
Formal Methods for Surviving the Jungle of Heterogeneous Parallelism

Ganesh Gopalakrishnan

School of Computing,
University of Utah,

Salt Lake City, UT 84112
Email: ganesh@cs.utah.edu

Research Page: http://www.cs.utah.edu/ fv

Abstract—The parallel programming community will soon
be entering the ‘jungle’ of heterogeneous hardware and soft-
ware. Unfortunately, we are not adequately preparing future
programmers (today’s students) to cope with the many chal-
lenges of heterogeneous concurrency, especially in their ability
to rigorously specify and verify concurrent systems. Concerted
action is urgently needed to create a body of education material
supplemented by effective software tools that help gain working
knowledge of specification and verification techniques. We
suggest funding models and incentives that can help create
this material and put them into wide practice.

Keywords-Parallel/concurrent programming, and education;
multicore computing; teaching parallelism concepts; formal
methods/debugging tools.

I. THE HETEROGENEOUS PARALLEL JUNGLE

In his article [1], Sutter describes how the computing

industry which began multicore CPU adoption around year

2004 has virtually completed this transition in every conceiv-

able computing domain—phones, game stations, serves, and

cloud machines are all now multicore CPU based. He points

to the unsettling growth that lies ahead, in which a veritable

‘jungle’ of heterogeneous hardware and software varieties

will play a role at each of these domains. This heterogeneity

is also predicted by the Borkar/Chien article [2] where the

authors describe the microprocessor roadmap in which com-

merical CPUs will end up containing six or more core types.

The consequences of these predictions are dire. The ability

of the computing society to make progress in computational

performance is now hinged on designers’ ability to deal with

the high amounts and sheer variety of concurrency.

This paper is about one crucially important aspect of

concurrency: how do we now show that a heterogeneous
software system is operating correctly? Today’s software

testing methods—already inadequate for testing concurrent

programs—will prove to be even more so in the face

of growing heterogeneity. Today’s labor-intensive ways of

writing tests for sequential programs are untenable for

concurrent programs—especially where multiple models of

concurrency are involved. While formally based approaches

to specification and verification are essential, we must also

ensure that we do not take an ‘all or nothing’ approach

to formality. In other words, we must offer designers a

spectrum of techniques to choose from, so that they can

utilize the highest levels of rigor for the most critical of com-

ponents. Given the perpetual shortage of trained manpower

and verification resources, the less critical components can

still be verified through conventional means or through semi-

formal methods. This is more or less how the microprocessor

industry operates, deploying formal methods in roughly the

priority order: (i) floating-point units, (ii) cache coherency

engines, (iii) interconnect protocols, and (iv) everything else.

Luckily, many verification techniques are becoming more

conducive to supporting the use of different verification

‘strengths.’ For instance, powerful verification techniques

such as symbolic reasoning engines based on BDDs, SAT

methods, and decision procedure based methods (“SMT,

[3]”) can be used on inputs and states that are partially

instantiated to yield the best of both worlds (namely, ex-

ecution based analysis and symbolic analysis). All this of

course depends on students being taught the fundamentals

of these techniques so that they enter the workforce with the

required level of maturity to use the tools well as well as

evolve them in interesting ways.

A. Need for Vision and Concerted Action

A vast number of promising avenues for formal spec-

ification and verification that can actually be taught to

undergraduates actually exist. Yet, these avenues are not

being pursued aggressively.

The problem lies with the manner in which we have

gone on to include these techniques into our curricula. We

do fully back the TCPP curriculum efforts which already

address many of the necessary steps to achieve formal train-

ing concurrency There are also excellent alternate course

proposals [4] that cover many of these topics. We now briefly

discuss some of the required priorities, going forward.

1) Formal Methods are Essential: Informal explanations

and direct experience with actual hardware and software are

indispensible to come to grips with nuances of concurrency.

Beyond that, a student must be exposed to judiciously

chosen formal explanations. As a simple example, to teach

a new student about the exponential growth of the number

of threads interleavings, a good approach is to first derive

familiar equations that characterize this growth, and then

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.164

1299

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.164

1315

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.164

1321

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276276722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

introduce them to concepts (e.g., partial order reduction) that

help them compute equivalence classes of interleavings. As

another example, consider the ongoing efforts on standardiz-

ing language level memory models (e.g., C++0x): we believe

that having a formal component to teaching is essential

in this area. In the fast-moving world of concurrency, the

onus is on instructors to equip students with the ability

to engage in life-long learning—achieved through formally

based education methods. As an example, consider one im-

portant topic in data center design: server consolidation and

virtualization, assisted by innovative uses of Flash memories

to relieve I/O pressures. We were pleasantly surprised to

hear, in a recent talk [5] in this area, that even I/O system

designers are grappling with similar memory consistency

issues. A student who has been taught judiciously chosen

and effective formal methods in this area—for example, the

ability to write clear state transition style specifications in

the Operational Semantic Style—is far ahead in terms of

the ability to innovate. A quote from Sutter [6] pertaining

to memory model specifications is most apropo:

My 30 years of experience reasoning about and

specifying systems has shown that the only way

to understand any non-trivial system is as a state

machine.

2) Needless Variety: Constructs found in various het-

erogeneous APIs often have significant overlap. For exam-

ple, message passing constructs occur in different APIs in

different-looking syntaxes, and unfortunately are likely to

be taught as if they are different. Formal methods must

be developed to help bridge these apparent differences, by

building briding abstractions based upon a parsimonious

primitive basis.
3) What was once hard may no longer be so: As an

example, previously proposed curricula may have shied

away from topics involving mathematical logic or program-

ming semantics. The reality is that teaching such topics is

becoming easier, thanks to the availability of an increasing

number of tools. Some of our experiences with these tools

are provided in § II-E.
4) It may require “industrial-strength” ideas/tools: Just

because we are “only” discussing undergraduate educa-

tion, there is a temptation to think that approaches known

for decades (hence known to many likely teachers of

a concurrency-relevant subject) are enough. For example,

manually checking for adherence to best practices is the

message we glean from many excellent books (e.g., [7]);

the trouble is that even experts don’t have a handle on

best practices for emerging heterogeneous APIs. Also, while

students must be taught the basics of model checking, that

alone does not suffice. We must also expose them to more

practical tools and techniques (§ II-E).
5) Consolidating Teaching Resources: Literally hundreds

of excellent projects on creating educational material and

software (including some of the author’s own) have been

proposed and implemented; yet, many have not taken root.

Without a powerful set of incentives, these ideas and re-

sources face the uphill battle of vying for attention and

commitment from teachers who are already overworked with

respect to their basic survival modes of either heavy teaching

or heavy research grant proposal writing.

Suitable incentives must be in place so that formal

methods researchers engaged in cutting-edge concurrency

research are likely to invest time/effort in curriculum devel-

opment. There must also be incentives to measure the impact

of these curricula through monitoring and quality assurance

mechanisms that don’t have to be created anew (something

that is less likely to happen). We propose the use of existing

conference tutorial channels as a vehicle for making this

happen. In particular,

• Those funded under special initiatives on formal methods

for concurrency must be required to submit tutorials to

major conferences. It is quite timely to point out that this
very forum—TCPP Workshops associated with IPDPS—
could evolve into one such workshop, consisting of talks,
tutorials on education, and posters.
• Funding must also be devoted to making sure that

students interested in taking these tutorials compete for

travel/registration awards, and the winners obtain generous

travel and registration support to attend these tutorials.

II. A SAMPLING OF OUR EFFORTS

We now present a list of our own past efforts, which

among them have had an impact, and why most of them

have not had the level of adoption they have the potential

for. We then detail our thoughts on how educators as well

as funding agencies might approach some of the challenges,

and work toward demonstrating measurable impact.

A. Formal Methods for MPI Programming

The PI was one of the tutorial instructors of a Supercom-

puting 2010 (half-day) and a Supercomputing 2011 (full-

day) tutorial in which he taught formal methods for dynamic

analysis of MPI programs. Some of these approaches have

been summarized in PI’s CACM December 2011 article [8].

As reported in this article, our dynamic analyzer ISP is

now available with a framework called Graphical Explorer

of MPI programs (GEM) which, in turn, is part of official

releases of the Eclipse Parallel Tools Platform (PTP) since

November 2009. During the 2011 Supercomputing PTP

tutorial, ISP and GEM were remote-enabled on NCSA

cluster machines, and used by nearly 30 tutorial attendees

on a large (10,000+) line example. These attendees detected

bugs (memory leaks) in this example during this tutorial.

PI’s student Gibson has helped incorporate all the texbook

examples from a popular MPI programming book [9] into

ISP/GEM [10] as easily accessible projects! This does make

ISP/GEM available as an excellent tool using which to teach

130013161322

formal methods for MPI programming, especially because it

goes with examples from an actual popular MPI textbook.

More importantly, students can, for the first time, study

many of the MPI concepts and behaviors through formal

dynamic analysis using MPI—not relying solely on informal

explanations found in books. We have demonstrated that

scenarios introduced in MPI manuals can be calculated
within ISP through its happens-before model of MPI. Such

predictive power is what formal methods are all about—one

can dispense with case-specific explanations that first of all

make the material look disjoint, and second of all do not aid

the student to engage in life-long learning.

Our Lack of Success, and Reasons: We really have

not met the degree of success we were hoping for. Our

Supercomputing 2011 experience of teaching the tutorial

attendees suggests that the material can have a tangible

impact. However we must now take these efforts to the next

level of practicality:

• We must build formal tools that fail (or degrade) grace-

fully, yielding bug-reports and insights proportional to the

amount of time that they are run on an example. At present,

formal methods groups (including our own) have not created

tools that have this feature.

• We must build open-analysis tools. It is widely known that

there can’t be a truly ‘push-button’ verification tool. Users

must instead be given the ability to script a certain analysis

“cocktail”—for instance (1) deploy symbolic verification

methods to compute a general symbolic internal state, (2)

concretize this state and run random testing. This will

allow designers to trust and learn to use verification tools

more effectively. Present-day tools do not support this usage

model.

• A basic change of mindset is essential. As one example,

our efforts within our campus to encourage local HPC

training facilities to adopt our formal MPI analysis tools

has gone nowhere. The mindset of those who teach MPI

seems to be geared toward the question “how to quickly get

group of students running their programs on a cluster” and

not “how to ensure that they are able to achieve reliable

computations.”

B. Formal Methods for GPU Programming

Similar to what we did with ISP/GEM, we have begun

an ambitious research program addressing formal methods

for CUDA. The basis for this work was laid over two tools

we have built, published about, and released. The first of

these tools is PUG [11], and the second, and much more

capable tool is a concolic testing and verification approach

for CUDA programs embodied in a brand-new tool called

GKLEE [12]. Similarly to our efforts with ISP/GEM and

Pacheco’s book, we are systematically working out examples

from the popular CUDA book [13], and hope to have this

compendium released along with GKLEE.

C. Courses on Practical Pallel and Concurrent Programming

The author helped run a pilot version of the PPCP course

[4] at the University of Utah. This course has, since then,

been also offered at the University of Washington Seattle

by Musuvathi, one of the co-authors of the PPCP course.

Clearly, there is enormous potential to build on PPCP—but

one that again needs resources and concerted action.

D. TV’06, PADTAD’09, EC2

The PI has also helped run other workshops/tutorials:

• A workshop on Shared Memory Consistency Models,

Specification and Verification in 2000 - [14]

• A workshop on concurrency verification in 2000 - [15]

• “Thread Verification” (TV, [16]) in 2006

• A tutorial-day at PADTAD 2009 [17]

• The successful workshop series EC2 [18].

There is a huge potential to collect material from these

workshops and make it available to students, especially to

trace the evolution of topics over this rapidly changing area.

E. Course Modules

Thanks to the bounty of tools and infrastructures others

are creating, the PI has experienced encouraging success in

creating very promising course curricula. Some examples

are now discussed.

Python-based Course Modules: It has been our ex-

perience that by employing Python as an easily teachable

and powerful programming language, we can make consid-

erable headway into teaching formal methods even within

the existing framework of undergraduate course. Here are

some examples (a URL that houses our material will be

maintained; a preliminary URL is [19]).

• We have incorporated much of a traditional “Models of

Computation” class into this approach. Students can very

concretely experiment with NFA, DFA, and regular expres-

sions, and also experiment with other classical machines

within Python. Using declarative subsets of Python (e.g.,
using set comprehensions supported by Python), we can

make Python code very close to mathematical notation!

We also had luck showing both (math and Python) in

juxtaposition, thus helping remove students’ apprehension

with math.

• We have built manipulation routines for Binary Decision

Diagrams in Python. We can teach BDDs as being a special

form of DFA. We can teach them mathematical logic using

BDDs. Our python routines are very easy to read and

understand.

• We have built Boolean Satisfiability routines in Python.

These are being used to teach SAT methods.

• We have given students access to SMT solvers through

a Python interface. Undergraduate students have been, with

ease, able to formulate and solve familiar puzzles. Here is

one original solution that a student developed The student

was taught the simple board game of Ken-Ken (similar to

130113171323

Sudoku) In Ken-Ken, one solves for missing numbers that

satisfy arithmetic constraints. The student was asked to even

solve for missing operators (missing +, −, ∗, or /) that

might satisfy the constraints. The student had no difficulty

arriving at suitable assertions with which to model and

solve the problem. Things such as this would have not even

been imaginable, or found feasible merely five years ago.

The rapid pace of advances in solver technology bode well

in terms of truly enabling high impact in formal methods

education! Of course, all these directly relate to concurrency
education also: our GKLEE tool for instance heavily relies

on SMT technology.
Tools for Operational Semantics: There is enormous

potential to place powerful tools (e.g., [20]) for conveniently

writing Operational Semantic definitions in the hands of

undergraduates and graduate students. Again, these devel-

opments are (relatively speaking) quite recent, and greatly

empower us to teach practically useful and impactful ma-

terial in a class setting. The author is engaged in such a

course [21] at the time of writing, and plans to compile his

experiences in due course.

III. CONCLUDING REMARKS

In this paper, we have attempted to impress upon the

reader the seriousness and urgency of equipping students

with the intellectual resources necessary to deal with the up-

coming chaos (“jungle”) in concurrency. We argued that for-

mal methods are a foundational pillar upon which much of a

student’s knowledge ought to rest. We have shown instances

where these tools are becoming much more powerful, usable,

and teachable—especially when coupled with declarative

styles of specification afforded by modern functional lan-

guages, scripting languages, and domain-specific languages.

Funding agencies must have a coherent plan of action

to make things happen by channeling resources, suitably

incentivizing the developments, and ensuring widespread

adoption; some ideas to help them achieve these goals are

also listed.

REFERENCES

[1] Herb Sutter. Welcome to the jungle (on hardware/software
concurrency), 2011. http://herbsutter.com/2011/12/29/
welcome-to-the-jungle/.

[2] S. Borkar and A. Chien. The future of microprocessors.
Communications of the ACM, May 2011.

[3] Satisfiability Modulo Theories Competition (SMT-COMP).
http://www.smtcomp.org/2009.

[4] Caitlin Sadowski, Thomas Ball, Judith Bishop, Sebastian
Burckhardt, Ganesh Gopalakrishnan, Joseph Mayo, Madanlal
Musuvathi, Shaz Qadeer, and Stephen Toub. Practical parallel
and concurrent programming. In SIGCSE, March 2011.

[5] Vikram Joshi and Prashant Radhakrishnan. Getting a million
iops through code you don’t own, January 2011. Colloquium,
School of Computing, University of Utah.

[6] Herb Sutter. The prism memory model specifica-
tion. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2007/n2197.pdf.

[7] Timothy G. Mattson, Beverly Sanders, and Berna Massingill.
Patterns for Parallel Programming. Addison Wesley, 2005.

[8] Ganesh Gopalakrishnan, Robert M. Kirby, Stephen Siegel,
Rajeev Thakur, William Gropp, Ewing Lusk, Bronis R.
de Supinski, Martin Schulz, , and Greg Bronevetsky. Formal
analysis of mpi-based parallel programs: Present and future.
Communications of ACM, December 2011.

[9] Peter Pacheco. Parallel Programming with MPI. Morgan
Kaufmann, 1996. ISBN 1-55860-339-5.

[10] Brandon Gibson. Supercomputing 2011 ACM Poster Compe-
tition Poster on integrating Pacheco’s textbook examples into
ISP/GEM.

[11] Guodong Li and Ganesh Gopalakrishnan. Scalable SMT-
based verification of GPU kernel functions. In ACM SIGSOFT
Symposium on the Foundations of Software Engineering (SIG-
SOFT FSE), 2010. www.cs.utah.edu/fv/PUG.

[12] Guodong Li, Peng Li, Geof Sawaga, Ganesh Gopalakrishnan,
Indradeep Ghosh, and Sreeranga P. Rajan. GKLEE: Concolic
verification and test generation for GPUs. In 17th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2012. www.cs.utah.edu/fv/GKLEE.

[13] Jason Sanders and Edward Kandrot. CUDA by Example.
Addison-Wesley, 2011.

[14] Tutorial and workshop on formal specification and verification
methods for shared memory systems. http://www.cs.utah.edu/
mpv.

[15] Workshop on advances in verification. http://www.cs.utah.
edu/wave.

[16] Ganesh Gopalakrishnan and John W. O’Leary. Thread veri-
fication (tv), 2006. http://www.cs.utah.edu/tv06.

[17] Ganesh Gopalakrishnan and Eric Mercer. Tutorials
day at padtad 2009. https://www.research.ibm.com/haifa/
Workshops/padtad2009/tutorial.shtml.

[18] Ganesh Gopalakrishnan. Co-organizing the ec2 workshop
series. http://www.cs.utah.edu/ec2/, http://www.cse.psu.edu/
∼swarat/ec2/, and http://www.cse.psu.edu/∼swarat/ec2-2010/.

[19] Website of “models of computation, fall 2011”. http://www.
eng.utah.edu/∼cs3100.

[20] K and matching logic. http://fsl.cs.uiuc.edu/index.php/K\
and\ Matching\ Logic.

[21] Website of “foundations of cs, spring 2012”. http://www.eng.
utah.edu/∼cs6100.

[22] Jason F. Cantin, Mikko H. Lipasti, and James E. Smith. The
complexity of verifying memory coherence and consistency.
IEEE Trans. Parallel Distrib. Syst., 16(7):663–671, 2005.

130213181324

