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Iliad is a computerized, expert system for internal medical diagnosis. The system is designed to 
teach diagnostic skills by means of simulated patient case presentations. We report the results of 
a controlled trial in which junior students were randomly assigned to received Iliad training on 
one of two different simulated case mixes. Each group was subsequently tested in both their 
"trained" and "untrained" case domain. The testing consisted of computerized, simulated 
patient cases for which no training feedback was provided. Outcome variables were designed to 
measure the students' performance on these test cases. The results indicate that students made 
fewer diagnostic errors and more conclusively confirmed their diagnostic hypotheses when they 
were tested in their trained domain. We conclude that expert systems such as Iliad can effectively 
teach diagnostic skills by supplementing trainees' actual case experience with computerized 
simulations. 

INTRODUCTION 

The Iliad System 

Iliad is a medical expert system designed both to teach medical decision-making and to 
provide consultations on actual clinical problems. Iliad represents the culmination of over 
two decades of research in expert systems at the University of Utah's Department of 
Medical Informatics. The system is composed of an "inference engine" (a collection of 
rules and procedures for making decisions) and a "knowledge base" (a collection of 
medical facts and relationships). At the time this research was performed, Iliad's internal 
medicine knowledge base contained approximately 980 individual diagnostic logic units, 
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or "frames," which covered about 470 medical diagnoses. At that time, the system's 
dictionary recognized over 6000 medical terms. 

Iliad functions in three modes: consultation, simulation, and simulation-test. In-~ 

consultation mode, users begin by entering a real patient's findings. Iliad interprets the 
findings and produces a differential diagnosis, ordered by the relative probability of each 
diagnosis. If the patient work-up is incomplete, Iliad contains various learning tools which 
can suggest how to proceed. For instance, Iliad's "Most Useful Information" function 
can indicate which potential patient findings could provide the most useful diagnostic 
information at the least cost. In the simulation mode ("training mode"), Iliad presents the 
user with the chief complaint of a simulated patient. The user must "work-up" the patient 
by "questioning," "examining," and ordering lab tests and procedures. Iliad responds 
by providing the simulated patient's answers, examination findings, and test results. The 
user is required to postulate diagnostic hypotheses that explain the findings, and then test 
and refine these hypotheses. Iliad evaluates the user's performance and provides tailored 
feedback at each step in the work-up. In simulation-test mode ("test mode"), the user 
also works-up a simulated patient, but the user feedback and learning tools are withheld. 
In this mode, Iliad silently tracks and evaluates the user's performance. 

0 

The program is designed to teach junior medical students about important diseases ,. 
that they are unlikely to see in real patients. However, the quality of the training Iliad •. 
provides depends not only on the teaching tools, but also on the quality of Iliad's know)- o 

edge base. This knowledge base was developed in an ongoing series of subspecialty- ·, 
oriented "knowledge engineering sessions" which occurred twice weekly for each of nine ·1· 

subspecialties (e.g., cardiology, pulmonary, gastroenterology). Participants in these ses- ·• .. · 
sions included knowledge engineers (PhD and MD personnel trained in medical infor- , 
matics), domain content experts (clinicians and professors at the University of Utah and 0 

elsewhere), and medical information specialists (e.g., medical librarians). We developed 
a priority schedule to ensure that each subspecialty session completed certain key frames 
which represented important teaching objectives. 1 

The task of organizing and storing the large amounts of medical knowledge created 
in the knowledge engineering sessions was managed by a Knowledge Engineering Sup- f 
port System (KESS). 2 We also developed compiling tools to convert the knowledge stored 1 

by the KESS into a format that the computer could process. These tools were adapted 
from early versions of the mainframe-based expert system compiler we developed for the 
HELP hospital information system. 3 The new tools are designed to allow a short cycle of 
modification and recompilation. This short cycle allows the knowledge engineers to 
quickly and efficiently modify frames in response to evaluation and validation procedures. 
Validation of the knowledge base is an important part of the knowledge engineering , 
process. The frames in the internal medicine knowledge base have been validated by 
means of statistical analyses,4 case entry of approximately 500 cases, and extensive expert 
review of completed frames. 5 

The quality of Iliad's training also depends on how accurately the system makes 
inferences from the knowledge base. The purely Bayesian inference strategies we used in 
previous work proved to produce overly confident, unreliable diagnostic results.

4 If , •..•. • 
similar degrees of overconfidence were allowed in a system used for teaching, trainees 
might be led into falsely or prematurely concluding diagnoses that were not actually ' 
supported. The overconfidence we found arose because the frames included medical case 
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findings which were not completely independent (they tended to occur together in cases: 
e.g., "fever" and "chills"). One of our early solutions to this problem was to trim the 
nonindependent findings from the frames, leaving only "key" findings. However, this 
approach resulted in "sparse" frames which could not provide the rich and diverse 
simulated case presentations required for effective training. Therefore, we rejected the 
trimming approach and tried a new strategy of "clustering," or grouping, the condition
ally independent findings. 6 •

7 Such clusters can be represented as non-Bayesian frames in 
which the inferencing is handled by decision rules. These clusters often describe patho
physiologic concepts. For e~ample, _"Lung Consolidation" _can be described by a frame 
containing the relevant physical findmgs (e.g., rales, bronchial breath sounds, egophony) 
and an appropriate decision rule to arbitrate the findings. These clusters can then be cited 
as "findings" in Bayesian frames. The Bayesian frames do not directly contain the 
dependent findings, but only an evaluation of their net information value, as provided by 
the cluster. Previous research by other investigators6

•
7 as well as our own research4 has 

demonstrated that this strategy improves the inferencing and significantly reduces the 
overconfidence. 

How Iliad Trains 

Iliad trains by providing students with carefully constructed opportunities to practice 
applying new knowledge in realistic, simulated patient cases. As the trainee makes se
quential decisions during the work-up, Iliad provides many types of constructive feedback 
to help identify and train potential improvements in case management and outcomes. 8 Our 
experimental design assumes that students must receive domain specific, problem-based 
practice in order to become competent diagnosticians. This assumption is consistent with 
recent developments in the fields of cognitive psychology and medical decision analysis. 
These developments indicate that a physician's skills in medical problem solving are 
highly domain specific and must be maintained by constant practice which is focused on 
particular problem domains.9 In particular, physicians solving a particular problem may 
be highly dependent upon the availability of domain specific knowledge relating to that 
problem. 10-

12 The observation that domain specific knowledge is required for the suc
cessful solution of diagnostic problems has been documented for physicians evaluating 
live simulated patients12 as well as for computer simulated patients. 13' 14 Iliad can provide 
an inexpensive source of problem-based, simulated case material, focused in specific 
domains. 

Iliad accomplishes the training by identifying and correcting specific types of diag
nostic errors which can occur during the sequential decision-making involved in the 
work-up of the simulated cases. Kassirer and Kopelman15 have proposed a model for 
recognizing the types of cognitive errors and biases that can influence medical decision 
making. They identified certain errors, including (1) improper hypothesis triggering, (2) 
improper data gathering and interpretation, and (3) failure to adequately verify diagnoses . 

. Improper hypothesis triggering, an error we propose Iliad can correct, occurs when 
physicians fail to activate or generate appropriate hypotheses to explain the patient find
ings.15 For example, a student may fail to think of "spontaneous pneumothorax" as a 
possible explanation for sudden shortness of breath. If this student has learned that 
pulmonary embolus patients may present with sudden shortness of breath, the 
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"availability" of the recent training 16 in pulmonary embolus may cause the student to 
overlook the pneumothorax hypothesis. During a work-up of a simulated case of pneu. 
mothorax, Iliad's "Explain Finding" and "Explain Diagnosis" functions help remedy l 

this error. If the student neglects to consider the pneumothorax hypothesis, these leaming f 
tools can suggest that pneumothorax may provide an alternative explanation for the patient t: 
findings. 

Kassirer and Kopelman 15 also propose that practitioners may interpret data incor. 
rectly. For instance, they may utilize faulty estimates of disease prevalence. A student 
practitioner· who overestimates the frequency of a rare disease may mistakenly ignore a i 
more common disease which better explains certain key patient findings. Iliad's I 
"Browse" function can display the a priori prevalence of any disease, to remind the I 
st~dent ~f the ac~ual. di~ease prevalen~e rela~io~ships. In add~tion, Iliad's "Show [ 
Dtfferenttal'' functiOn mdtcates how parttcular fmdmgs should be mterpreted as modify. J 
ing the posterior estimates of disease probability. These tools remind the student to l 
work-up the diseases which are most likely to be present in the patient. If students do not 1 
receive this feedback, they may mistakenly order tests for unlikely diseases. When they ! 
make this mistake, they will tend to obtain a high percentage of negative test results and I 

pursue fruitless, cost-ineffective lines of diagnostic inquiry. Iliad's "Most Useful ) 
Information" function reminds students to pursue cost-effective inquiries by measuring 
the relative information gain and cost of the diagnostic inquiries students make and 
comparing the student's choices to alternative choices. Students who receive Iliad's 
structured feedback will learn to pursue more likely diseases in a more cost-effective 
manner. These students will tend to obtain positive test results which advance appropriate 
diagnostic hypotheses. 

Kassirer and Kopelman also report that practitioners may fail to adequately confinn 
or verify their diagnoses. 15 Iliad can also potentially correct this error. For instance, a 
student could commit a verification error by failing to collect sufficient findings to ' 
document a hypothesized diagnosis. A student who commits this kind of error may make · 
premature and unsupported diagnostic conclusions. In this case, Iliad's Show Differential 
function can indicate that the probability associated with the student's hypothesis is low 
compared to that of alternative hypotheses. In addition, Iliad's Explain Diagnosis function 
can indicate how the case findings support the alternative hypotheses. Finally, Iliad's 
Most Useful Information function can indicate the most cost-effective findings which 
might be collected to confirm the alternative diagnoses. 

EVALUATING ILIAD 

The present study was designed to evaluate whether Iliad could improve students' 
medical decision-making skills in areas where they would otherwise be unlikely to receive 
adequate case-based training. Our goals were to examine the acceptability and teaching 
potential of the Iliad system among these students. For this study, students participated in 
the experiment during one 6-week clerkship in internal medicine which are conducted 
during the junior year. Our experiment occurred in the second semester clerkship. Each 
week, every student performed one weekly training simulation and one test-mode simu· · 
lation. Students were randomly assigned to one of two training domains (different sim· 
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ul ted case mixes). Regardless of their training domain, all students subsequently re
~ved simulation-test cases covering both domains. The present study focused primarily 

:
1 
examining the students' data interpretation and hypothesis verification skills. 

Hypotheses 
In this research, we examined the effects of Iliad training (simulated patient cases) 

on students' diagnostic skills. We designed this work to test several hypotheses. First, we 
propose that students who receive Iliad training on a particular diagnosis will perform 
better on several clinically relevant measures of diagnostic performance than students not 
trained on that diagnosis. Second, we propose that this training effect will be stronger for 
uncommon clinical cases, which the students do not frequently encounter in their training, 
than for more common cases. Third, we propose that increases in student performance are 
relatively domain specific. Students who receive Iliad training in one type of case will not 
necessarily perform better on cases from an Iliad-untrained area. 

METHOD 

Subjects 

The subjects were all of the third year medical students (n = 100) in the 1989-1990 
class at the University of Utah who participated in a six-week internal medicine clerkship. 
The data were obtained from four rotations (of approximately 25 students each) which 
occurred during the spring semester in 1990. The student clerkships were conducted at the 
LOS Hospital, the University of Utah Medical Center, and the Salt Lake Veterans Ad
ministration Medical Center. 

Experimental Design 

The experimental design was a 2 X 2 X 2 (Simulation Training Set X Simulation 
Test Set x Time) mixed factorial design. The first two factors were between subjects 
(uncorrelated) factors, while the Time factor was within subjects. The Simulation Train
ing Set (Uncommon-Common) independent variable refers to the type of training cases 
that the students were randomly assigned to received during their simulation training. 
These cases either had a relatively low prevalence or high prevalence in our teaching 
hospitals. The Simulation Test Set independent variable refers to the types of test cases 
assigned to the students. Each student received test cases which either resembled (Trained 
level) or did not resemble (Untrained level) the previous week's training case (see below 
in "Independent variables" for definition of "resemblance"). The Time variable refers 
to whether the student was completing the first or the second replication of the experi
ment. The first replication of a Trained and Untrained pair of test cases occurred in weeks 
2 and 3 and the second replication occurred in weeks 4 and 5. Three different dependent 
variables were collected for each test case. The first dependent variable, Final Diagnostic 
Errors, assessed whether the student's final diagnostic hypothesis was correct or not. A 
second variable, Posterior Probability, measured how adequately the student confirmed 
the correct diagnosis. The third dependent variable, the Average Hypothesis Score, mea-
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sured how closely the student's differential diagnosis matched Iliad's during each step in 
the case work-up. 

Iliad System 

Iliad's inference engine was written in the C programming language for the Apple 
Macintosh computer. On the Macintosh, Iliad requires two megabytes of random access 
memory and approximately 1.5 to 5 megabytes of free hard disk space (depending on 
whether or not supplemental medical literature is desired). Iliad runs on any Macintosh 
computer (an IBM-PC version is under development) which meets these memory require
ments. However, a 68020 or higher processor with math coprocessor is highly recom
mended. In this experiment, all students were trained on Macintosh SE-30 computers. All 
students used the version 3.0 of the Iliad software and knowledge base during this 
experiment. 

Student Procedure 

Students received 2Yz hr of training in the use of Iliad during the first day of their 
clerkships. In addition to this basic orientation, weekly group and individual sessions 
were held by the medical faculty to provide technical support for the students. All students 
were required by the Clerkship Director to complete one simulated training patient and 
one simulated test case each week. To minimize potential student anxiety and reactivity, 
students were told that the exact results of their Iliad testing would not be revealed to their 
clinical supervisors. However, students had to achieve a minimum performance on each 
of the cases in order to pass their clerkship. Students on each of the medical wards of our 
three teaching hospitals were provided with Macintosh SE-30 computers and printers 
loaded with the Iliad system. A special program controlled access to the training and test 
simulations according to the conditions specified for each student in the experimental 
design. This program also made it impossible for one student to access or alter another 
student's results. In addition, students working on the same ward team received a dif
ferent, counterbalanced order of case presentation. All students were instructed to work 
alone when using Iliad. These precautions were designed to prevent contamination across 
the experimental conditions. The patient test case in the first week for all students was 
Tuberculosis. The first week's test served as a practice case, because all of the students 
had been trained on Tuberculosis during the orientation session. 

The student training experience with Iliad has been described in our previous work. 17 

In summary, when the students experienced a training simulation, Iliad first presented the 
chief complaint. The student then pursued additional patient findings (history, physical 
exam, and laboratory data), and, in response, Iliad provided the simulated patient's 
responses. During the work-up, students were required to formulate a differential diag
nosis. When requesting new patient information, the students were required to indicate 
both their best hypothesis and which hypothesis was being pursued. The Iliad training 
tools we have described (e.g., Show Differential, Explain Diagnosis) were available in 
the training mode, but not in the test mode. In test mode, Iliad collected the dependent 
measures relating to student performance. Students were eventually given performance 
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feedback on the test cases. However, this feedback did not occur until 2 days after all 
students had completed that week's testing. 

Independent Variables 

We created ten different simulated cases that were based on diagnostic learning 
objectives established for the junior clerkship by the Clerkship Director and medical 
faculty. The simulations were created using one of two methods. First, real cases were 
entered into Iliad via the consultation mode and then converted to simulation mode. When 
real cases were not readily available, Iliad's random simulation procedure was used to 
create a case, based on the probabilistic information contained in the knowledge base. 
Regardless of the simulation development procedure, two independent internal medicine 
faculty reviewed and validated the medical accuracy of each simulated case. Five cases 
represented relatively prevalent diseases in medical inpatients (Common: Congestive . 
heart failure; Myocardial infarction; Insulin dependent diabetes mellitus; Duodenal ulcer; 
and Urinary tract infection) and five cases represented relatively uncommon diseases 
(Uncommon: Addison's disease; Multiple Sclerosis; Gonorrhea; Gastric cancer; Analge
sic nephropathy). 

Each student completed four training mode and four test mode cases during their 
clerkship. During week 2, every student received a test case consistent with their assigned 
level of the Test Set independent variable. Students assigned to the Trained level of this 
variable received a test case which resembled the previous week's training case (had many 
of the same diagnostic findings and had the same final diagnosis). However, to ensure that 
the students did not simply recognize the test case's resemblance to the training case, the 
test case was constructed so that the patient's age, sex, and initial complaints were 
different. Students assigned to the Untrained level of the Test Set independent variable 
received an unrelated, untrained test case during week 2. These cases also did not appear 
to be the same as the previous week's training case, and in fact proved to represent an 
entirely different diagnosis. In the successive weeks of the rotation (weeks 3 through 5), 
the Trained and Untrained conditions were alternated for each student. Therefore, as 
explained above, each replication of the experiment consisted of one Trained and one 
Untrained test case. The first replication occurred during weeks 2 and 3 of the experiment 
(Early level of the Time independent variable) and the other replication occurred during 
weeks 4 and 5 (Late level of the independent variable). The actual case sequence 
(Trained-Untrained) was presented in different, counterbalanced, random orders during 
each replication (i.e., a Latin square design). 

The training and testing approach we adopted was designed to take advantage of the 
lack of substantial generalization expected to occur between unrelated training and test 
cases. Furthermore, this approach allowed all students to experience apparently equal 
training. We anticipated that equal appearing training would minimize potential student 
reactivity to overt experimental manipulation. Finally, this approach allowed all the 
students to have an equal opportunity to become experienced using the computer during 
the clerkship and score well on the test cases. 

Testing Procedure 

The students were instructed to complete the test cases without any assistance. On 
average, each test case required approximately 30 min for completion. Students were 
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instructed to reach a degree of diagnostic certainty that would be equivalent to a posterior 
prevalence of 0.95 (during training cases, they had been instructed to reach this same 
certainty level). The students received written feedback regarding the correctness of their 
final diagnostic hypothesis and the completeness of their work-up. However, this feed. 
back was delayed until all students had finished that week's test cases. In order to reduce 
student anxiety, individual test results were not disclosed to the medical faculty. 

Primary Dependent Variables 

I 
I 

Three different dependent variables were collected for each test case.8 The first 
dependent variable, Final Diagnostic Errors, assessed the correctness of each student's 
final diagnostic hypothesis. For each case, the student's response was defined as being 
either correct or incorrect. The dependent variable measured the percentage of students, 
in a particular condition, who obtained incorrect diagnoses. A second variable, Posterior 
Probability, measured the completeness of the student work-up. Each student received a 
score for this variable equal to the final posterior probability Iliad had assigned to the 
correct diagnosis when the test case was finished. Therefore the range of this score was 
0.0 to 1.0 for each student. Higher scores indicated that the student had elicited the 
appropriate findings to confirm the correct diagnosis. Across an experimental condition, ' 
we averaged the individual student scores on this variable. A third dependent variable was 
the Average Hypothesis Score. This score was an average of the individual hypothesis 
scores that Iliad assigned at each stage in the simulated case work-up. At each stage in the 
work-up, the individual score was based on a comparison of Iliad's best hypothesis at that 
stage to the student's best hypothesis. These individual scores were calculated by dividing 
the probability that Iliad assigned to the student's best hypothesis by the probability that 
Iliad assigned to its own best hypothesis. For example, suppose that, halfway through a 
theoretical case, Iliad assigns a probability of 0.50 to its best diagnosis, Pneumonia. At 
that same point, the student's best diagnosis might be Chronic bronchitis, to which Iliad 
assigns a probability of only 0.20. Iliad's calculated individual hypothesis score at this 
stage would be 40% (i.e., 0.2 + 0.5 x 100% = 40%). The Average Hypothesis Score , 
is simply the average of these individual scores. Therefore, these scores ranged from 0 to 
100%. Four students had incomplete cases because of computer failures or scheduling 
conflicts which prevented them from completing the replications. 

RESULTS 

Final Diagnostic Errors 

In summary, we found that students who were Trained in Uncommon diseases 
committed significantly fewer Final Diagnostic Errors than students who were Untrained 
in Uncommon diseases. These results were supported by the students' Final Diagnostic 
Error scores, which indicated that neither the Simulation Test Set main effect [F( 1 , 91) = 
2.16, p < 0.145] nor the Simulation Training Set main effect [F(l ,91) = 1.12, p < 
0.292] were significant. The Time main effect was nearly significant [F(1,91) = 2.86,p 
< 0.09]. However, the Test Set by Training Set by Time interaction was significant 
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[F(l 91) = 10.41, p < 0.002]. This effect appeared to be due to improved student 
rf~nnance on the Final Diagnostic Error variable on Uncommon test cases during the 

~ond replication of the experiment (Late level of the Time variable). To test this 
hypothesis, we performed a planned comparison of the students' mean performance in the 
Uncommon, Untrained condition (m = 21.7%) against the average of the other three 
conditions (m = 7 .7%). 18 Our analysis demonstrated that the students committed signif
icantly more Final Diagnostic Errors when they worked-up Untrained, Uncommon test 
cases [F(l,91) = 5.88, p < 0.02]. The mean student performance on the Uncommon, 
Trained condition (m = 10.9%) was not significantly different from the average of the 
Trained (m = 6.0%) and Untrained (m = 6.2%) Common conditions [F(1,91) = 0.61, 
ns]. The students' performance in these four conditions is depicted in Figure 1. 

Posterior Probability 

We also found that students who were Trained in Uncommon diseases attained a 
significantly higher Posterior Probability score than students who were Untrained in 
Uncommon diseases. The students' scores on this variable indicated that neither the 
Simulation Test Set main effect [F(1,92) = 0.55, p < 0.461], nor the Simulation Train
ing Set main effect [F(1,92) = 2.55, p < 0.137], nor the Time main effect [F(l,92) = 

0.07, p < 0. 794] were statistically significant. However, the Test Set by Training Set by 
Time interaction was significant [F(1 ,92) = 5.66, p < 0.019]. This effect appeared to be 
due to improved performance on the Posterior Probability variable when Trained students 
experienced Uncommon test cases during second replication of the experiment. To test 
this hypothesis, we performed a planned comparison of the students' mean performance 
in the Uncommon, Untrained condition (m = 73.6) against the average of the other three 
conditions. Our analysis demonstra!ed that the mean Posterior Probability score for stu-
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dents in this condition was significantly lower than in the other conditions [F(l ,91) :::: 
5.49, p < 0.025]. The mean student performance on the Uncommon, Trained condition 
(m = 85.2) was not significantly different from the average of the Trained (m = 84.9) 
and Untrained (m = 91.3) Common conditions [F(1,91) = 0.22, ns]. The students' 
performance in these four conditions is depicted in Figure 2. 

Average Hypothesis Score 

For the Average Hypothesis Score variable, we found the effects of training were 
small and that the students scored much higher on the Common test cases, as compared • 

l 

to Uncommon test cases, regardless of their training condition. Specifically, the analysis !-
of the students' Average Hypothesis scores indicated that the Simulation Test Set main 1 

was not significant [F( 1 , 94) = 0. 20, p < 0. 659]. Also, the results indicated that the 
Simulation Training Set main effect was not significant [F(1,94) = 0.74, p < 0.391]. In 
addition, the Time main effect was not significant [F(1,94) = 0.27, p < 0.603]. How
ever, the triple interaction between Test Set, Training Set, and Time was significant 
[F(1 ,94) = 79.49, p < 0.001]. The results indicated that students performed much better 
on the two Common conditions (m = 64.0) than the two Uncommon conditions (m == 

33.7), [F(1,94) = 48.43, p < 0.001]. However, the pattern of results for the Average 
Hypothesis Scores was somewhat different than for the first two dependent measures. 
Specifically, the d!fference between the means in the Trained (m = 65.6) and Untrained 
(m = 62.4) Common conditions was not statistically significant. In the Uncommon 
condition, the difference between the Trained (m = 35.8) and Untrained (m = 31.6) 
means also was not statistically significant. 
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Figure 2. The students' (n = 94) mean performances on the Posterior Probability variable in the four exper· 

imental conditions. Higher scores reflect better performance. 
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Correlations between the Dependent Measures 

We calculated the Pearson correlations among the dependent variables in each of the 
four Training and Testing combinations. The correlations among the student perfor
mances on different dependent variables for the same case can indicate whether or not the 
variables provide convergent measures of student skill. On the other hand, correlations 
among the student performances on the same dependent variable between different cases 
can indicate whether or not student training on one case generalizes to unrelated cases. 

The comparison procedure involved taking the mean of the individual correlations 
across the four combinations of two Training Sets and two Test Sets (e.g., Uncommon 
Training, Common Testing). However, because r values are not normally distributed, we 
first converted the r values to normal (Z) scores, averaged the values, and then recon
verted tor values. The mean correlations for each pair of dependent variables was tested 
for significance using Student's t test. 

The dependent variables were significantly correlated with each other (on the same 
cases) within an individual experimental replication (replication one: weeks 2 and 3; 
replication two: weeks 4 and 5). For instance, the correlation between the Final Diag
nostic Errors and Posterior Probability variables was r = 0.706 [t(92) = 9.56, p < 
0.002]. The correlation between the Final Diagnostic Errors variable and the Average 
Hypothesis Score variable was r = 0.391 [t(92) = 4.07, p < 0.002]. Finally, the 
correlation between the Posterior Probability and Average Hypothesis Scores was r = 

0.400 [t(92) = 4.19, p < 0.002]. 
We also found that these dependent variables were significantly correlated with 

themselves between different cases (across the two different replications). However, these 
correlations were substantially lower than the observed correlations among different de
pendent variables within a replication. For instance, the correlation between the Final 
Diagnostic Errors in replications one and two was r = 0.224 [t(92) = 2.20, p < 0.025]. 
The correlation between the Posterior Probability in these replications was r = 0.236 
[t(92) = 2.33;p < 0.02]. Finally, the correlation between the Average Hypothesis Score 
across the replications was r = 0.215 [t(92) = 2.11; p < 0.05]. While these correlations 
are statistically significant, they explain only about six percent (e.g., r = 0. 236, ~ = 
0.056) of the shared variance between the scores. 

DISCUSSION 

We have proposed that students who receive Iliad training on a particular diagnosis · 
will perform better on several clinically relevant diagnostic measures than untrained 
students. In addition, we have proposed that this effect is stronger when students are 
trained on uncommon cases, for which they currently receive the least clinical training. To 
test these hypotheses, we examined students' performances when they were trained or 
untrained in diagnostic conditions representing particular training domains. We have also 
proposed that Iliad's training produces relatively domain specific increases in student 
performance. To examine this hypothesis, we correlated the student performance on the 
dependent measures within and between the experimental replications. The dependent 
measures we used to examine our hypotheses included: diagnostic correctness (Final 
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Diagnostic Errors), adequacy of diagnostic confirmation (Posterior Probability) and how~· 
well the student's differential diagnosis compared to iliad's throughout the case (Average 
Hypothesis Score). , 

Before we discuss the specific training results, we must discuss the data relating to ; 
the validity of the dependent measures. If the dependent variables assess the same un. ; 
derlying quantities (various dimensions of diagnostic skill), student performance on these j 
variables should be correlated within individual test cases. For example, a student expe. f 
riencing a specific Trained test case should score highly across all of the dependent l 
variables. When the same student experiences a specific Untrained test case, scores I 
should be uniformly lower. As we expected, we found high correlations between the I 
dependent measures within individual test cases within a given replication. For example, · 
the correlation between the Final Diagnostic Errors and Posterior Probability variables 1 
was substantial and significant [r = 0.706; t = 9.56, p < 0.002]. Therefore, about 50% I 
[r2 = (0. 706)2 = 0.498] of the variance between student scores on these measures was j 
correlated. Similar results were obtained within the test cases for the other dependent • 
measures. These results indicate the convergent validity of the dependent measures. 

The correlational data suggest that these three dependent measures are assessing 
three interrelated processes. For example, the Final Diagnostic Errors variable measures 
the student's ability to identify the correct diagnosis, while the Posterior Probability 
variable measures the student's ability to adequately verify the correct diagnosis. Students 
who collect an adequate amount of information to verify each potential diagnosis are 
likely to reach the correct diagnosis. These students tend to reach the correct diagnosis 
because they obtain sufficient information to rule-out reasonable (but incorrect) compet
itors. The Average Hypothesis Score measures how well the student's hypothesis is 
correlated with Iliad's at each stage in the work-up. Students must identify a plausible 
hypothesis (often, the correct final diagnosis) early in the case in order to earn a high 
Average Hypothesis Score. When students can recognize appropriate, plausible hypoth
eses, they are more likely to elicit appropriate patient findings to verify their diagnosis. 

Efficacy of Iliad Training 

The results indicate that students performed better on the dependent measures in the 
second replication of the experiment (second pair of Trained-Untrained test cases). How
ever, this improvement only occurred when students experienced the Uncommon Training 
and Test Sets. When students experienced the Common Training and Test Sets, their 
mean rate of Final Diagnostic Errors was quite low regardless of whether they had been 
Trained (6.0%) or Untrained (6.2%). These low Final Diagnostic Error rates in the two 
Common conditions (Trained and Untrained) were not significantly different from the 
mean rate for Uncommon, Trained condition (10.9%). However, when the Untrained 
students experienced Uncommon tests, the mean rate of Final Diagnostic Errors was 
significantly higher (21. 7%). Similar results were obtained for the Posterior Probability 
dependent variable. Students who were Untrained for the Uncommon tests received 
significantly lower Posterior Probability scores than the students in the other three con
ditions. For the Average Hypothesis Score, the results were not as clear. While the Test 
Set by Training Set by Time (replications) interaction was significant, the mean perfor
mances of the students were not clearly significantly different between the Trained and the 
Untrained conditions within the Uncommon or the Common Test Cases. 
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. These results indicate the Iliad's training effects appear to be significant when the 
Uncommon cases were trained and tested. However, these training effects were not 
observed for the Common test cases. There are several potential explanations for these 
findings. First, the student performance on the Common test cases was quite good 
whether the students were Trained or Untrained (e.g., Final Diagnostic Errors: Trained 

6.o%; Untrained 6.2%). These students could have been previously well trained on the 
subject matter relating to the common cases. This might have occurred because the 
students' preclinical training focuses on common conditions, and this tendency is rein
forced on the clerkships. These students might have received enough training on these 
common conditions that the additional Iliad training was relatively ineffective. A second 
potential explanation is that our Common test cases were too easy. If the cases were too 
easy, the uniformly high student scores could prevent us from adequately distinguishing 
the students' performances. A third explanation might be that the dependent variables 
represent relatively coarse outcome measures which do not detect subtle, but important 
training effects. For instance, a student might arrive at and verify the correct final diag
nosis, but do so in a very cost-ineffective manner. We are now developing and evaluating 
finer-grained assessment measures which can provide a more detailed evaluation of the 
work-up process. 

We also observed that Iliad's training effects appeared to be significant only in the 
second replication of the experiment. This effect may occur because students must first 
gain experience with the software during the initial phase of the clerkship. The weekly 
support sessions in the first half of the clerkship do focus on reinforcing student use of the 
learning tools. Therefore, students may not reap the maximum teaching benefit from Iliad 
until later in the rotation (the second replication). Another potential explanation is that 
generalization of learning occurs across the domains, and that generalization from the first 
replication reinforces performance on the second replication. However, other aspects of 
the data (see below) make this explanation seem unlikely. 

Domain Specificity 

We used the correlational data within the dependent measures, across the replica
tions, to examine whether domain specificity was observed. Previous research suggests 
that practitioner performance is quite domain specific. IG-I

2 Training or experience in one 
domain does not predict performance in another domain. Therefore, we would expect low 
correlations for scores on a particular dependent measure across different Iliad test cases. 
The correlational data provides support for this reasoning. For instance, the correlation 
between the Final Diagnostic Errors in replications one and two (different cases in each 
replication) was weak [r = 0.236; t(92) = 2.33, p < 0.02). While this correlation and 
the others were still statistically significant, they explain only about 6% of the shared 
variance between the scores [r = 0.236, ~ = 0.056]. This shared variance is a full order 
of magnitude less than the correlation noted between the different measures within a 
replication. Similar results were obtained for correlations between the Posterior Proba
bility and Average Hypothesis Score variables in replications one and two. 

The small correlations within the specific dependent variables that we observed 
between the replications could indicate a weak generalization across case domains. How
ever, these correlations could also be spurious. For instance, a few students might have 
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been relatively uninterested in Iliad. These students might have tended to perform poorly t 
when they experienced the Trained as well a~ the Untrained conditions. Their uniformly t 
poor performance would have been pooled w1th data from other students who performed r 

well when Trained and less well when Untrained. This pooling could result in the small 1 

but significant, correlations we observed. We believe this was not a major effect, becaus; j 
we assessed students' attitudes about Iliad following the training. In a postclerkship ! 
evaluation, most students indicated that they enjoyed using the software and rated it as t. 

equivalent to or superior than standard teaching modalities (e.g., books, lectures, rounds). J 
However, just a few disinterested students could produce the small correlations that we ~ 

documented. Whatever their cause, such correlations (up to r = 0.30, which would ~ 
explain about 10% of the variance) are consistent with the findings of other researchers f 
who have examined this domain generalization issue. 11 ~ 

Potential Limitations of the Research 

One potential limitation of this research is that we did not have a computer-untrained ' 
control group. Instead, we provided experimental control by placing the students in ' 
different training domains. This strategy will provide adequate experimental control if ' 
training is relatively domain specific (as indicated by both previous research and the 
current results). There are three reasons why we adopted this strategy instead of simply 
using a computer-untrained control group. First, all students must become equally pro- · 
ficient with the computer in order to score to the best of their abilities on the test cases. 
If control students perform no training cases, their testing proficiency will decay after the 
initial orientation. Second, student reactivity to the experiment is minimized when all 
students receive interesting training. In early pilot studies, some students were random
ized to train with a version of Iliad that did not contain learning tools. These students had 
a very negative reaction because they perceived that the software did not help them learn. 
Their negative reaction threatened to contaminate the good will we had created among the . 
faculty as well as among the experimental students who had received a fully functional 
version of Iliad. Based on this experience, we concluded that medical students are more 
likely to accept training when it is outwardly nonmanipulative and appears beneficiaL 
Third, we adopted apparently "equal" training for all students in order to minimize any 
potential ''Hawthorne'' or placebo effects. 19 

Another potential limitation of the research is that we did not analyze the students' 
exposure to real patient cases during their training. However, because the average stu
dent's actual case experience is so small during the clerkship, we do not believe this 
contaminated the results. At our institution, the average student is assigned to take 
primary responsibility for only two or three cases each week during their clerkship (they 
follow other cases peripherally, perhaps assisting with procedures or attending patient 
rounds). A previous analysis of our students' case logs indicated that fewer than 50% of 
the students would be expected to see more than two patients who resembled Common 
cases during a single clerkship. For Uncommon cases, the students' exposure to real cases 
is even more limited. For example, we found that substantially fewer than l% of our 
students will see a real case of Addison's Disease. Even when students do see real cases 
which duplicate training or test cases, this experience is randomly distributed among t4e · 
students in each experimental condition. This random experience with real cases would 
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ctually be expected to increase the experimental variation in the test results ("noise") 
~d thus reduce our chances of finding a significant training effect. 

Adopting Expert Systems Training 

Based on our work, we have identified several factors we believe influence the 
successful adoption of an innovation such as lliad. First, the support of key faculty must 
be obtained. At Utah, we have long enjoyed a tradition which supports the early clinical 
implementation of innovative new developments in medical informatics. For example, the 
Chief of Medicine and Clerkship director were strong early supporters of lliad. While 
achieving the support key faculty could be difficult in other settings, we have noticed that 
faculty at other institutions who are now adopting Iliad tend to be pleased when someone 
offers to enhance the student clerkships. However, these faculty must be convinced that 
the new approach is meritorious before they will endorse the new training procedures. 

A second key technique to promote successful adoption is to inform the trainees' 
clinical supervisors about the proposed training. These supervisors (e.g., faculty and 
residents) work with and evaluate the students on a daily basis, and must approve and 
support any significant commitments of student time. We adopted several strategies to 
convince these supervisors of the merit of the student training. For the residents, we gave 
"noon conferences" which explained Iliad and the goals of the training. We made similar 
presentations to the faculty at research and clinical seminars. When these clinical super
visors and teachers understand and support the training, they provide signals to the 
students which indicate that the training is likely to be worth their time and effort. 

A third key strategy which ensures more successful adoption is to place the com
puters where the students perform the majority of their work. For junior students, this 
location should be the medical wards, not necessarily a computer learning center (even if 
it is relatively close by). Computers should be placed on the wards because students have 
many competing demands on their time, and are most likely to use the computer when it 
is conveniently situated and immediately available. 

A fourth important strategy is to provide students with an adequate initial training 
and ongoing technical support. We have found that a 2- to 3-hr orientation on the first day 
of the rotation is adequate to get students started using the software. We supplement this 
initial orientation with brief (20-min) weekly meetings, following "grand rounds." We 
also provide students with faculty advisers who conduct "office hours" for individual 
students. 

A fifth and final strategy we have adopted is to require that all trainees use Iliad 
during their clerkship. To ensure that our junior students had enough time to use the 
software, we first reduced their lecture requirements. Because Iliad was required, we 
monitored each student's compliance with the training requirements and provided feed
back when individual students fell behind. We found in our pilot work that students tend 
to focus on those activities which are clearly required their performance evaluation. 

Directions for Future Research 

Our current research did not find a training effect for the Common cases. However, 
our research employed relatively coarse outcome measures (such as the Final Diagnostic 
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Errors or Posterior Probability) to quantify the training effect. We are now exploring 
whether finer-grained assessment measures could detect important training effects for the 
Common cases. The measures we are now designing and evaluating will be used to assess 
the work-up process as well as the outcomes of the diagnostic work-up. For instance 

I 

algorithms now being evaluated in new versions of lliad can measure the cost and infor. 
mation gain associated with each patient finding or test which the student orders during 
the work-up. In the simulation training mode, these algorithms can provide the student 
with tailored, formative feedback regarding the cost-effectiveness of the work-up. In the 
simulation-test mode, these algorithms can provide the basis for calculating dependent 
measures which characterize the cost-effectiveness of the student's work-up. 

The current research also does not examine the durability of the training effects. We 
examined student performance following a relatively short (1 week) lag period after the 
training. The lag period was designed to be long enough to prevent students from divining 
the experimental design, but short enough to minimize any long-term forgetting. We are 
now designing a new student experiment intended to examine the durability of the learn. 
ing over longer periods. 

Finally, while our current research measures how student performance improves for 
simulated patients, it does not indicate how student performance might improve on real 
patients. We are now planning research to determine how patient care might be affected 
by simulated case training. This research will measure trainees' performance on "stan
dardized patients." Standardized patients are actors who simulate clinical conditions. 
Simulated patients have been used extensively to analyze student and practitioner prob
lem-solving performance. 12

•
2° Future research will also attempt to explain student per

formance on computerized simulated patients by conducting ''stimulated recall'' sessions 
following each student's computerized testing. These sessions are designed to pennit 
faculty analysis of the student's test case performance.21 

SUMMARY 

We implemented a training regime for junior year medical students in which we used 
an expert system to provide tailored feedback on simulated patient cases which were 
administered in a learning mode. This regime was integrated into the University of Utah's 
standard internal medicine clerkship for junior year students. Our analysis of the students' 
performance on computerized test cases revealed a significant training effect for students 
who were trained in uncommon cases. These training effects were strong enough to boost 
the performance of these students to approximately the same level as that demonstrated by 
students who experienced common test cases. One important assumption of our research 
was that the training effects would be relatively domain specific. This assumption was 
confirmed by our results, as is consistent with previous research in the area. 

Microcomputer-based expert systems can provide an effective method of supple
menting case-based training programs for students or residents. In this study, we found 
that the expert system was especially effective for training students in uncommon diag· 
nostic conditions. Students and other trainees may not receive experience with the com· 
plete set of diagnostic conditions with which they are expected to become familiar. In , 
these cases, the expert system training could be especially effective. 
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