
Design of a Knowledge Driven HIS
T. Allan Pryor, Paul D. Clayton, Peter J. Haug, Ove Wigertz

LDS Hospital/University of Utah

Abstract
Design of the software architecture for a knowledge driven
HIS is presented. In our design the frame has been used as the
basic unit of knowledge representation. The structure of the
frame is being designed to be sufficiently universal to contain
knowledge required to implement not only expert systems, but
almost all traditional HIS functions including ADT, order entry
and results review. The design incorporates a two level format
for the knowledge. The first level as ASCII records is used to
maintain the knowledge base while the second level converted
by special knowledge compilers to standard computer
languages is used for efficient implementation of the
knowledge applications.

Implementation of Hospital Information Systems (HIS) at
large hospitals is now becoming routine. Initially they were
conceived of as administrative and financial systems. They
allowed the hospital to admit patients and track the orders and
charges on those patients. As clinical systems became
available, either as stand alone systems to be networked to the
central HIS or integrated within the HIS, new challenges were
placed on the design of the HIS. The software architecture of
an HIS generally followed two models. The first was a
traditional time sharing model where multiple independent
processes performing the applications were active at one time
and shared the hardware resources of the system. The second
model, which has become increasingly more popular, is
referred to as a transaction model. In this model the system
supports a general screen driver and a series of application
servers. By defining low level generic servers, the system
greatly reduces the frequent process startup overhead often
observed in the time sharing model. With the advent,however, of medical expert systems requiring efficient
interaction with the user and a medical knowledge base, the
advantages of the transaction model are somewhat reduced.
This paper discusses a new software architecture model
referred to as the knowledge driven model which
provides for efficient execution of traditional HIS functions as
well as newer expert system technology.

The design of any new software architecture should insure that
the functional requirements of the applications incorporated in
the HIS are adequately met. In our analysis of HIS
applications, we have found that the following functions

compnse the necessary and sutticient tunctions used to create
todays HIS applications.
1. Data acquisition including screen formating
2. Data review and editing including hard copy generation
3. Database interaction including storage and retrieval
4. Data analysis including support of mutiple expert systems
With the knowledge driven model we have designed, we
extended the content of the knowledge base to incorporate the
logical structures necessary to perform all four of the HIS
functions enumerated above. We chose the frame as our basic
unit of knowledge representation. Through proper definition
of the frame structure we are attempting to develop a highly
modular knowledge base in which applications are defined in
terms of structured groups of frames. Thus a single frame may
be used for multiple applications. For example, a frame for
acquisition of vital signs may be used by a nurse charting
application or a medical expert system controlling hypertension
management.

We have chosen a generic frame structure which depending on
the frame type (data acquisition, review, diagnoses,
management, etc.), will allow the application developer (frame
writer) to enter knowledge into frame specific slots. The
generic structure of the frame has slots for entry of 1) variable
definitions, 2) declarative knowledge, and 3) knowledge
documentation. Figure 1 is an example of a diagnostic frame.

The variable definition section of the frame allows the user to
define local knowledge variables used in the declarative section
of the frame. The user defines a variable by linking it to one or
more data descriptors present on the system data dictionary.
Our data dictionary defines only basic elements which are
captured either through an automated machine interface or
computer terminal. The variables, however, defined in the
frame may be complex entities which are the result of searches
and analysis of the patient's database. For example, a variable
may be limited to a simple entity within a fixed time window.
Within that time window the defined variable may be the first
instance or the last instance or the average of the recorded
element. Constraints to other events within the time window
may also be stated in the variable definition. Additional
information about the variable may also be declared in this
section of the frame. This additional information may, for
example, declare relationships between the variable and a
disease. The relationships could include statistics such as
sensitivities and specificities, fuzzy logic associations,
associations similar to the concepts of Import and Evoking
strength in Internist. Because of the volume and complex
nature of the variables, we have chosen to include them in the
frame rather than have a separate complex data dictionary. In
so doing, the developer and reviewer of the frame is able to
immediately see the variables being used in the declarative
knowledge and understand their meaning. In figure 1

60
0195-4210/0000/0060$01.00 © 1987 SCAMC, Inc.

Title: Pneumonia diagnosis (7.141.1)

Type: Diagnosis

Author: Peter Haug.
Date: 12/12/86

Message: "<disease_prob (val; #.##)> Pneumonia (history)".

Variables: chest_pain as (DO YOU HAVE CHEST PAIN?),
cough as (HAVE YOU HAD A COUGH WITH THIS ILLNESS?),
fever_or_chills as MAX(fever, chills)
where fever is (HAVE YOU RECENTLY HAD A FEVER?)
and chills is (HAVE YOU HAD CHILLS RECENTLY?)
if Exist (fever) or Exist (chills),

Statistics: for fever_or_chills with TPR(YES, 0.85; NO, 0.15),
and FPR(YES, 0.3; NO, 0.7),
for cough with TPR(YES, 0.9; NO, 0.1),
and FPR(YES, 0.2; NO, 0.8),

Evoking Criteria: If chest_pain EQ YES or fever EQ YES or chills EQ YES or cough EQ YES.
Logic: disease_prob = 0.014.

If Exist(fever_or_chills) then disease_prob = Bayes(disease_prob, fever_or_chills).
If Exist(cough) then disease_prob = Bayes(disease_prob, cough).

If disease_prob LT 0.014 then finish.
Ask: Patients(fever, chills, cough) Heirarchical.
Urgency: 5/9
Gold Standard: If ICD_pneumonia and pneumonic_infiltrate
References: Harrison's Principals of Internal Medicine. Braunwald E, et al (editors)
Validation: Tested experimentally (DD method)

Figure 1: Diagnostic Frame for Pneumonia written with the general purpose HELP decision
editior. The frame is processed if the criteria in the Evoking Criteria slot is met. The Ask slot
indicates which information the frame may interactively collect. The Urgency slot indicates the
relative urgency of recognizing this disease. The Gold Standard slot specifies criteria available
by the time of discharge which would prove the existence of the disease modeled. References
refer to literature support for the frame and Validation indicates the degree of evaluation to which
the frame has been subjected.

variables chest_pain, cough, etc. have been declared. Statistics
relating those variables to the disease Pneumonia are also
included. The text in parentheses refer to the text associated
with the simple entities defined in the data dictionary.

Also within the variable definition section of the frame is a slot
used to enter evoking logic. This logic defines the criteria for
automatic evoking of the frame when the data contained in the
evoking logic is stored in the patient's data file. Because of the
need to have formatted screens, special variables called
windows are also defined in the variable definition section of
the frame. These windows define the screen format of the
terminal display and link the entered data to the previously
defined knowledge variables. The example in figure 1 has the
evoking criteria which would be used to data drive the
knowledge of this frame.

The second section of the frame, the knowledge section,
contains the declarative knowledge of the frame. The contents
of the section is frame dependent. That is, depending on the
type of frame being created the knowledge slots available for
entry are changed. For example, if the frame were to be used
as part of an expert system for disease diagnosis, the
knowledge slots would require entry of the associational
model knowledge. This could include if-then rules for the
diagnosis, Baysesian statistics, or any other appropriate
scoring logic. If, on the other hand, the frame were a order
entry frame, knowledge concerning the critiquing of the order
would be requested. As new applications arise we anticipate
that newer frame types will be required which define new slots
within the knowledge section.

61

The knowledge documentation section of the frame is used to
enter infoimation regarding the author of the frame, revision
dates, references to pertinent literature articles, level of
validation of the knowledge, and Gold Standards. The level of
validation of the knowledge is intended to provide the
developer with a slot where he can declare the clinical status
and possible utility of the frame. For example, if the frame
was merely the developers first educated guess without any
serious validation studies this would be indicated in this
section. Thus, anyone using the frame would understand the
level of confidence which one might give to the performance
of the frame. Likewise if frame had been tested on a large
population with satisfactory results, the frame user would be
aware of those tests and results. The Gold Standard slot is
intended to contain information regarding any gold standard
data which may be used to compare the results of the frame.
For example, if the frame suggests a new treatment for some
disease, the gold standard slot could contain a definition for
the successful outcome of that therapy.

Many of the slots we have added to the structure of the frame
are intended for use by knowledge management routines.
These routines will be used to scan the knowledge base to
report to the systems manager critical information on the use
and state of the knowledge base. For example, linkages
between the data dictionary and the knowledge frames will be
maintained, allowing rapid alteration of the frame variables
when associated entities in the data dictionary are changed.

The frames, as described here, contain the declarative
knowledge of the application. To generate an actual HIS
application an additional frame type is required. This frame,
referred to as the meta-frame, contains procedural control
knowledge necessary to implement an efficient application.
For the meta-frame the knowledge section consists of slots
controlling the execution of those frames required in a single
application. A slot is used to enter the procedural control
knowledge of the application. This knowledge may be as

simple as the declaration of the initial frame to be executed in a

goal driven application or as structured as an ordered list
containing the frames and their execution sequence for the
application. A second slot defines the inference engine for the
application. This again can be as simple as nothing (ie.,
execute the frames according to the control logic and exit the
application) to a hypothesis driven frame scoring algorithm
similar to Internist which determines the frames to be executed
based on an iterative process of data collection and frame
evaluation. Logic pertaining to the storage of results in the
database are contained in another slot of this section. The
example in figure 2 is a meta frame for control of an arrythmia
protocol. This frame contains the logic for control of the
execution of a branching protocol. Execution of the frame will
cause execution of the declarative knowledge frames of the
protocol under the proper conditions.

Title: Arrythmia^protocol

Message: Patient has crit-ria for arrythmia management protocol"

Frame Type: Meta (protocol)
Evoking Criteria: If AcjteaMI aiid not NSR

Procedural Logic: Evoke IVADextrose,
If Hypokalemic then Evoke KCL,
If rhythm = PVC then Evoke PVCA^management and exit,
If rhythm = Bigeminy then Evoke PVC^management and exit,
Ifrhythm = Vtach then Evoke Vtach^management and exit,
If rhythm = Afib or rhythm = Aflutter then Evoke
AfibAflutterAmanagement and exit,
Ifrhythm = Sinus^tach then Evoke StachAmanagement aad exit,
If HeartArate < 60 then Evoke Brady^management.

Figure 2: An example of a meta frame used to implement a protocol for the managment of
arrythmias. The logic section of the frame controls the execution of declarative frames of this
application.

62

Having developed a design for a frame structure, a conceptual
model for knowledge acquisition has been developed. Using
this model we are now able to create a knowledge base
sufficiently ur'versal to support the applications of an HIS.
Examples oftue applications we are currently developing
using this framc structure include:
1. Physician orders. This application will use the frames to
capture knowledge concerning the test/procedure to be
ordered. Critiquing knowledge will also be present in the
frames. In using the frame based applications the entry of an
order will cause the appropriate frame to be executed assisting
the physician in entry of the order.
2. Nurse care plans. In this application the frames will contain
the knowledge defining the problem. id the creation of an
appropriate working care plan. For example, many of these
frames will be data driven from the physician order frames
described above.
3. Monitoring/Alerting. These applications will define frames
which are data driven by the receipt of data into a patient's file.
They will contain knowledge about the data being stored to
determine if alerts need be transmitted to the appropriate
personnel.
4. Diagnosis. Application programs here will be driven by
frames containing models of the diseases being diagnosed.
5. Treatment Planning. These applications are similar to the
nurse care plan application in that knowledge about different
treatments will be entered into the frames and executed as the
appropriate conditions arise.
This list of applications is only a small fraction of the HIS
applications which lend themselves easily to the frame model,
but hopefully gives a flavor of the direction of our system. Our
knowledge base will be stored as a set of ASCII records. In
this form the frames are easy to access, modify, display and
transmit to other centers involved in this research. Because of
the design of the frames and their stored form they are also
machine independent
The final step of our HIS design is the implementation of the
operational form of the applications. In our design, the frames
will be transformed into a traditional computer language for
execution. We are currently exploring two modes of
implementation, a compiled form and an interpreted mode. In
both of these modes an intermediate computer language is used
as a target language by an application generator. The
application generator is driven by a meta-frame which contains
the list of frames and the procedural knowledge of the
application. On identifing to the application generator the
appropriate meta-frame, the application generator assembles
the required set of frames and inserts the necessary procedural
logic resulting in a single application program in the target
language. The derived application program can then either be
interpreted or compiled.

Because of the overhead associated with either process startup
of compiled applications or interpretation of code, the decision
to compile or interpret appears to be application dependent.
For example, in an application such as hypothesis driven
disease diagnosis where the application would be active for
many minutes, the limiting factor is execution speed and not
startup time. In such cases compiled code is more efficient,
but in a data driven application where only a single frame is to
be executed the processing time may be minimal compared to
the startup time. Here the interpreted mode is optimal. In either
case the important concept is the creation of application
programs. The ability to create application modules from the
general knowledge base is key to our design and assumes that
regardless of the size of the knowledge base, utilization of the
knowledge will be limited to specific applications synthesized
from a subset of the knowledge present.

We are currently midway through the development of the
necessary knowledge editors and compilers. Design of the
frame structure has been completed. Simulation studies
involving hand compiled frames into an application program
written in a target language (Pascal and PAL) have been tested.
Our testing has involved actual implementation of some

applications on our exisiting HELP HIS at LDS Hospital.
These implementations to date, have shown the design
described in this paper to be feasible. We are continuing to
evolve and plan to have the design operational within one year.

63

