
Towards Providing Low-Overhead Data Race Detection for
Large OpenMP Applications∗

Joachim Protze†, Simone Atzeni*, Dong H. Ahn‡,
Martin Schulz‡, Ganesh Gopalakrishnan*, Matthias S. Müller†,

Ignacio Laguna‡, Zvonimir Rakamarić*, Greg L. Lee‡

†RWTH Aachen University *University of Utah
‡Lawrence Livermore National Laboratory

†{protze, mueller}@itc.rwth-aachen.de
*{simone, ganesh, zvonimir}@cs.utah.edu

‡{ahn1, schulzm, lagunaperalt1, lee218}@llnl.gov

ABSTRACT
Neither static nor dynamic data race detection methods, by
themselves, have proven to be sufficient for large HPC applica-
tions, as they often result in high runtime overheads and/or low
race-checking accuracy. While combined static and dynamic ap-
proaches can fare better, creating such combinations, in practice,
requires attention to many details. Specifically, existing state-of-
the-art dynamic race detectors are aimed at low-level threading
models, and cannot handle high-level models such as OpenMP.
Further, they do not provide mechanisms by which static anal-
ysis methods can target selected regions of code with sufficient
precision. In this paper, we present our solutions to both chal-
lenges. Specifically, we identify patterns within OpenMP run-
times that tend to mislead existing dynamic race checkers and
provide mechanisms that help establish an explicit happens-
before relation to prevent such misleading checks. We also im-
plement a fine-grained blacklist mechanism to allow a runtime
analyzer to exclude regions of code at line number granularity.
We support race checking by adapting ThreadSanitizer, a ma-
ture data-race checker developed at Google that is now an inte-
gral part of Clang and GCC; and we have implemented our tech-
niques within the state-of-the-art Intel OpenMP Runtime. Our
results demonstrate that these techniques can significantly im-
prove runtime analysis accuracy and overhead in the context of
data race checking of OpenMP applications.

1. INTRODUCTION
OpenMP is the de facto standard for parallel programming on
shared memory machines. It is also becoming increasingly pop-
ular on extreme-scale systems as it offers a portable way to har-
ness the growing degree of parallelism available on each node.
However, porting large HPC applications to OpenMP often in-

∗This work performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory un-
der Contract DE-AC52-07NA27344 (LLNL-CONF-660004).

troduces subtle errors. Of these, data races [4] are particularly
egregious, as well as challenging to identify. Data races may re-
main undetected during testing, but nevertheless manifest dur-
ing production runs by often resulting in confusing (and/or non-
reproducible) executions that the programmer wastes consider-
able amounts of time debugging. In extreme situations, data
races may simply end up silently corrupting user data. For all
these reasons, data race detection remains one of the central
concerns in parallel programming, in particular for shared mem-
ory programming models.

While considerable progress has been made in data race de-
tection applied to lower-level threading models, very few prac-
tical tools are available for higher-level threading models, like
OpenMP. For example, while mature runtime tools are readily
available, which includes Helgrind [8] and ThreadSanitizer [16],
they primarily aim at POSIX threads and often do not support
high-level programming models built on top of them.

The tools that do exist for OpenMP are based on either pure
static or dynamic analysis techniques. While effective on small-
to medium-sized applications, these approaches fall short when
analyzing large HPC applications that are characterized by high
memory usage, complex interplay with other types of paral-
lelism, and non-trivial code sizes. While runtime approaches are
often highly accurate, even modern runtime techniques can in-
cur an over 30 to 100 fold execution slowdown and over a factor-
of-10 memory overhead. Often these overheads are unaccept-
ably high to diagnose HPC applications that can run for several
days and use large portions of system memory. In contrast, while
static analysis techniques incur low runtime overheads, they are
imprecise by nature and thus can produce many false alarms.

It is well known that combined static and dynamic approaches
can help to improve data-race checking significantly without sac-
rificing analysis accuracy and precision. For instance, as part
of code compilation, such approaches can apply a set of static
analysis passes to classify the code into race-free and potentially
racy regions. However, to the best of our knowledge, such a
combination has not been attempted for OpenMP programs —
especially real applications that are meant to run on state-of-
the-art OpenMP runtimes. In this paper, we show that any at-
tempt to transition to practice with these objectives immediately
introduces many technical challenges. We identify the follow-
ing two primary challenges: (1) a programming model challenge,

2014 LLVM Compiler Infrastructure in HPC

978-1-4799-7023-0/14 $31.00 © 2014 IEEE

DOI 10.1109/LLVM-HPC.2014.7

40

2014 LLVM Compiler Infrastructure in HPC

978-1-4799-7023-0/14 $31.00 © 2014 IEEE

DOI 10.1109/LLVM-HPC.2014.7

40

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277356?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

OpenMP C/ C++ Clang/ LLVM Compiler

Reports

LLVM IR
Code

OpenMP
Source
Code

Static
Analysis

Fine-
grained
blacklist

information

ThreadSanitizer
Instrumentation Executable

Instrumented
Intel OpenMP

Runtime

Static Analysis
Data Race
Report

ThreadSanitizer
Data Race
Report

Figure 1: Overall approach of Archer

which refers to the need to handle the higher-level primitives of
OpenMP, and (2) a static-dynamic collaboration challenge, which
refers to the fact that available dynamic data-race detection tools
do not come with mechanisms by which they can target selected
regions of a given piece of code to be analyzed. In this paper, we
present our solutions to both challenges.

To address the programming model challenge, we demonstrate
how to identify situations in which low-level synchronization
patterns within implementations of concurrency libraries can
mislead runtime techniques. This occurs because of the mis-
match between the happens-before relation assumed by these
runtime methods and those embedded within the libraries. Our
solution is to build the knowledge of this happens-before relation
into the runtime libraries to obtain race-checking precision.

To address the static-dynamic collaboration challenge, we use
a fine-grained blacklist mechanism whereby a runtime analysis
can exclude regions of code for checking at line-number granu-
larity. While the general use of blacklisting enhances the speed
of checking at the expense of completeness, in some cases we
can avoid losing completeness because of an LLVM-level static
analysis pass that is capable of identifying guaranteed race-free
regions that do not need to be instrumented.

In summary, we make the following contributions:

• A blueprint of a low-overhead OpenMP data-race checker;

• The identification of thread synchronization patterns
within a widely used OpenMP runtime, which often mis-
leads runtime checkers with false alarms;

• Instrumentation techniques that can eliminate these false
alarms; and

• A novel blacklist technique that allows runtime checkers to
select and examine targeted code regions at a fine granu-
larity.

We implemented our techniques in the Intel OpenMP Run-
time [1], a widely used OpenMP runtime library, and Thread-
Sanitizer [16] (TSan), a popular open-source runtime data-race
checker. Our evaluation on OmpSCR, an OpenMP source code
collection, shows that the instrumented OpenMP library allows
TSan to eliminate all false alarms without decreasing data-race
analysis accuracy and precision. Our evaluation also shows that
the fine-grained blacklist technique sufficiently allows TSan to
exclude its runtime analysis at the OpenMP region boundary.
Further, both techniques significantly reduce the runtime per-
formance and memory overheads of TSan.

2. APPROACH
To provide an effective and scalable analysis of data races in large
OpenMP applications, we must bring the best from both static
and dynamic analysis techniques and combine them in a seam-
less workflow: as part of the compilation process, we first apply a
set of static analyses, such as loop-carried data dependency and
thread-escape analysis, to classify OpenMP code into race-free,
certainly racy or potentially racy regions and pass only the po-
tentially unsafe regions into a runtime analyzer.

We build on top of the OpenMP branch [2, 3] of LLVM/Clang [11,
12] and ThreadSanitizer (TSan) [16] and started to prototype a
tool called Archer. Our tool composes static analyses with dy-
namic techniques to create a seamless analysis workflow, as il-
lustrated in Figure 1. On the static side, Archer builds on the
Clang/LLVM suite and utilizes some of the static and dynamic
verification passes already present in LLVM. Currently, it uses
Polly [7], the data-dependency analysis and loop-carried data-
dependency analysis in LLVM. Specifically, once the OpenMP
code is translated into the LLVM IR language, Archer applies
a collection of static techniques to classify threaded code into
three different categories: race-free regions; certainly racy re-
gions; and potentially racy regions (i.e., gray area).

Figure 2a shows a simple example OpenMP code where our
static data dependency analysis can guarantee data-race free-
dom: with no data dependency, threads will each exclusively

4141

#pragma omp parallel for

for(int i = 0; i < N; ++i) {

a[i] = a[i] + 1;

}

(a) Data-race free region

#pragma omp parallel for

for(int i = 0; i < N; ++i) {

a[i] = a[i + 1];

}

(b) Potential data races due to loop-carried dependencies

Figure 2: OpenMP parallel for loop

access distinct array locations. On Figure 2b, applying data-
dependency analysis discovers that this loop has a loop-carried
data dependency. This means threads may simultaneously ac-
cess the same array location and cause a data race. For poten-
tially racy regions like this, our instrumentation framework will
add runtime checking code so that they will be further analyzed
at execution time for more accurate diagnosis.

On the runtime side, we implement Archer by extending TSan
to include a blacklist feature so that it can exclude code from
being examined during runtime at finer granularity (e.g., at the
line-number or OpenMP-region level) than its current version.
Further, because TSan does not currently support OpenMP, we
also instrumented the Intel OpenMP Runtime to allow TSan to
recognize its synchronization primitives.

3. THREADSANITIZER
The core of the TSan runtime is a state machine based on three
basic patterns [13, 14]: memory access (READ, WRITE), synchro-
nization (SIGNAL, WAIT) and locking (LOCK, UNLOCK).
The access to memory is logged into a shadow memory. The vir-
tual memory address space is partitioned into a segment for ap-
plication memory and a segment for shadow memory, each em-
bedded in restricted memory regions. The mapping between ap-
plication memory and shadow memory is a simple algebraic ex-
pression. A log entry includes the current program counter and
the thread id.
The synchronization information is logged in a vector of scalar
clocks containing the remote program counter from the last syn-
chronization with the remote thread. The basic synchronization
pattern in TSan is sending a signal from one thread and waiting
for this signal at another thread. This kind of synchronization is
highlighted by a happens-before arc starting at the signal call
and pointing to the wait call.

Annotation API. The Annotation API of ThreadSanitizer pro-
vides API functions to highlight memory usage and synchroniza-
tion. In particular, as discussed in the next section, we use the
API to make TSan understand the OpenMP synchronization se-
mantics by identifying the respective synchronization points:

• AnnotateRWLockAcquired(char *f, int l, uptr mem)

• AnnotateRWLockReleased(char *f, int l, uptr mem)

• AnnotateHappensBefore(char *f, int l, uptr mem)

• AnnotateHappensAfter(char *f, int l, uptr mem)

• AnnotateIgnoreWritesBegin(char *f, int l)

• AnnotateIgnoreWritesEnd(char *f, int l)

Most of the API functions rely on the shadow memory to imple-
ment their functionality. The memory addressed by the mem pa-
rameter is used to store synchronization information as thread id
and local clock value. As a result this address should be unique
for the pair of threads or the used lock and the address should not
be used in other application context. At the same time, this ad-
dress argument needs to be known by both of the synchronizing
threads, so it needs to be shared knowledge between the threads.
The Read-Write-Lock functions may be used to highlight user de-
fined locks. The Happens-Before/After functions highlight the
start and respectively end of a happens-before markup. Finally
the Ignore-Write functions mark a region of code where writes to
memory should be ignored by the runtime analysis.

4. SOLUTIONS
As a foundation to our proposed approach described in Sec-
tion 2, a strong body of work exists in the fields of both static and
dynamic analysis techniques. However, we find two important
gaps can impede our effort to blend these two classes of tech-
niques.

First, while mature state-of-the-art runtime tools exist, includ-
ing Helgrind and ThreadSanitizer, they aim primarily at low-level
POSIX/OS-level threading paradigms and often do not support
high-level programming models like OpenMP. Specifically, they
do not recognize raw synchronization primitives and/or patterns
that OpenMP runtime implementations use, and as a result re-
port an excessive number of false alarms on large production
OpenMP applications. Further, these runtime tools do not pro-
vide a mechanism by which the static counterpart can target cer-
tain regions of code at a sufficiently fine granularity.

In the following, we present our solution to both challenges.
While our solution is proposed and validated within the Archer
workflow that uses LLVM and ThreadSanitizer and targets
OpenMP, it applies, in principle, to any static-dynamic approach
to data-race detection and to any high-level programming model
with threading semantics.

4.1 Highlighting Synchronization
The OpenMP standard specifies several high-level synchro-
nization points. Explicit synchronization points include
#pragma omp barrier, #pragma omp critical, and #pragma omp

taskwait. Implicit synchronization include #pragma omp single,
#pragma omp task, and the OpenMP reduction clause. As se-
mantically intended and realized in the Intel OpenMP runtime,
the threads can enter a critical section, as the one shown in
Figure 3a, only in a serialized manner, avoiding a data race in
this example. Lacking the knowledge about these synchroniza-
tion points, however, ThreadSanitizer generates false alarms, as
shown in Figure 3b. We use the Annotation API of TSan to high-
light these synchronization points to avoid such false positives.

4242

#include <stdio.h>

int main(int argc, char **argv)

int a=0;

#pragma omp parallel

{

#pragma omp critical

{

a++;

}

}

printf("Sum: %i\n", a);

}

(a) Race-free OpenMP critical section example

WARNING: ThreadSanitizer: data race (pid=49285)

Write of size 4 at 0x7fd8dc by thread T2:

#0 .omp_microtask. critical.c:8

(critical+0x0000000a86f5)

#1 __kmp_invoke_microtask <null>:0

(libiomp5.so+0x0000000b96d2)

Previous write of size 4 at 0x7fd8dc by thread T4:

#0 .omp_microtask. critical.c:8

(critical+0x0000000a86f5)

#1 __kmp_invoke_microtask <null>:0

(libiomp5.so+0x0000000b96d2)

(b) ThreadSanitizer report for OpenMP critical section example
Figure 3: False alarm message example for uninstrumented Intel OpenMP Runtime

wait

wait

wait

release r r

r

r

wait w w

r

(a) Linear Barrier

wait

wait

release r

r

r

w w

r

r

wait

wait

(b) Tree Barrier

wait

wait

release r

r

r

w w

r

r

wait

wait

(c) Hypercubic Barrier
Figure 4: The blue arrows represent happens-before relations for fork/join barrier implementations in the Intel OpenMP Runtime.

Locking Algorithms. The Intel OpenMP Runtime imple-
ments several low-level locking mechanisms for initialization
purposes. By default, the locking algorithm in use is the Lam-
port Bakery Algorithm [10] , which is a queuing lock algorithm.
The Lamport Bakery Algorithm works for situations with unclear
knowledge of concurrent threads. To give some examples, this
kind of lock is used to protect the initialization of Pthread locks
and to protect some sections of the fork and join procedures.
The queuing lock is used to implement the locks for OpenMP
pragmas like critical or lock. Using the ThreadSanitizer an-
notation functions AnnotateRWLockAcquired and AnnotateR-

WLockReleasedwe were able to resolve the false alarms for high-
level OpenMP locking pragmas like #pragma omp critical.

Fork/Join Barrier. We now explain how we conveyed infor-
mation about the happens-before relation pertaining to the bar-
riers used in the Intel OpenMP Runtime. Since the origins of
the OpenMP programming model is based on a fork-join model,
most of the implicit and explicit barriers underpin the synchro-
nization for fork, join or join-fork operations. The Intel OpenMP
Runtime implements 3 variants for the fork and the join barrier:

• Linear barrier: one thread (master) synchronizes with all
others,

• Tree barrier: synchronization is implemented along a bi-
nary tree, and

• Hypercubic barrier: synchronization is implemented in
the dimensions of a hypercube.

The Figures 4(a-c) present these barriers along with arrows that
represent the happens-before relations between the involved
threads. Each of the figures shows a fork barrier on the left side
and a join barrier on the right side. An explicit barrier is built by a
combination of a join and a fork barrier. We use the API functions
AnnotateHappensBefore and AnnotateHappensAfter to highlight
the happens-before relations as shown in the figures.

Lock Initialization. We now explain our use of annotations
to suppress races pertaining to certain types of lock initializa-
tions. After we highlighted the synchronization by OpenMP bar-
riers and locks to ThreadSanitizer, we were able to focus on actual
data races. We discussed the race condition listed in Listing 1, as
implemented in the OpenMP Runtime library with Intel devel-
opers. If two threads approach the if statement concurrently,
both might enter the block and initialize the mutex. According
to the documentation, the attempt to initialize an already initial-
ized mutex results in undefined behavior. In fact, there is an-
other synchronization point that guarantees that the initializa-
tion happens on a single, well-defined thread. To mark this race
as benign, we instrument the runtime as in Listing 2.

Listing 1: Possible data race for pthread_mutex_init

if (th->th.th_suspend_init_count <= __kmp_fork_count)
{
/* this means we haven’t initialized the suspension

pthread objects for this thread in this instance
of the process */

pthread_cond_init(&th->th.th_suspend_cv.c_cond,
&__kmp_suspend_cond_attr);

pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
&__kmp_suspend_mutex_attr);

4343

(volatile int)&th->th.th_suspend_init_count =
__kmp_fork_count + 1;

}

Listing 2: Ignore the write at pthread_mutex_init

if (th->th.th_suspend_init_count <= __kmp_fork_count)
{
/* this means we haven’t initialized the suspension

pthread objects for this thread in this instance
of the process */

AnnotateIgnoreWritesBegin(__FILE__, __LINE__);
pthread_cond_init(&th->th.th_suspend_cv.c_cond,

&__kmp_suspend_cond_attr);
pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,

&__kmp_suspend_mutex_attr);
AnnotateIgnoreWritesEnd(__FILE__, __LINE__);
(volatile int)&th->th.th_suspend_init_count =

__kmp_fork_count + 1;
}

Alternatively we could announce a happens-before relation be-
tween the initialization of the mutex and later attempts to initial-
ize as in Listing 3.

Listing 3: Ignore the write at pthread_mutex_init

AnnotateHappensAfter(__FILE__, __LINE__,
&th->th.th_suspend_init_count);

if (th->th.th_suspend_init_count <= __kmp_fork_count)
{
/* this means we haven’t initialized the suspension

pthread objects for this thread in this instance
of the process */

pthread_cond_init(&th->th.th_suspend_cv.c_cond,
&__kmp_suspend_cond_attr);

pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
&__kmp_suspend_mutex_attr);

(volatile int)&th->th.th_suspend_init_count =
__kmp_fork_count + 1;

AnnotateHappensBefore(__FILE__, __LINE__,
&th->th.th_suspend_init_count);

}

4.2 Fine-grained Blacklists
Programmers often need to analyze only small portions or par-
ticular regions of the source code that could be affected by data
races. For example, when new features in an existing code are
implemented there is potentially no need to run the analysis on
the entire program again, but only on the new sections.

For this purpose, ThreadSanitizer [15] provides a feature that
allows developers to exclude (blacklist) particular functions or
whole source files from the analysis, meaning that it is possible
to select only interesting portions of code to be analyzed by the
tool. The blacklist is specified manually by the developer; Fig-
ure 5 shows an example of blacklisting functions and source files.

Turn off checks for a particular function

fun:MyFoo

Turn off checks for a particular file

src:bad_source.c

Figure 5: Blacklisting functions and source files

When we exclude a source file or a specified function, TSan at

compilation time does not instrument the specified code region,
and consequently no analysis will be performed on it at runtime.

The blacklist feature of TSan is a coarse-grained selection since
the smallest selectable region of code is a function. In general,
programs, and especially HPC programs, often have large func-
tions containing several different parallel constructs and loops.
In programming paradigms like OpenMP, most of the code is typ-
ically sequential, with only a small portion actually being exe-
cuted by multiple threads. Further, the static analysis passes of
Archer will wish to focus only on some code segments within a
function—for example, if the static techniques found that there
are race-free parts or identified a particular code region as poten-
tially racy. In such situations, the existing blacklist feature does
not allow ignoring only parts of a function, requiring the whole
function to be instrumented and thereby incurring large runtime
overhead with no benefit.

Blacklisting line 42 of source file

"mysource.c" in directory

"/path/to/source/file"

line:42,mysource.c,/path/to/source/file

Figure 6: Blacklisting a single line

Blacklisting lines from 38 to 42 of

directory "/path/to/source/file"

source file "mysource.c" in

line:38-42,mysource.c,/path/to/source/file

Figure 7: Blacklisting a range of lines

We extend the ThreadSanitizer blacklist feature so that it can ex-
clude code from being examined during execution time at finer
granularity, more specifically at the line-number or OpenMP-
region level. The existing blacklist feature [15] provides keywords
src and fun for specifying a source file and a function name to
ignore, respectively. We introduce a new keyword line to indi-
cate the lines of code to blacklist. In particular, it is possible to
specify a single line as showed in Figure 6 or a range of lines as
in Figure 7. In addition to a single line or range, a programmer
needs to specify a source file and its absolute path. In the case of
Archer, this blacklist information is automatically generated. As
mentioned in Section 2, Archer applies static techniques to clas-
sify threaded code into race-free regions; certainly racy regions;
and potentially racy regions. Archer then uses the source lines of
race-free regions and certainly racy regions to create the blacklist
to ignore all those portions of the code that do not need further
analysis at runtime.

Section 5 shows the performance benefits of our fine-grained
blacklist feature.

Implementation details. We have integrated our fine-
grained blacklist into TSan by seamlessly extending its existing
feature.The existing feature is invoked at the compile line via a
specific flag. For example, the blacklist flag as shown in Fig-
ure 8 allows to specify the file that lists the function and source
file names to be excluded from the runtime analysis. The fine-
grained blacklist mechanism follows the same flow. As described

4444

in Figure 6 and 7, the programmer can now specify in this file the
source lines to be excluded.

clang -g -O0 -fopenmp \

-fsanitize=thread \

-fsanitize-blacklist=blacklist_filename.txt \

myprogram.c

Figure 8: ThreadSanitizer blacklist invocation

The internal mechanism of the compiler still remains the same.
The file that contains the blacklist source lines is parsed by LLVM,
which then stores the information on the blacklist functions and
source files in an internal data structure. Following this original
scheme, we introduce a new data structure to keep the informa-
tion about the blacklist source lines. The parsing algorithm is
now able to understand the new keyword line and fill the data
structure with all the necessary information. This information
is then used during the LLVM IR code-generation phase: Clang
simply embeds the blacklist source-line information as metadata
in the generated LLVM IR instruction stream. Next, all of the re-
quested LLVM passes start to run on this instruction stream, and
one of these passes is the TSan pass. We have also modified the
TSan pass to understand the new metadata information and in-
struments only those load and store instructions that have not
been annotated to be excluded. As a result, when this instru-
mented program is executed all the loads and stores blacklisted
at compile time will not be analyzed by the TSan runtime.

5. RESULTS
We demonstrate our improvements in data-race detection ac-
curacy on benchmarks from OmpSCR [5], an OpenMP source
code collection. With the modified Intel OpenMP Runtime,
we were able to detect data races in several applications,
some of which had previously been documented. We ver-
ified that all of the detected data races are actually data
races. This means that our technique reported no false
alarms. On the other hand, the tool did not miss any data
races reported by other tools. More specifically, we were
able to detect data races in c_jacobi3, c_loopA.badSolution,
c_loopB.badSolution1, c_loopB.badSolution2, c_md,
c_testPath, cpp_qsomp1, cpp_qsomp2, cpp_qsomp3, cpp_qsomp4,
and cpp_qsomp6. The data race in c_md is due to an out-of-bound
access introduced by a faulty loop index variable. And this race
manifests itself only for a problem size of 4096 particles, which
makes this bug highly elusive.

In Figure 9, we present our overhead measurements for these
benchmarks. We compare the execution times of the applica-
tion kernels at 2 threads with those at 8 threads. The gray bars
are thought to give a rough idea of the applications’ general scal-

ing behavior when going from 2 to 8 threads (i.e., T2 threads
T8 threads

) for

the uninstrumented application. Kernels c_fft, c_qsort, and
the loop kernels implement weak scaling, so the expectation is
that their execution times are relatively constant. The Jacobi ker-
nels, c_lu, c_mandel, c_md, c_pi, and the C++ quicksort kernels
(cpp_qsompX) use strong scaling, and so the ideal speedup is 4.
These values are reported as a reference point for the runtime
overhead of our Archer tool. We see a remarkable increase in
runtime overhead when going from 2 to 8 threads for some of
the strong scaling applications. Especially for the Jacobi kernels,
c_md and c_pi, the overhead increases by a factor 4 or higher. As

#include <stdio.h>

#include <stdlib.h>

#define N 1000000000

int a[N], b[N];

long int i;

int main(int argc, char **argv)

{

#pragma omp parallel for

for (i = 0; i < N; ++i) {

a[i] = i;

}

b[0] = 0;

#pragma omp parallel for

for (i = 1; i < N ; ++i) {

b[i] = b[i - 1] + 1;

}

}

Figure 10: OpenMP example containing a data race

expected, the runtime overhead for the Mandelbrot kernel is very
low, and for longer runtimes is not discernible since there is al-
most no access to shared memory in the loop of this kernel.

Note that we omit some measurements from the figure. The
c_jacobi3 kernel has a data race in the break condition and this
race is reported by the tool. However, due to this race, the execu-
tion time of this kernel is quite random and varies by a factor of
1000; thus we do not report these results. Similarly, the C++ ker-
nels cpp_qsomp3 and cpp_qsomp4 rely on a thread-safe implemen-
tation of the standard template library (STL). The unsynchro-
nized access in cpp_qsomp3 leads to a segmentation fault. Thus
we report no runtimes for this kernel. Finally, for the cpp_qsomp4

kernel too many data races with varying stack traces are reported.
These let the ThreadSanitizer break with “Unexpected mmap in

InternalAllocator!”. Therefore, no overhead measurement is
reported.

The kernel cpp_qsomp7 provides a task-based implementation of
quicksort. We adopted the source code of this kernel to meet
the current version of OpenMP task pragma specification, as the
original code used an outdated Intel-specific implementation of
work-sharing queues. Our experiments with this task example
show that we were able to highlight the synchronization points
for tasks as well. Data races between tasks that are scheduled on
the same thread will be omitted.

In order to present our new fine-grained ThreadSanitizer black-
listing functionality we use the example in Figure 10. The
program shows a case with two OpenMP constructs: the first
OpenMP parallel for is race free since each thread always ac-
cesses a distinct location of the array a; the second OpenMP con-
struct has a loop-carried data dependency that could generate
a data race. In this case, a programmer can blacklist the first
OpenMP construct and check only the second one at runtime.
Even though this is a simple example, if we set the size of the ar-

4545

0

10

20

30

40

50

60

70

80

0

0.5

1

1.5

2

2.5

3

3.5

4

ThreadSanitizer Overhead for OmpSCR-2.0

Overhead 2 Threads Overhead 8 Threads Speedup

Application Kernel

S
lo

w
d

o
w

n

S
p

e
e

d
u

p

Figure 9: Runtime overhead for OmpSCR collection with 2 threads (left) and 8 threads (middle), up to 77x. The right bars give the
speedup for the uninstrumented reference measurement when going from 2 to 8 threads.

WARNING: ThreadSanitizer: data race (pid=23742)

Read of size 4 at 0x7f5e0d736924 by thread T21:

#0 .omp_microtask.1 target.c:19

(target+0x00000008835f)

#1 __kmp_invoke_microtask <null>:0

(libiomp5_tsan.so+0x0000000b9cd2)

Previous write of size 4 at 0x7f5e0d736924 by

thread T22:

Location is global ’b’ of size 4000000000 at

0x7f5d3cd5a620 (target+0x0001c075e924)

...

SUMMARY: ThreadSanitizer: data race target.c:19

.omp_microtask.1

==================

ThreadSanitizer: reported 2 warnings

Figure 11: Report after applying the line-based blacklist

Runtime (s) Memory (GB)

Release 3.373 7.44329
Full blacklisting 13.267 7.53186

Full instrumentation 33.074 37.3479
Blacklist 1st OMP construct 23.674 22.4468

Table 1: Performance results of our line-based blacklist

rays a and b to a very large number (one billion in our case), we
can see a big difference in terms of runtime and memory over-
head when we run the program in both release mode and under
ThreadSanitizer analysis. Blacklisting specific parts of the pro-
gram allows programmer to obtain better performance since an-
alyzing less code reduces runtime and memory overhead. Note
that the original blacklist feature of ThreadSanitizer would not
allow blacklisting individual OpenMP constructs. Our extension,
in contrast, allows a programmer to specify precisely which lines
of code she wants to exclude from the analysis. By blacklisting
the first OpenMP construct, we are able to reduce the amount of
time and memory that ThreadSanitizer requires to perform the
analysis, while still being able to discover the data race in ques-
tion (see Figure 11).

In Table 1, we list the performance results of the ThreadSanitizer
analysis with and without blacklisting. The table compares run-
time and memory consumption of the program running in re-
lease mode (no analysis performed by ThreadSanitizer) with dif-
ferent levels of instrumentation by ThreadSanitizer. We ran the
program on a machine with two processors Intel(R) Xeon(R) CPU
E5645 @ 2.40GHz (6 cores, 24 threads total) with 48 GB of RAM.
We note that release and full blacklisting (i.e., nothing gets ana-
lyzed) are very close in terms of runtime and memory overhead
since ThreadSanitizer performs no instrumentation in the full
blacklisting case. The difference in runtime and memory over-
head between release and full blacklisting is a one-time overhead

4646

that comes from initialization that happens despite full blacklist-
ing of the source code. On the other end of the spectrum, the full
instrumentation case shows that ThreadSanitizer runtime and
memory overhead is 10x and 6x higher than the release version,
respectively. This reflects the performance results published by
the ThreadSanitizer authors [16]. The last row of the table shows
the case where we apply our fine-grained blacklist instrumenta-
tion to the first OpenMP constructs—since there is no data de-
pendency we can blacklist it and run the analysis only for the sec-
ond OpenMP construct. The numbers show a significant reduc-
tion, in terms of runtime and memory overhead, of about 30%
less than the fully-instrumented case.

6. LESSONS LEARNED
Our initial approach was to use the OpenMP Tools Interface
(OMPT) [6] to insert the annotations. The OMPT interface pro-
vides callback functions that are triggered when OpenMP prag-
mas are executed. This would make the approach applicable to
the instrumentation of both the GNU OpenMP library and the
Intel OpenMP library. However, we learned that this approach is
not compatible with the ThreadSanitizer annotation interface.

As an example, for critical sections, locks and barriers an inte-
ger identifier is provided. The properties of this identifier are
not specified. It might be the address of the used lock, a con-
secutively numbered identifier or a random number. On the
other hand, as discussed in Section 4.1, ThreadSanitizer uses the
shadow memory to propagate the clock values at synchroniza-
tion points. For the annotation call a common address is needed.
Using a hash table and allocating some memory space as unique
pointer addresses could solve this issue.

However, there is another critical issue for this approach. The
OMPT interface doesn’t provide callbacks for all synchronization
points. Examples for missing callbacks are the end of critical
or locked sections. The callbacks ompt_event_release_critical
and ompt_event_release_lock are specified to be called after the
synchronization point. For a valid happen-before mark-up, we
need to start the arc just before the lock is released. We agree that
with respect to runtime overhead considerations, these callbacks
should stay outside the critical regions. Furthermore, some im-
portant synchronization points are marked as optional, as they
are considered unimportant for performance analysis. Examples
of these optional points are the begin and end of a task or even a
barrier. In consequence we decided to integrate the highlighting
annotations directly into the Intel OpenMP Runtime library.

7. CONCLUSION
In this paper, we successfully combined static and dynamic anal-
ysis for race checking between threads and provided a first pro-
totype tool, Archer, targeting OpenMP programs. Our tool is built
on top of the well-recognized tool ThreadSanitizer and combines
it with an instrumented version of the widely used Intel OpenMP
runtime. Our results show that the data race reports generated
with Archer are more accurate than most other tools.

Further, we extended the ThreadSanitizer blacklisting feature to
allow a finer-grained selection of the code. With this extension,
ThreadSanitizer is able to ignore specific lines of code or target
specific code regions, rather than entire functions. This feature
allows us to maintain the precision of ThreadSanitizer analysis
while reducing runtime and memory overhead, creating a novel,
highly precise and low-overhead race detection tool for HPC.

Future effort will go into reducing memory overhead and run-
time overhead for OpenMP applications. Also, we will integrate
the specific semantics of MPI communication calls to make the
approach applicable to hybrid OpenMP and MPI applications. In
particular, we will focus on asynchronous communication calls
and race conditions caused by accessing communication buffers
while messages are in flight.

8. REFERENCES
[1] Intel openmp runtime library.

https://www.openmprtl.org.
[2] Openmp: Support for the openmp language.

http://openmp.llvm.org.
[3] Openmp/clang. http://clang-omp.github.io.
[4] BOARD, O. A. R. OpenMP Application Program Interface.

http:

//www.openmp.org/mp-documents/OpenMP4.0.0.pdf.
[5] DORTA, A. J., RODRÍGUEZ, C., DE SANDE, F., AND

GONZÁLEZ-ESCRIBANO, A. The openmp source code
repository. In PDP (2005), IEEE Computer Society,
pp. 244–250.

[6] EICHENBERGER, A. E., MELLOR-CRUMMEY, J., SCHULZ, M.,
WONG, M., COPTY, N., DIETRICH, R., LIU, X., LOH, E.,
AND LORENZ, D. OMPT: An OpenMP tools application
programming interface for performance analysis. In
OpenMP in the Era of Low Power Devices and Accelerators,
A. P. Rendell, B. M. Chapman, and M. S. MÃijller, Eds.,
no. 8122 in Lecture Notes in Computer Science. Springer
Berlin Heidelberg, Jan. 2013, pp. 171–185.

[7] GROSSER, T., GROESSLINGER, A., AND LENGAUER, C. Polly –
Performing Polyhedral Optimizations on a Low-Level
Intermediate Representation. Parallel Processing Letters 22,
04 (2012).

[8] JANNESARI, A., BAO, K., PANKRATIUS, V., AND TICHY, W. F.
Helgrind+: An efficient dynamic race detector. In
Proceedings of the 23rd international Parallel & Distributed
Processing Symposium (IPDPS’09) (Rome, Italy, 2009), IEEE.

[9] KARLIN, I., KEASLER, J., AND NEELY, R. Lulesh 2.0 updates
and changes. Tech. Rep. LLNL-TR-641973, August 2013.

[10] LAMPORT, L. A new solution of dijkstra’s concurrent
programming problem. Commun. ACM 17, 8 (Aug. 1974),
453–455.

[11] LATTNER, C. Llvm and clang: advancing compiler
technology. Proc. of FOSDEM (2011).

[12] LATTNER, C., AND ADVE, V. Llvm: A compilation framework
for lifelong program analysis & transformation. In
International Symposium on Code Generation and
Optimization (CGO) (2004), IEEE, pp. 75–86.

[13] SEREBRYANY, K., AND ISKHODZHANOV, T. Threadsanitizer:
Data race detection in practice. In Proceedings of the
Workshop on Binary Instrumentation and Applications
(New York, NY, USA, 2009), WBIA ’09, ACM, pp. 62–71.

[14] SEREBRYANY, K., POTAPENKO, A., ISKHODZHANOV, T., AND

VYUKOV, D. Dynamic race detection with llvm compiler. In
Runtime Verification (2012), Springer, pp. 110–114.

[15] SEREBRYANY, K., AND VYUKOV, D. Sanitizer special case list.
http://clang.llvm.org/docs/

SanitizerSpecialCaseList.html.
[16] SEREBRYANY, K., AND VYUKOV, D. ThreadSanitizer, a data

race detector for C/C++ and Go.
https://code.google.com/p/thread-sanitizer/.

4747

