An editorial on this Classic Article in medical computing appears elsewhere in this issue.

A MATHEMATICAL APPROACH TO MEDICAL DIAGNOSIS: APPLICATION TO CONGENITAL HEART DISEASE

HOMER R. WARNER, M.D., Ph.D., ALAN F. TORONTO, M.D., L. GEORGE VEASEY, M.D., AND ROBERT STEPHENSON, Ph.D.

An equation of conditional probability is derived to express the logical process used by a clinician in making a diagnosis based on clinical data. Solutions of this equation take the form of a differential diagnosis. The probability that each disease represents the correct diagnosis in any particular patient can be calculated. Sufficient statistical data regarding the incidence of clinical signs, symptoms, and electrocardiographic findings in patients with congenital heart disease have been assembled to allow application of this approach to differential diagnosis in this field. This approach provides a means by which electronic computing equipment can be used to advantage in clinical medicine.

Diagnosis of disease on the basis of clinical data is considered by the medical profession to be a subtle art that can be mastered only after years
of careful study and extensive personal experience. Although rapid advances are being made in the development of new and improved methods for acquiring objective information from a patient concerning an illness, similar progress has not been made in analyzing and improving the logical process by which a diagnosis is deduced from this information. The present study was undertaken to find an explicit mathematical expression for this logical process, with the hope that such an expression might improve the accuracy of diagnosis in certain fields of medicine, lead to a more scientific approach to the teaching of medical diagnosis, and provide a means, with the help of an electronic computer, for relieving the physician of the task of storing and recalling for practical use in diagnosis an ever-increasing mass of statistical data. The derivation of such an equation is herein presented and its useful-
ness illustrated in its application to the diagnosis of congenital heart disease on the basis of clinical data.

Theory

That the logical process involved in medical diagnosis could be expressed as a problem in conditional probability (1) was suggested by Ledley and Lusted (2). The problem consists of estimating the likelihood or probability of event y_{1} occurring in the presence of another event, x. In this paper the event y_{1} is one disease among a series of diseases y_{1}, y_{2}, $\ldots y_{k}$, assumed to be mutually exclusive, and the event x is a set of clinical findings x_{1}, x_{2}, \ldots x_{j}, which will here be called symptoms even though physical signs and electrocardiographic findings are included. The probability of y_{1} is defined by

$$
\text { Equation 1: } P_{y_{1}}=\frac{N_{y_{1}}}{N_{\left(y_{1}, y_{2}, \ldots y_{k}\right)}}
$$

where $\mathrm{N}_{\mathrm{y}_{1}}$ is the number of times disease y_{1} would occur in a large random sample of $\left.N_{\left(y_{1},\right.}, y_{2}, \ldots y_{k}\right)$ patients with diseases y_{1}, y_{2}, \ldots y_{k}. $\left(\mathrm{P}_{\mathrm{y}_{1}}\right)$ is simply the incidence of disease y_{1} in this subpopulation consisting only of people having one of these diseases. The probability of symptoms x occurring in a patient with disease y_{1} is given by

$$
\text { Equation 2: } \mathrm{P}_{\mathrm{x}_{1} \mathrm{y}_{1}}=\frac{\mathrm{N}_{\mathrm{xy}_{1}}}{\mathrm{~N}_{\mathrm{y}_{1}}}
$$

where N_{xy} is the number of patients with disease y_{1} also having symptoms x. Dividing the numerator and denominator of the right-hand term by the size of the population $\mathrm{N}_{\left(\mathrm{y}_{1}, y_{2}, \ldots y_{k}\right)}$ results in

$$
\text { Equation 3: } \mathrm{P}_{\mathrm{xly}_{1}}=\frac{\mathrm{P}_{\mathrm{xy}_{1}}}{\mathrm{P}_{\mathrm{y}_{1}}}
$$

By the same reasoning the probability of disease y_{1} occurring in the presence of symptom complex x may be written as

$$
\text { Equation 4: } \mathrm{P}_{\mathrm{y}_{1} \mid \mathrm{x}}=\frac{\mathrm{P}_{\mathrm{xy}_{1}}}{\mathrm{P}_{\mathrm{x}}}
$$

where P_{x} is the probability of symptoms x occurring in any patient with one of those diseases. If these diseases are considered mutually exclusive, it follows that

$$
\text { Equation 5: } \mathrm{P}_{\mathrm{x}}=\sum_{\text {all } k} \mathrm{P}_{\mathrm{y}_{\mathrm{k}}} \mathrm{P}_{\mathrm{xl}_{\mathrm{k}}}
$$

Combining equations 3,4 , and 5 results in

Equation 6: $P_{y_{1} \mid x}=\frac{P_{y_{1}} P_{x_{1 y_{1}}}}{\sum_{\text {all } k} P_{y_{k}} P_{x_{1} y_{k}}}$
which is an expression of Bayes' rule for the probability of causes. Now, in fact, any symptom complex (x) may be represented as a series of independent symptoms $x_{1}, x_{2}, \ldots x_{j}$. Thus, the condition-

SYMPTOMS TO BE EVALUATED BY THE PHYSICLAN

Table 1

DISEASES INCLUDED IN DIFFERENTIAL DIAGNOSIS

Table 2

$\mathrm{y}_{1}=$ normal
$\mathbf{y}_{2}=$ atrial septal defect without pulmonary stenosis or pulmonary hypertension*
$\mathrm{Y}_{3}=$ atrial septal defect with pulmonary stenosis
$\mathrm{y}_{4}=$ atrial septal defect with pulmonary hypertension*
$\mathrm{y}_{5}=$ complete endocardial cushion defect (A-V commune)
$y_{6}=$ partial anomalous pulmonary venous connections (without atrial septal defect)
$y_{7}=$ total anomalous pulmonary venous connections (supradiaphragmatic)
$\mathrm{y}_{8}=$ tricuspid atresia without transposition
$\mathbf{y}_{9}=$ Ebstein's anomaly of tricuspid valve
$y_{10}=$ ventricular septal defect with valvular pulmonary stenosis
$\mathbf{y}_{11}=$ ventricular septal defect with infundibular stenosis
$y_{12}=$ pulmonary stenosis, valvular (with or without probe-patent foramen ovale)
$\mathrm{y}_{13}=$ pulmonary stenosis, infundibular (with or without probe-patent foramen ovale)
$\mathrm{y}_{14}=$ pulmonary atresia
$\mathbf{y}_{15}=$ pulmonary artery stenosis (peripheral)
$\mathbf{y}_{16}=$ pulmonary hypertension,* isolated
$\mathrm{y}_{17}=$ aortic-pulmonary window
$\mathrm{y}_{18}=$ patent ductus arteriosus without pulmonary hypertension*
$\mathrm{y}_{19}=$ pulmonary arteriovenous fistula
$\mathrm{y}_{20}=$ mitral stenosis
$\mathrm{y}_{21}=$ primary myocardial disease
$y_{z 2}=$ anomalous origin of left coronary artery
$y_{\mathbf{2 B}_{3}}=$ aortic valvular stenosis
$\mathrm{y}_{24}=$ subaortic stenosis
$\mathrm{Y}_{25}=$ coarctation of aorta
$\mathrm{y}_{26}=$ truncus arteriosus
$y_{27}=$ transposed great vessels
$y_{28}=$ corrected transposition
$\mathrm{y}_{29}=$ absent aortic arch
$y_{30}=$ ventricular septal defect without pulmonary hypertension*
$\mathrm{y}_{31}=$ ventricular septal defect with pulmonary hypertension*
$y_{32}=$ patent ductus arteriosus with pulmonary hypertension*
$\mathbf{y}_{33}=$ tricuspid atresia with transposition
*Pulmonary hypertension is defined as pulmonary artery pressure \geqq systemic arterial pressue.
al probability ($\mathrm{P}_{\mathrm{x} \mid \mathrm{y}_{1}}$) of symptom complex x occurring in disease y_{1} must be the product of the probabilities of the individual symptoms that make up the set occurring in disease y_{1}. This is expressed in

Equation 7:

$$
P_{x_{x \mid y_{1}}}=P_{x_{1} y_{1}} P_{x_{2} \mid y_{1}} \ldots P_{x_{j} y_{1}}
$$

In order to clarify the meaning of independence of individual symptoms let us consider the case of two symptoms, x_{a} and x_{b}. It might be argued that for x_{a} to be truly independent of x_{b}, the probability of x_{a} must not be influenced by the presence of x_{b}; that is

Equation 8: $\mathrm{P}_{\mathrm{xa}_{\mathrm{a}} \mid \mathrm{x}_{\mathrm{b}}}=\mathrm{P}_{\mathrm{x}_{\mathrm{a}}}$.

However, this can be true only if x_{b} is uniformly distributed throughout the population. This means that $\mathrm{P}_{\mathrm{x}_{\mathrm{b}} \mathrm{y}_{\mathrm{t}}}=\mathrm{P}_{\mathrm{x}_{\mathrm{b}} \mid \mathrm{y}_{2}}=\mathrm{P}_{\mathrm{x}_{\mathrm{b}} \mid \mathrm{y}_{\mathrm{k}}}=$ 1 and that x_{b} is of no diagnostic value. For this reason Equation 8 must be an inequality. In spite of this, these symptoms for present purposes are truly independent of each other as long as this inequality is due only to the non-uniform distribution of x_{b} in diseases y_{1}, $y_{2}, \ldots y_{k}$ and not due to a direct causal relationship between x_{a} and x_{b}. In the selection of symptoms to be used in a particular field, care must be taken to adhere to this criterion as closely as possible.

With use of Equation 7, we may rewrite Equation 6 in an expanded form as

Equation 9:

$$
P_{y_{1}\left(x_{1}, x_{2} \ldots x_{j}\right)}=\frac{P_{y_{1}} P_{x_{1} \mid y_{1}} \ldots P_{x_{j} \mid y_{1}}}{\sum_{\text {all } k} P_{y_{k}} P_{x_{1} \mid y_{k}} P_{x_{2} \mid y_{k}} \ldots P_{x_{j} \mid y_{k}}}
$$

With this expression it is possible to calculate the probability $\left(P_{y^{1}} \mid x_{1}, x_{2}, \ldots x_{j}\right)$ that each disease $y_{1}, y_{2}, \ldots y_{k}$ exists in the presence of symptoms $x_{1}, x_{2}, \ldots x_{j}$ from statistical information concerning the incidence of each disease $P_{y_{1}}$ in the population under consideration and the incidence of each of the patients' symptoms in each of these diseases ($\mathrm{P}_{\mathrm{x}_{1} \mid y_{k}}, \mathrm{P}_{\mathrm{x}_{2} \mid y_{k}}$, etc.). These statistical data, required for the righthand term of Equation 9, may be compiled and stored in a form (punched cards, punched paper tape, or magnetic tape) that will make them readily available for an electronic digital computer to extract the pertinent numbers (depending on the symptoms presented by the patient) for carrying out the calculation called for by the equation.

Because Equation 9 uses only probabilities involving the symptoms actually present in the patient under consideration, the absence of a particular symptom does not influence the diagnosis. Thus, in order to make use of the fact that the absence
of a symptom may have a bear－ ing on the probability of a given disease being present，Equation 9 is modified to give

Equation 10：
$\left.P_{y_{1}\left(x_{1},\right.}, \bar{x}_{8}, \ldots x_{j}\right)$

$$
=\frac{P_{y_{1}} P_{x_{1} \mid y_{1}}\left(1-P_{x_{8} \mid y_{1}}\right) \ldots P_{x_{j} \mid y_{1}}}{\sum_{\text {all } k} P_{y_{k}} P_{x_{1} \mid y_{k}}\left(1-P_{x_{g} \mid y_{k}}\right) \ldots P_{x_{j} \mid y_{k}}}
$$

where the bar above x_{8} in the initial term indicates that symp－ tom x_{8} is not present in the pa－ tient under consideration．Be－ cause $\mathrm{P}_{\mathrm{x}_{8} \mid \mathrm{y}_{1}}$ represents the prob－ ability of symptom x_{8} occurring
in disease y_{1} ，its complement（ 1 － $\left.\mathrm{P}_{\mathrm{x}_{8} \mid \mathrm{y}_{1}}\right)$ must represent the prob－ ability of symptom x_{8} not occur－ ring in a patient with disease y_{1} ． Thus，the absence of a symptom is treated as a discrete event when Equation 10 is used，and the probability that a symptom is absent can be obtained direct－ ly from the probability figure for the presence of the symptom．

Application to Congenital Heart Disease

Because the accuracy of a diag－ nosis of congenital heart disease based on clinical symptoms can be checked by cardiac catheter－
ization and／or findings at sur－ gery，and because relatively ob－ jective clinical findings can easi－ ly be obtained，this field was chosen for a pilot study．The list of symptoms and diseases used in this study，with their corre－ sponding symbols，is shown in Tables 1 and 2．Statistical infor－ mation concerning the incidence of each of these symptoms in each of these diseases is present－ ed in Table 3．The numbers in the first column represent the incidence of each disease（ P_{y} ）in the subpopulation made up of patients referred to this labora－ tory in whom congenital heart disease was suspected．The rest

SYMPTOM－DISEASE MATRIX

Table 3

Dis－ eases	Inci－ dence	x_{1}	x_{2}	x_{3}	X_{4}	x_{5}	${ }^{1} 6$	x_{7}	x_{8}	X_{9}	x_{10}	X_{11}	x_{12}	x_{13}	X_{14}	X_{15}	X_{16}	x_{17}	X_{18}	$\mathbf{x}_{19} \mathbf{x}_{20}$
$\mathrm{y}_{1} \ldots \ldots$.	0.100	01	49	50	01	00	01	00	01	01	10	03	05	05	03	05	01	70	02	07 00
$\mathrm{y}_{2} \ldots \ldots \ldots \ldots$	． 081	10	50	50	02	01	02	00	01	35	50	05	02	40	01	02	02	30	20	$0205 \times$
$\mathrm{y}_{3} \ldots \ldots$.	． 005	30	60	10	20	10	20	00	01	60	70	05	02	10	10	02	02	05	05	0257
$\mathrm{y}_{4} \ldots \ldots$.	． 001	10	20	70	30	10	25	00	01	80	90	05	05	15	10	02	02	15	20	0205
$\mathrm{Y}_{5} \ldots \ldots$.	． 027	20	50	30	15	05	10	00	01	40	50	05	05	30	05	60	15	90	40	0210 等
$\mathbf{y}_{6} \ldots$.	． 005	10	40	50	01	01	01	00	01	15	20	01	05	05	01	02	02	20	02	02.02 䖿
$\mathrm{y}_{7} \ldots \ldots$.	． 001	20	70	10	65	10	05	00	01	70	80	05	05	20	05	02	02	10	15	10.05
y_{8} ．．．．．．．．．．．	． 018	50	48	02	30	65	01	00	10	80	90	20	05	15	10	02	05	65	05	05.20 紋
$\mathrm{y}_{9} \ldots \ldots$.	． 001	10	45	45	22	44	01	00	22	80	80	10	30	15	22	05	25	95	25	05.05
$\mathrm{y}_{10} \cdots \ldots . . .$.	． 054	40	55	05	25	25	10	00	30	75	90	05	05	10	20	02	02	20	02	05.65
$y_{11} \ldots \ldots . .$.	． 063	40	55	05	30	30	10	00	40	75	90	05	05	10	25	02	02	20	02	05.65
$\mathrm{y}_{12} \ldots \ldots \ldots$	． 045	20	70	10	01	01	01	00	01	50	65	01	01	01	10	02	02	10	02	0530
$\mathrm{y}_{13} \ldots \ldots . .$.	． 013	20	70	10	01	01	01	00	01	50	65	01	01	01	10	02	02	10	02	02.30
$\mathrm{y}_{14} \ldots \ldots . .$.	． 014	90	09	01	10	90	00	00	80	90	99	05	10	05	35	02	02	40	05	05． 01
$\mathrm{y}_{15} \ldots \ldots \ldots$.	． 001	05	45	50	01	01	01	00	01	01	01	01	01	01	01	04	01	02	01	01.02
$\mathrm{y}_{16} \ldots \ldots . .$.	． 013	10	45	45	01	01	01	00	01	70	95	40	10	10	10	01	01	30	05	01.016
$\mathrm{y}_{17} \ldots \ldots . .$.	． 001	30	60	10	05	01	01	00	01	10	10	05	01	10	01	05	10	20	05	60.01 禿
$\mathrm{y}_{18} \ldots \ldots . .$.	． 072	20	40	40	01	01	01	00	01	20	20	10	01	10	05	05	15	10	02	50－62
$\mathrm{Y}_{19} \ldots \ldots . .$.	． 002	20	30	50	45	45	01	00	01	10	20	05	01	01	10	05	02	10	02	20.02
$\mathrm{y}_{\mathbf{z o}} \ldots \ldots . .$.	． 008	20	50	30	01	01	01	00	01	50	50	40	05	10	10	80	20	10	10	02 05
$\mathrm{y}_{21} \ldots \ldots . .$.	． 013	70	29	01	01	01	01	00	01	40	50	20	01	05	05	15	02	05	02	02.02%
$\mathrm{y}_{22} \ldots \ldots . . .$.	． 001	70	29	01	01	01	01	00	01	30	30	30	80	15	20	05	01	01	01	$01 \% 01$
$\mathrm{y}_{23} \ldots \ldots . .$.	． 036	10	80	10	01	01	01	00	01	20	30	20	15	01	35	20	02	20	10	02． $05 \times$
$\mathrm{y}_{24} \ldots \ldots . .$.	． 009	10	80	10	01	01	01	00	01	20	30	20	15	01	35	20	02	20	10	$02.05{ }^{\text {c }}$
$\mathrm{y}_{25} \ldots \ldots . .$.	． 054	10	70.	20	01	01	01	00	01	20	30	20	01	01	05	05	01	20	10.	0202
$\mathrm{y}_{26} \ldots \ldots . .$.	． 005	50	40	10	30	60	01	00	15	15	30	05	01	20	10	02	02	70	02	02． 10
$\mathrm{y}_{27} \ldots \ldots . .$.	． 063	90	10	00	20	60	05	10	05	60	70	20	01	05	10	05	02	50	02	02 \％80，
Y_{28}, \ldots.	． 001	30	30	30	30	05	10	00	01	10	20	01	01	01	01	05	02	70	02	02．0¢
$\mathrm{y}_{29} \ldots$.	． 001	60	39	01	01	01	01	80	30	10	50	05	20	01	20	05	02	50	02	02． 109
$\mathrm{y}_{30} \ldots \ldots . .$.	.252	15	70	15	01	01	01	00	01	20	30	05	01	15	05	05	20	95	05	02 10
$\mathrm{y}_{31} \ldots \ldots . .$.	． 081	30	60	10	30	50	10	00	05	60	70	20	10	20	10	05	01	50	10	02\％05：
$\mathrm{y}_{32} \ldots \ldots \ldots$	． 005	30	40	30	01	01	05	50	01	20	30	10	01	10	05	02	02	10	10	02－0才薙
$\mathrm{y}_{33} \ldots \ldots . .$.	． 069	40	55	05	50	20	10	00	01	80	90	20	01	30	05	05	10	70	05	0210

of Table 3 is a matrix with symptoms along the horizontal axis and diseases listed vertically. For instance, the number 0.02 at the intercept of symptom x_{4} and disease y_{2} represents $P_{x_{4} \mid y_{2}}$, the probability or incidence of mild cyanosis occurring in a patient with atrial septal defect without pulmonary hypertension. (In this study pulmonary hypertension is arbitrarily defined as pulmonary artery pressure equal to or greater than aortic pressure.)

Several things about this symptom-disease matrix require explanation. Listed among the diseases is a category called normal. The incidence of normal
$\left(\mathrm{P}_{\mathrm{y}_{2}}\right)$ in this study is 0.10 , since 10% of the patients referred to this laboratory for heart catheterization are normal by physiologic studies, which include dyedilution curves. The figures in the incidence column and symptoms $\mathrm{x}_{1}, \mathrm{x}_{2}$, and x_{a} (age) may vary from one population to the next, while the other data, which express the probability of each symptom in each disease, should remain constant from one laboratory to the next. Each of the probabilities in the matrix was determined by us from a careful review of published data of others, particularly Keith and coworkers, ${ }^{3}$ review of data ob-
tained from 1035 patients referred to this laboratory for diagnostic catheterization, and estimates based on the pathologic physiology of the defect in the case of rare defects in which adequate statistics were not available.

Notice that each patient is classified according to age into one of three categories- 1 month to 1 year, 1 year to 20 years, and over 20 years of age. The patient's age is treated as a symptom. For instance, the number 0.70 occurring at the intercept of x_{2} and y_{13} indicates that this symptom (age, 1 to 20 years) will occur in 70 of 100 patients with
ptoms

x_{25}	X_{26}	X_{27}	x_{28}	X_{29}	x_{30}	x_{31}	x_{32}	x_{33}	x_{34}	X_{35}	x_{36}	x_{37}	x_{38}	X_{3}	x_{4}	X_{41}	x_{4}	x_{43}	x_{4}	X_{45}	X_{46}	X_{47}	x_{48}	X_{49}	x_{50}
01.00	01	01	15	05	10	03	01	01	01	02	02	02	02	02	01	00	02	70	04	03	00	00	80	05	10
101. 01	01	01	60	01	80	01	01	01	70	05	05	85	02	02	01	02	01	30	02	20	05	01	90	01	60
01.01	01	02	30	15	40	01	05	01	85	05	20	70	02	02	01	01	01	05	01	05	60	01	38	01	70
11. 01	01	01	95	01	50	01	65	01	85	05	20	70	02	02	01	02	01	15	20	02	05	01	40	01	40
01.01	01	01	70	02	40	10	10	01	05	70	05	85	02	02	15	01	85	05	02	20	02	20	20	20	80
01.01	10	15	40	02	10	01	01	01	15	02	02	15	02	02	02	02	02	20	02	02	02	02	60	02	30
01.01	10	15	85	02	80	01	01	01	90	02	25	75	02	02	02	02	30	10	01	30	05	01	80	02	70
01.01	01	01	02	60	01	20	30	01	02	90	02	02	90	10	05	02	50	15	05	02	20	20	20	20	50
0101	01	01	02	35	10	20	10	01	10	02	02	60	02	02	25	25	45	45	25	25	15	15	05	05	50
02.02	10	15	10	00	20	01	02	01	95	02	85	10	02	02	02	02	20	05	02	02	60	05	25	05	90
10202	10	15	10	60	20	01	02	01	95	02	85	10	02	02	02	02	20	05	02	02	60	05	25	05	90
0202	01	01	10	60	20	01	05	01	95	02	85	10	02	02	01	01	01	10	02	02	68	01	25	01	80
02	01	01	10	60	20	01	05	01	95	02	85	10	02	02	01	01	01	10	01	01	68	01	25	01	80
02.02	10	10	01	90	20	01	02	01	95	02	85	10	02	02	02	01	30	40	02	05	01	01	02	02	20
20.02	50	05	10	02	10	01	01	01	10	02	10	02	02	02	01	01	02	02	01	00	02	01	25	02	60
02	02	02	95	00	30	01	10	01	95	02	90	05	02	02	01	01	01	30	15	05	02	02	05	02	20
02.02	02	02	70	01	20	40	01	01	01	15	02	02	60	05	10	02	10	20	05	02	02	02	10	05	75
0202	03	05	50	01	20	40	02	01	02	10	02	02	50	05	10	02	05	10	02	02	05	02	20	10	85
01.01	05	70	05	05	20	01	01	01	05	05	02	02	02	02	02	02	10	10	02	02	02	02	10	10	30
02.02	01	01	50	01	20	05	02	01	50	02	10	40	02	02	20	20	10	10	10	10	05	05	10	10	70
10.02	01	01	20	02	10	50	02	01	05	10	05	05	40	90	02	02	10	10	02	02	02	02	05	05	10
01	01	01	20	02	01	05	01	01	05	10	05	05	20	90	01	01	01	01	01	01	01	01	01	01	10
05	01	01	20	10	01	40	01	05	05	15	02	02	70	15	02	02	02	20	10	02	05	01	05	01	90
05	01	01	20	10	01	40	01	05	05	15	02	02	70	15	02	02	02	20	10	02	05	01	05	01	90
15. 10	80	15	10	10	01	30	01	99	05	05	02	02	40	04	01	01	05	20	10	02	02	02	10	05	65
02	05	10	40	10	30	05	01	01	30	10	40	10	20	05	02	02	40	40	02	02	10	10	10	10	40
1502	01	01	20	10	20	20	02	02	40	20	30	05	20	05	02	02	30	30	02	02	03	03	10	10	50
15, 02	01	01	20	10	10	10	01	01	20	10	10	10	10	10	02	02	30	30	02	02	05	05	30	30	60
02	01	01	90	02	40	05	01	10	70	05	80	05	10	05	02	02	30	30	02	02	10	10	30	30	20
92. 05	01	01	30	02	05	30	01	01	30	10	05	05	15	05	20	02	92	05	05	01	01	10	01	10	85
0205	01	01	90	02	30	05	05	01	70	05	75	15	10	05	01	01	30	30	10	02	01	05	01	05	50
02.02	02	02	90	02	30	05	05	01	70	05	75	15	10	05	02	02	10	10	02	02	02	02	20	20	20
0201	01	01	30	10	01	20	30	01	02	90	02	02	90	10	10	02	30	30	05	05	10	10	30	30	50

TERMS TO BE USED IN EQUATION 10 IN CASES OF MUTUALLY EXCLUSIVE SYMPTOMS

Table 4

infundibular pulmonary stenosis who come to this laboratory. In this way, then, the fact is recognized that the age of the patient does influence the probability of a given diagnosis.

Since the patient can belong in only one of the three age groups, these three "symptoms" cannot be considered independent of one another. Thus, if the patient's age is between 1 and 20 years, $\mathrm{P}_{\mathrm{x}_{2}}$ is used in Equation 10 but the complement of the probability for the other two age groups is not used in this case.

Furthermore, it is important that care be taken not to include in the list of symptoms any two symptoms that invariably occur together, since this strongly suggests interdependence and a causal relationship between them. For instance, clubbing of the fingers was not included as a separate symptom since it occurs in the same patients with congenital heart disease who have evidence of severe cyanosis. Instead, it is included as part of the definition of severe cyanosis. Inclusion of redundant (interdependent) symptoms would result in an unreal increase in the probability of those diseases having a high incidence of these symptoms when these symptoms are present, and a falsely low probability when these symptoms are absent.

There are other symptoms in the list that are mutually exclusive. For instance, the existence of x_{5} excludes by definition x_{4}, x_{6}, and x_{7}. Thus, it would be an error to consider the absence of $\mathrm{x}_{4}, \mathrm{x}_{6}$, and x_{7} as additional pieces of information once x_{5} is known to be present. On the other hand, the absence of x_{4} through x_{7} in a particular case (no cyanosis) is an important fact and must be recognized by using in Equation 10 the complement of the sum of the probabilities of each of these symptoms occurring in the disease in question, which is $1-P_{x_{d} \mid y_{1}}-P_{x_{f} \mid y_{1}}-P_{x_{d} y_{1}}-P_{x_{d} \mid y_{1}}$.

Groups of mutually exclusive symptoms are indicated by braces in Table 1, and a complete list

TEST CASE ILLUSTRATING EFFECT OF INCLUDING NEGATIVE INFORMATION

Table 5

	Diagnosis with Equation 9	
Symptom	Disease	Probability
$\mathrm{x}_{3} \ldots$.	y_{11}	0.33
$\mathrm{x}_{10} \ldots$.	Y_{10}	0.28
$\mathrm{x}_{11} \ldots \ldots . .$.	Y_{16}	0.11
$\mathrm{x}_{29} \ldots \ldots . .$.	y_{12}	0.14
$\mathrm{x}_{34} \ldots$.	y_{13}	0.04
$\mathrm{x}_{36} \ldots \ldots . .$.		
$\mathrm{X}_{43} \ldots \ldots . .$.		
$\mathrm{x}_{48} \ldots$.		

Diagnosis with
Equation 10

Disease	Probability
	0.62
y_{12}	0.21
y_{13}	0.07
y_{10}	0.04
y_{11}	0.03
y_{16}	

Diagnosis with Equation
10 and without x_{1}

Disease	Probability
\mathbf{y}_{12}	0.73
\mathbf{y}_{13}	0.24
y_{10}	0.02

of mutually exclusive symptoms, together with instructions about what data should be used in solving Equation 10 in any particular case, is given in Table 4.

Use of the Computer

Because of the large number of calculations required to make each diagnosis in the example (congenital heart disease) used in this paper, it is necessary to use a digital computer if Equation 10 is to be solved in a practical way. This equation can be solved by almost any generalpurpose electronic digital computer that has the capability of "floating decimal point" operation. The incidence of each symptom in each disease shown in the matrix is transferred to punch cards. These disease cards, together with cards that contain the program telling the computer what operations to perform, are transferred into the computer memory by a card-reading machine. Another punched card is prepared from a check-off list of symptoms on which the physician, after examination of the patient, has marked the symptoms presented by the patient. (X-ray data are not presented in this paper but are being evaluated for inclusion in the symptom list at the present time.)

From this information, the computer then calculates, with use of Equation 9 or 10, the probability of each of the 33 congenital heart diseases being present in the patient under consideration. The diseases with probabil-
ity greater than 1% are printed out at the end of the calculation, together with their respective probabilities. Two symptom lists are checked off by the clinician after examination of each patient. On one list (brown sheet) murmurs are described only as to timing and location, while on the other list (white sheet) the time course of intensity of the murmurs is included (Table 1). Equation 10 is solved with each of these sets of symptoms, and the resulting differential diagnoses are compared. Although the calculation based on the white sheet often gave a higher probability to the correct diagnosis, this was not consistently the case, particularly in instances in which classification of the time course of murmur intensity was difficult even with the help of a phonocardiogram. The point to be made here is that in applying this approach to diagnosis a compromise must be reached between two alternatives: the desirability of using as much information as possible, and the limitations in accuracy with which the more detailed information can be observed in the patient and the necessary statistical data can be obtained.

Example

The case shown in Table 5 illustrates the effect of using both positive and negative information in making a diagnosis. The list of symptoms indicates that the patient was over 20 years of age and complained of easy fatigue and orthopnea; his pulmo-
nary second sound was diminished; his electrocardiogram exhibited an axis greater than 110° and an R wave greater than 1.2 mV in lead V_{1}; and by phonocardiogram he had a midsystolic murmur, without a thrill, which was of equal intensity in the pulmonary (second left interspace) and the precordial (fourth left interspace) area. Calculation of the probabilities for each disease with use only of the positive information (Equation 9) resulted in a higher probability for tetralogy of Fallot (y_{10} and y_{11}) than for isolated pulmonary stenosis (y_{12} and y_{13}). However, when both positive information and negative information were taken into account, as when Equation 10 is used, the probability of isolated pulmonary stenosis became 0.83 , while the probability of tetralogy of Fallot was only 0.11 . This patient was later found to have y_{12} both by physiologic studies and at surgery.

Also illustrated in Table 5 is the way in which this approach can be used to evaluate the contribution made toward a diagnosis by any given symptom. Here the calculation has been carried out with and without the symptom of orthopnea $\left(\mathrm{x}_{11}\right)$. Had this patient not complained of orthopnea the probability of isolated pulmonary stenosis (y_{12} and y_{13}) would have been 0.97 , as compared with 0.83 when orthopnea was considered present. This, of course, results from the fact that orthopnea rarely occurs in patients with y_{12} or y_{13}. Since the presence or absence of
just one symptom may make a real difference in the differential diagnosis, as in this instance, it is apparent that each symptom on the list must be accurately evaluated in every case if the correct probabilities are to be calculated. For this reason, only the most objective symptoms should be included in the definition of the original list for any study, even if this must be done at some sacrifice of detail.

In the case of the present study we are under the impression from our experience to date that symptoms 10 through 14 detract from the accuracy of diagnosis as often as they contribute, because of the difficulty involved in assessing their actual presence or absence in many cases, as well as the inaccuracy of the available statistical data regarding the incidence of these symptoms in each of these diseases. These five symptoms might well be eliminated from the list.

Evaluation of Experience to Date

Because the differential diagnosis obtained with this approach represents an estimation of probabilities in which the statistical data of Table 3 are used, it is impossible from a limited number of cases to evaluate its accuracy. However, it is apparent from our experience to date with 36 cases that the most probable diagnosis estimated with Equation 10 agrees with the actual diagnosis made by physiologic studies and observation at surgery at least as often as does the most probable diagnosis estimated by three experienced cardiologists from the same clinical information. Furthermore, the differential diagnosis resulting from solution of the equation is frequently more complete and, in retrospect, often appears more logical to the clinicians than the differential diagnosis listed by each of them before seeing the equation's prediction.

It must be emphasized that Equation 10 was derived directly from the definition of conditional probability. Thus, any evalua-
tion of the accuracy of the predictions made by this approach should be considered as testing the adequacy of the matrix of statistical data and not of the equation. Given the correct original data matrix and accurate observations of the patient, the calculated probabilities will be correct. Final refinement of the present data matrix must await the accumulation of sufficient data for calculation of new probabilities ($\mathrm{P}_{\mathrm{x}_{\mathrm{j}} \mid y_{k}}$ Since the presence or absence of each symptom is determined in each case, and fol-low-up information almost invariably yields the diagnosis with certainty, the data for satisfactory recalculation of symptom incidence are routinely accumulating. The computer will be used to recalculate its own data matrix when the amount of data is sufficient.

Aids to Teaching

That an explicit expression of the logic used in medical diagnosis has potential usefulness as a tool for teaching diagnosis to medical students and physicians seems apparent. The approach here presented provides a framework within which any diagnostic problem can be formulated and critically analyzed.

Often the very act of attempting to formulate the problem in terms required for application of Equation 10 results in new insight by providing answers to such questions as:

1. What is the exact definition of each symptom and each disease?
2. Are certain symptoms interdependent and others mutually exclusive?
3. What symptoms are important determinants of the diagnosis and what symptoms are unimportant?

A solution of Equation 10 for any given set of symptoms provides an objective, reproducible standard against which students can check the accuracy of their own deductions from these symptoms. How modifying the symptom set in any desired fash-
ion affects the differential diagnosis can be readily observed.

This approach to the teaching of diagnosis of congenital heart disease is in current use at this hospital and has met with enthusiastic acceptance by medical students.

Appendix

To illustrate the use of Equation 10 , consider the simple case of a population consisting of just two diseases (y_{1} and y_{2}) and three independent symptoms ($\mathrm{x}_{1}, \mathrm{x}_{2}$, and x_{3}). The relative incidence of these two diseases and the probability of each symptom in each disease are shown in the matrix below.

	Incidence	x_{1}	x_{2}	x_{3}
y_{1}	0.23	0.1	0.7	0.6
y_{2}	0.77	0.8	0.2	0.5

If the patient to be diagnosed presents with symptoms x_{1} and x_{3}, Equation 10 would be solved with use of the following numbers to make the diagnosis:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{y}_{1}\left(\mathrm{(x}, \mathrm{x}_{1}, \bar{x}_{2}, \mathrm{x}_{3}\right)}= \\
& \frac{0.23(0.1)(1-0.7)(0.6)}{\frac{0.23(0.1)(1-0.7)(0.6)+0.77(0.8)(1-0.2)(0.5)}{0.016}} \\
& \quad=0.01
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{y}_{2}\left(\mathrm{x}_{1}, \overline{\mathrm{x}}_{2}, \mathrm{x}_{3}\right)}= \\
& \frac{0.77(0.8)(1-.2)(0.5)}{\frac{0.23(0.1)(1-0.7)(0.6)+0.77(0.8)(1-0.2)(0.5)}{0.2}} \\
& \quad=0.984
\end{aligned}
$$

[Adapted from JAMA (1961; 177(3): 177-183) with the permission of the publisher.]

References

1. Feller, W., An Introduction to Probability Theory and Its Application, New York: John Wiley \& Sons, Inc., 1960.
2. Ledley, R.S., and Lusted, L.B., Use of Electronic Computers to Aid in Medical Diagnosis, Proc Inst Radio Engineers 47: 1970-1977 (Nov.) 1959.
3. Keith, J.D., and others: Heart Disease in Infancy and Childhood, New York: The Macmillan Co., 1958.
