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Abstract

Societal, cultural and economic factors are driving food processors to reduce energy con-
sumed per unit mass of food. This presents a unique problem because time variant batch
processing using low to medium grade heat is common in food production facilities. Heat
recovery methods may be implemented by food processors to reduce energy consumption;
however, temporal variance in the process and utility flow require the development of a
robust, easily implemented energy model to accurately determine system effectiveness and
economic incentive. A bottom-up modular computational framework is proposed to model
the energy consumption of a cannery. The model predicts that the cannery will require 612
kJ gas/kg product produced, which is within the ranges provided in previous literature. Re-
sults show that adding a globally optimized indirect heat recovery system will reduce the gas
consumption by 6% annually. The proposed framework, used here to represent a cannery,
may be adapted to many different types of food processing facilities. With a clear picture of
energy consumption by device, and the ability to predict the impact of process modification
or heat recovery, plant-level energy usage for food processing may be significantly reduced.
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Nomenclature

A Area
Approach Tw,out − Twba,in
C Fluid capacity
Ceq Nonlinear Constraint Equation
CT Cooling tower
cp Specific heat at constant pressure (per unit mass)
Den Density
Dh Hydraulic diameter
E Effectiveness
F Correction Factor

Email address: amanda.d.smith@utah.edu (Amanda D. Smith)

Preprint submitted to Applied Energy July 20, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276276644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


h Enthalpy (per unit mass)
k Thermal conductivity
HX Heat exchanger
ṁ Mass flow rate
N Number of increments used for discretization
NN Neural Network
Ns Number of plates
NTU Number of transfer units
P Pressure
pws Saturation Water Vapor Pressure
Pr Prandtl
R Heat Capacitance Ratio
recirc Flowing thermal fluid
Range Tw,in − Tw,out

Re Reynolds
RH Relative humidity (as a percentage)
s Plate spacing
T Temperature (dry bulb, or bulk conditions)
Twb Wet bulb temperature
U Overall heat transfer coefficient
V Volume
v Specific volume

V̇ Volumetric flow rate
Ws Moist air saturation
η Efficiency
φ Relative humidity (as a fraction)
ω Humidity ratio

Subscripts
a Air
act Actual
amb Ambient
avg Average
brine Salt process water
can Can full of product
c Cold side
(d) Desired, or design, value
da Dry air
db Dry bulb
e exit condition
f Liquid water (saturated)
g Water vapor (saturated)
h Hot side
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hx Heat exchanger
in Inlet conditions
out Outlet conditions
pw Process water
recirc Recirculation Circuit
s Isentropic
sat Saturation conditions
tw Tower water
twr Tower water return
tws Tower water supply
w Water
wb Wet bulb
zone1 Cooker cooler heating section
zone2 Cooker cooler cooling section

1. Introduction

As consumers have become more interested in sustainable energy, efficiency is becoming
a foremost concern for many food processing companies. So much so that leading food
processing companies are voluntarily adopting measures to reduce the amount of energy
it takes to process foods. To this end, forty-two companies, including some of the largest
food processors, have partnered with the U.S. Environmental Protection Agency (EPA) to
improve their energy efficiency as part of the Energy Star Food Processing Focus [1].

Many different technologies are used by and available to food processors to offset primary
electrical energy consumption, such as photovoltaics and wind generation. Alternatively,
electrical cost may be reduced by shifting power consumption to off-peak hours. Zhu et
al. developed an energy model for a refrigerated food warehouse and proposed integrating
energy storage, calculating that operating costs could be reduced by 18% [2].

However, natural gas accounts for 52% of the energy used in the US food manufacturing
industry [3]. More specifically, natural gas to generate steam accounts for 65% of the energy
use in a typical cannery or 1977 kJ

kg
of product produced [4, 5]. Steam is typically generated

through fossil fuel combustion. Alternatives to fossil fuel have been studied, such as the
anaerobic digestion of waste streams at canning facilities, and have been considered as a
more sustainable means to produce steam. Hills presented real-world results from a 2-year
laboratory digestion of tomato, peach and honeydew [6]. Raynal increased solid removals and
methane production by using a two-stage anaerobic digestion [7]. Batstone investigated the
impact that granule size has on methane production in brewery and slaughter house waste
streams [8]. Most recently Zhang considered a three-stage anaerobic to increase methane
production [9]. Another approach to reducing total energy use is to maximize the efficiency
of steam production. Freschi and Giaccone assessed the effectiveness of maximizing the
efficiency of fuel usage by optimizing a trigeneration system within the food industry [10].
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Both practices reduce fossil fuel, although pollutants (CO2, NOx, etc) are still produced
during combustion.

Perhaps a more economical and reliable way to reduce on-site emissions is to simply use
thermal energy more efficiently within the facility. In particular, heat recovery focused on
reducing the plant’s total steam consumption will have the largest effect on reducing local
emissions. Wang estimated that recovering and reusing heat before it is lost to a heat sink
can save 8.96-11.95% of the total industrial fuel use in British Industry [11]. Waste heat
recovery systems in American food factories have also been studied.

Heat recovery systems have been widely studied. An in-depth literature review by Miro
found that the study of waste heat recovery systems in the industrial sector began in the
1970’s but not until 2006 was the field of much interest. Miro attributed the revised pop-
ularity due to increased environmental interest [12]. One common approach to capturing
low-grade waste heat is to transfer excess heat to centralized thermal storage tanks [13].
Duscha and Masica [14] and Wojnar and Lundberg [15] estimated that recovering waste
heat into a thermal storage tank and reusing the thermal energy could reduce energy con-
sumption in American food factories up to 6%. However, the optimization and design of the
central thermal transfer systems are typically based on pinch analysis, mixed integer linear
programming, or some combination of these approaches. A critical review by Klemes et al
describes the historical background of Pinch Analysis and Mathematical Programming for
waste heat recovery system, sometimes called heat integration. Klemes et al proposed that
Mathematical Programming is best suited for problems that consider multiple objectives
and/or a high number of optimization variables [16]. Tokos used mathematical program-
ming, specifically mixed integer linear programming, for optimizing waste heat recovery
systems at a batch processing brewery [17]. More recently Lee et al. used mixed integer lin-
ear programming for optimizing the heat recovery system but extended the optimization to
include operational scheduling. Lee et al. chose mixed integer linear programming because
pinch analysis ”may not be readily applied to cases with practical constraints on network
design or cost consideration, are are incapable of handling time as a variable” [18].

A recent EU funded road-mapping project to promote the integration of energy effi-
ciency in manufacturing found that an easy to implement cost calculation tool is required
[19]. Ideally, the tool would make the “resource and energy-cost transparent to facility man-
agement” [19], which will allow managers to make informed decisions on plant construction
and design. One such model has been developed by Herman [20]. Herman’s work provides a
flexible and dynamic simulation model that uses discrete events to calculate energy use over
time. The framework proposed here builds on Herman’s model, integrating stream to stream
heat recovery evaluation to facilitate plant management insight into to cost implications of
implementing low-grade heat recovery within their facilities.

A robust framework for evaluating and implementing heat recovery within a batch pro-
cessing plant has been proposed by Miah [21]. The work in this paper describes the devel-
opment of an easy-to-use simulation model integrating the techniques from both Miah and
Herman.

This paper presents the development of a general purpose batch processing energy model
with stream-to-stream heat recovery framework designed to give plant managers and system
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designers an efficient tool for use during facility design phase or operation to optimize plant
energy utilization. The model is generalized by the development of a standard recipe input
format and shift scheduler.

The model proposed is unique in that it extends the dynamic simulation to include utility
generators such as boilers, cooling towers, and steam to hot water heaters. Utility generators
may be modeled using conventional thermodynamic methods such as conservation of energy
or through the use of neural networks. Neural networks (NN) are beneficial to the model
because they may be implemented with little computational cost and without the need to
represent the physics of heat and mass transport throughout the device. The methodology
proposed in this work of using a (NN) to model cooling tower improves on previous energy
models because it incorporates TMY3 weather data to more accurately reflect how seasonal
weather changes impacts cooling tower efficiency. Recent energy models developed for the
tomato paste processing industry assumed a constant cooling tower heat rejection efficiency
[22].

The model’s output data may be used to determine where heat recovery is feasible and to
size a heat recovery system. Optimizing the heat recovery system in a batch processing plant
is challenging due to the wide range of recipes, which impact the availability of excess heat.
Here, an indirect heat recovery system is evaluated and optimized. A framework proposed by
Henze [23] was modified to represent batch processing facilities. The optimization technique
may be applied to any time-sensitive heat recovery system. Figure 1 presents a general block
diagram that may be applied to any batch processing facility.

The framework developed here is then applied to a small seasonal, cannery as a case
study, to demonstrate the use of the model. The results from the model are analyzed to
determine any possibility for waste heat recovery. An indirect thermal storage system is
proposed.

Finally, the proposed heat recovery system is analyzed for system payback because “To
actually be applied a technology has to be economically competitive and attractive.” [24].

In summary, the key contributions of this work are to:

• Expand the capabilities of existing model frameworks to include on-site utility gener-
ation

• Locale weather data is incorporated into the model to more accurately reflect season
changes

• Reduce computational time by leveraging neural networks where practical

• Propose a standardized recipe format for batch processing facilities

• Provide a simulation model that may be easily modified to see the impact of plant
operational schedule changes

• Illustrate the energy impact of heat recovery by implementing heat recovery within
the system model
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• Optimize the heat recovery system across a wide range of recipes

• Assess the economic feasibility of the heat recovery system

The novelty of this research is an energy model framework that is easily adaptable to
different processes through the use of a standard recipe format and modularity. Additionally,
the model leverages neural networks to reduce computational time where appropriate and
integrates TMY3 weather data to assess the impact of seasonal weather changes on system
efficiency. Lastly, the paper demonstrates how an optimization method originally developed
for co-generation plants [25] can be applied to the food processing industry to optimize
heat recovery systems. The developed model is unique in that the model encompasses a
high-resolution energy model and state of the art mathematical programming optimization
techniques. Finally, the optimal heat recovery system is implemented in the energy model to
test the optimization results and see the impacts of heat recovery across the entire system.

Figure 1: Generic Block Diagram
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2. Methodology

2.1. General-Purpose Batch Processing Model Framework

The food processing industry involves a myriad of processes, products, and technologies.
To develop an energy model that is useful across the various food processing industry sectors,
we used a modular framework for constructing the energy model. The system energy model is
comprised of the following primary modules: shift scheduler, process, and utility equipment.

Typically, food plants produce varying products throughout the year, sometimes chang-
ing products one or more times over the course of a day. Each product may be similar to
others being processed or completely unique. Regardless of the size or complexity of the
food plant, food processing requires that predefined steps are followed in order to repeat-
edly make consistent products. Each facility may use a proprietary control philosophy but
the steps must always follow a logical order, similar to how a home cook follows a recipe.
From an energy modeling perspective, the important aspects of the recipe are: how much
energy and what type of energy is required at each time step. A generalized input format
is proposed to capture the key information required to model the energy used throughout
the process. The input format is designed so that any cooking process can be defined in the
same way. The input format describes:

• The action performed

• Utility required

• Product involved in the action

• Equipment used

• Duration of the action

• Mass of the product

• Temperature change of the product

• Specific heat of the product

Each product process flow is broken down into time steps which involve a single action
such as “Heat Brine Tank”. The combined time steps describe how the product is processed
from start to end. These time steps are then inputted into the database following a standard
input format, as illustrated in Table 1.

In conjunction with the recipe database, a 52-week schedule array is used to define a
typical operating year for the facility. Any recipe that is to be run on a specific day is
identified in the schedule array. For the model to accurately reflect reality, the production
schedule must be developed in close coordination with plant management and operational
staff.
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Table 1: Example Recipe Input File

Process Step Utility Product Equipment Time Mass T1 T2 Cp
Fill Tank with Water PW Water Brine 1 198.27 60 60 4.186
Heat Brine Tank & Mix STM Water Brine 2 - - -
Fill Kettle with Water PHW Water Kettle 3 567.81 71.1 90.6 4.186
Add Seasoning - - - - - - - -
Add Ground Beef STM Grnd Beef Kettle 4 123.78 4.4 90.6 3.339
Filler Rate - - Cooker Cooler 114 Can/Min - - -

The shift scheduler module uses the schedule array and recipe database to generate an
operation schedule at a one minute time step. This operational schedule defines minute-by-
minute batch utility requirements, temperature set-points, and product mass flow rates.

Each piece of process equipment has an individual module that is activated according to
the time steps requirements defined in the shift scheduler and recipe input file. If activated,
a process module reads the temperature set-points, mass flow, product-specific heat from the
recipe input file. The module then calculates the utility consumption and base energy used
to meet the operational requirements of a given time-step. Process equipment typically
found in a food manufacturing plant includes: kettles, fryers, re-torts, fluid coolers, and
other specialized equipment.

The recipe format may be adapted to many different processes. For example, Zhu et al.
[2], in their energy model described in Section 1, assumed that the respiration of heat from
the food would be constant. If this model incorporated the recipe format and shift scheduler
as proposed in this work, they could assess how the cooling load is affected by the flow of
product into and out of the warehouse [2].

Any continuously operated process equipment is modeled independently of the process
modules.

2.2. Modeling On-Site Utility Generators with - Neural Networks

Any piece of equipment that generates the energy source needed by a process is referred
to as a utility generator. Commonly required utilities are steam, hot water, compressed
air, chilled water, and electricity. Corresponding utility generators to provide the energy
sources are: boiler, water heater, air compressor, cooling tower, and electricity provider.
Utility systems such as boiler and water heater may be simply modeled using the nameplate
efficiency and flow rate. However, cooling towers are more complicated as the efficiency
is sensitive to key parameters such as wet-bulb, approach, and range. Many models for
predicting cooling towers have been developed, but they typically require iterative solutions
[26] or are difficult or time-consuming to implement. As an alternative to rigorously repre-
senting the physics behind cooling tower operation, a neural network can be used to predict
operation at any time step over a wide range of conditions. Neural networks have been
shown to reliably predict performance. Hosoz demonstrated that NN can reliably predict
performance with errors ranging from 0.89-4.64% [27]. Gao investigated NN accuracy of
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predicting cooling tower performance in cross-wind condition [28]. Mohanraj expanded the
use of NN to model building HVAC system [29].

The user implements a neural network by (1) requesting operational data from the man-
ufacturer (which aligns with the expected process conditions) then (2) training the network
to the data-set, and finally (3) writing the function to accept weather data and cooling
water inlet and outlet conditions. For the model developed here, the Levenberg-Marquardt
algorithm was used for training neural networks [30].

2.3. Heat Recovery and Optimization

The model may be used for predicting annual energy costs, sizing utility equipment,
or calculating annual production throughput. With respect to energy conservation, the
proposed modeling technique is able to demonstrate energy flows throughout the process at
each time step. The output from the model may be used to assess which streams are available
for heat recovery, the temporal relationship of streams, and the magnitude of available heat.

Depending on stream availability and timing of supply and demand, a direct or indi-
rect heat recovery system may be implemented to transfer heat between streams. Batch
processing is highly irregular and often does not operate at steady state, which greatly
complicates equipment sizing because it requires the consideration of many different design
iterations. However, it has been shown that optimization software is capable of providing
discrete solutions over the course of many time steps [25].

3. Case Study

3.1. Facility Energy Model

The modeling framework was applied to a small seasonal cannery located in Harrisville,
Utah. The cannery is operated seasonally in 1-2 week periods. Thirteen primary products
are processed at the cannery ranging from chicken noodle soup to green bean cans. Products
are run continuously until the can quota is reached. Each product is unique in its energy
requirements but the generic product flow is illustrated in Figure 2.

Raw ingredients are delivered to the cannery, cleaned, sorted and cut according to the
recipe specifications. Raw ingredients are blended with water and either brined or cooked in
kettles. The brine and kettle tanks require process water, hot water, and steam. Once fully
processed the ingredients are canned and sterilized in a cooker-cooler before being packaged.

The cooker-cooler (retort) is continuously operated for all recipes and for the duration of
each shift. Cans enter the cooker-cooler at ambient conditions and are heated, with steam, to
sterilization temperature in the first zone. Once sterilized, the cans progress into the cooling
side of the cooker-cooler, zone 2, where they are cooled with tower water to approximately
85◦C. The heating and cooling zone model is a simplified energy balance, equation 1 and
equation 2, as proposed by Simpson [31]. Through zone 1 and zone 2 the product in the can
is assumed to be homogeneous and isotropic. Heat loss through the insulated cooker-cooler
and warm-up time are small.

ṁsteam ∗ hsteam,fg = ṁcancp(Tout − Tin) (1)
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ṁtwcp,tw(Tw,out − Tw,in) = ṁcancp(Tout − Tin) (2)

Can flow rate is determined through the shift scheduler and the temperature set-points for
each zone are held constant. Corresponding utility flow rates and cooling water temperature
are calculated based on an energy balance across the cooker-cooler.

Steam for the cooker-cooler, kettles, brine tanks, process hot water generator and hot
water generator is provided by a 600 HP boiler.

Figure 2: System Block Diagram
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3.2. Cooling Tower – Neural Network

The cooker-cooler cooling section (zone 2) is cooled by cold water. The cooling water
is circulated from the cooling section to a roof-mounted cooling tower. The cooling tower
rejects the heat from the cooling section of the cooker-cooler to atmosphere. Accurately
predicting the fan speed at each time step is difficult because ambient conditions and varying
range affect the performance of the model. Several cooling tower models have been proposed;
however most rely on iteration to solve. Rather than relying on an iterative solution method,
a neural network (NN) toolbox was used to develop a predictive model. Fifty state points
at conditions typical throughout the year were used to train the neural network. All state
points were provided by the cooling tower manufacturer, BAC [32]. The NN is programmed
to read the ambient wet-bulb, cooling water mass flow rate, tower water return, temperature,
and range. Given the inputs, a predicted set-point for the fan’s variable frequency drive
is calculated. The neural network fan speed is verified against conservation of mass and
conservation of energy across the cooling tower’s system boundary. Equations 3-11 are
simultaneously numerically solved [33].

An energy balance across the cooling tower is given by equation 3.

ṁtw,f ∗ htw,out,f = ṁa,out ∗ (ha,out − ha,in) + htw,out ∗ (ṁtw,f − ṁw,makeup) (3)

Then a mass balance across the cooling tower control volume is given by equation 4.

ṁw,makeup = ṁa ∗ (ωout − ωin) (4)

Leaving air humidity ratio may be solved using equation 5.

ωout =
(2501 − 2.326 ∗ wbair,out)ωsout − 1.006(dbout − wbair,out)

2501 + 1.86 ∗ dbout − 4.186 ∗ wbair,out
(5)

Leaving air wet bulb temperature may be solved as a function of relative humidity and
dry-bulb using equation 6 [34].

Twbair,out = (Tdbout ∗ atan0.151977 ∗ (100 ∗RHout + 8.313659)0.5

atan(Tdbout + 100 ∗RHout) − atan(100 ∗RHout − 1.676331)

0.00391838 ∗ ((100 ∗RHout)
3/2) ∗ atan(0.023101 ∗ 100 ∗RHout) − 4.686035) (6)

With relative humidity defined as equation 7.

RHout =
pwout

pwsout
(7)

The degree of saturation for the air leaving the cooling tower is given by equation 8.

ωsout =
0.621945 ∗ pwsout
ptotal − pwsout

(8)
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The water vapor saturation pressure and the humidity ratio of the leaving air are given
by equations 9 and 10 respectively.

pwsout = exp
c8

Tdbout
+ c9 + c10 ∗ Tdbout+

c11 ∗ Tdb2out + c12 ∗ Tdb3out + c13log(Tdbout) (9)

pwout =
ptotal ∗ ωout

0.621945 + ωout

(10)

Finally, the enthalpy of the cooling tower leaving air is solved as a function of dry-bulb
temperature and degree of saturation.

hair,out = 1.006 ∗ Tdbout + ωout ∗ (2501 + 1.86 ∗ Tdbout) (11)

3.3. Heat Recovery Optimization

The most apparent stream eligible for heat recovery is the cooker-cooler cooling loop,
which operates at a supply temperature of 29.44◦C and a return temperature of up to 71◦C.
Recovering heat from the cooling loop reduces boiler fuel needs, fan power in the cooling
tower, and cooling tower make-up water. Waste heat from the cooling loop may be utilized
to pre-heat water supplying the hot water and process hot water generators which require
hot water at 60◦C and 71◦C respectively. Whether the heat recovery method is direct or
indirect depends on the availability of the cooling loop and the hot water generators. The
cooling loop operates continuously and results from the model indicate that the hot water
generators have a 22% availability. The low availability of the hot water generators dictates
that an indirect heat recovery method will maximize performance [21].

The indirect heat recovery system consists of a hot water buffer tank coupled to the
tower water loop through a heat exchanger and circulation pump. The demand side of the
hot water buffer tank is installed inline with the process and hot water generator cold water
feed. See figure 3 for the heat recovery system diagram.

Hot water buffer tanks may be modeled by considering the inlet and outlets as the
boundary of the energy balance equation. The model, as developed by EnergyPlus [35], is
defined by 12 below [36].

ṁcp
δT

δt
= εuseṁusecp(Tuse − T ) + εuseṁusecp(Tsource − T ) (12)

Equation 12 may be rearranged and differentiated to solve for the temperature of the
tank at any time step.

T (t) = (
a

b
+ Ti)e

bt − a

b
(13)

where

a =
1

mcp
(εuseṁusecpTuse + εsourceṁsourcecpTsource) (14)
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Figure 3: Heat Recovery System Diagram

b =
1

mcp
(εuseṁusecp + εsourceṁsourcecp) (15)

The heat exchanger in the heat recovery system may be modeled using the NTU method
as described by Janna [37]. See Appendix A for equations.

Based on equation 12, as the buffer tank volume or heat exchanger size increases, energy
capture will increase. Ideally, the buffer tank and heat exchanger would be infinitely large
to capture all available energy. However, as the component sizes increase, the cost of the
system increases as well. To optimize the system, the component costs, cost of fuel offset
(through heat recovery), and the temporal variation in hot water demand must be taken
into account.

Optimization is performed by utilizing a nonlinear optimization solver. Typically nonlin-
ear optimization tools accept matrix variables which define the lower and upper bounds of
the optimization variables, a matrix of inequality/equality constraints and optimizes against
a set objective function. Heat recovery introduces another level of complexity as the system
is never under steady-state conditions due to process flow variation. To account for chang-
ing process conditions the heat exchanger equations described in Appendix A and equations
12 thru 15 are evaluated at each time step with the nonlinear equality constraint. All the
equations are defined as a matrix array with dimensions m-by-n where m is equal to the
number of equations and n is equal to the number of time steps during which the opti-
mization variables are to be optimized, similar to Henze’s approach for optimizing thermal
storage systems in pharmaeutical buildings [23] and Katulic approach for optimizing a heat
storage tank at a cogeneration plant [25].

For example, the equations become:

V̇recirc(i) =
x(2)/ρsx(3)

(x(5) + 1)/2
(16)
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...

t2(i) =
twr(i) − T2(i)

R(i)
+ Ttank(i− 1) (17)

The first equality, eqn. 18, enforces conservation of energy between the overall heat
balance for the heat exchanger and the thermal change of the cold side of the heat exchanger.

ceq1(i) = U(i)x(3)x(4)x(5)F (i)LMTD(i) − x(2)cpw(t2(i) − Ttank(i− 1) (18)

The second equality, eqn. 19, ensures that the thermal energy change of the fluid in the
tank is equal to the energy flowing into the tank minus the energy flowing out of the tank.

ceq2(i) = x(1)ρwcpw(Ttank(i− 1) − ttank(i)) − x(2)cpw(t2(i) − ttank(i))

− ṁhx(i)cpw(tcity − ttank(i)) (19)

where i=1:n, x(1)=Tank Volume, x(2)=Re-circulation flow rate from the thermal tank
to the heat exchanger, x(3)=HX width, x(4)=HX height, and x(5)=number of plates.

Defining the equality constraints in this way allows the solver to select discrete values of
each optimization variable over a set period of time.

An annual operating cost (or objective function) of the indirect heat recovery tank and
heat exchanger may be defined as:

$ Profit= Annualized Cost of the exchanger + Annualized Cost of the tank - Fuel offset
or

MinCostannual = a(mhx ∗ ṁhx + bhx) + a(mtank ∗ Vtank + btank)−
energyRecoveredεboilerεhxhrhxCostFuel (20)

where a = life expectancy of the system in years. Then m and b represent a linear cost
fitting [38] [39].

The solver is structured so that only the optimization variables are passed between the
equality function and the objective function. In order to convey the amount of energy
recovered the equality equations must be evaluated within the objective function for the
entire time period under consideration [40].

4. Results

4.1. Cooling Tower Modeling
The NN was able to closely match the training data with a regression R-value of 0.993.

Figure 4 shows the corresponding neural network output to (10) points from the training
dataset.

The neural network in conjunction with equations 3-11 maintain a cooling tower energy
balance error below 1.5% when the ambient wet-bulb is above 5◦C. Below an ambient wet-
bulb of 5◦C the cooling tower adequately rejects heat without running the fan. The neural
network performs poorly at these conditions but because fan energy is the primary concern
this data may be omitted with little impact on model output.
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Figure 4: Neural Network Fit to Training Data

4.2. System Model

The output data from the cannery model may be used to size utility connection and
size equipment. In locations with costly peak demand charges, the model may be used to
determine peak consumption time and magnitude. Additionally, the model may be used to
better understand how recipe impacts consumption. For example, figure 5 illustrates the
hourly consumption of the plant on a summer day (August 7th) while running the Beef Stew
recipe. Model output data shows that the gas consumption is cyclical and highly dependent
on the recipe. Cooling tower electrical use is closely correlated to the ambient wet-bulb but
the magnitude will be affected by the recipe being used. For the Beef Stew recipe, the peak
hourly gas usage is approximately 375 kWh and the daily peak hourly electrical usage of
the cooling tower is 5 kWh.

As mentioned previously, the basis for the case study is a seasonal cannery which operates
17 weeks per year. The model predicts that the cooling tower will require 3,597 kWhe
annually and that the re-tort, kettles and brine tanks will require 1.83e6 kWh annually of
gas. For a broader comparison to typical canneries, the operation schedule was increased to
52-weeks per year. For a year round, 52 week, operation schedule, electrical use increases
to 1,117 kWhe annually and gas usage increases to 1.83e6 kWh annually. This correlates to
612 kJ gas/kg product and 3.6 kJ electric/kg product. The largest steam user at the facility
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Figure 5: Hourly Energy Consumption

is the cooker-cooler which requires 447 kJ gas/kg product. Prior research indicates that a
typical cooker-cooler requires 504 kJ/kg product [4, 5].

4.3. Optimization

The optimization scheme was run for each recipe individually on a daily basis. See table
2 for the resulting heat recovery system equipment sizing determined using the nonlinear
optimization developed for this case study.

Table 2: Optimization Results

Scenario Volume (m3) Recirc Rate (kg/m) HX Width (m) HX Height (m)
Green Beans - Continuous 1.16 172 0.2468 0.3600
Beef Stew - Continuous 1.36 200 0.300 0.433
Chicken Noodle - Continuous 1.34 199 0.212 0.627
Beef Chunks - Continuous 1.15 184 0.181 0.360
Turkey Chunks - Continuous 1.168 191 0.180 0.406
Average 1.238 191 0.250 0.426
Relative Standard Deviation 8% 6% 31% 24%
Global Optimization 1.257 199.69 0.382 0.369

The wide range of results implies that the optimal heat recovery system size for one
recipe may not align with the optimal system for a different recipe. For example, equipment
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sized according to the “Green Bean” recipe may be undersized as compared to what is
optimal for the Turkey Chunks recipe. To find a global optimization across different recipes
the optimization function was run over a hypothetical (1)-week period for which a different
recipe was run each day. Figure 6 shows the impact of using optimization values from the
“Green Bean - Continuous”, “Turkey Chunks - Continuous” and “Global Optimization”
values.

The optimization values from “Turkey Chunks”, “Green Bean” and “Global” reduced
gas consumption by 5.7%, 6% and 7% on average across all recipes. Prior literature es-
timated that similar heat recovery systems, in American food plants, could reduce energy
consumption by up to 6% [14][15].

Best energy savings may be gained by using the “Global Optimization” values which
drops electrical and gas savings to 14.12% and 6% dropping the consumption per kg of
product to 576 kJ gas/kg and 3.24 kJ electric/kg. In total, gas consumption may be reduced
by 133,360 kWh and electrical consumption may be reduced by 1,923 kWh annually when
using the “Global Optimization” values.

Figure 7a shows the annual electrical consumption on a weekly basis for a typical mete-
orological year [41]. Figure 7b shows the annual gas consumption.

Implementing the proposed heat recovery system will reduce both the peak gas and
electrical loads and the normal operating loads. For example, Figure 8a and Figure 8b
illustrates how the heat recovery system would reduce the energy consumption on a summer
day (August 7th) while running the Beef Stew Recipe.

Figure 6: Impact of Optimization Approach
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(a) Weekly Electrical Consumption (b) Weekly Gas Consumption

Figure 7: Weekly Gas and Electrical Consumption

(a) Hourly Gas Consumption (b) Hourly Electrical Consumption

Figure 8: Heat Recovery Impact on Hourly Energy Consumption
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4.4. Model Limitations

There are inherent limitations to how this model may be applied. Sources of these
limitations are: the usage of a NN for predicting the cooling tower fan speed, lack of building
energy modeling for evaluating energy systems outside of the food processing equipment,
and lack of consideration of thermal heat losses from individual pieces of equipment. As a
result:

• When weather conditions fall outside the training data limits the NN predictions
become unreliable.

– Below an ambient air temperature of 5◦C wet-bulb, the neural network predictions
become unrealistic. For the purpose of the model it was assumed that below 5◦

wet-bulb the cooling tower would operate dry and that the fan power would thus
be zero.

• The NN results may not be applicable to all processes and situations.

– NN must be trained with data for the correct manufacturer and model number.

– If there is a significant change to the process flow rate and temperatures the NN
may also need to be re-trained with new manufacturer provided data.

– The NN was developed with training data assuming a new cooling tower. Over
time, actual cooling tower performance will deviate, especially if the tower is not
properly maintained.

• Space heating and cooling loads are not considered in the current framework for opti-
mization. Omitting the building loads artificially reduces the kJ

kgproduct
required.

• Equipment and piping were considered well insulated and it was assumed that heat
loss through convection would be small. To improve model accuracy, heat losses may
be considered.

5. Discussion and Conclusions

A dynamic, modular framework was developed to estimate the energy consumption as-
sociated with operating an industrial food plant. The model is driven by food mass flow
rates as defined by a set of standardized recipes format developed for this paper. Weather
is also integrated to more accurately predict energy requirements. For each device such, as
kettles, boilers and cooling tower, the equations are solved independently and fed back into
the model. The benefit of modularity is that complex equipment may be modeled using
equipment specific techniques. For example, a NN was trained using manufacturer data to
simulate cooling tower performance without having to solve the physics at each time step,
thereby reducing computational time.

The results obtained from the model may be presented to facility management, increasing
transparency into energy costs and resource allocation, which in turn drives more informed
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equipment investment decisions. A final benefit is that by calculating the energy streams
on a minute by minute basis it is possible to investigate the savings from heat recovery and
to optimize the system across many different recipes.

The model and optimization framework was applied to a seasonal cannery assuming
one shift per day. Heat recovery for the cannery is predicted to reduce gas consumption
by 5.7% and cooling tower electrical consumption by 12.12%. With an estimated system
cost of $30,000 the simple payback is 15 years assuming that electricity and gas costs are
0.056$/kWh and 7.11e-6$/kJ respectively [42] [43]. It is important to consider that the
cannery investigated is operating in a locale with very affordable energy prices and that it
only has a single operating shift whereas a typical facility would have two or more shifts per
day. Furthermore, the cannery is owned and operated by the Church of Latter-day Saints.
All the canned food is donated to low-income houses or victims of disasters and is a non-
profit facility. The facility was built to operate for over 30-years so a payback of 15-years
is not unreasonable even though a typical industrial facility requires a 5-year payback [24].
If an additional shift was added the payback would be reduced to 7.5 years. Furthermore,
energy consumption and payback may be reduced by utilizing the hot water for domestic
usage or space heating.

A final benefit of the model framework proposed is that if the model had been imple-
mented during the design phase it would have been possible to downsize or outright eliminate
the cooling tower, which cost $69,000, completely offsetting the capital cost of installing the
heat recovery system.

While the developed model applies well to systems which are mostly gas driven it is
currently lacking for systems dependent on electricity as their primary energy source. Fur-
thermore, only water to water heat recovery was considered. For facilities that have higher
grade waste heat, the model may be adapted to consider optimization for Organic Rankine
cycles, as proposed by Law [44]. The model could further inform the integration of a whole
building energy modeling platform, such as EnergyPlus, to develop a holistic food processing
facility model including HVAC, electricity and water usage. Future work could extend food
plant energy modeling to include building HVAC system through the use of NN as proposed
by Mohanraj [29].
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Appendix A. Heat Exchanger equations

The heat exchanger equations are given by:

Vrecirc =
ṁrecirc/ρA

(Ns + 1)/2
Vtw =

ṁrecirc/ρA

(Ns + 1)/2
(A.1)

Rerecirc =
Vtw ∗Dh

v
Retw =

Vtw ∗Dh

v
(A.2)

Nutw =
hDh

kf
= 0.374Retw

2Pr1/3 Nurecirc =
hDh

kf
= 0.374Rerecirc

2Pr1/3 (A.3)

hrecirc = Nurecirc ∗ kf/Dh htw = Nutw ∗ kf/Dh (A.4)

1

U
=

1

hrecirc
+

1

htw
+

1

kf
(A.5)

N =
UoAoNs

ṁrecirc

R =
ṁrecircCp

ṁtwCp

(A.6)

E = exp[UoAoNsF (R− 1)/ṁrecircCp] (A.7)

T2 =
ttwr(R− 1) −R(i) ∗ ttank ∗ (1 − E)

RE − 1
(A.8)

t2 =
twr − T2

R
+ Ttank (A.9)

LMTD =
(twr − t2) − (T2 − Ttank)

ln[(ttwr − t2)/(T2 − tTank)
(A.10)

q = UoHXWidthHXHeightNsFLMTD (A.11)

q = ṁrecircCp(T2 − Ttank) (A.12)
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