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Abstract

Modelling the physics of combustion remains a challenge due to a large range

of temporal and physical scales which are important in these systems. Detailed

chemical kinetic mechanisms are used to describe the chemistry involved in the

combustion process yielding highly coupled partial differential equations for each

of the chemical species used in the mechanism. Recently, Principal Components

Analysis (PCA) has shown promise in its ability to identify a low-dimensional

manifold describing the reacting system. Several PCA-based models have been

developed which may be well-suited for combustion problems; however, several

challenging aspects of the model must be addressed. In this paper, the param-

eterization of state-space variables and PC-transport equation source terms are

investigated. The ability to achieve highly accurate mapping through various

nonlinear regression methods is shown. In addition, the effect of PCA-scaling

on the ability to regress the surface is investigated. Finally, the present work

demonstrates the capabilities of the model by solving a reduced system repre-

sented by several PC-transport equations for a perfectly stirred reactor (PSR)

configuration.
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1. Introduction

The ability to accurately model a turbulent combustion system remains chal-

lenging due to the complex nature of combustion systems. A simple fuel such

as CH4 requires 53 species and 325 chemical reactions [1] to be accurately de-

scribed. More complex fuels require increasingly complex chemical mechanisms.

Each resolved chemical species requires a conservation equation which is a cou-

pled, nonlinear partial differential equation. Such systems are only possible to

solve under very limited situations at this time due to computational costs.

Current computational expenses result in a need for reduced models which can

adequately describe the chemical reactions. Many methods attempt to reduce

the complexity of the mechanism by splitting the system into slow and fast

variables, using equilibrium assumptions for fast chemical processes, and occu-

pying the computational resources on the more pertinent evolution of species

within the reacting system [2, 3]. Indeed, in these complex combustion reac-

tion mechanisms many of the species evolve at time-scales much larger than the

time-scales of interest, allowing for decoupling of fast and slow processes while

maintaining accuracy. Low-dimensional manifolds exist in these systems which

can describe the governing characteristics of the flames. Several models take

advantage of this, including the steady laminar flamelet model (SLFM) [4, 5, 6],

flamelet-generated manifolds (FGM) [7, 8], or the flame prolongation of ILDM

(FPI) [9, 10, 11] to name a few. As a fundamental example, the steady laminar

flamelet model uses the mixture fraction and mixture fraction variance to de-

scribe the flame as an ensemble of steady laminar diffusion flames undergoing

various strain rates. In some cases, this provides a good representation of the

entire system with a reduced number of variables.

Recently, principal component analysis (PCA) has been investigated for its

use in combustion modelling. Several advantages of PCA include: its ability

to identify orthogonal variables which are the best linear representation of the

system; its ability to reduce in dimensionality requiring fewer coordinates; and

the ability to do the analysis on canonical systems, such as the counter diffusion

flames or empirical data-sets containing highly complex turbulent chemistry

interaction. Parente et al. [12, 13] used PCA to identify the low-dimensional

manifold in one-dimensional turbulence and experimental data. Biglari and
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Sutherland [14] and Yang and Pope [15, 16] enhanced the capability of the

PCA concept by combining the analysis with nonlinear regression, allowing a

nonlinear mapping between state-space variables and the linear PCA basis. The

work of Biglari and Sutherland showed that the PC parameterization is superior

to the standard flamelet parameterization, for the ODT data-set investigated

in the study. Mirgolbabaei and Echekki [17] extended the nonlinear mapping

concept using artificial neural networks and investigated the potential of kernel

PCA [18, 19], showing the high compression potential derived by transforming

the initial problem into a non-linear featured space where linear PCA is carried

out. In addition, several combustion models have been proposed based on the

concepts from PCA. Sutherland and Parente [20] derived transport equations

for the principal components (PCs), and discussed the feasibility of a model

where the PCs are used directly to construct state-space variables. Biglari and

Sutherland [14] extended the concept of transporting the PCs by suggesting the

nonlinear regression in order to increase the accuracy and reducibility of the

model. Coussement et al. [21], Isaac et al. [22] and other groups [23] proposed

transporting a reduced set of state-space variables and used the PC basis for

reconstructing the variables which are not represented. Najafi-Yazdi et al. [24]

used PCA to identify optimal progress variables to use the flamelet-generated

manifold framework.

The present work seeks to advance the understanding and application of the

PC-transport approach of Sutherland and Parente [20, 14] by first analyzing the

effect of several scaling methods on the PC basis, and the resultant ability to

regress the nonlinear state-space variables to the PC basis. Various regression

methods used in previous studies [14, 17], as well as several alternative methods

are analyzed in their ability to approximate the reacting state-space from the

PCs. In order to demonstrate the accuracy of the method within a numerical

solver, an unsteady perfectly stirred reactor (PSR) calculation is shown using

the PC-transport approach. The PSR provides a validation of the approach

by comparing the reduced model to the detailed simulation results. To the

authors knowledge all published analysis on the PC-transport concept using

nonlinear regression has been carried out on various data-sets using a priori

analysis [14, 17, 19, 18]. Only recently, a posteriori work has begun in this
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area. Specifically, the work of Mirgolbabaei [25], who provides an a posteriori

demonstration of the nonlinear PC-transport approach using one-dimensional

turbulence (ODT) simulations.

2. Theory

A principal component analysis is done by taking a data-set consisting of n

observations and Q independent variables and organizing it as an n × Q matrix

(X). The data X is centered to zero by its corresponding means X̄, and scaled

by the diagonal matrix, D, containing a scaling value for each of the k variables:

Xs = (X− X̄)D−1 (1)

For sake of simplicity, Xs will be simply indicated as X in the following. In

a PC analysis, the principal components (Z) are identified by performing an

eigenvalue decomposition of the covariance matrix of X:

1

Q− 1
XTX = A−1LA (2)

The eigenvector matrix A (referred to here as a ‘basis matrix’) is then used to

project the original state-space into PC space:

Z = XA (3)

Now given a subset of the basis matrix A, denoted as Aq and applying the

previous equation, an approximation of the original centered and scaled state-

space can be made using the following:

X ≈ ZqAT
q . (4)

In the PC analysis, the largest eigenvalues correspond to the first columns of A.

This means the largest amount of variance in the original variables is described

by the first PCs. Accordingly, when one truncates the basis matrix (Aq), the

resultant approximation from Equation 4 may be very accurate, while repre-

senting the system with fewer variables.

In the work of Sutherland and Parente [20], a combustion model is proposed

where conservation equations for the PCs are derived from the general species
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transport equation [26]:

∂

∂t
(ρYk) +

∂

∂xi
(ρuiYk) =

∂

∂xi

(
ρDk

∂Yk
∂xi

)
+Rk (5)

Where Rk is the net production rate of species k. One can easily derive the

transport equations for the PCs (Zq) given the basis matrix Aq, the scaling

vector dk, being the diagonal components of D, and the centering vector Ȳk:

∂

∂t
(ρZq) +

∂

∂xi
(ρuiZq) =

∂

∂xi

(
ρDZq

∂

∂xi
(Zq)

)
+ sZq (6)

sZq=
1

ρ

Q∑
k=1

Rk

dk
Akq (7)

where sZq
is simply the net production rate of the principal component. The

term DZq

∂
∂xi

(Zq) is the diffusion flux for the principal component. For a more

detailed discussion on the treatment of the PCs diffusive flux, where molecular

diffusion is important refer to [27]. According to the proposed formulation, one

can theoretically use PCA with its inherent advantages. These advantages in-

clude: the ability to represent the system with a reduced number of variables;

the option to include a predetermined amount of reconstruction error (depen-

dent on q, the number of retained PCs), and possibly a reduction in stiffness

if the selected PCs are highly weighted with reacting species that change more

slowly, such as the major species.

In order to use PCA to its fullest potential, several aspects of PCA must

be studied. One of these aspects, is how the data is scaled (Equation 1). The

various effects of scaling have been studied previously in [14, 28, 22]. The same

approach has been followed in the present paper to find the best scaling option

for the present application of PCA, using a data-set which exhibits physics

of interest. A one-dimensional turbulence (ODT) data-set of a non-premixed

synthesis/air jet has been considered here [29, 30]. The simulation includes 11

chemical species [31] (H2, O2, O, OH, H2O, H, HO2, CO, CO2, HCO, N2),

and 21 chemical reactions and it is initialized with a temperature of 500K,

with air as the oxidizer (0.7241 N2 and 0.2759 O2 by mass) and a fuel stream

containing 0.0078 H2, 0.5511 CO, and 0.4411 N2 by mass. The ODT realizations

are saved on a uniform grid of 672 grid points evenly spaced over a 0.01 m

domain. The velocity field is initialized with a Reynolds numbers of 2500. The

5
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ODT data-set is particularly interesting because of the turbulence/chemistry

interaction observed in the data, including physical effects such as extinction

and re-ignition. Similarly to previous investigations [14, 28, 22], the a priori

analysis showed that pareto scaling has a distinct advantage for major species

and source terms reconstruction.

The a priori analyses showed, however, that at least 8 PCs were required to

accurately reconstruct the ODT data-set and the corresponding source terms,

due to the linear nature of the PC-based model. Considering the original 11

degrees of freedom of the system (with differential diffusion, enthalpy and ele-

mental mass fractions are not constant), q = 8 implies only a minor problem

reduction. An alternative to the direct reconstruction of X is to use nonlinear

regression functions, which can be used to map the nonlinear reaction rates or

nonlinear species concentrations to the lower dimensional representation given

by the PCs. Biglari and Sutherland [14] suggest applying a nonlinear mapping

to the linear underlying surface by using nonlinear regression. It has been shown

[14, 17, 15, 18, 19] that nonlinear regression allows to fully exploit the underly-

ing manifold identified by the PCs. It is important to note that the linear basis

derived from the PCs is critical as it allows for the derivation of simple transport

equations; however, by using nonlinear functions on top of the basis, the model

can capture the nonlinearities which are present in combustion systems.

2.1. Regression models

In this study, nonlinear regression is used to model the highly nonlinear

state-space variables as a function of the principal components (Z). In place of

Equation 4, now the various state-space variables and PC source terms (sZ) are

mapped to the PC basis using the nonlinear regression function fΦ:

Φ ≈ fΦ (Zq) (8)

where Φ represents the state-space variables, or in terms of regression, the

dependent variables (i.e. Yi, T , ρ, and, sZ).

Until now, two nonlinear regression methods have been applied to mapping

Φ to Z. In the work of Biglari and Sutherland [14] and Pope [15], multivariate

adaptive regression splines are used. In the work of Mirgolbabaei and Echekki
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[17, 18], artificial neural networks are investigated. Here, in addition to pre-

viously used regression techniques, several other methods are investigated, in-

cluding support vector regression [32], and gaussian process regression [33, 34].

In summary, the following regression techniques are investigated:

• Linear Regression Model (LIN)

The linear model applied in multiple dimensions is of the form:

Φ = Za+ v (9)

where a is the regression coefficient vector and v is the intercept vector

[35]. The implementation for the linear model found in the statistical

computing software R [36] was used for the regression analysis.

• Multivariate Adaptive Regression Splines (MARS)

Multivariate adaptive regression splines use the concept of building up

the model from product spline basis functions. This model creates a num-

ber of basis functions, and automatically determines knot location and

implements splines at knot boundaries. The model is of the form:

Φ =
M∑

m=1

amBm(Z). (10)

where Bm are the basis functions and am are the expansion coefficients

[37]. The implementation of MARS, found in the mda package of the

statistical computing software R [36], was used for the regression analysis.

The default options for MARS were used. The mda package determines

the degree of the polynomials as well as the number of knot boundaries,

given user settings such as: degree (default is 1, specifying the interaction

degree), threshold (default is 0.001), and penalty (default is 2, specifying

the cost per degree of freedom charge).

• Artificial Neural Networks (ANN)

Artificial neural networks uses the concept of networking various layers

of estimation resulting in a highly accurate output layer. Following the

theory of Pao [38], the model works as follows: first, t hidden networks

(NETt) are calculated as a weighted (wt) sum of the training data inputs

7
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(ki = [Z,Φ]):

NETt =
N∑
i=1

wtiki + bi. (11)

A sigmoid transfer function is then used to generate an output for the

network:

Zt = [1 + exp (−NETt)]−1
. (12)

Next, the output networks are calculated:

NET =
h∑

t=1

νtZt + bo (13)

Again, the network is scaled and a prediction of Φ is then given:

Φ = [1 + exp (−NET )]
−1
. (14)

In the present study, the implementation of ANN (ANNGA) in R [36] was

used. One hidden layer with 20 neurons and one additional neuron in the

output layer were used for the design, 1000 chromosomes for the popu-

lation of each generation, a mutation rate of 0.2 was used, and crossover

rate of 0.6.

• Support Vector Regression (SVR)

Support vector regression is a subset of support vector machines (SVM).

The idea behind SVR is again to create a model which predicts sZ given Z

using learning machines which implement the structural risk minimization

inductive principle. The basic model form is

Φ =
N∑
i=1

(α∗
i − αi)K (Z0,Zi) (15)

where α∗
i and αi are Lagrange multipliers, and K (Z0,Zi) is the kernel

operator. In the current study, a radial-based kernel was used and the

optimum kernel hyper-parameter as well as the insensitive-loss function

were determined by doing various calculations over a range of input pa-

rameters. The implementation of SVM within the e1071 package for R

was used for the regression analysis of SVR. The kernel hyper parameter

gamma was optimized by running a series of SVM fits over a range of

values (exp(−3) to exp(3)), a value of 1e-3 was used for epsilon, and the

cost was optimized by running over a range of values (exp(−3) to exp(3)).
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• Gaussian Process Regression (GPR)

Gaussian process regression is founded on the idea that dependent vari-

ables can be described by a gaussian distribution [33, 34]:

Φ ∼ N
(
0,K (Z,Z) + σ2

nI
)

(16)

Here Z is the data matrix containing all sample points in PC space;

K (Z,Z) is the kernel function for Z; in the current study, the gaussian

kernel is used:

K (Zp,Zq) = σ2
sexp

(
−1

2
(Zp,Zq)

T
W (Zp,Zq)

)
. (17)

Given query points Z∗ it can be shown that a prediction Φ∗ can be made

using the following formula:

Φ∗ = KT
∗
(
K + σ2

nI
)−1

Φ (18)

where K∗ = K (Z,Z∗) and K = K (Z,Z). A value of 1 was used as the

initial guess for the kernel’s hyper-parameters: the characteristic length

scale, and signal variance. A gradient-based marginal likelihood optimiza-

tion was used find the optimal values. The GPR implementation from

the MATLAB toolbox gpml [34] was used for the regression analysis of

GPR. The hyper parameters were found using the gradient-based marginal

likelihood functions in the toolbox.

In order to map the highly nonlinear reaction rate surface (dependent variables)

to PC space (independent variables) it is useful to understand how nonlinear the

reaction rates and other state-space variables are with respect to the underlying

manifold represented by the principal components. A simple way to do this in

multiple dimensions is to divide the independent variable space onto a coarse

grid, and assess locally the variation of dependent variables within a local section

of the independent variable space. Locally, if the dependent variable has a large

variation, then the ability to regress the dependent variable locally will be more

difficult because of the nonlinear nature or even local scatter in the data. The

following equation is used to calculate the locally normalized variance for the

ith coarse grid cell (χi
Φ):

χi
Φ =

ν(Φ(Zq
i))

ν(Φ(Zq))
(19)

9
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where ν (x) =
〈

(x− 〈x〉)2
〉

is the variance function which is calculated on the

observations within the ith coarse grid cell (Φ(Zq
i)) or for all observations

(Φ(Zq)). Now, summing over all course grid cells in PC space, we obtain the

overall manifold nonlinearity for dependent variable Φ:

χΦ =
c∑

i=1

χi
Φ (20)

Table 1 shows the manifold nonlinearity calculation for the various dependent

variables in the ODT data-set mentioned previously. It is clear from the analysis

that some scaling methods have distinct advantages for several of the depen-

dent variables. In particular, pareto scaling has an advantage when comparing

several major species (O2, CO, CO2, and N2), temperature, and density, with a

weaker performance for some of the radical species (OH, H). All methods show

the regression for sZ1
is challenging; however, the regression for sZ2

appears

promising with pareto scaling.

Table 1: Manifold nonlinearity (χΦ) for state-space variables, Φ while using different scaling
methods.

χΦ std range pareto vast level

H2 5.7 11.4 10.8 12.3 3.5
O2 4.0 1.9 0.3 0.7 4.9
O 12.6 11.8 17.2 28.8 7.5
OH 16.6 17.3 21.5 41.5 6.8
H2O 6.1 5.1 4.9 5.3 7.0
H 14.6 22.3 30.0 46.1 5.2
HO2 7.1 9.6 6.2 3.3 7.2
CO 2.4 1.3 0.1 1.8 1.7
CO2 5.0 5.0 0.8 3.0 6.2
HCO 6.9 14.6 18.1 29.4 2.5
N2 1.7 0.7 0.1 0.7 1.4
T 7.0 6.5 2.0 4.0 9.2
ρ 7.8 6.9 2.5 5.0 9.6
sZ1

256.5 292.2 300.5 404.0 210.1
sZ2

150.0 172.7 25.8 143.7 95.9

Given the results for both the state-space reconstruction and the manifold

nonlinearity, it is clear that the pareto scaling method has some unique ad-

vantages for this particular data-set dealing with syngas combustion. Several

other studies have reached similar conclusions with the pareto scaling method

10
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as shown in [21], [22], [28]. With this observation in mind, the various regression

models are now tested with the pareto scaling method. The nonlinear regression

analysis is done using a combination of computing software packages including

the statistical computing software R [36], and MATLAB [39], as described pre-

viously. The R code implementations for LIN, MARS, ANN, and SVR were

used. For GPR, the MATLAB toolbox gpml [34] was employed. The models

are trained on n = 5000 sample points evenly distributed over Z space, with

q = 2 or 3. The models are then tested on another subset of points of the same

size, ensuring that training points are not used again as testing points. This is

done to ensure that over-fitting is avoided.

Table 2 shows the regression results for sZ1 as a function of Z, with q = 2 and

q = 3, using normalized root mean squared error (nrms(xp, x)/max(σ(xp), σ(x)))

or R2 error (
N∑
i=1

(xp,i− x̄)2/
N∑
i=1

(xi− x̄)2) metrics. As expected, the linear regres-

sion method has difficulty mapping the highly nonlinear dependent variables.

Complex methods also struggle with the mapping while q = 2. Table 1 shows

that sZ1 is highly non-linear. One can easily conclude that methods such as

linear regression will fail, polynomical methods such as MARS may also strug-

gle given the degree of non-linearity. Methods which use local tuning (ANN,

SVR, GPR) may be able to better approximate the problematic regions of the

manifold. When moving to q = 3, the later 3 methods are beginning to show

higher accuracy. In this particular case, GPR produces the most accurate recon-

struction. The approximation shows a vast improvement especially if compared

with the results of the direct computation (Equation 7), with the same level of

accuracy being achieved with q = 8.

Table 2: Nrms error and R2 statistics for the prediction of sZ1
while using pareto scaling

and q = 2 or q = 3.

Method nrms error (q = 2) R2 (q = 2) nrms error (q = 3) R2 (q = 3)

LIN 0.99 0.02 0.67 0.55
MARS 0.30 0.91 0.26 0.93
ANN 0.22 0.95 0.20 0.96
SVR 0.23 0.95 0.19 0.97
GPR 0.22 0.95 0.18 0.97

It is important to note that the results given in Table 2 are related to

the specific implementation of the regression methods, as well as to any tun-
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ing or optimization that was performed for each method. Indeed, the results

for the GPR regression may be optimal because of the robust optimization of

the hyper-parameters that the implementation utilizes. The various regression

methods may indeed improve given more tuning, or using different implemen-

tations. However, tuning the different regression methods is not the purpose of

the present study. The focus of the present investigation is the benchmark of

various non-linear approaches, based on state-of-the art implementations found

in the literature.

Ultimately, the PC-Transport approach will be utilized within a CFD solver.

Several factors are important in deciding which regression method to use. In

addition to the methods accuracy, the methods ease of use, its applicability to

different problems, its ability to optimize tuning parameters, and its expense

within a CFD algorithm are important factors. Because of the numerous varia-

tions and implementations of the regression methods, general conclusions about

the methods cannot be made. However, these factors can be addressed for the

implementations used in the current study. Table 3 summarizes these factors

for the various regression methods.

Table 3: Summary of the relative accuracy, ease of use, applicability to problems of a certain
size, optimization, and relative cost for the various regression methods. A scale, ranging from
1 to 3 is used to rank the regression methods, 1 representing poor performance, and 3 excellent
performance.

Method Accuracy Ease Problem size Optimization Cost

LIN 1 3 3 - 3
MARS 2 2 3 2 3
ANN 3 1 3 2 2
SVR 3 1 1 2 1
GPR 3 1 1 3 1

While MARS and LIN are easier to use, the authors found the implementa-

tion of ANN, SVR and GPR the most difficult to use, due to the complexity of

the methods and the various inputs required to use them. Both SVR and GPR

methods employ qxq matrix inversions (q being the number of observations),

which make the method slow with larger data sets. GPR often took the longest

to run, but required the smallest amount of optimization work from the user due

to the minimization functions, which optimize the methods hyper-parameters.

As far as run-time costs, all methods except for SVR and GPR may be suitable.
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It is however possible to tabulate the regression results and use a simple table

look-up to reduce the run-time costs associated with the expensive methods.

2.2. Subset PCA

In the work of Mirgolbabaei and Echekki [17], the PCA analysis is done on

a subset of species in order to recover sufficiently accurate source terms. This

has the benefit of removing certain species which may be contributing highly

nonlinear source terms to sZq . The drawback to doing this is that there is no

guarantee that the underlying manifold computed from the subset will be able to

adequately predict the species removed from the analysis. In the current study,

the retained species are selected by choosing variables which tend to pertain to

the slower chemical time-scales of the system, such as the major species. The

following subset of species were selected for the present analysis: H2, O2, H2O,

CO and CO2. With the selected subset of species, the PCA analysis is repeated,

again with pareto scaling. Figure 1 shows the scree plot [40], which gives the

percentage of variance accounted for while selecting q PCs. The figure compares

the full PCA version using 11 variables and the subset PCA using 5. It is clear

that the PCA based on the subset of variables represents the variation in the

system with fewer variables.

Figure 1: Scree plot from the eigenvalue matrix, showing the fraction of explained variance
(y-axis) as a function of the number of PCs (q) for the system containing a subset of the
original species (’x’ markers), and the full system (’o’ markers).

Table 4 shows the error statistics for the entire set of state variables while

using GPR and pareto scaling. It is interesting to note that even though several
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of these variables were not included in the analysis, the PCA basis computed

from the major species in combination with the nonlinear regression is sufficient

for mapping these highly nonlinear minor species.

Table 4: nrms error and R2 statistics for the prediction of Φ while using pareto scaling and
q = 2.

Φ nrms error R2

H2 0.05 0.997
O2 0.04 0.999
O 0.06 0.996
OH 0.07 0.995
H2O 0.06 0.997
H 0.05 0.997
HO2 0.17 0.969
CO 0.05 0.998
CO2 0.05 0.997
HCO 0.03 0.999
N2 0.04 0.998
T 0.04 0.998
ρ 0.04 0.999
sZ1

0.22 0.949
sZ2

0.16 0.974

The subset PCA also allows to more easily associate a physical interpre-

tation to the PC structure. Table 5 shows the basis matrix weights from the

PCA analysis on the major species. The weights from the first PC have large

positive values for carbon containing variables (CO, CO2), and a large negative

value on the oxidizer (O2). This appears to be very similar in nature to Bil-

ger’s mixture fraction [41], ξ. Figure 2 shows a plot of Z1 against ξ; the plot

shows that Z1 is clearly correlated with ξ. The weights for Z2 show positive

correlations for H2, O2 and CO, with negative correlations for H2O and CO2.

These weights appear to be related to the extent of reaction, where reactants

have negative stoichiometric coefficients, and products have positive reaction

coefficients. With a larger initial mass-based concentration of CO (compared

with H2), a large amount of CO2 is produced, and a much smaller amount of

H2 is present leading to a smaller positive weight on H2 and smaller negative

weight for the product H2O. It is interesting to point out that without any prior

understanding or assumptions of the combustion systems, the PC analysis is

able to identify two important variables which are often used to characterize
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combustion systems.

Table 5: Eigenvector matrix, A, from the PC analysis.

species weight Z1 Z2 Z3 Z4 Z5

H2 0.047 0.117 -0.302 0.900 0.288
O2 -0.627 0.119 -0.034 -0.230 0.734
H2O 0.176 -0.186 0.895 0.222 0.292
CO 0.624 0.656 -0.040 -0.243 0.348
CO2 0.431 -0.713 -0.325 -1.124 0.414

Figure 2: A scatter plot of mixture fraction (x-axis) versus Z1 (y-axis), illustrating the corre-
lation between the variables.

It is evident that the linear PC model in conjunction with a nonlinear re-

gression has the potential of delivering accurate state-space variables as well as

relatively accurate reaction rates for the ODT data-set that has been studied in

the current section.

3. Results and discussion

As a first step in advancing the PCA based models, a perfectly stirred reactor

is used, which contains complexity in reaction space, without complexity from

mixing. This system is ideal for demonstrating the approach as it is simple to

implement, compute, and validate.

3.1. Perfectly stirred reactor

An implementation for the perfectly stirred reactor was made using MAT-

LAB. The following governing equations were implemented and solved using the

15
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CVODE toolbox in MATLAB [42]:

dρH

dt
=
ρ

τ
H0 − ρ

τ
H (21)

dρYi
dt

=
ρ

τ
Y 0
i −

ρ

τ
Yi +RiWs,i (22)

where H is the mixture enthalpy, Yi and Ri are the ith species mass fraction and

molar reaction rate (kmole/m3/s), τ (seconds) is a constant representing the

residence time through the reactor, Ws,i is the ith species molecular mass, and ρ

is the density (kg/m3). The temporal solution to the equations are solved using

the Newton nonlinear solver, and the BDF multi-step method. The problem

is initially solved using a stoichiometric mixture of syngas-air using the same

mechanism which was used for the ODT data-set ([31]), where the mechanism

includes 11 chemical species and 21 reactions. The inlet conditions for the re-

actor (Y 0
i ) are set at an equivalence ratio of 1 with a temperature of 300K.

The initial conditions for the reactor (Yi) are set at chemical equilibrium us-

ing a Gibbs free energy minimization method (constant enthalpy and pressure).

The elemental composition and enthalpy of the inlet mixture yield an equilib-

rium solution which is set as the initial condition for all of the PSR cases. The

temporal solution of the system is then solved until a steady-state solution is

reached. This process is repeated for various residence times between 10−5 and

10 seconds. Each PSR simulation is modelled assuming constant volume, resi-

dence time, and pressure. All PSR simulations (including the transient solution)

are then assembled into one data-set. The PCA process described in Section 2

is then applied to the data to create the basis matrix Aq, and the regression

functions fΦ for the state-space variables, Φ. The approach is then tested with

various values of τ , which were not used when creating the data-set.

The regression of Φ is carried out using q = 2 resulting in R2 of 0.9995 or

higher for all variables including sZq
. The simulations are then performed with

2 transport equations instead of 11, yielding a significant reduction. Figures 3a-

8b show the temperature and species mass fractions of the system. The markers

show the steady-state solution for a given τ using the PC-transport model. The

underlying solid-lines in the figures show the full solution calculated over a range

of residence times. The top plot (a) shows the results of the model using GPR for

the nonlinear mapping with q = 2, and the results on the bottom (b) show the

16
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standard model without the regression step while varying q. The results show

remarkable accuracy for the model with regression over the range of residence

times for the predicted temperatures, and both major and minor species. A

similar degree of accuracy is not observed in the model without regression until

q = 7. In the current system, constant enthalpy and elemental mass is observed

yielding 7 degrees of freedom, which would imply virtually no reduction due to

the degrees of freedom.

(a)

(b)

Figure 3: PSR temperature as a function of the residence time, with the solid-line representing
the full solution. The markers represent the results for the model with GPR regression (a)
using q = 2 PCs, and the standard model without regression (b) while varying q.

Although the previous figures have shown the accuracy of the models for the

17
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(a)

(b)

Figure 4: Major species products as a function of the residence time, with the solid-line
representing the full solution. The markers represent the results for the model with GPR
regression (a) using q = 2 PCs, and the standard model without regression (b) while varying
q.
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(a)

(b)

Figure 5: Major species reactants as a function of the residence time, with the solid-line
representing the full solution. The markers represent the results for the model with GPR
regression (a) using q = 2 PCs, and the standard model without regression (b) while varying
q.
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(a)

(b)

Figure 6: Minor species as a function of the residence time, with the solid-line representing
the full solution. The markers represent the results for the model with GPR regression (a)
using q = 2 PCs, and the standard model without regression (b) while varying q.
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(a)

(b)

Figure 7: Minor species as a function of the residence time, with the solid-line representing
the full solution. The markers represent the results for the model with GPR regression (a)
using q = 2 PCs, and the standard model without regression (b) while varying q.
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(a)

(b)

Figure 8: Minor species as a function of the residence time, with the solid-line representing
the full solution. The markers represent the results for the model with GPR regression (a)
using q = 2 PCs, and the standard model without regression (b) while varying q.
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steady-state solution, accurate representation of the transient solution is also

essential. Figure 9 shows the transient solution for a reactor with a residence

time of 10−4 s. Figure 9a shows the evolution of temperature and Figure 9b the

evolution of the OH radical mass fraction. The ‘o’ markers in the figures show

the results for the regression method using only q = 2 PCs. As observed, an

accurate transient solution is achieved given the significant reduction provided

by the method.

Accurate prediction of the PC transport source terms is essential to the

PCA based model. In order to illustrate this, three cases with residence times

of 10−5 s, 10−4 s and 10−3 s were selected. The PC source terms with no ap-

proximation from the training data set are computed using: sZ = R
dA. These

source terms are then compared with the source-terms computed from the re-

gression analysis at run-time. Figure 10 shows the transient results of the first

and second PC source terms for the three different cases. It is evident that the

regression method gives a good approximation of the actual source terms (indi-

cated with the solid black line). As observed, both the first and second source

terms are accurately predicted, temporally, by the regression method. One non-

linear regression is able to accurately predict the source terms for three different

residence times. These results indicate that the PCs yielded an optimal basis

for regression, being able to parameterize the non-linear source terms.

4. Conclusion

The current work has addressed the ability to use nonlinear regression meth-

ods to estimate source-terms for the PC-transport combustion model. Various

nonlinear regression methods have been analyzed showing the ability to pro-

duce accurate estimation, even when using a lower number of Z. In particular,

the SVM and GPR methods have shown improved accuracy in estimating Φ.

A method for defining the regressibility of a manifold has been presented. In

addition, the effect of the various PCA-scaling methods on the regressibility of

the system has been assessed. The pareto scaling method appears to achieve the

greatest reduction with fewer components, and produces the most regressible

surface. The current work outlines an example of an a priori analysis which pro-

vides the best regression and scaling method for a given turbulent combustion

23
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(a)

(b)

Figure 9: Temperature [K] (a), and OH radical mass fraction (b) as a function of time. Given
a residence time of 10−4 [s], and the chemical equilibrium solution (constant enthalpy and
pressure) as the initial condition, the temporal evolution is shown. The solid-line represents
the solution given the full system of equations. The markers represent the results for the
either model, with ‘o’ markers for the solution using regression (q = 2 PCs), or ‘+’ markers
for the solution using the standard model (q = 7 PCs).
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(a)

(b)

Figure 10: Comparison of regressed PC source terms as a function of time, with (a) and (b)
showing the results for the first and seconds PC source terms. Several cases are shown, with
the following residence times: 10−5 s (‘o’ markers), 10−4 s (‘x’ markers), and 10−3 s (‘�’
markers). The solid-line is the actual PC source term for the various residence times.
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data-set.

The work includes the first demonstration of the PC-transport model using

nonlinear regression within a numerical solver. In the case of the PSR, the

model provided a computational reduction factor of 0.71, resulting in an accu-

rate representation of the original system with q = 2 variables of the 7 degrees

of freedom in the system. Future work will include a validation study, look-

ing into how the approach compares with experimental values, and with other

combustion models.
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[9] O. Gicquel, N. Darabiha, D. Thévenin, Liminar premixed hydrogen/air

counterflow flame simulations using flame prolongation of ILDM with dif-

ferential diffusion, Proceedings of the Combustion Institute 28 (2) (2000)

1901–1908.

[10] B. Fiorina, R. Baron, O. Gicquel, D. Thevenin, S. Carpentier, N. Dara-

biha, et al., Modelling non-adiabatic partially premixed flames using flame-

prolongation of ILDM, Combustion Theory and Modelling 7 (3) (2003)

449–470.

[11] B. Fiorina, O. Gicquel, S. Carpentier, N. Darabiha, Validation of the

FPI chemistry reduction method for diluted nonadiabatic premixed flames,

Combustion science and technology 176 (5-6) (2004) 785–797.

[12] A. Parente, J. C. Sutherland, P. J. Smith, L. Tognotti, Identification of low-

dimensional manifolds in turbulent flames, Proc. Combust. Inst. 32 (2009)

1579 – 1586.

[13] A. Parente, J. C. Sutherland, B. B. Dally, L. Tognotti, P. J. Smith, Inves-

tigation of the MILD combustion regime via principal component analysis,

Proceedings of the Combustion Institute 33 (2) (2011) 3333–3341.

[14] A. Biglari, J. C. Sutherland, A filter-independent model identification tech-

nique for turbulent combustion modeling, Combustion and Flame.

[15] S. B. Pope, Small scales, many species and the manifold challenges of tur-

bulent combustion, Proc. Combust. Inst. 34 (2013) 1 – 31.

[16] Y. Yang, S. B. Pope, J. H. Chen, Empirical low-dimensional manifolds in

composition space, Combustion and Flame 160 (10) (2013) 1967 – 1980.

27

 
 

 
 
 
 
 
 

                                     U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript 



[17] H. Mirgolbabaei, T. Echekki, A novel principal component analysis-based

acceleration scheme for LES–ODT: An a priori study, Combustion and

Flame 160 (2013) 898 – 908.

[18] H. Mirgolbabaei, T. Echekki, Nonlinear reduction of com-

bustion composition space with kernel principal component

analysis, Combustion and Flame 161 (1) (2014) 118 – 126.

doi:http://dx.doi.org/10.1016/j.combustflame.2013.08.016.

URL http://www.sciencedirect.com/science/article/pii/S0010218013003209

[19] H. Mirgolbabaei, T. Echekki, N. Smaoui, A nonlinear principal com-

ponent analysis approach for turbulent combustion composition space,

International Journal of Hydrogen Energy 39 (9) (2014) 4622 – 4633.

doi:http://dx.doi.org/10.1016/j.ijhydene.2013.12.195.

URL http://www.sciencedirect.com/science/article/pii/S036031991303187X

[20] J. Sutherland, A. Parente, Combustion modeling using principal compo-

nent analysis, Proc. Combust. Inst. 32 (2009) 1563–1570.

[21] A. Coussement, O. Gicquel, A. Parente, MG-local-PCA method for reduced

order combustion modeling, Proc. Combust. Inst. 34 (2013) 1117 – 1123.

[22] B. Isaac, A. Coussement, O. Gicquel, P. Smith, A. Parente, Reduced-

order pca models for chemical reacting flows, Combustion and flame

10.1016/j.combustflame.2014.05.011.

[23] Y. Yang, S. B. Pope, J. H. Chen, Empirical low-dimensional manifolds in

composition space, Combustion and Flame 160 (2013) 1967 – 1980.

[24] A. Najafi-Yazdi, B. Cuenot, L. Mongeau, Systematic definition of progress

variables and intrinsically low-dimensional, flamelet generated manifolds

for chemistry tabulation, Combustion and Flame 159 (2012) 1197 – 1204.

[25] H. Mirgolbabaei, ow-dimensional manifold simulation of turbu-

lent reacting flows using linear and nonlinear principal compo-

nents analysis, Ph.D. thesis, North Carolina State University,

http://www.lib.ncsu.edu/resolver/1840.16/9479 (2014).

28

 
 

 
 
 
 
 
 

                                     U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript 



[26] T. Poinsot, D. Veynante, Theoretical and Numerical Combustion, R.T.

Edwards, Inc., 2001.

[27] H. Mirgolbabaei, T. Echekki, Nonlinear reduction of combustion compo-

sition space with kernel principal component analysis, Combustion and

Flame (In Press).

[28] A. Parente, J. C. Sutherland, Principal component analysis of turbulent

combustion data: Data pre-processing and manifold sensitivity, Combus-

tion and Flame 160 (2013) 340 – 350.

[29] E. R. Hawkes, R. Sankaran, J. C. Sutherland, J. H. Chen, Scalar mixing in

direct numerical simulations of temporally evolving plane jet flames with

skeletal CO/H2 kinetics, Proceedings of the combustion institute 31 (1)

(2007) 1633–1640.

[30] N. Punati, J. C. Sutherland, A. R. Kerstein, E. R. Hawkes, J. H. Chen,

An evaluation of the one-dimensional turbulence model: Comparison with

direct numerical simulations of co/h2 jets with extinction and reignition,

Proceedings of the Combustion Institute 33 (1) (2011) 1515–1522.

[31] S. G. Davis, A. V. Joshi, H. Wang, F. Egolfopoulos, An optimized kinetic

model of h2/co combustion, Proc. Combust. Inst. 30 (2005) 1283 – 1292.

[32] A. J. Smola, B. Schölkopf, A tutorial on support vector regression, Statistics

and computing 14 (3) (2004) 199–222.

[33] D. Nguyen-Tuong, M. Seeger, J. Peters, Model learning with local gaussian

process regression, Advanced Robotics 23 (15) (2009) 2015–2034.

[34] C. E. Rasmussen, Gaussian processes for machine learning.

[35] W. S. Cleveland, E. Grosse, W. M. Shyu, Local regression models, Statis-

tical models in S (1992) 309–376.

[36] R Development Core Team, R: A Language and Environment for Statisti-

cal Computing, R Foundation for Statistical Computing, Vienna, Austria

(2011).

URL http://www.R-project.org/

29

 
 

 
 
 
 
 
 

                                     U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript 



[37] J. H. Friedman, Multivariate adaptive regression splines, The annals of

statistics (1991) 1–67.

[38] H.-T. Pao, A comparison of neural network and multiple regression analysis

in modeling capital structure, Expert Systems with Applications 35 (3)

(2008) 720–727.

[39] MATLAB, version 7.10.0 (R2010a), The MathWorks Inc., Natick, Mas-

sachusetts, 2010.

[40] I. T. Jolliffe, Principal Component Analysis, Springer, New York, NY, 1986.

[41] R. Bilger, The structure of turbulent nonpremixed flames, in: Symposium

(International) on Combustion, Vol. 22, Elsevier, 1989, pp. 475–488.

[42] S. D. Cohen, A. C. Hindmarsh, CVODE, a stiff/nonstiff ODE solver in C,

Computers in physics 10 (2) (1996) 138–143.

30

 
 

 
 
 
 
 
 

                                     U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript 


