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Abstract 

We present a technique for syntheSizing systolic architectures from Recurrence Equations. A 
class of such equations (Recurrence Equations with Linear Dependencies) is defined and and 
the problem of mapping such equations onto a two dimensional architecture is studied. We 
show that such a mapping is provided by means of a linear allocation and timing function. An 
important result is that under such a mapping the dependencies remain linear. After 
obtaining a two-dimensional architecture by applying such a mapping. a systolic array can be 
derived if the communication can be spatially and temporally localized. We show that a simple 
test consisting of finding the zeroes of a matrix is suffiCient to determine whether this 
localization can be achieved by pipelining and give a construction that generates the array 
when such a pipelining is possible. The technique is illustrated by automatically deriving a 
well known systolic array for factOring a band matrix into lower and upper triangular factors. 

This work Is supported in part by University of Utah Research Fellowships and in part by an 
IBM faculty development grant. 
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is clear that a URE defines a dependency graph for the computation. It is assumed that the 
function 9 can be 1mplemented on a single processor and can be computed in a single "time 
step". 9 thus defines the granularity of the computation. The design of a systolic array then 
consists of scheduling the computation on an appropriate array of processors. This can be 
defined by means of a timing junction that maps every point in the domain D to a positive 
integer. and an aUocattonjw1ctton that maps every point in D to a (linear) array of processors. 
QUinton gives necessary and sufficient conditions for the existence of such timing and 
allocation functions. He also presents a constructive proof for determ1n1ng the tlm1ng function. 

under the restriction that the domain is a convex hull. 

However. the class of problems expressible as uniform recurrence equations is restrictive 
and a large number of interesting problems cannot be naturally expressed as UREs. The chief 
reason for this is the restriction that all the dependency vectors (qt ·s) must be constants. 
irrespective of the particular point in the domain. We therefore propose a more general class of 
recurrence equations called Recurrence Equations with Linear Dependence (RELDs). In 

RELDs. as the name suggests. the dependencies of a particular point are linear (actually affine) 
functions of the point. This paper addresses the problem of synthesizing systolic arrays from 
RELDs. As in the case of UREs. our approach is to detennlne appropriate timing and 
allocation functions for the recurrence equation. This defines a mapping of the original RELD 
into a processor-time domain. and thus yields a potential architecture for the problem. We 
shall prove that the new dependency structure induced by this mapping is also an RELD. 
Thus, unlike UREs the architecture that we obtain may have non-local interconnections. We 
must therefore explicitly pipeline the data flow in the new architecture. Explanation of this 
two-step process constitutes the principal thrust of this paper. The rest of this paper is 
organized as follows. In the following section (Sec II) we formally define RELDs and introduce 
some of the notation we shall be using later. We then discuss (in Sec III) the notion of first 
reorganizing the dependency graph by syntactic restructuring and then introducing plpelining 
to obtain local communication. This two-step technique is illustrated in the following section 
(Sec IV) by synthesizing the systolic array for a well known example -- LU-decomposition (i.e. 

factOrizing a band matrix into lower and upper diagonal matrices). 

n Recurrence Equations with Linear Dependence 

Definition: A Recurrence Equation with Linear Dependence (RELD) is defined as an equation 
of the form 

where 
P E D; 
Ai'S are constant n by n matrices: 
bi's are constant n-d1mensional vectors: 

and 
9 is a single valued function which Is strictly dependent on each of it's 
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arguments. 

As we have mentioned above many important problems cannot be easily described as UREs, 
asnd a great deal of effort has to be spent in "massaging" an initial problem specification into a 

URE. However, the class of problems defined by UREs is an important class because every 

physical systolic array can be expressed as a URE. To understand intuitively why this is so, 
consider a two dimensional systolic array. It has nearest neighbor interconnections and the 
links have a constant delay associated (both independently of location in the array). Thus if we 
imagine "snapshots" taken at every time instant as the computation progresses, we get a three
dimensional dependency structure in a space-time [x, y, t] domain,. Any point, p in this 

domain represents a computation that needs values from other points that are a uniform 
distance away independent of the p. 

Note that if in an RELD the ~'s are identity matrices this becomes a URE. Thus UREs are 
merely a subset of RELDs. Thus one way of viewing (a part of) the results presented here is a 
formalization of the ad. hoc "massaging" of the initial specification that other researchers 

do [4, 7. 8, 10]. As an example of RELDs. consider the dynamic programming problem as 

applied to optimum parenthesization of a string. This problem was discussed by Kung et at 
[9] who have deSCribed a systolic architecture for it. The problem involves the computation of 

a cost function specified as follows. 

c· . = min (c. k + c k .) + wiJ 1,J i<k<j 1, .J 

As expressed above, this specification is clearly not even a recurrence equation (let alone a 

URE or a RELD) since the number of values cx.y that a particular ciJ depends upon is not 
constant but equal to j+ 1 ! However, by introducing an additional parameter, and expressing 

the computation as an iteration as follows, we can obtain an RELD that performs the same 
computation. 

Example m.l 

c(i,j) = j(i,j,l) 
where 

+ min (j(i,j,k+1) ) 
j(i,i+k,l) + j(i+k,j,l) if k 1 

j(i,j,k) if k ~ j-i 

min ( 
j(i, j, k+1) ) 
j(i, i+k, 1) + j(i+k, j, 1) 

otherwise 

Here. the value of j at (i.j,k) depends on its value at three other pOints. namely U.j,k+I). 

(i,i+k,I) and Ci+k.j.I). Thus the dependencies are given by 

[
1,0.0] 

Al = 0,1. ° 
0,0.1 [0] [1.0,0] [0] hI = 0: ~ = 1.0, 1 h2 = 0: 

1 0.0. ° 1 
[
1,0, 1] 

A:3 = 0, 1, ° 
0,,0,0 



A. Notation 
An RELD as defined above is viewed as defining a dependency graph. The nodes in the 

graph are the pOints in D and the arcs are given by the ~ and bi·s. We shall now introduce 
some terminology for such graphs. A path 1t ::;; (Pl' P2 ... ) is a sequence of nodes such that for 

each i, Pl+l = ~ Pi + bj for somej. If the sequence 1t is finite. having t+l nodes then we say that 
the path has length t and denote it by U1t) = t. If 1t is infinite. we say that U1t) = 00. A path whose 

length is finite is called a cycle if the first and last nodes in it are identical. If all the nodes in a 

cycle 1t are distinct then 1t is a called a simple cycle. 

Our objective in the synthesis problem is to "reorganize" this graph into an alternate 
configuration that preseIVes the output functionality of the RELD. and which corresponds to a 
systolic array (1.e. one which is at most two dimensional and has nearest-neighbor 

interconnections). To do this we must examine in precedence relations between the evaluation 
ofJat various pOints p E D. We say that point p depends directly on point q. denoted by p ~ q 
if and only if p E D and q = ~ p + bi for some 1. Thus p -4 q if and only if j(q) is one of the 
arguments in j(p). Now. t-step dependence is defined inductively as follows: q ~ q 'l/ q: and 
p -4 q if there exists r such that p t:J r and r -4 q. Also. we say that p ~ q if P ~ q for some 
positive integer t. 

m Outline of the synthesis technique 
We now introduce the notion of timing and allocation functions for the RELD. A timing 

junction t is a mapping of all points P in D to the positive integers such that if p ~ q then 
t(p) > t(q). This means that no computation can be perfonned until its arguments have been 
computed. t(p) may naturally be interpreted as the time at which j(p) is computed. with the 
assumption that the evaluation of the function 9 requires unit time. It thus selVes as a 
schedule for the computations defined by the RELD. An aUocationjunctiDn a is a mapping of 
all points P in D to the domain I x I of a two dimenSional mesh (note that a linear array is 

merely a special case of this. and a hexagonal array can be represented as a two dimensional 
mesh with diagonal interconnections). 

Synthesizing a systolic array from an RELD can be viewed as a two-step process. Once we 
have a timing and an allocation function, we have obtained a planar architecture. However. 
the communication in such an architecture is in general. neither spatially nor temporally local. 
Thus the next step is to localize the communication by pipelintng the data flow. These two 

issues are addressed in the next two subsections. 

A. Step I: Ttmlng and Allocation Functions 
As defined above. the timing function t(p) is interpreted as the time instant at which j(p) is 

computed. The following statement is thus obviOUS from the inductive definition of the 
dependency relation "~". 



t(p) will be a timing function for a RELD iff 

(1) 'V p E D t(p) > 0 

and (11) 'V P E D t(p) > ~P + bj ) for j = 1.2 ... m that satisfy ~P + bj E D 

Note that we consider the boundary pOints as belonging to the domain. so the second 
condition is correctly restricted only to those pOints that expUcitly depend on other points in 
the domain. We also have the following more restrictive case where we only have a sufficient 

condition. 
t(p) wUl be a timing function for a RELD if 

(1) 'V P E D t(p) > 0 

and (11) 'V P E D t(p) > t(~p + bj ) forj = 1.2 ... m 

In the following. we shall restrict our attention to what are called a1fine tJ.ming functions 

(hereafter referred to as ATFs). Such a function is a scalar function of the form 1 

t(p) = ATtp + ~ 
and is specified by a pair (At' ~J. Here At is a constant vector and ~ is a scalar constant. 
Intuitively the reason for restricting our attention to linear tJ.ming functions is as follows. We 
are interested in synthesizing systolic arrays not for a single Instance of the problem specified 
by the RELD. but for a class of problems. which are defined by a single set of dependency 
matrices and a family of parameterized domains. Typically the parameter. n represents the 
size of the problem input. We would like the architectures that we derive to be "linearly 
extensible" i.e. be able to solve problems of larger size merely by adding more processors. This 
implies that the same tJ.ming and allocation functions should be applicable to the entire family. 
This extensibility is difficult to achieve if the tJ.ming function is non-linear. 

Allocation functions are mappings of the problem domain D to a new (processor) domain D a' 

Intuitively. an allocation function alp) defines the processor on which the computation denoted 
by point p is performed. The processor domain Da is restricted to be two-dimensional since we 
are dealing with systolic arrays and each processor is connected to a nearest neighbor 

according to a particular interconnection scheme. The interconnection is one of two possible 
scheme -- to four immediate neighbors. corresponding to mesh arrays (and linear for the one
dimensional case); and to six neighbors. corresponding to hexagonal arrays. An important 
constraint that the allocation function must satisfy is cmjltctfreedom as defined below. 

De8nltlon: The timing function t and the allocation function a of an RELD are said to be free 
of conflict if 

t(p) = t(q) 1\ alp) = a(q) ~ p = q 

The reason for this constraint is that we cannot perform two different computations 

IHenceforth. a subSCript Tindicates the transpose ofa matrix or a vector 
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(represented by the two points p and q in the original domain) on the same processor at the 
same time instant. As in the case of timing functions we shall concentrate on affine allocation 
functions. Thus the allocation function is defined as 

a{p) = [x. yl = [ATxp + ~. ATyP + ayl 
and it thus corresponds to a geometric projection of the original dOmain. 

We can view the timing and allocation functions as perfOrming a transformatlon S of the 
original problem specificatlon from an n-dimensional domain to a three-dimensional one. Also. 
by specifying that one of the axes is the "time axis" we have obtained a clear separation of two 
important facets of an architecture. namely space and time. Henceforth. we shall refer to this 
space as the [x.y.tl space. Since alp) and t(p) are conflict-free. it directly follows that this 
transformation is injective. since two distinct pOints in the ortginal domain cannot be mapped 
to the same point in the [x.y. tl domain. We shall now prove a theorem that shows how affine 
timing and allocation functions permit us to cleanly separate the space and time components 
of the computatlon. while still retaining a linear dependency structure. 

Theorem m.l: 

For any REW defined. by [A)' bJ~=l .. m the dependency structure induced by the ttmingfunctiort. 

[At' at] and the a11.ocationjWlction [AX' a). [Ay. ay1 is also an REW if A = [ATX' AT
y• ATl has 

an inverse. A-I. 

Proof: 

The transformation S defined by the timing and allocation function can be viewed as 
a geometric manipulation (1.e. a translation and a scaling) of the original dependency 
structure defined by 

[
Xl ~J ~J 
~ = S(p) = Ap + a; where A = IAT I and 0.= layl 

LAT~J LatJ 
Since A has an inverse. A-I the computation of j at any point p in the O%inal 
domain can be expressed as a computatlon of another function f at [x.y.tl as 
follows 

f[x, y, t] = j(p) = j(S-l [x, y, t]) 

- glj'(A1S- 1 [x, y, t] + b1 ), j( A2S-1 [x, y, t] + b2 ), 
1 -•.. j(AkS- [x, y, t] + b k ) 

) 

= g(f(A(A1S-1 [x, y, t] + b1 ) + a), 
1 -f(A( A2S- [x, y, t] + b 2 ) + a), . 

... f(A(AkS-1 [x, y, t] + bk ) + a» 

But since p S-l [x, y, t] = A- 1 {[x, y, t] T - a}, we have 

+ a "" + a 
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Since ~l,-l is a constant 3x3 matrix and A (Ai .. -1a + b j ) + a is a constant 3-
vector tn1S represents an RELD in the (x,y,t) space. I 

Since the proof of this theorem is constructive, in we can use the above result to determine 

the dependencies in the new RELD. We also have the following corollary. 

Corollary m.2: For any URE, the transformation induced by ajftne timing and. allocation 

junctions, leaves the dependency structure Wliform if the transformation matrix A. has an 

inverse. 

Proof: Since a URE is an RELD with the dependency matrix ~ being the identity 
matrix I, the transformation yields a new RELD where The corresponding 
dependency 18 

AA,A- 1 = A 1 A- 1 = 1 
J 

B. Part U: PlpeUnlng onto a systoUc implementation 

I 

We see that by using appropriate timing and allocation functions, we have reduced the 

original problem to a three dimensional RELD defined by (A'j' b'J)J:l..m' This RELD corresponds 
directly to a two dimensional processor aray. However, this naive architecture is not 

necessarily systolic, since the cOIIUnunication is not local (in fact, it may not even be at a 

constant distance away). We therefore proceed to the second step of the synthesis procedure, 
namely pipelining in this array structure. Any dependency in the (x,y,t) domain indicates that 

at time inStant t, the processor (x,y) will need the value that the processor (x' ,y') computed at 

time instant 1', where (x',y',1')T is A'j (x,y,t)T + b'j' The following theorem enables us to 

restructure the dependencies in the RELD. 

Theorem m.3: Pipelfnfng Theorem: 
A particular dependency fAJ' b) of an REW in the [x,y,t] domain can be made Wlifonn if the 

-+ 
dependency matrix AJ has a rwntrivial zero p. 

Proof: ConSider an RELD defined on the same (x,y,t) domain as follows. 

f(p) = lfl (p), f 2 (p)] 

where fl (p) .. 9 (/1 (AlP + b 1 ), fl (A2P + b 2 ) ••• 

f 2 (p + P) ... fl (AkP + b k » 

and 
-+ 
P) 

If this RELD is restricted to have the same boundaries as the original one, then it 
also has the same dependency structure except that the jth dependency is now 
Wliform. For it to be computationally equivalent to the original one, the following 
must hold. 

f 2 (p + P) = fl (AjP + b j ) (1) 
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But. the computation of J at point Ip + pI yields the following. 

and 

J1 (p + P) = 9 <f1 (A1 (p + P) + b 1), J1 (A2 (p + P) + b 2 ) ••• 

J2 (p + 2 P) ... J1 (Ak (p P) + b k » 

J2 (p + P) = J2 (p + 2 P) 
And thus for equivalency with the original RELD 

J2 (p + P) = J2 (p + 2 P) 
J( ( -+p) b) = 1 Aj P + + j 

Since this must be true. regardless of the functions j. J1 and J2 we have. from Eqns 
(1) and (2) 

( P-+) b Aj P + + j 

i.e. 
-+ ""'0 Aj P = 

Thus for the new Uniform RE to be computationally eqUivalent to the original one 

(2 ) 

p has to be a zero of the dependency matrix. • 

We also have the following corollary. whose proof follows directly from the previous theorem. 

Corollary m.4: If all the dependency matrices AJ have zeroes oJtheJonn [a, b. -kP" where k is a 

positive integer and [a,bP" is one oj [0. 01 [ ± 1. 01. [0. ± 110r [± 1. ± 11. the result oJ making the 

depedencies Wlifonn yields a systolic array. 

Proof: The proof is obvious. since it is the vector p that determines the point in 
the Ix. y. tl space that any point depends on. If p has the form described above. 
then we see that the conununication is local. both temporally and spatially. which is 
exactly what is required for a systolic implementation. I 

The synthesis procedure thus consists of the following steps. 
1. Determine an RELD for the problem. 

2. Find appropriate allocation and timing functions 

3. Compute the new RELD in the processor-time domain induced by the timing and 
allocation functions. 

4. Test to see if dependencies are pipeline able 

5. If so derive the systolic implementation. otherwise try alternate timing and 
allocation functions and return to step (3) 

, : ; A ... ( J( ,\' • J: ) I:J, 

IV Application of the Technique to LU Decomposition 
The results of the previous section give us a constructive technique ~o synthesize systoUc 

arrays. Once appropriate timing and allocation functions have been determined. the test for 

pipeltneabUity yields the zero. p = la. b. -kl of the dependency matrix A:1. This zero. if it exists. 
automatically determines the architecture. i.e. the processor functionality and the 
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interconnection structure. Any processor in the architecture now peIfonns a set of functions. 
In addition to "nonnally" computing the 9 function on its input values. it also peIfonns a 
pipelining operation by forwarding one of its inputs to its (-a. -b) neJghbor over a link that has 
a delay of k time units! We shall illustrate the technique by means of an example. Consider 

the LV decomposition of a band matrix as defined in Figure IV -1. 

a 12 , a 13 
a 22 , a 23 
a 32 , a 33 

a 1nl f1, 0, ... 
a 2n I 1 21 , 1, ••• 

a 3 I 1131 , 1 32 , 1, ••• 

J -k" In2' In3"" 

Figure IV-I: W Decomposition oja matrix 

As described by Kung and Leiserson (13) the natural recurrence that describes this 
computation is the following 1. 

a(i, j, 0) - a ij 

a (i, j, k) a(i, 
where 

j, k-1) - likU k j 

{L. if i<j 
lij if i=j 

j, j-1) /u jj if i>j 
and 

= {: (i, 

if i>j 
u i j 

j, i-1) if .<' 
~-J 

We now illustrate the different steps involved in synthesizing a systolic array for this 
problem. 

A. FormulaUng an RELD for the problem 
The domain of the above recurrences is the pyramid bounded by the points (1.1.0). (l.n.O). 

(n.l.O). (n.n.O) and (n.n.n). Its bounding planes are k = 0: 1 = n: J = n: J = k and i = k. This 

expression is not an REW because of the presence of the subSCripted ll.k and uk.j terms, To 
express this as an REW we can use one of two alternatives. First. by straightforward algebraiC 

manipulation we can completely eUm1nate the ~.J and the llt.J terms from the three equations 
above. This yields the following RELD. 

a(i, j, 0) - ai,j 

a(i, j, k) - a(i, j, k-1) - a(i, k, k-1) . a(k, j, k-1)/a(k, k, k-1) 

Alternatively. we may view the functionjcomputed at each point p = (iJ.k) in the domain as 

a tuple of two elements. The first of these is the value of a(iJ.k) and the second element 1s 

lWe have slightly altered the third subSCript to have the lnltial values avallable at k:aO rather than k= 1 
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l(i.j.k). with 1 being meaningful only at the j = k+ 1 boundary2. The RELD for this computation 

then becomes 

j(i, j, k) [a (i, j, k) , l(i, j, k) ] 
where 

a(i, j, 0) a q 
a(i, j, k) a (~, j, k-1) - l(i, k, k-1)a(k, j, k-1) 

and 
l(i, j, k) if j = k+1 then a (i, j, k)/a(j, j, j-1) 

[1, 0, ~J =[J} [ 1, 0, ~J b ' = [ ~} A ' - 0, 1, b ' A2 ' = 0, 0, 1 1 2 
0, 0, 0, 0, 

and A3 ' -[ 0, 0, 1] 
0, 1, 0 
0, 0, 1 

b3 = [J] 
naure IV-2: Dependency Structure and Domain oj the W-Decompositton Recurrences 

2Strtctly speaking. ftp) should be a triple [a(p). I(p). u(p)J. but the third element. u(i.j.kl is exactly equal to the 
corresponding a(i.j.k) and we may therefore ignore it 
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We see that the second alternative is preferable since It does not involve any redundant 
computation of the 1(1.j.k) values. However. it contains what appears to be a cyclic dependency. 
since the value of (a part of) JU. j. k) (the 1(1. j. k) part) depends onj{I. j. k) (actually. only Its 

aU. j. k) part). Hence. as expressed above this RELD cannot have a timing function. However. 

we can easily modify it by extending the domain to also include the j = k plane. and letting 

JU. j. k) on this plane being 1(1. j. kl. This yields the following RELD 

r a ij if k = 0 
f(i, j, k) = ~ f(i,j,k-l)/f(k,j,k-l) if k = j ' 

l f(i,j,k-l) - f(i,k,k).f(k,j,k-l) otherwise 

This is the RELD that we shall use as the starting point of the mapping procedure. It must 

be emphasized that this choice of the tnltal RELD is not a lJrnitation of the technique. In fact. 

by applying the mapping procedure to the first RELD we obtain an architecture whIch is very 

similar to the Kung-Leiserson array except that each processor performs a divisIon (as 

expected) and depends on four input values. Figure IV-2 presents a pictorial view of the 

domain and the ind1v1dual dependencIes. and also the A matrices and the bJ vectors. 

B. Determining the allocation and tlmlng functions 
In order to synthesize a systolic array from this RELD we must first determine timing and 

allocation functions for it. Let (AT
t I a) = [a, b, 0 I d) be an affine timing function. Then it 

must satisfy the following constraints because of the dependencies of the RELD. 

ai + bj + ok > ai + bj + o(k-l) 
ai + bj + ok > ai + bk + o(k-l) 
ai + bj + ok > ak + bj + o(k-l) 

i.e. 0 > 0 

i.e. b(j-k) + 0 > 0 
i.e. a(i-k) + 0 > 0 

Since our domain Is a convex hull we can actually determine the space of all possIble affine 
timing functions by substituting the vertices of the domain in the above equations. These set 
of inequalities define another convex hull (actually a cone) that constitutes the space of affine 
timtng functions. Let us choose a timing function as follows. 

t(i,j,k) - i+j+k 

We can easily verify that t(i.j.k) as defined above is indeed a valid timing function. Also. 

since we require that the allocation function a(1.j.kl that we choose must not be in conflict with 

the tlm1ng function. we can view a(1.j.kl as a projection of the origtnal dOmain. that Is 
non-parallel to the timing function. We therefore choose the following allocation function. 

a(i, j, k) = [i-k, j-k] 

It is easy to see that this chOice of allocation and timing functions are free of conflict as 

follows. Let (IJ.k) and (p.q.r) be two pOints that map onto the same point in the (x.y.t) domain.' 

Then 

i+j+k=p+q+r 

I-k =p-r 

and j-k =q-r 
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Hence i + j - 2k = P + q -2r 
Subtracting this from the first eqn yields 3k = 3r = k = r 
Substituting this in the second and third eqns yields i = P and j = q. Thus the two points are 
identical. We thus have 

[
1, 0,-1] 

A = 0, 1,-1, and hence 
1 [1, 2,-1] A-1 - - 1 -1 2 3 ' , Also, a =11 

1, 1, 1 1,-1,-1 

c. PipeUnine In the processor-time domain 
We can then use Theorem llI.A to determine the new dependencies in the processor-time 

domain as follows. 

[ 1, 0, 

~] -.+ 

b1 ' ~ Ab1 = [-~] A1 ' = M1 A -1 = ° , 1, and since a =0, 
0, 0, 

Similarly 

_ [ 1, 0, ~l = [ ~] [ 0, 0, 0] 
b3 ' = [J} A ' - 0, 0, b2 and A/ = 0, 1, 0, 2 

0,-1, -1, 0, 1 

We see that although the first dependency has remained uniform under this transformation, 

neither ~' nor ~' has been reduced to the identity matriX. However, since both I~'I and 
I ~'I are zero we can apply Theorem III.B in order to pipeline in this new structure. this 
requires us to solve 

~ ~ 

~' x = 0 (and correspondingly ~' x = 0) 
and yields [-k. 0, -kIT (and respectively (0, -k, -k)1) as a solution. Choostnng k to be I, both the 

second and third dependencies can be pipelined, and any processor [x. y) can obtain the 

required values from processors (x-I, y) and lx, y-I) over links of unit delays. Using this 

pipelining structure yields the architecture shown in Fig IV-3 below, which is identical to the 

one described by Kung and Leiserson. 

V Conclusions 
We have presented a technique for designing systol!c arrays from an initial specfication 

which is in the form of a Recurrence Equation with Linear Dependencies. The approach that 

we have taken here may be viewed as an extension of Quinton's approach where only 

Recurrence Equations with Uniform Dependencies (UREs) are considered. In our approach the 
class 0 problems discussed is a superset of UREs. It is essential to inClude UREs in our class. 
because the final target that we are interested in is. in fact a URE (since systolic arrays have 
local. and regular interconnections - this regularity implies UREs). An alternative perspective of 

our approach is obtained by envisioning the above steps as transforming an RELD into a URE. 

Recently (in [3, 4)) Chen has presented an inductive technique to derive systolic 

architectures from what are defined as First Order Recursion Equations (FOREQs). We can 

show that these are merely a subset of Uniform Recurrence Equations with addional 

constraints specifying that the dependencies must be lDealin addition to being constant.· Thus 

the class of problems that can be designed is restrictive. and most of the effort Is spent in 
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Figure IV -3: Derived Architecture far LU Decomposition 

"massaging" the original problem specification into a FOREg. Chen (in [4]) has presented a 

new architecture for LU-Decomposition. which is one and a half times faster than the one 

designed by Kung and LeiSerson. It is our conjecture that merely by an appropriate choice of 

Uming and allocation functions we should be able to derive this architecture as well. 

As an extension to this work. there are three major areas of further research. One important 
problem that needs to be addressed Is alternate plpelining strategies. such as those involving 
control signals to alter the speed of data flow (while keeping it constant at any given instant). 

An example of such an architecture Is the dynamic programmtng a:rny presented by Guibas et 
al(in [9]). Another area for further research Is the use of the desired pipelining structure to 
guide the choice of allocation and Uming functions. Finally. a detailed investigation of the 
nature of Uming and allocation functions Is in progress. Preliminary results indicate that for 
the case when the domain of the RELD is a convex hull. we are able to constructively derive the 
space of all possible Uming functions as a cone in (n+l) dimensional space. Also. other 
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techniques such as results from conventional processor scheduling may be applica"ble in 

setting bounds on such tirn1ng functions. 
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