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ABSTRACT
Iliad is a diagnostic expert system for internal

medicine. Iliad's "best information" mode is used to
determine the most cost-effective findings to pursue next
at any stage of a work-up. The "best information"
algorithm combines an information content calculation
together with a costfactor. The calculations then provide
a rank-ordering of the alternative patient findings
according to cost-effectiveness. The authors evaluatedfive
information content models under two different strategies.
The first, the single-frame strategy, considers findings
only within the context of each individual disease frame.
The second, the across-frame strategy, considers the
information that a single finding could provide across
several diseases. The study found that (1) a version of
Shannon's information model performed the best under
both strategies --- this finding confirms the result of a
previous independent study, (2) the across-frame strategy
was preferred over the single-frame strategy.

INTRODUCTION
Iliad is a personal computer-based expert system

which provides decision support and may be used as a
teaching tool for medical students and practitioners. Iliad
can run under both Macintosh systems and MS DOS-
Windows. The program requires a 68030 Macintosh or
80386 SX DOS (or higher) processor with 2 megabytes
of RAM memory. It currently recognizes over 6300
disease manifestations and covers 1350 diseases and
intermediate diagnoses from intemal medicine.

The Best Information Mode in Iliad
Iliad is based on a model of diagnosis that stresses the

assignment of probabilities to patho-physiologic states.
However, Iliad not only functions as a diagnostic engine,
but also has a number of features that support other
aspects of medical reasoning. For instance, Iliad can
assist clinicians in choosing which clinical data to collect
next. This function is called Iliad's best information

mode. This mode is primarily designed for two purposes:
teaching medical students to pursue a cost-effective
medical work-up, and evaluating students' performance
when they try to solve simulated patient cases in Iliad
[9, 10]. The performance scores for inquiry skills are
measured by comparing the students' questions to the best
question calculated by the best information mode.

Enhancing the performance of Iliad's best information
mode has been a continuous effort during the development
of Iliad. The objective is to ensure that students who use
Iliad will receive accurate training. Iliad evaluates
alternative work-up strategies by employing a "best
information" algorithm. The algorithm evaluates the
information content expected per dollar for uncollected
data and selects the finding with the maximum
information at the least cost. The cost for each procedure
is stored in Iliad's knowledge base using the actual dollar
charge at the University of Utah Medical Center. Other
medical centers may modify the charges as needed.
History findings are set to an arbitrarily low value of $1
and physical exam items are $2.

A user can select a subset of the diagnostic
hypotheses in which to pursue the next most cost-
effective work-up strategy. If no selection is made, Iliad
automatically selects a work-up suggestion for the most
likely diseases. The user can ask Iliad to restrict the best
information analysis to specific categories: history
findings, physical exam findings, or lab test procedures.
However, the default is to produce the best information
over all categories. The algorithm does not take into
account other factors such as risk to the patient for certain
lab procedures, or the time delay cost of waiting for
results. We realize that these factors may play important
roles in the selection of the best items to pursue.
However, our first step has been to investigate different
information content models combined with the direct cost
of medical findings and implement the best information
content model in a way preferred by human clinicians.

0195-4210/92/$5.00 0 1993 AMIA, Inc. 465



Five Information Content Models
Iliad's approach to the process of pursuing a group of

diagnostic hypotheses is based on simple assumptions.
The amount of diagnostic uncertainty in a case can be
reduced by obtaining additional patient findings. The
information provided by the patient findings can be
measured quantitatively as the change in the level of
uncertainty associated with a particular disease[2]. Several
mathematical models are available to quantify
information[4]. The model derived from standard
information theory is Shannon's equation[l, 4, 6, 7, 8].
In the context of medicine, the Shannon model represents
the average amount of uncertainty as to whether a patient
does or does not have a disease. The basic mathematical
equation is:

H(D) = - P(D)log2P(D) - P(D-)log2P(D-) (1)
Here, H(D) is the Shannon's uncertainty or entropy. The
logarithm to the base two of the probability of a disease
gives the H(D) measured in unit of "bits". P(D) is the
probability that a patient has a disease D, P(D-) is the
probability a patient does not have the disease D. If a
medical finding's result is known as F, the information
content contributed by the result F, I(DIF) can be
calculated as the difference in entropy before and after the
fimding result F is known.

I(DIF) = abs(H(D)-H(DIF)) (2)
The use of eqn. 2 requires an appreciation of uncertainty
as the function of the prior probability of disease. The
standard Shannon model fails to capture reasonable
intuitions about the quantity of information provided by a
diagnostic finding[l]. For example, when the prior and
the posterior probabilities are complementary (e.g. the
prior is 0.1, the posterior is 0.9), the finding provides no
change in uncertainty, and thus no information has been
conveyed. To overcome the problem, we used the
modified Shannon information content model[4, 6]
whenever the disease probability passes through 50%.

I(DIF) = (Hmax - H(D)) + (Hmax - H(D[F)) (3)
Hmax is the maximum value of Shannon's uncertainty,
which is 1 bit. This value is obtained when there is a
50% chance of the disease being present.

The information content models tested are either
based on different ways of expressing uncertainty or
derived as "quasi-utilities". The five models were
discussed in detail in our previous work[4]. A summary
is shown in Table I.

One way of categorizing these five information
content models is by whether the model depends on the
prior probability of the disease. The filrst category, where
prior probability has an effect, consists of three models:
Shannon, logP2-logPl and P2-P1. All these models
measure a medical finding's information based not only on
the effectiveness of the finding in changing the
probability of disease but also on the patient status (prior
probability) prior to acquiring the finding. The second

Table I. Summary of Five Information Content Models

Model Name Uncertainty Information content
representation of a given finding F

Shannon H(D)= If H(DIF) does not pass
-P(D)log2P(D)- through a maximum in
P(D-)log2P(D-) moving from the prior

state to the posterior stat
abs(H(D)-H(DIF)),
otherwise,
(Hmax- H(D))+(Hmax-
H(DIF))

logP2-logP1 -log2P(D) abs (log2P(DIF) -
log2P(D))

P2 - P1 P(D) abs (P(DIF) - P(D))
logLR N/A abs(log2 (sen/1-spec)) for

a positive finding,
abs(log2 (1-sen/spec)) for
a negative finding

LR(Current N/A sen/(1-spec) for a positive
model in finding, (1-sen)/spec for
Iliad 4.0) a negative finding.
LR = likelihood ratio. N/A = not applicable. P(D) = the
prior probability of disease before the finding result F
(either positive or negative). P(DIF) = the posterior
probability of disease after the finding result F. Sen =
true positive rate, spec = true negative rate.

category, where the value of information is independent of
prior probability, consists of models of logLR and LR
(LR = likelihood ratio). These two models ignore the
prior probability of the disease and depend only on the
sensitivity and specificity of a medical finding. Whether
one uses the logLR or the LR model should not make any
difference in terms of ranking information value per se.
However, the ranking in Iliad's best information
algorithm is based on the information per dollar cost.
Therefore, the logLR model is more sensitive to dollar
cost because of the logarithm function. In addition, we
note that logLR is additive and LR is not.

Iliad 4.0 currently utilizes the LR model. This model
has the advantage that the parameters required are easily
accessible from Iliad's knowledge base. In addition, a
minimum of calculation is required. In the case of models
like Shannon, logP2-logP1 and P2-P1, Iliad has to
calculate the potential posterior probability of each
hypothesis under consideration, given each possible
medical finding, in order to find the best item. In the
past, the computational burden of this approach
discouraged use of more complex algorithms. However,
with the rapid development of more powerful hardware
configurations on both PC and Macintosh machines, we
now wish to investigate more computationally intensive
algorithms which may provide even better performance.
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The Application of Different Information
Content Models: Two Strategies

We implemented information models using two
different strategies. The first strategy, the "single-frane"
strategy, considers findings only within the context of
individual disease frames. The second strategy, the
"across-frame" strategy, considers the information that a
single finding could provide across several diseases.
Suppose that we have two hypotheses under
consideration, pulmonary embolus and atypical
pneumonia. Also suppose there are three unanswered
questions exist for each disease frame, as shown in Table
I,

Table II. A Scenario of Considering Two Hypotheses

Atypical Pneumonia Pulmonary Embolus
present history: cough present history: cough
with purulent sputum with gross hemoptysis
vital signs: respiratory vital signs: respiratory
rate rate

chest x-ray shows chest x-ray shows
alveolar infiltrate alveolar infitrate

The approach for this scenario by the single-frame
strategy is as follows:
1. Calculate information content per dollar of each finding
within each disease frame.

2. Rank the cost-effectiveness of each finding in the
Atypical Pneumonia frame and the Pulmonary Embolus
frame separately.

3. Select the finding which receives the highest of the six
scores.

The approach by the across-frame strategy is as follows:
1. Calculate information content per dollar of each fimding

for each disease frame.
2. Sum across the information per dollar for the
"common" fmdings, respiratory rate and the chest X-
ray, across the two hypotheses.

3. Select the finding which receives the highest of four
scores.

Single diagnostic procedures, such as chest X-ray
examinations or batteries of laboratory tests (e.g. Chem-
20), can produce multiple findings. We assume that these
findings should be evaluated together to give a total value
for the information from the procedure. Thus, in the
implementation of the across-frame strategy, we sum
across all information from the lab test or other
procedures. Although history and physical exam fimdings
are usually collected systematically in real life, we treated
each history and physical exam finding individually in our
current implementation of the across-frame strategy.

METHOD
To begin this study, we implemented the five

information content models and two strategies in an
experimental version of Iliad, so that any combination of
an information content model and a strategy could be used

to pursue the most cost-effective work-up. Our objective
was to compare the performance of the five information
content models and two strategies to the judgments
provided by expert clinicians.

Subjects Six academic internists certified by American
Board of Internal Medicine served as the subject judges in
the experiment. The physicians were all experienced in
the use of computerized expert systems for medical
decision making.

Procedure Six pulmonary cases were selected from real
patient cases at the University of Utah Medical Center.
Each case was divided into three stages. The first two
stages denoted stages in the work-up when history and
physical exam findings were acquired. The third stage
denoted a later stage in the work-up when major
competing diagnostic hypotheses were considered and
finally accepted or eliminated through laboratory tests or
other procedures. Thus there were eighteen medical
decision points, or vignettes represented. Each
information content model was applied under two
strategies. Therefore, ten best work-up suggestions (5
algorithms x 2 strategies) were generated for each
vignette. Each expert was provided with a copy of each
vignette containing a subset of patient findings and
including the hypotheses Iliad considered, the ten sets of
work-up suggestions, and a simple rating form. Based on
Iliad's suggested work-up items, the experts were
instructed to choose (1) the best strategy for each
information content model and, (2) the best information
content model for the single-frame and the across-frame
strategies. "Ties" were allowed only when several
information content models or two strategies produced the
same work-up suggestion. Whenever the strategy or the
information model was chosen as the best, the score was
assigned to 1; otherwise the score was 0. All the experts
completed their entire set of evaluation forms.

Experimental Design The independent variables are:
Case (six cases), Stage (three stages in each case),
Information Content Model (five models), and Strategy
(two strategies). All raters had substantially the same
level of training and experience. Hence, no effort was
made to classify the experts by level or type of expertise.

The experiment was a 6 x 3 x 5 x 2 (Case x Stage x
Information Content Model x Strategy) factorial design.
All independent variables are within subjects factors.
There were three dependent variables. The first dependent
variable was the frequency of being chosen as the best
information content model under the single-frame
strategy. The second dependent variable was the frequency
of being chosen as the best information content model
under the across-frame strategy. The third dependent
variable was the frequency of being chosen as the best
strategy overall. Each dependent variable represents the
proportion of experts who chose the result of that
outcome as the best.
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RESULTS

Best Information Content Model Under the
Single-frame Strategy

The judges' ratings of the best Information Content
Model under the single-frame strategy were analyzed by
using a 6 x 5 x 3 (Case x Algorithm x Stage) factorial
analysis of variance. Comparisons among cell means
were based upon a Bonferonni adjusted confidence
interval[5]. We divided the significance level (a) by the
number of comparisons to be performed (k). In this
study, four comparisons were made among the means so
that the adjusted significance level was 0.0125 (0.05/4).
The results indicated that the main effect for Information
Content Models was statistically significant, E(4,360) =
10.72, p < 0.0001. The interaction between Stage and
Information Content Model was also statistically
significant, E(8,360) = 4.83, p < 0.0001. We used
average scores (frequency of being chosen as the best) of
each information content model at stage 1 and stage 2 to
represent the effectiveness of the model in suggesting
history and physical exam findings, and selected the score
at stage 3 to reflect the effectiveness of the model in
suggesting lab test procedures. The comparisons among
the means for the algorithms indicated that the Shannon
model was significantly better than the other models (a =
0.0125) in terms of suggesting history and physical exam
findings. However, the results revealed no significant
differences between the Shannon's model and the current
Iliad model in terms of suggesting lab test procedures
during the late stage of work-up. No other models
performed better than the current Iliad model at the late
stage. The results also indicated that the Shannon's model
was the best in terms of overall scores across all stages (a
= 0.01). The overall performance of five information
models is shown in Figure 1.
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Figure 1. Overall (all stages) frequency each information
content model being chosen as the best by experts under
the single-frame strategy.

Best Information Content Model Under the
Across-frame Strategy

The results showed that the main effect for
Information Content Models was statistically significant,

E(4,360) = 3.20,1 < 0.015. The interaction between
Stage and Information Content Model was also
statistically significant, F(8,360) = 2.30, p < 0.02. The
Shannon's model and the P2-P1 model were not
significantly different in terms of suggesting history and
physical exam questions, but they were all significantly
better than the current Iliad model (a = 0.0125). During
the late stage of work-up, no models performed better than
the current Iliad model in terms of suggesting lab test
procedures. The Shannon's model and the P2-P1 model
were the best overall among the five models across all
stages (a = 0.01). The overall performance of the five
information models under the across-frame strategy is
shown in Figure 2.
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Figure 2. Overall (all stages) frequency each information
content model being chosen as the best by experts under
the across-frame strategy.

Best Strategy
We calculated the frequency of each strategy being

chosen as the best based on the grand average scores for
all the information models. Each strategy, single-frame
and across-frame, was evaluated five times in each of the
eighteen vignettes. The five times represented
implementation of the five information models under each
strategy for each vignette. The best strategy scores were
analyzed by ANOVA using repeated measures. The
results indicated that experts preferred the across-frame
strategy to the single-frame strategy, as shown in Figure
3. oO
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Figure 3. Overall (all information content models)
frequency of each staegy being chosen as the best
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DISCUSSION
The modified Shannon information model was the

best model overall, regardless of strategy. The Shannon's
model was significantly better than the current Iliad model
during the initial encounter of the patient when history
and physical exam findings were the major items to
acquire. During the late stage of work-up when the
patient's major history and physical exam features were
known, the current model was just as good as the
Shannon's model. This finding may reflect the fact that
fewer choices were available at this period. Iliad's best
information mode could be improved by employing the
Shannon's model, especially during the initial phase of a
patient case. These results also confirmed our previous
findings which suggested that Shannon's model was
preferable to other models[4]. Given each possible
medical finding, Shannon's model requires the prior and
the potential posterior probability of each hypothesis
under consideration. As microprocessors improve, it may
prove practical to adopt Shannon's model in Iliad.

Physicians typically generate a differential diagnosis
early in the work-up of a patient case. They then pursue
findings which allow them to separate these potential
diagnostic competitors[3]. We have attempted to model
this process using the single-frame and the across-frame
strategies described above. The single-frame strategy,
which is present in the current version of Iliad, evaluates
the relative cost-effectiveness that each diagnostic finding
has in relation to each hypothesis on the differential.
This strategy allows us to rank-order each possible
diagnostic finding and select the best one. However, this
strategy treats each finding and disease link independendy.
In some cases, obtaining one finding may provide
positive information for one hypothesis and negative
information for another. For instance, a chest X-ray may
be ordered to work-up a patient with shortness of breath
when the physician is considering pneumonia versus
pneumothorax. If the chest X-ray shows a pneumothorax,
and not an infiltrate, information accrues (positive and
negative) for both diagnostic hypotheses. The single-
frame strategy does not reflect the combined information
available in a group of diseases to which a particular
finding may be relevant. The result is an underestimation
of the total information value of findings that contribute
to multiple diagnoses. This may explain why Iliad
sometimes delays obtaining tests such as chest X-rays
even when experts feel they are indicated. It appears that
the across-frame strategy may improve this performance.
If this result can be replicated, it may prove appropriate to
adopt this strategy in Iliad. The relative performance of
different information models was closer to each other
when we used the across-frame strategy as compared to the
single-frame strategy. This finding indicates that the
performance of best information mode in Iliad depends on
not only the information content model, but also the
strategy with which the model is implemented.

During our experiment, we observed that experts
sometimes selected the across-frame strategy as a better

one because it simply suggested more findings than the
single-frame strategy, whereas the additional findings
might be collected later by the single-frame strategy.
This could have produced some bias in our results. We
are designing a future study to control this potential
source of bias.

Further study is needed to analyze factors such as the
risks of certain lab procedures and costs associated with
time delays while waiting for results. These potential
additions to the best information algorithm should
improve the ability of Iliad to simulate the multifaceted
environment in which real data collection decisions are
made.
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