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Abstract  

Meta-analysis combining results from multiple studies is a standard practice in GWAS. For genetic main 

effects, meta-analysis has been shown to provide comparable results as mega-analysis that jointly 

analyzes the pooled data from the  available studies.  Gene-environment interaction (GEI) studies are an 

important component of genetic epidemiology research since they can explain a part of the missing 

heritability, elucidate the biological networks underlying disease risk, and identify individuals at high 

risk for disease. However, it is not known whether meta- and mega-analyses of interactions also yield 

comparable results. In this study, we investigate whether both approaches provide comparable results for 

identifying interaction effects using empirical data from 4 studies: the Framingham Heart Study, 

GENOA, HERITAGE and HyperGEN. We performed meta-analysis of cohort-specific results and 

mega-analysis by analyzing the pooled data from all 4 studies. We used the standard 1 degree of 

freedom (df) test of main effect only, the 1 df test of the interaction effect (in the presence of main 

effect), and the joint 2 df test of main and interaction effects. We found that the results from meta- and 

mega-analyses were highly consistent for all three tests. The correlation between -log (p) values from 

the two analyses was 0.89 for the 1 df main effect, 0.90 for the 1 df interaction test, and 0.91 for the joint 

2 df test. Although mega-analysis provided slightly better results as expected, both yielded very similar 

results for the most promising SNPs. Moreover, mega-analysis is not always feasible especially in very 

large and diverse consortia since pooling of raw data may be limited by the terms of the informed 

consent. Our study illustrates that meta-analysis can be an effective approach also for identifying 

interactions in very large consortia without losing appreciable power. 

Keywords: gene-environment interactions (GEI), meta-analysis, mega-analysis 

  



3 
 

 

Introduction 

Genome wide association studies (GWAS) have identified hundreds of common genetic variants 

associated with many common complex disease traits (http://www.genome.gov). As of February 19, 

2013, a total of 3,584 unique SNPs have been significantly associated with 500 traits through GWAS. 

The confidence and funding invested in GWAS approaches have led to unprecedented levels of 

collaboration, spawning a number of highly productive consortia such as the CHARGE (Cohorts for 

Heart and Aging Research in Genetic Epidemiology),1 GIANT (Genetic Investigation of 

Anthropometric Traits),2 and ICBP (International Consortium of Blood Pressure).3 It is standard practice 

in these consortia to perform meta-analysis that combines the results from multiple studies for the same 

phenotype of interest.4 Meta-analysis provides an efficient and practical strategy for overcoming the 

limitations of power that can compromise any individual study.  

To increase sample sizes, one could obtain the individual level data from studies able to participate and 

jointly analyze the pooled individual-level data (such analysis is referred to here as mega-analysis). 

However, meta-analysis that combines summary results has several advantages as opposed to mega-

analysis. First, obtaining individual leve data is challenging and limited by the terms of the informed 

consent within each study. Second, integration of very large genotype and phenotypic data sets from 

different studies is time-consuming and poses additional challenges with data management, storage, and 

harmonization issues. Third, meta-analysis allows for analyses of individual studies to account for local 

population substructure, relationships among subjects, study-specific covariates, and other 

ascertainment-related issues which may be optimally dealt with within each study. 

Although GWAS have successfully identified hundreds of new susceptibility loci for complex traits, 

these identified loci have very subtle effects, thus explaining only a small fraction of the heritability of 

most complex traits.5 It is increasingly recognized that the near-exclusive focus on main effects has 

become a barrier to the identification of additional genes underlying these disease traits. Increasingly 

greater emphasis is being placed in recent years on GxE interaction analyses, also relying on meta-

analysis in large consortia. The identification of gene-environment (GxE) interactions (GEI) is important 

for many reasons.6; 7 GxE interactions or more complex pathways involving multiple genes and 

environments can explain a fraction of missing heritability.5; 8-10 They can further elucidate the 
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biological networks underlying complex disease risk and enable “profiling” of individuals at highest risk 

for disease. Although identifying GxE interactions is important, it requires larger sample sizes than those 

needed to identify genetic main effects alone.11 Therefore, it is important to have very large sample 

sizes. Meta-analysis which has been useful for identifying genetic main effects will be even more useful 

for identifying GxE interactions.  

Although mega-analysis is arguably more powerful than meta-analysis of summary results, in so far as 

analysis of main effects is concerned, it has been shown that both approaches yield highly comparable 

results.12 However, whether meta- and mega-analyses yield comparable results also for GxE interaction 

effects is unknown. Therefore, we investigated this comparison using empirical data.  

 

Methods 

Studies 

In this paper, we used four studies: the Framingham Heart Study (as obtained through the dbGaP), 

GENOA, HERITAGE and HyperGEN.  All four studies obtained informed consent from participants 

and approval from the appropriate institutional review boards. 

The Framingham Heart Study (FHS) is a longitudinal family-based study for identifying the factors that 

contribute to cardiovascular disease, sponsored by the National Heart, Lung, and Blood Institute 

(NHLBI). FHS began in 1948 with the recruitment of an original cohort of 5,209 men and women who 

were 28 to 62 years of age at entry.13 Clinic examinations took place approximately every 2 years. In 

1971, a second generation of study participants, 5,124 children and spouses of children of the original 

cohort, were enrolled.14 Clinic examinations took place approximately every 4 years. Enrollment of the 

third generation cohort of 4,095 children of offspring cohort participants began in 2002.15 In this 

analysis we used cross-sectional data on 6,686 subjects involving all 3 generations who have GWAS 

data. 

The Genetic Epidemiology Network of Arteriopathy (GENOA) is a family-based study of hypertension 

and diabetes (e.g., see Daniels et al16). GENOA recruited sibships with at least two hypertensive siblings 

and any additional available siblings, regardless of hypertension status. In total, it has collected data on 

over 5,000 Caucasian-American, African-American subjects, and Hispanic-American subjects, from 
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Minnesota, Mississippi, and Texas, respectively. GENOA subjects were brought in for a complete 

physical exam and questionnaire. We used the 1,420 Caucasian subjects with GWAS data in this 

analysis. 

The HERITAGE (Health, risk factors, exercise training and genetics) Family Study was designed to 

evaluate the role of genetic and non-genetic factors in cardiovascular, metabolic, and hormonal 

responses to aerobic exercise training.17 Extensive data, including body composition, cardiovascular risk 

factors, and lifestyle habits, were gathered on approximately 800 subjects in over 100 families, both 

before and after 20-weeks of supervised training. We used 469 Caucasian subjects with GWAS data in 

this analysis. 

The Hypertension Genetic Epidemiology Network (HyperGEN) is a multicenter family-based study for 

investigating the genetic causes of hypertension and related conditions.18 HyperGEN recruited African 

American and Caucasian participants at five field centers. It recruited sibships with at least two 

hypertensive siblings, unmedicated offspring of these hypertensive siblings, and an age-matched random 

sample.  Subjects were brought into the clinic for a one day exam, and data was collected from 

questionnaires, a physical exam, and blood and urine samples. In total, HyperGEN has collected data on 

2,471 Caucasian-American subjects and 2,300 African-American subjects. We used 1,216 Caucasian 

subjects with GWAS data in this analysis. 

Statistical Analyses 

To compare meta-analysis and mega-analysis in the context of GxE interactions, we analyzed systolic 

blood pressure (SBP) and used pack-years of smoking as an interacting covariate. In addition, we 

included age, sex, body mass index (BMI) and use of anti-hypertensive medications as covariates. Using 

data from these four studies, we analyzed each study data separately and then meta-analyzed the results 

using METAL.19 We also combined the raw phenotypic and GWAS data from all 4 studies and analyzed 

the pooled data (mega-analysis). For this pooled data set, we included study-specific intercepts. Our 

analysis was restricted to SNPs on chromosomes 16 and 18, for which the FHS data yielded significant 

results. 

To compare meta-analysis and mega-analysis, we considered three analysis options. First, as most 

GWASs use a main-effect-only analysis, we also performed a main-effect-only analysis. The expected 

response trait (Y) has the regression model  
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E[Y] = λ0 + λe E+ λg G,  

where λe is the environmental main effect and λg is the genetic main effect. We used the Wald test 

statistic that follows a chi-squared distribution with 1 degrees of freedom (df) under the hypothesis H0: 

λg=0 (i.e., testing for the genetic main effect). Second, we followed the standard approach to identify 

GxE interactions.  The regression model is generalized to  

E[Y] = α + βe E + βg G + βge GE,  

where βe and βg respectively are the environmental and genetic main effects and βge is their 

multiplicative interaction effect. We used the Wald test statistic that also follows a chi-squared 

distribution with 1 df under the H0: βge=0 (i.e., testing for the GxE interaction effect in the presence of 

the genetic main effect). Third, we performed the test proposed by Kraft et al20 that jointly tests the 

genetic main and GxE interaction effects using the same regression model as in the second analysis.  We 

used a Wald test statistic that follows a chi-squared distribution with 2 df under the H0: βg=βge=0. This 

Wald test statistic is based on estimates of βg and βge and their corresponding 2x2 covariance matrix. 

Because all four studies are family studies in which relatedness must be taken into account, we used 

ProbABEL21 and GenABEL/MixABEL.22  

To combine the association evidence from the four studies, we performed meta-analysis. We used the 

inverse-variance weighting method in METAL19 by computing inverse-variance-weighted coefficients. 

It is straightforward to combine the 1 df results of main-effect-only analysis and the 1 df results of 

interaction effect. To combine the joint 2 df results  (estimates of βg, βge and their corresponding 2x2 

covariance matrix) from these 4 studies, we used the joint meta-analysis method developed by Manning 

et al23 who modified METAL19 to handle this joint 2df meta-analysis.  

 

Results 

Table 1 presents select characteristics of the four studies. Roughly half of the subjects are female within 

each study. The subjects in HERITAGE tended to be younger, relatively leaner and low pack years with 

no anti-hypertensive medications (since hypertension was an exclusion criterion). In contrast, the 

subjects in GENOA tended to be older and have high pack years and high SBP with over 55% on anti-
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hypertensive medications. The HyperGEN study has characteristics similar to GENOA, although not as 

marked. The FHS has intermediate values for SBP, medication use and pack years. 

Results were compared between meta-analysis and mega-analysis for all three analysis options: main-

effect-only analysis, 1 df interaction effect in the presence of the main effect, and 2 df joint tests of main 

and interaction effects. As shown in Figure 1, the results [- log (p) values] between the meta- and mega-

analyses correlated very well for all three analysis options. Surprisingly, the joint 2 df test provided the 

highest overall correlation (0.91). About 10% of the SNPs (shown in red) had heterogeneity p-values < 

0.05; for these heterogeneous SNPs there was larger variation in the meta- and mega-analysis results 

resulting in a bit lower correlation between them (as expected). Similarly about 5% and 13% of SNPs 

had heterogeneity p-values from the 1 df main effect and 1 df interaction effect, respectively. Overall, 

although mega-analysis provided slightly better results as expected, both methods yielded very similar 

results for the most promising SNPs (with the smallest p values). 

 

Discussion 

Over the past several years, GWAS have identified hundreds of variants for complex traits, thereby 

accelerating the progress in the genetic dissection of complex human disease traits.28 With the use of 

meta-analysis, the GIANT consortium identified multiple loci that modulate human body size and 

shape;2 the CHARGE consortium identified multiple variants associated with several cardiovascular 

phenotypes.1; 3 However, an important and sobering observation is that most of the identified (common) 

genetic variants have small main effects, explaining only small proportions of the trait variances. 

Increasingly greater emphasis is being placed in recent years on GxE interaction analyses, also relying 

on meta-analysis in large consortia.  

While it is known that meta- and mega-analyses of main effects yield comparable results12, the same is 

not known for GxE interactions, which forms the basis of our investigation here. In addition to the 

standard 1 degree of freedom test of interaction effect, we used the joint 2 df test of main and interaction 

effects by Kraft et al20  and the joint meta-analysis by Manning et al.23  When the genetic main effect is 

weak and GxE interaction effect is moderate, the joint 2 df test has been shown to be more powerful 

than either the 1 df test of the genetic main effect only or the 1 df test of the interaction effect alone.20 

The increase in power for the 2 df over either 1 df test can be dramatic when the type I error rate is 
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controlled at low levels as it is in genome-wide studies.29 Because the joint 2 df test supplements 

standard marginal tests of genetic main effects with additional information from GxE interactions, the 

joint test can detect loci that are missed in marginal scans.23; 30 Furthermore, Manning et al23 developed 

the joint meta-analysis and modified METAL19 to combine the joint 2 df tests across multiple studies. 

The joint meta-analysis provides inference on the genetic main effect and interaction effect pooled 

across all studies. Manning et al30 used this approach and demonstrated power enhancement for 

detecting GxE interactions. 

To combine the association evidence from the four studies, we used the inverse-variance weighting 

meta-analysis method in METAL19 by computing inverse-variance-weighted coefficients. For the 1 df 

test of main effect and also for the 1 df test of interaction effect, we also performed another commonly-

used approach that converts the direction of effect and p-value observed in each study into a signed Z-

score; these Z-scores are then combined across studies in a weighted sum, with weights proportional to 

the square-root of the sample size for each study. The results between the inverse-variance weighting 

method and the sample size weighted signed Z score method were remarkably similar, providing a 

correlation of 0.98.  

Meta-analysis of genetic main effects from multiple studies is known to yield results comparable to 

those from analysis of the combined raw data (mega-analysis). In most consortia, it is a standard practice 

to perform meta-analysis that combines results from multiple studies, since each study can analyze its 

own data optimally, by customizing data adjustments as needed. Moreover, even if the study 

investigators are able, mega-analysis is not readily feasible owing to several challenging issues including 

limitations of the informed consent for sharing raw data, data management and storage issues in dealing 

with huge data sets, and data harmonization may become a bottleneck. All these challenges render meta-

analysis as the convenient and expedient method of choice. It is comforting to note that, as we illustrated 

using real data, results from meta- and mega-analyses appear to be highly consistent even for identifying 

GxE interaction effects. Therefore meta-analysis may continue to be leveraged for investigating 

interaction effects in very large consortia without losing much power.  
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Table 1. Summary statistics for the four studies 

 FHS GENOA HERITAGE HyperGEN 

# Subjects 6,686 1,420 469 1,216 

% Male 46.63 44.93 48.61 49.67 

Age (average) 49.05 ± 13.57 54.67 ± 10.70 36.86 ± 14.24 49.49 ± 13.83 

BMI (average) 27.44 ± 5.44 30.36 ± 6.24 26.04 ± 5.01 29.33 ± 5.94 

% on Anti-HT Meds 19.04 55.70 0.00 45.97 

SBP (average) 120.41 ± 16.40 133.53 ± 19.57 116.53 ± 11.15 123.19 ± 19.19 

Pack Years 

(average) 

9.87 ± 17.59 13.57 ± 21.57 4.99 ± 10.88 7.17 ± 16.26 
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