
On Synthesizing Systolic Arrays
from

Recurrence Equations with Linear Dependencies

UOCS-86-009

Sanjay V. Rajopadhye.
S.Purushothaman.
Richard Fujimoto

Department of Computer Science
University of Utah

Salt Lake City. Ut 84112

Abstract

We present a technique for syntheSizing systolic architectures from Recurrence Equations. A
class of such equations (Recurrence Equations with Linear Dependencies) is defined and and
the problem of mapping such equations onto a two dimensional architecture is studied. We
show that such a mapping is provided by means of a linear allocation and timing function. An
important result is that under such a mapping the dependencies remain linear. After
obtaining a two-dimensional architecture by applying such a mapping. a systolic array can be
derived if the communication can be spatially and temporally localized. We show that a simple
test consisting of finding the zeroes of a matrix is suffiCient to determine whether this
localization can be achieved by pipelining and give a construction that generates the array
when such a pipelining is possible. The technique is illustrated by automatically deriving a
well known systolic array for factOring a band matrix into lower and upper triangular factors.

This work Is supported in part by University of Utah Research Fellowships and in part by an
IBM faculty development grant.

2

is clear that a URE defines a dependency graph for the computation. It is assumed that the
function 9 can be 1mplemented on a single processor and can be computed in a single "time
step". 9 thus defines the granularity of the computation. The design of a systolic array then
consists of scheduling the computation on an appropriate array of processors. This can be
defined by means of a timing junction that maps every point in the domain D to a positive
integer. and an aUocattonjw1ctton that maps every point in D to a (linear) array of processors.
QUinton gives necessary and sufficient conditions for the existence of such timing and
allocation functions. He also presents a constructive proof for determ1n1ng the tlm1ng function.

under the restriction that the domain is a convex hull.

However. the class of problems expressible as uniform recurrence equations is restrictive
and a large number of interesting problems cannot be naturally expressed as UREs. The chief
reason for this is the restriction that all the dependency vectors (qt ·s) must be constants.
irrespective of the particular point in the domain. We therefore propose a more general class of
recurrence equations called Recurrence Equations with Linear Dependence (RELDs). In

RELDs. as the name suggests. the dependencies of a particular point are linear (actually affine)
functions of the point. This paper addresses the problem of synthesizing systolic arrays from
RELDs. As in the case of UREs. our approach is to detennlne appropriate timing and
allocation functions for the recurrence equation. This defines a mapping of the original RELD
into a processor-time domain. and thus yields a potential architecture for the problem. We
shall prove that the new dependency structure induced by this mapping is also an RELD.
Thus, unlike UREs the architecture that we obtain may have non-local interconnections. We
must therefore explicitly pipeline the data flow in the new architecture. Explanation of this
two-step process constitutes the principal thrust of this paper. The rest of this paper is
organized as follows. In the following section (Sec II) we formally define RELDs and introduce
some of the notation we shall be using later. We then discuss (in Sec III) the notion of first
reorganizing the dependency graph by syntactic restructuring and then introducing plpelining
to obtain local communication. This two-step technique is illustrated in the following section
(Sec IV) by synthesizing the systolic array for a well known example -- LU-decomposition (i.e.

factOrizing a band matrix into lower and upper diagonal matrices).

n Recurrence Equations with Linear Dependence

Definition: A Recurrence Equation with Linear Dependence (RELD) is defined as an equation
of the form

where
P E D;
Ai'S are constant n by n matrices:
bi's are constant n-d1mensional vectors:

and
9 is a single valued function which Is strictly dependent on each of it's

3

arguments.

As we have mentioned above many important problems cannot be easily described as UREs,
asnd a great deal of effort has to be spent in "massaging" an initial problem specification into a

URE. However, the class of problems defined by UREs is an important class because every

physical systolic array can be expressed as a URE. To understand intuitively why this is so,
consider a two dimensional systolic array. It has nearest neighbor interconnections and the
links have a constant delay associated (both independently of location in the array). Thus if we
imagine "snapshots" taken at every time instant as the computation progresses, we get a three
dimensional dependency structure in a space-time [x, y, t] domain,. Any point, p in this

domain represents a computation that needs values from other points that are a uniform
distance away independent of the p.

Note that if in an RELD the ~'s are identity matrices this becomes a URE. Thus UREs are
merely a subset of RELDs. Thus one way of viewing (a part of) the results presented here is a
formalization of the ad. hoc "massaging" of the initial specification that other researchers

do [4, 7. 8, 10]. As an example of RELDs. consider the dynamic programming problem as

applied to optimum parenthesization of a string. This problem was discussed by Kung et at
[9] who have deSCribed a systolic architecture for it. The problem involves the computation of

a cost function specified as follows.

c· . = min (c. k + c k .) + wiJ 1,J i<k<j 1, .J

As expressed above, this specification is clearly not even a recurrence equation (let alone a

URE or a RELD) since the number of values cx.y that a particular ciJ depends upon is not
constant but equal to j+ 1 ! However, by introducing an additional parameter, and expressing

the computation as an iteration as follows, we can obtain an RELD that performs the same
computation.

Example m.l

c(i,j) = j(i,j,l)
where

+ min (j(i,j,k+1))
j(i,i+k,l) + j(i+k,j,l) if k 1

j(i,j,k) if k ~ j-i

min (
j(i, j, k+1))
j(i, i+k, 1) + j(i+k, j, 1)

otherwise

Here. the value of j at (i.j,k) depends on its value at three other pOints. namely U.j,k+I).

(i,i+k,I) and Ci+k.j.I). Thus the dependencies are given by

[
1,0.0]

Al = 0,1. °
0,0.1 [0] [1.0,0] [0] hI = 0: ~ = 1.0, 1 h2 = 0:

1 0.0. ° 1
[
1,0, 1]

A:3 = 0, 1, °
0,,0,0

A. Notation
An RELD as defined above is viewed as defining a dependency graph. The nodes in the

graph are the pOints in D and the arcs are given by the ~ and bi·s. We shall now introduce
some terminology for such graphs. A path 1t ::;; (Pl' P2 ...) is a sequence of nodes such that for

each i, Pl+l = ~ Pi + bj for somej. If the sequence 1t is finite. having t+l nodes then we say that
the path has length t and denote it by U1t) = t. If 1t is infinite. we say that U1t) = 00. A path whose

length is finite is called a cycle if the first and last nodes in it are identical. If all the nodes in a

cycle 1t are distinct then 1t is a called a simple cycle.

Our objective in the synthesis problem is to "reorganize" this graph into an alternate
configuration that preseIVes the output functionality of the RELD. and which corresponds to a
systolic array (1.e. one which is at most two dimensional and has nearest-neighbor

interconnections). To do this we must examine in precedence relations between the evaluation
ofJat various pOints p E D. We say that point p depends directly on point q. denoted by p ~ q
if and only if p E D and q = ~ p + bi for some 1. Thus p -4 q if and only if j(q) is one of the
arguments in j(p). Now. t-step dependence is defined inductively as follows: q ~ q 'l/ q: and
p -4 q if there exists r such that p t:J r and r -4 q. Also. we say that p ~ q if P ~ q for some
positive integer t.

m Outline of the synthesis technique
We now introduce the notion of timing and allocation functions for the RELD. A timing

junction t is a mapping of all points P in D to the positive integers such that if p ~ q then
t(p) > t(q). This means that no computation can be perfonned until its arguments have been
computed. t(p) may naturally be interpreted as the time at which j(p) is computed. with the
assumption that the evaluation of the function 9 requires unit time. It thus selVes as a
schedule for the computations defined by the RELD. An aUocationjunctiDn a is a mapping of
all points P in D to the domain I x I of a two dimenSional mesh (note that a linear array is

merely a special case of this. and a hexagonal array can be represented as a two dimensional
mesh with diagonal interconnections).

Synthesizing a systolic array from an RELD can be viewed as a two-step process. Once we
have a timing and an allocation function, we have obtained a planar architecture. However.
the communication in such an architecture is in general. neither spatially nor temporally local.
Thus the next step is to localize the communication by pipelintng the data flow. These two

issues are addressed in the next two subsections.

A. Step I: Ttmlng and Allocation Functions
As defined above. the timing function t(p) is interpreted as the time instant at which j(p) is

computed. The following statement is thus obviOUS from the inductive definition of the
dependency relation "~".

t(p) will be a timing function for a RELD iff

(1) 'V p E D t(p) > 0

and (11) 'V P E D t(p) > ~P + bj) for j = 1.2 ... m that satisfy ~P + bj E D

Note that we consider the boundary pOints as belonging to the domain. so the second
condition is correctly restricted only to those pOints that expUcitly depend on other points in
the domain. We also have the following more restrictive case where we only have a sufficient

condition.
t(p) wUl be a timing function for a RELD if

(1) 'V P E D t(p) > 0

and (11) 'V P E D t(p) > t(~p + bj) forj = 1.2 ... m

In the following. we shall restrict our attention to what are called a1fine tJ.ming functions

(hereafter referred to as ATFs). Such a function is a scalar function of the form 1

t(p) = ATtp + ~
and is specified by a pair (At' ~J. Here At is a constant vector and ~ is a scalar constant.
Intuitively the reason for restricting our attention to linear tJ.ming functions is as follows. We
are interested in synthesizing systolic arrays not for a single Instance of the problem specified
by the RELD. but for a class of problems. which are defined by a single set of dependency
matrices and a family of parameterized domains. Typically the parameter. n represents the
size of the problem input. We would like the architectures that we derive to be "linearly
extensible" i.e. be able to solve problems of larger size merely by adding more processors. This
implies that the same tJ.ming and allocation functions should be applicable to the entire family.
This extensibility is difficult to achieve if the tJ.ming function is non-linear.

Allocation functions are mappings of the problem domain D to a new (processor) domain D a'

Intuitively. an allocation function alp) defines the processor on which the computation denoted
by point p is performed. The processor domain Da is restricted to be two-dimensional since we
are dealing with systolic arrays and each processor is connected to a nearest neighbor

according to a particular interconnection scheme. The interconnection is one of two possible
scheme -- to four immediate neighbors. corresponding to mesh arrays (and linear for the one
dimensional case); and to six neighbors. corresponding to hexagonal arrays. An important
constraint that the allocation function must satisfy is cmjltctfreedom as defined below.

De8nltlon: The timing function t and the allocation function a of an RELD are said to be free
of conflict if

t(p) = t(q) 1\ alp) = a(q) ~ p = q

The reason for this constraint is that we cannot perform two different computations

IHenceforth. a subSCript Tindicates the transpose ofa matrix or a vector

8

(represented by the two points p and q in the original domain) on the same processor at the
same time instant. As in the case of timing functions we shall concentrate on affine allocation
functions. Thus the allocation function is defined as

a{p) = [x. yl = [ATxp + ~. ATyP + ayl
and it thus corresponds to a geometric projection of the original dOmain.

We can view the timing and allocation functions as perfOrming a transformatlon S of the
original problem specificatlon from an n-dimensional domain to a three-dimensional one. Also.
by specifying that one of the axes is the "time axis" we have obtained a clear separation of two
important facets of an architecture. namely space and time. Henceforth. we shall refer to this
space as the [x.y.tl space. Since alp) and t(p) are conflict-free. it directly follows that this
transformation is injective. since two distinct pOints in the ortginal domain cannot be mapped
to the same point in the [x.y. tl domain. We shall now prove a theorem that shows how affine
timing and allocation functions permit us to cleanly separate the space and time components
of the computatlon. while still retaining a linear dependency structure.

Theorem m.l:

For any REW defined. by [A)' bJ~=l .. m the dependency structure induced by the ttmingfunctiort.

[At' at] and the a11.ocationjWlction [AX' a). [Ay. ay1 is also an REW if A = [ATX' AT
y• ATl has

an inverse. A-I.

Proof:

The transformation S defined by the timing and allocation function can be viewed as
a geometric manipulation (1.e. a translation and a scaling) of the original dependency
structure defined by

[
Xl ~J ~J
~ = S(p) = Ap + a; where A = IAT I and 0.= layl

LAT~J LatJ
Since A has an inverse. A-I the computation of j at any point p in the O%inal
domain can be expressed as a computatlon of another function f at [x.y.tl as
follows

f[x, y, t] = j(p) = j(S-l [x, y, t])

- glj'(A1S- 1 [x, y, t] + b1), j(A2S-1 [x, y, t] + b2),
1 -•.. j(AkS- [x, y, t] + b k)

)

= g(f(A(A1S-1 [x, y, t] + b1) + a),
1 -f(A(A2S- [x, y, t] + b 2) + a), .

... f(A(AkS-1 [x, y, t] + bk) + a»

But since p S-l [x, y, t] = A- 1 {[x, y, t] T - a}, we have

+ a "" + a

7

Since ~l,-l is a constant 3x3 matrix and A (Ai .. -1a + b j) + a is a constant 3-
vector tn1S represents an RELD in the (x,y,t) space. I

Since the proof of this theorem is constructive, in we can use the above result to determine

the dependencies in the new RELD. We also have the following corollary.

Corollary m.2: For any URE, the transformation induced by ajftne timing and. allocation

junctions, leaves the dependency structure Wliform if the transformation matrix A. has an

inverse.

Proof: Since a URE is an RELD with the dependency matrix ~ being the identity
matrix I, the transformation yields a new RELD where The corresponding
dependency 18

AA,A- 1 = A 1 A- 1 = 1
J

B. Part U: PlpeUnlng onto a systoUc implementation

I

We see that by using appropriate timing and allocation functions, we have reduced the

original problem to a three dimensional RELD defined by (A'j' b'J)J:l..m' This RELD corresponds
directly to a two dimensional processor aray. However, this naive architecture is not

necessarily systolic, since the cOIIUnunication is not local (in fact, it may not even be at a

constant distance away). We therefore proceed to the second step of the synthesis procedure,
namely pipelining in this array structure. Any dependency in the (x,y,t) domain indicates that

at time inStant t, the processor (x,y) will need the value that the processor (x' ,y') computed at

time instant 1', where (x',y',1')T is A'j (x,y,t)T + b'j' The following theorem enables us to

restructure the dependencies in the RELD.

Theorem m.3: Pipelfnfng Theorem:
A particular dependency fAJ' b) of an REW in the [x,y,t] domain can be made Wlifonn if the

-+
dependency matrix AJ has a rwntrivial zero p.

Proof: ConSider an RELD defined on the same (x,y,t) domain as follows.

f(p) = lfl (p), f 2 (p)]

where fl (p) .. 9 (/1 (AlP + b 1), fl (A2P + b 2) •••

f 2 (p + P) ... fl (AkP + b k »

and
-+
P)

If this RELD is restricted to have the same boundaries as the original one, then it
also has the same dependency structure except that the jth dependency is now
Wliform. For it to be computationally equivalent to the original one, the following
must hold.

f 2 (p + P) = fl (AjP + b j) (1)

8

But. the computation of J at point Ip + pI yields the following.

and

J1 (p + P) = 9 <f1 (A1 (p + P) + b 1), J1 (A2 (p + P) + b 2) •••

J2 (p + 2 P) ... J1 (Ak (p P) + b k »

J2 (p + P) = J2 (p + 2 P)
And thus for equivalency with the original RELD

J2 (p + P) = J2 (p + 2 P)
J((-+p) b) = 1 Aj P + + j

Since this must be true. regardless of the functions j. J1 and J2 we have. from Eqns
(1) and (2)

(P-+) b Aj P + + j

i.e.
-+ ""'0 Aj P =

Thus for the new Uniform RE to be computationally eqUivalent to the original one

(2)

p has to be a zero of the dependency matrix. •

We also have the following corollary. whose proof follows directly from the previous theorem.

Corollary m.4: If all the dependency matrices AJ have zeroes oJtheJonn [a, b. -kP" where k is a

positive integer and [a,bP" is one oj [0. 01 [± 1. 01. [0. ± 110r [± 1. ± 11. the result oJ making the

depedencies Wlifonn yields a systolic array.

Proof: The proof is obvious. since it is the vector p that determines the point in
the Ix. y. tl space that any point depends on. If p has the form described above.
then we see that the conununication is local. both temporally and spatially. which is
exactly what is required for a systolic implementation. I

The synthesis procedure thus consists of the following steps.
1. Determine an RELD for the problem.

2. Find appropriate allocation and timing functions

3. Compute the new RELD in the processor-time domain induced by the timing and
allocation functions.

4. Test to see if dependencies are pipeline able

5. If so derive the systolic implementation. otherwise try alternate timing and
allocation functions and return to step (3)

, : ; A ... (J(,\' • J:) I:J,

IV Application of the Technique to LU Decomposition
The results of the previous section give us a constructive technique ~o synthesize systoUc

arrays. Once appropriate timing and allocation functions have been determined. the test for

pipeltneabUity yields the zero. p = la. b. -kl of the dependency matrix A:1. This zero. if it exists.
automatically determines the architecture. i.e. the processor functionality and the

9

interconnection structure. Any processor in the architecture now peIfonns a set of functions.
In addition to "nonnally" computing the 9 function on its input values. it also peIfonns a
pipelining operation by forwarding one of its inputs to its (-a. -b) neJghbor over a link that has
a delay of k time units! We shall illustrate the technique by means of an example. Consider

the LV decomposition of a band matrix as defined in Figure IV -1.

a 12 , a 13
a 22 , a 23
a 32 , a 33

a 1nl f1, 0, ...
a 2n I 1 21 , 1, •••

a 3 I 1131 , 1 32 , 1, •••

J -k" In2' In3""

Figure IV-I: W Decomposition oja matrix

As described by Kung and Leiserson (13) the natural recurrence that describes this
computation is the following 1.

a(i, j, 0) - a ij

a (i, j, k) a(i,
where

j, k-1) - likU k j

{L. if i<j
lij if i=j

j, j-1) /u jj if i>j
and

= {: (i,

if i>j
u i j

j, i-1) if .<'
~-J

We now illustrate the different steps involved in synthesizing a systolic array for this
problem.

A. FormulaUng an RELD for the problem
The domain of the above recurrences is the pyramid bounded by the points (1.1.0). (l.n.O).

(n.l.O). (n.n.O) and (n.n.n). Its bounding planes are k = 0: 1 = n: J = n: J = k and i = k. This

expression is not an REW because of the presence of the subSCripted ll.k and uk.j terms, To
express this as an REW we can use one of two alternatives. First. by straightforward algebraiC

manipulation we can completely eUm1nate the ~.J and the llt.J terms from the three equations
above. This yields the following RELD.

a(i, j, 0) - ai,j

a(i, j, k) - a(i, j, k-1) - a(i, k, k-1) . a(k, j, k-1)/a(k, k, k-1)

Alternatively. we may view the functionjcomputed at each point p = (iJ.k) in the domain as

a tuple of two elements. The first of these is the value of a(iJ.k) and the second element 1s

lWe have slightly altered the third subSCript to have the lnltial values avallable at k:aO rather than k= 1

10

l(i.j.k). with 1 being meaningful only at the j = k+ 1 boundary2. The RELD for this computation

then becomes

j(i, j, k) [a (i, j, k) , l(i, j, k)]
where

a(i, j, 0) a q
a(i, j, k) a (~, j, k-1) - l(i, k, k-1)a(k, j, k-1)

and
l(i, j, k) if j = k+1 then a (i, j, k)/a(j, j, j-1)

[1, 0, ~J =[J} [1, 0, ~J b ' = [~} A ' - 0, 1, b ' A2 ' = 0, 0, 1 1 2
0, 0, 0, 0,

and A3 ' -[0, 0, 1]
0, 1, 0
0, 0, 1

b3 = [J]
naure IV-2: Dependency Structure and Domain oj the W-Decompositton Recurrences

2Strtctly speaking. ftp) should be a triple [a(p). I(p). u(p)J. but the third element. u(i.j.kl is exactly equal to the
corresponding a(i.j.k) and we may therefore ignore it

11

We see that the second alternative is preferable since It does not involve any redundant
computation of the 1(1.j.k) values. However. it contains what appears to be a cyclic dependency.
since the value of (a part of) JU. j. k) (the 1(1. j. k) part) depends onj{I. j. k) (actually. only Its

aU. j. k) part). Hence. as expressed above this RELD cannot have a timing function. However.

we can easily modify it by extending the domain to also include the j = k plane. and letting

JU. j. k) on this plane being 1(1. j. kl. This yields the following RELD

r a ij if k = 0
f(i, j, k) = ~ f(i,j,k-l)/f(k,j,k-l) if k = j '

l f(i,j,k-l) - f(i,k,k).f(k,j,k-l) otherwise

This is the RELD that we shall use as the starting point of the mapping procedure. It must

be emphasized that this choice of the tnltal RELD is not a lJrnitation of the technique. In fact.

by applying the mapping procedure to the first RELD we obtain an architecture whIch is very

similar to the Kung-Leiserson array except that each processor performs a divisIon (as

expected) and depends on four input values. Figure IV-2 presents a pictorial view of the

domain and the ind1v1dual dependencIes. and also the A matrices and the bJ vectors.

B. Determining the allocation and tlmlng functions
In order to synthesize a systolic array from this RELD we must first determine timing and

allocation functions for it. Let (AT
t I a) = [a, b, 0 I d) be an affine timing function. Then it

must satisfy the following constraints because of the dependencies of the RELD.

ai + bj + ok > ai + bj + o(k-l)
ai + bj + ok > ai + bk + o(k-l)
ai + bj + ok > ak + bj + o(k-l)

i.e. 0 > 0

i.e. b(j-k) + 0 > 0
i.e. a(i-k) + 0 > 0

Since our domain Is a convex hull we can actually determine the space of all possIble affine
timing functions by substituting the vertices of the domain in the above equations. These set
of inequalities define another convex hull (actually a cone) that constitutes the space of affine
timtng functions. Let us choose a timing function as follows.

t(i,j,k) - i+j+k

We can easily verify that t(i.j.k) as defined above is indeed a valid timing function. Also.

since we require that the allocation function a(1.j.kl that we choose must not be in conflict with

the tlm1ng function. we can view a(1.j.kl as a projection of the origtnal dOmain. that Is
non-parallel to the timing function. We therefore choose the following allocation function.

a(i, j, k) = [i-k, j-k]

It is easy to see that this chOice of allocation and timing functions are free of conflict as

follows. Let (IJ.k) and (p.q.r) be two pOints that map onto the same point in the (x.y.t) domain.'

Then

i+j+k=p+q+r

I-k =p-r

and j-k =q-r

12

Hence i + j - 2k = P + q -2r
Subtracting this from the first eqn yields 3k = 3r = k = r
Substituting this in the second and third eqns yields i = P and j = q. Thus the two points are
identical. We thus have

[
1, 0,-1]

A = 0, 1,-1, and hence
1 [1, 2,-1] A-1 - - 1 -1 2 3 ' , Also, a =11

1, 1, 1 1,-1,-1

c. PipeUnine In the processor-time domain
We can then use Theorem llI.A to determine the new dependencies in the processor-time

domain as follows.

[1, 0,

~] -.+

b1 ' ~ Ab1 = [-~] A1 ' = M1 A -1 = ° , 1, and since a =0,
0, 0,

Similarly

_ [1, 0, ~l = [~] [0, 0, 0]
b3 ' = [J} A ' - 0, 0, b2 and A/ = 0, 1, 0, 2

0,-1, -1, 0, 1

We see that although the first dependency has remained uniform under this transformation,

neither ~' nor ~' has been reduced to the identity matriX. However, since both I~'I and
I ~'I are zero we can apply Theorem III.B in order to pipeline in this new structure. this
requires us to solve

~ ~

~' x = 0 (and correspondingly ~' x = 0)
and yields [-k. 0, -kIT (and respectively (0, -k, -k)1) as a solution. Choostnng k to be I, both the

second and third dependencies can be pipelined, and any processor [x. y) can obtain the

required values from processors (x-I, y) and lx, y-I) over links of unit delays. Using this

pipelining structure yields the architecture shown in Fig IV-3 below, which is identical to the

one described by Kung and Leiserson.

V Conclusions
We have presented a technique for designing systol!c arrays from an initial specfication

which is in the form of a Recurrence Equation with Linear Dependencies. The approach that

we have taken here may be viewed as an extension of Quinton's approach where only

Recurrence Equations with Uniform Dependencies (UREs) are considered. In our approach the
class 0 problems discussed is a superset of UREs. It is essential to inClude UREs in our class.
because the final target that we are interested in is. in fact a URE (since systolic arrays have
local. and regular interconnections - this regularity implies UREs). An alternative perspective of

our approach is obtained by envisioning the above steps as transforming an RELD into a URE.

Recently (in [3, 4)) Chen has presented an inductive technique to derive systolic

architectures from what are defined as First Order Recursion Equations (FOREQs). We can

show that these are merely a subset of Uniform Recurrence Equations with addional

constraints specifying that the dependencies must be lDealin addition to being constant.· Thus

the class of problems that can be designed is restrictive. and most of the effort Is spent in

13

"-

" "" "-, "" ,

"" ,
,

,
all a,2, al~ a\~ , , ,

, , ,
a.a\ an a.t~ a.z... a~!J , ,

,
a 31 a~2 a3:' a 34- a 3:i a3' ,

a.." a .. z a43 a404- a"5 a"u.

a~;ll a~.3 a.'i4 as; a;,

ao a, .. a,~

Figure IV -3: Derived Architecture far LU Decomposition

"massaging" the original problem specification into a FOREg. Chen (in [4]) has presented a

new architecture for LU-Decomposition. which is one and a half times faster than the one

designed by Kung and LeiSerson. It is our conjecture that merely by an appropriate choice of

Uming and allocation functions we should be able to derive this architecture as well.

As an extension to this work. there are three major areas of further research. One important
problem that needs to be addressed Is alternate plpelining strategies. such as those involving
control signals to alter the speed of data flow (while keeping it constant at any given instant).

An example of such an architecture Is the dynamic programmtng a:rny presented by Guibas et
al(in [9]). Another area for further research Is the use of the desired pipelining structure to
guide the choice of allocation and Uming functions. Finally. a detailed investigation of the
nature of Uming and allocation functions Is in progress. Preliminary results indicate that for
the case when the domain of the RELD is a convex hull. we are able to constructively derive the
space of all possible Uming functions as a cone in (n+l) dimensional space. Also. other

14

techniques such as results from conventional processor scheduling may be applica"ble in

setting bounds on such tirn1ng functions.

References

1. Brent. R P. and Kung. H. T. Systolic VLSI Arrays for Linear-Time GCD Computation. VLSI
83. Aug. 1983. pp. 145:154.

2. Cappello. Peter R and Steiglitz. Kenneth. Un.1fying VLSI Array Designs with Geometric
Transformations. Proc. IEEE Parallel Processing Conference. Aug. 1983.

3. Chen. Marina. A Parallel Language and its Compilation to Multiprocessor Machines or
VLSI. Principles of Progranuntng Languages. ACM. 1986. To appear.

4. Chen. Marina. Synthesizing systolic designs. YALEU/Dept. Of Computer Science/RR-374.
Yale University. March. 1985.

5. Chen. Marina C. Space-Time AlgOrithms: Semantics and Methodology. Ph.D. Th .• CalifOrnia
Institute of Technology. Pasadena. CA. May 1983.

6. Uri Weiser and Alan L. Davis. Mathematical Representation for VLSI Arrays.
UUCS-80-111. Department of Computer Science. University of Utah. Sept 1980.

7. Delosme. Jean-Marc and Ipsen Ilse C. F. An illustration of a methodology for the
construction of effiCient systolic architectures in VLSI. International Symposium on VLSI
Technology. Systems and Applications. Taipei. Tatwaan. 1985. pp. 268-273.

8. Delosme. Jean-Marc and Ipsen. lIse C. F. EffiCient Systolic Arrays for the solution of
Toeplitz Systems: An illustration of a methodology for construction of systolic architectures in
VLSI. YALEU/Dept. Of Computer SCience/RR-370. Yale University. Department of Computer
Science. June. 1985.

9. Guibas. L .. Kung. H. T. and Thompson. C. D. Direct VLSI Implementation of Combinatorial
Algorithms. Proc. Conference on Very Large Scale Integration: Architecture. Design and
Fabrication. Jan. 1979. pp. 509:525.

10. Ramakrishnan. I. V .. Fussell. D. S. and Silberschatz. A "Mapping Homogeneous Graphs
on Linear Arrays". IEEE Transactions on Computers. (?? 1985). ??-??

11. S. Lennart Johnsson and Danny Cohen. A Mathematical Approach to Computational
Networks For the Discrete Fourier Transform.

12. RM. Karp. RE. Miller. S. Winograd. 'The Organization of Computations for Uniform
Recurrence Equations". JACM 14.3 (July 1967). 563:590.

13. Kung. H. T. and Leiserson. C. E. AlgOrithms for VLSI Processor Arrays. In Mead. C. and
Conway. L .• Ed., Introduction to VLSI Systems, Addison-Wesley, Reading, Ma, 1980, Chap. 8.3,
pp.271-292.

14. H. T. Kung. Let's design algorithms for VLSI. Proc. Caltech Conference on VLSI, Jan,
1979.

15. Kung, H. T. 'Why Systolic Architectures". Computer 15, 1 (January 1982), 37:46.

16. C.E. Leiserson and J.B. Saxe. Optimizing Synchronous Systems. 22nd Annual ACM
Symposium on Foundations of Computer Science, ACM, Oct, 1981, pp. 23:36.

17. Melhem, Rami G. and Rheinboldt. Werner C. "A Mathematical Model for the Verification of
Systolic Networks". SIAM Journal OJ Computing 13, 3 (August 1984),541-565.

18. QUinton, Patrice. The Systematic Design of Systolic Arrays. 216. Institut National de
Recherche en Informatique et en Automatique [INRIA). July 1983.

us

19. Rajopadhye, SanJay V. A formal basts for syntheSizing systolic arrays: PhD Thests
proposal. UUCS-84-010, UniversttyofUtah, Computer SCience Department, November, 1984.

