REFERENCES


