
L a y e r e d , S e r v e r - b a s e d S u p p o r t

f o r O O A p p l i c a t i o n D e v e l o p m e n t

G u r u d u th B a n a v a r

D o u g l a s O r r

G a r y L in d s t r o m

UUCS-95-007

Department of Computer Science
University of Utah

Salt Lake City, UT 84112 USA

April 14,1995

A b s t r a c t

This paper advocates the idea that the physical modularity (file structure) of application
components supported by conventional OS environments can be elevated to the level of
logical modularity, which in turn can directly support application development in an object-
oriented manner. We demonstrate this idea through a system-wide server process that man
ages a separate logical layer of components. The server is designed to be a central operating
system service responsible for mapping component instances into client address spaces.

We show how this model solves some longstanding problems with the management and
binding of application components in existing operating system environments. We illus
trate with examples that this model’s effectiveness derives from its support for the corner
stones of 0 - 0 programming: classes and their instances, encapsulation, and several forms
of inheritance.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276276632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

L a y e r e d , S e r v e r - b a s e d S u p p o r t

f o r O b j e c t - O r i e n t e d A p p l i c a t i o n D e v e l o p m e n t

G u rudu th Banavar* Douglas O rr G ary L indstrom
D epartm en t of C om puter Science

U niversity of U tah , Salt Lake City, U T 84112 USA

A bstract

This paper advocates the idea that the physical modularity (file structure) of application
components supported by conventional OS environments can be elevated to the level of logical
modularity, which in turn can directly support application development in an object-oriented
manner. We demonstrate this idea through a system-wide server process that manages a separate
logical layer of components. The server is designed to be a central operating system service
responsible for mapping component instances into client address spaces.

We show how this model solves some longstanding problems with the management and
binding of application components in existing operating system environments. We illustrate
with examples that this model’s effectiveness derives from its support for the cornerstones of
0 -0 programming: classes and their instances, encapsulation, and several forms of inheritance.

P ap er C ategory: Full Paper.

1 I n t r o d u c t i o n

An im portant tenet of software engineering holds tha t it is better to extend software not by direct
modification, but by controlled addition of incremental units of software. Advantages of “extension
by addition” include better tracking of changes and more reliable semantic conformance by software
increments. Most importantly, the increments themselves have the potential to be reused in other
similar settings.

In object-oriented (0 -0) programming, inheritance is a mechanism tha t supports the effective
management of incremental changes to software units. Indeed, in advanced 0 - 0 languages, in
crements as well as base components have independent standing (e.g., “mixins”). Other aspects
of 0 -0 programming, notably encapsulation, have demonstrated benefits to large-scale software
development via enhanced abstraction. Hence there is much to gain from supporting these fea
tures within the infrastructure of an operating system, beyond whatever support is provided by
the languages in which application components are written.

This perspective leads one to conclude tha t traditional OS environments support these concepts
inadequately for modern application development. In such an environment, application components
ultimately take the form of files of various kinds — source, object, executable, and library files.
It is also natural for developers to generate components corresponding to incremental changes to

’ Primary contact author. E-mail: banavar@cs.utah.edu, Phone: +1-801-581-8378, fax: +1-801-581-5843.

1

mailto:banavar@cs.utah.edu

already existing application components, as a result of “extension by addition.” However, entire ap
plications are typically built by putting together these components using inflexible, and sometimes
ad-hoc, techniques such as preprocessor directives and external linkage, all managed via makefile
directives. Moreover, it is becoming increasingly common tha t application programmers must deal
with components in “shrink-wrapped” form, without sources to modify. Thus, we consider it im
perative to advance currently available techniques for component manipulation and binding at the
system level.

In this paper, we dem onstrate a principled, yet flexible, way in which to construct applications
from components. Our facility is orthogonal to makefiles, and we do not impose new techniques for
building individual application components. Instead, we rely on the idea tha t the physical modu
larity of traditional application components (i.e. files) can be elevated to a separate layer of logical
modularity. At this logical module layer, we apply concepts of compositional modularity, where
first-class modules (defined in Section 3.1) are viewed as building blocks tha t can be transformed
and composed in various ways to construct entire application programs. Individual modules, or
entire applications, can then be instantiated into the address spaces of particular client processes.
Compositional modularity has a firm foundation [4], and has been shown to be flexible enough to
support several effects and styles of object-oriented programming [2].

This approach has other advantages besides making system building more principled and flexi
ble. First, it enables a form of 0 - 0 programming with components written in non 0 - 0 languages
such as C and Fortran. Second, it enables adaptive composition, where the system tha t manages
the logical layer can perform various composition-time, exec-time, and possibly run-time optimizing
transformations to components. For example, system services (such as libraries) can be abstracted
over their actual implementations, adding a level of indirection between a service and its actual im
plementation. This permits optimizations of the service implementation based on clients’ disclosed
behavioral characteristics. Such system-level support is explored elsewhere [15, 18, 16]; we focus
on application level support in this paper.

It is im portant to mention th a t compositional modularity supported by a logical layer is not in
conflict with object-orientation supported by component-level languages. For example, C+-1- pro
grammers deal with two distinct notions of modularity: classes, fundamental to logical modularity,
and source files, which deal with physical modularity. These two modularity dimensions share
many characteristics, but have very different senses of composability, i.e. inheritance for classes,
and linkage for files. Indeed, they are rather orthogonal in the minds of C + + programmers, because
class definitions and source files do not always bear 1-1 relationships, and linkage is performed in
a “class-less” universal namespace flattened by name mangling. In essence, they manage programs
a t two levels: classes with their semantic relationships, and files with their linkage relationships.
W ith our approach, we support a similar degree of manageability for physical artifacts (i.e. files)
as for logical artifacts (i.e. classes).

In the following section, we present a problem scenario th a t motivates the solution presented in
this paper. In Section 3, we present the layered architecture of our system, as well as the steps in
constructing applications. Section 4 describes the functionality of the heart of the system. Section
5 presents specific solutions to the problems in Section 2. We then compare our work with related
research, present our current status and envisioned future work, and conclude.

2

2 A M o t i v a t i n g S c e n a r i o

Consider a scenario in which a team of developers is building an image processing application using
a vendor supplied (shrink-wrapped) library. Say the team completes building an initial version of
the application (which is large-scale, say, greater than 100K lines of code), and is now ready for
system testing. We can imagine common problems deriving from this scenario:

1. Suppose th a t the team finds th a t the application malfunctions because it calls a library func
tion edge_detect() on an image data structure, consistently with an incorrect image type, say
with pixels represented as type BYTE when FLOAT was expected. Using traditional tools,
this problem is rectified by inserting another library function call to the routine b yte to flo a t()
before each site in the application where edge_detect() was being called. This approach not
only requires extensive modification of the application source code, but also expensive re
compilation. Moreover, if two separate shrink-wrapped libraries are to be put together in
this manner, sources might not even be available. Instead, it is more desirable to “wrap,” at
binding time, calls to edge_detect() with an adaptor th a t calls b y te to flo a t(), all without recom
piling the large application. However, such a facility is not usually supported in conventional
OS environments.

2. Suppose further tha t the team decides th a t the application could work much better with an
image format slightly different from the format expected by the library, but one which is
easy to convert to and from the old format. If the new format is to be supported for future
projects, it is best to change all library functions to accept the new format. However, sources
for the library are not available, hence it cannot be directly modified. Thus, this would require
developing and integrating a separate extension to the library. Furthermore, there could be
several other independent extensions to the library tha t needs to be integrated and supported
for future applications. Developing such incremental extensions is much like subclassing in
0 -0 programming, but there is usually no support for effectively managing such incremental
software units.

3. Imagine tha t the team wants to make sure th a t all statically defined images are properly
allocated and initialized from disk before the program starts, and flushed back to disk be
fore the program terminates. Currently available techniques for doing this are difficult and
cumbersome.

4. Say the IP library uses the Motif library, which is in turn implemented in terms of the lower-
level X library. Thus, in the traditional scenario, all the symbols imported from the Motif
and X libraries become part of the interface exported by the IP library. There is no way to
prevent clients of the IP library from obtaining access to the lower level library interface, or
possibly suffer name collisions with th a t interface.

The system architecture we present in the following sections offers an effective solution to the
above problems. Specific solutions to these problems are given in Section 5.

3

Physical Layer (C)

Physical file modules

F ig u re 1: Physical and Logical layers. File modules in the physical layer are elevated to first-class modules
in the logical layer (boxes with shaded interfaces). These modules are manipulated at the logical layer using scripts
(boxes with text) to create new modules or instances. (Dashed arrows stand for transformations to modules.)

3 A r c h i t e c t u r e

3.1 A n O b ject-O rien ted Layer

We begin by showing how to elevate artifacts of physical modularity, i.e. separately compiled object
files (“.o” files), into first-class compositional entities. An entity is known as first-class if it can be
stored in variables, as part of data structures, and passed into and out of functions.

The key is to introduce a separate layer on top of physical modules, as shown in Figure 1.
The physical layer consists of physical modules. These modules may be written as components
in conventional languages tha t have no notion of objects. For example, in the case of C, there is
no support for manipulating physical modules, much less for generating and accessing instances
of them at run time — modules are simply a design-time structuring mechanism. Furthermore,
module interconnection is specified statically via undefined attributes with external linkage, to be
resolved in a pre-determined manner by a linker.

In order to make the above framework truly compositional, and flexible at the same time, we
map each physical module to a first-class module in a logical layer. A ttributes, both defined and
merely declared, of physical modules make up the interface (shown as shaded portions of module
boxes in Figure 1) of logical modules. For simplicity of presentation, we consider interfaces to
comprise only the names of attributes, without their programming language types (see [3] for a
study of typed interfaces). Compiled code and data in the actual object file defines the module
implementation. Instances of modules are the actual mappings of program fragments into the
address spaces of individual client processes.

In this system architecture, effective management of the logical layer becomes an im portant
requirement. First, we need a language to express module manipulation, and an associated language
processing system. Second, the system must perform essential operating system services: tha t of
linking modules and loading them into client address spaces. Third, since these services are in the
critical path of all applications, it must be able to perform optimizations such as caching. The
more the system knows about the behavior of the entire system, the more it can optimize, hence it
is advantageous for it to have system-wide purview. Finally, it must be continually available. For
these reasons, the logical module layer in our prototype is managed by a server process — a second

client
o .

client

! f Q p r i i W •11 •■I—
client!

---- »-USER

F ig u re 2: Overall Architecture, cl.c , c2.c, etc. are user application components to be composed as described
in the user module spec app.ms. Printf.o, etc., are system components to be composed as given in module specs crtO,
etc. These components are composed by OMOS, possibly cached, and instantiated into client address spaces. The
user can directly interact with OMOS via a command line interface to effect module composition and instantiation.

generation implementation of a server named OMOS [17].
Our module language is derived from the programming language Scheme[6], and is based on

the module manipulation language Jigsaw [4]. This language supports a simple merge of modules
in the manner of conventional linking, as well as many others including attribu te encapsulation,
overriding, and renaming (see Section 4). But most importantly, since modules are first-class
entities in this language, individual operations can be composed in an expression-oriented fashion
to produce composite effects such as inheritance in 0 - 0 programming[2]. The impact of this idea
on developing applications in an 0 - 0 manner is explored in Section 4.

3.2 A p p lica tion C on struction

In this section, we describe the steps in constructing an application, based on the architecture
shown graphically in Figure 2.

1. Build individual application components using a conventional programming language1. In
dividual components can be designed either as traditional program files with no knowledge
of the logical layer, or as components tha t can be “reused” via suitable programming in the
logical layer. We will give examples of each case in a later section.

Application components may be owned and managed by the user or the system. In Figure 2,
cl.c, c2.c, and c3.c are user provided application components. System provided components,
such as libraries, are owned and managed by the OMOS server and accessed via service

1 In this paper, we consider only C language components. The same ideas can be applied to another language such
as Fortran, but our system does not support it at this point. Also, we do not deal with inter-language components,
although this is a point of interesting future work.

5

requests to OMOS. In this way, OMOS can control the caching of executable images, and
guarantee their security as a system resource.

2. Create a module spec, a description of the creation and composition of logical modules from
application components. This is written in a module language (see Section 4). Module specs
can themselves be modular — they can refer to other module specs. Module specs are files
in a file system namespace (either user or OMOS). In Figure 2, ap p .m s is a user module spec
th a t describes how to put the components of the application together. On the other hand,
libc is a system provided module spec tha t describes how to put together the components of a
standard system library with a client module based on the client’s behavioral characteristics.

As another option, instead of creating a module spec file, a user can also specify composition
interactively.2

3. Request the module server to execute the module spec and instantiate (i.e. load) the result
into a client address space. Module specs are usually executed by calling a stand-alone version
of OMOS from within a makefile, and the loading step is usually performed interactively.

This concludes a general description of the architecture of our system. In the following section,
we describe the functionality provided by our system as exported by the module language.

4 M o d u l e M a n a g e m e n t

As argued in Sections 1 and 2, an infrastructure tha t aims to support effective application de
velopment must support the flexible management of application components. We further argued
th a t the management of components, their extensions, and their bindings is essentially similar to
the management of classes and subclasses via inheritance in 0 - 0 programming. This argument
behooves us to demonstrate tha t our architecture does indeed support the essential concepts of 0 -0
programming, viz. classes and inheritance, which we show below in Sections 4.1 and 4.2 respectively.

Given the facilities described in this section, it is in fact possible to do 0 - 0 programming with
a non 0 - 0 language (such as C). However, it is not possible to do full-fledged 0 - 0 programming
in such a manner, due to the reasons given in Section 4.1.3. Neither is it desirable, since O-
O language support (such as C + +) might be directly available. Thus, the facility we describe
here is intended mainly for enhancing application component management rather than for actual
application programming.

4 .1 C la sse s

In the framework of compositional modularity, a module corresponds to a distillation of the con
ventional notion of classes [4]. A module is a self-referential scope, consisting of a set of defined
and declared attributes with no order significance. Definitions bind identifiers to values, and dec
larations simply associate identifiers with types (defining a label subsumes declaring it). Every
module has an associated interface comprising the labels and types of all its visible attributes. An
im portant characteristic of modules is the self-reference of attribute definitions to sibling attributes

2 In addition, old-style linking specs are supported for ease and backward compatibility. These sire automatically
translated to the module language.

6

(open-module (path-string-expr))
(fix (section-locn-list) (module-expr))
(hide (module-expr) (sym-name-list-expr})
(merge (module-exprl) (module-expr2) ...)
(override (module-exprl) (module-expr2) ...)
(copy-as (module-expr) (from-name-list-expr) (to-name-list-expr))
(rename (module-expr) (from-name-list-expr) (to-name-list-expr))

Figure 3: Syntax of module primitives

(see [7] for details). Modules can be transformed and composed using operators tha t manipulate
the interface and the corresponding self-reference. Furthermore, modules can be instantiated, at
which time self-reference is fixed, and storage allocated for variables.

4.1.1 M odules

An object (“.o” , or dot-o) file, generated by compiling a C source file, corresponds directly to a
module as described above. A dot-o consists of a set of attributes with no order significance. An
attribute is either a file-level definition (a name with a data, storage or function binding), or a file-
level declaration (a name with an associated type, e.g. extern in t i;)3 . Such a file can be treated just
like a class if we consider its file-level functions as the methods of the class, its file-level data and
storage definitions as member da ta of the class, its declarations as undefined (abstract) attributes,
and its static (file internal linkage) data and functions as encapsulated attributes. Furthermore, a
dot-o typically contains unresolved self-references to attributes, represented in the form of relocation
entries.

A physical dot-o is brought into the purview of the logical layer by using the primitive open-
m odule in our module language. The syntax of this primitive is given in Figure 3. Once it is thus
viewed as a logical module, it can be subjected to several transformations and compositions using
other primitives given in the figure, which are described in the following sections.

4.1.2 Encapsulation

Module attributes can be encapsulated using the operator hide (see Figure 3). However, in the
case of C language components, encapsulation partly comes for free, since C supports the internal
linkage directive, static . However, attributes can be hidden after the fact, i.e. non-static C attributes
can be made static retroactively, with hide. This is a very useful operation as demonstrated in in
Section 5.

Many 0 - 0 systems support the notion of a class consisting of public and encapsulated attributes.
In our system, a similar concept of classes is supported by a Scheme macro define-class tha t expands
into a module expression using open-m odule and hide. For example, given a dot-o vehicle.o tha t
contains, among other attributes, a global integer named fuel and a global method display, one can
write the following expression (in a module spec) to create a class named vehicle by encapsulating
the attribute named fuel:

3Type definitions (e.g. struct definitions, and typedef’s in C) are not considered attributes.

7

(define-class vehicle "vehicle.o" () ("fuel”))

As mentioned earlier, instantiating a module amounts to fixing self-references within the module and
allocating storage for variables. In the case of instantiation of dot-o modules, fixing self-references
involves fixing relocations in the dot-o, and storage allocation amounts to binding addresses. These
two steps are usually performed simultaneously. Thus, an object file can be instantiated into
an executable th a t is bound (“fixed”) to particular addresses and is ready to be mapped into the
address space of a process. Dot-o’s can be instantiated multiple times, bound to different addresses.
Hence, fixed executables are modeled as instances of dot-o’s. A module is instantiated using the
primitive fix (see Figure 3).

A fixed executable is internally represented as an address map. An address map is a collection
of entries th a t specify the address in the virtual memory of a process th a t a block in an object file
is mapped to. To actually map a fixed executable, an application invokes the OMOS function exec,
passing a specification of which fixed executable to map. OMOS uses the address map to guide
where to remotely map regions into the client task. On systems tha t are not able to perform remote
mapping operations, OMOS returns sufficient information th a t the client can do the mapping itself.

A concept closely associated with first-class objects in conventional 0 - 0 languages is message
sending. However, as mentioned earlier, there is no notion of first-class objects a t the physical
layer, which is where physical modules are implemented using component-level languages. Thus,
message sending is not directly supportable in our framework. However, we envision extending our
approach to support a form of message sending via inter-process communication, as described in
Section 7.

4.2 Inheritance

As mentioned earlier, an operation analogous to traditional linking can be accomplished via the
primitive m erge (see Figure 3). The primitive does not permit combining modules with conflicting
defined attributes, i.e. attributes tha t are defined to have the same name. However, we go beyond
traditional linking and support other operations basic to inheritance in 0 -0 programming.

We will introduce three new primitives. The primitive override (see Figure 3) produces a new
module by combining its arguments. If there are conflicting attributes, it chooses {module-expr2)'s
binding over (m odule-expriys in the resulting module. The primitive copy-as (see Figure 3) copies
the definitions of attributes in (from-name-list-expr) to attributes with corresponding names in
(to-nam e-list-expr). The from argument attributes must be defined. The primitive renam e changes
the names of the definitions of, and self-references to, attributes in (from-name-list-expr) to the
corresponding ones in (to-nam e-list-expr).

4.2.1 Single and M ultiple Inheritance

In our module language, a module can inherit from another by using the Scheme macro define-class
introduced earlier. For example, given a dot-o land.chars.o which contains a global constant integer
called wheels, and a function called display, a module called land-vehicle can be created as a subclass
of the previously defined vehicle module by writing:

(define-class land-vehicle " land.chars.o" (vehicle) ())

4.1.3 Instances

The display method within the dot-o land.chars.o overrides the original display method of the
vehicle module. In addition, the new method can access the shadowed method as super.display. An
im portant point here is tha t calls to display within the old vehicle module and the new land-vehicle
module are both rebound to call the display method of the land-vehicle module.

The above macro expands into a module expression. In this expression, a module with attributes
wheels and display is created, and is used to override the superclass vehicle in which the display
attribute is copied as super.display. In general, all such conflicting attributes are determined by a
meta-level primitive called conflicts-betw een, and copied to a name with a super, prefix. The copied
super.display attribute is then hidden away to get a module with exactly one display method in the
public interface, as desired.

The above idea of single inheritance can be generalized to multiple inheritance as found in
languages such as CLOS [14]. In these languages, the graph of superclasses of a class is linearized
into a single inheritance hierarchy by a language provided mechanism. A similar effect can be
achieved with the define-class macro, except tha t the programmer must explicitly specify the order
of the superclasses, as shown below:4

(define-class land-chars ” land.chars.o" () ())
(define-class sea-chars "sea.chars.o” () ())
(define-class amphibian " amphibian.o" (land-chars sea-chars vehicle))

W ith the module operations supported by our module language, several other single and multiple
inheritance styles can be expressed — these are described in [2].

4.2.2 Wrapping

Variations on a facility generally referred to as “wrapping” are very useful for the purposes of
flexible application building. Three varieties of wrapping are described below, and shown pictorially
in Figure 4.

(i) Method wrapping. This is similar to the 0 - 0 notion of single inheritance as given in Section
4.2.1 above, and is explained in the top row of Figure 4. Two modules are given: Ml defines a
method m eth , and has self-references to it; W 1 also defines a method m eth in terms of a method
o ld -m eth , with possible self-references. We want to wrap M l’s m eth with W l’s m eth . This can be
achieved in two ways as shown in boxes (a) and (b) of Figure 4. The module expressions are:

(a) (hide (override (copy-as Ml meth old-meth) W l) old-meth)
(b) (hide (merge (rename Ml meth old-meth) W l) old-meth)

The distiction between (a) and (b) has to do with the way self-references within M l are manip
ulated. The common case of wrapping uses the expression (a).

(ii) Call wrapping. Individual function calls can also be wrapped, as shown in Figure 4(d). Two
modules are given: M2, which calls a method m eth , and W2 which defines a method w rap tha t
also calls m eth. We want M2’s call to m eth to be indirected via W2’s w rap method. This can be
achieved via the module expression:

(hide (merge (rename ml meth wrap) m2) wrap)

(iii) Before-after methods. The terms “before” and “after” methods are used in the CLOS
language to refer to behavior tha t is called before or after a particular method proper. The above

4Explicit specification of linearization is superior to an implicit, language provided mechanism, see [2] for details.

9

Figure 4: Wrapping. The leftmost column shows the given modules: Ml to be wrapped by Wl, and M2 to be
wrapped by W2. The top row shows the operations and effects of performing method wrapping, and the bottom row
shows call wrapping.

notions of method wrapping and call wrapping can be extended to support calling of precompiled
routines by generating and wrapping the appropriate adaptors. For example, to call a method
bef in module B before a method m eth in module M , we can generate a wrapper module W with
a function m eth th a t first calls bef, and then calls the old definition of m eth as o ld -m eth . The
modules M , W , and B can be combined in a manner similar to method wrapping to get the effect
of a before-method. The expression is shown below:

(hide (override (copy-as M meth old-meth) (merge W B)) old-meth)

5 S o l v i n g O l d P r o b l e m s i n B e t t e r W a y s

Using the operations defined on modules it is possible to conveniently solve long-standing problems
in software engineering, encountered when using C, or C + + . Several of these problems had solutions
previously, but they were ad-hoc and/or required changes to source code. Module operations permit
general solutions th a t impose no source code changes.

In this section, we delineate clean solutions to each of the problems enumerated in Section 2,
in the same order.

1. Wrapping calls. To solve the first problem of Section 2, the module spec for the image
processing (IP) application can be written as given in Section 4.2.2, under call wrapping.
Calls to edge_detect() can be wrapped with a wrapper method tha t first calls the function
b y te to flo a t() and then calls the ed ge.detectQ library function.

2. Library extension management. The IP library can be thought of as an 0 - 0 class, and
incremental changes to it can be thought of as subclasses th a t modify the behavior of their
superclasses. The subclasses can be integrated with the superclass by means of a module spec
tha t uses the notions of inheritance illustrated in Section 4.2.

10

3. Static constructors and destructors. In C + + , there is a need to generate calls to a set of static
constructors and destructors before a program starts. Special code is added to the C + + front
end to generate calls to the appropriate constructor and destructor routines. However, the
order in which such static objects are constructed is poorly controlled in C + + and leads to
vexing environment creation problems for large systems.

Under some variants of Unix, the C language has handled the need for destructors in an ad-
hoc fashion, by allowing programs to dynamically specify the names of destructor routines by
passing them to the atexit() routine. In other variants, the destructors for the standard I/O
library are hard-coded into the standard exit routine. In neither case is there any provision
for calling initialization routines (e.g., constructors) before program startup.

In both the cases of C and C + + , module operations allow addressing the problem of gen
erating calls to initialization or termination routines by using a general facility, rather than
special-purpose mechanisms. As shown in Section 4.2.2 as before-after methods, module ex
pressions can easily be programmed to generate a wrapper main() routine tha t calls all of the
initialization routines found within th a t module, then call the real main() routine. Similarly,
the exitQ routine can be wrapped with an exit routine tha t calls all the destructors found
in the module before calling the real exit(). In fact, the mechanism can be used to generate
arbitrary constructor/destructor wrappers, permitting new entry/exit semantics to be defined
for any routine in any module (not just the application main program).

4. Flat namespace. A longstanding naming problem with the C (and, to some extent C + +)
language has traditionally been the lack of depth in the program namespace. C has a two-
level namespace, where names can be either private to a module, or known across all modules
in an application. As a result, if an application uses library II.a which imports symbols from
another library 12.a, all symbols imported from 12.a are known by the application and become
part of its exported interface.

W ith module operations, these problems can be avoided. Once a module th a t implements
low-level functionality has been combined with a module tha t implements higher-level func
tionality, the functions in the former’s interface can be subjected to the hide operation to
avoid conflicts or accidental matches at higher levels.

6 C o m p a r i s o n t o R e l a t e d R e s e a r c h

This work is in essence a general and concrete realization of a vision due to by Donn Seeley [22].
Although programmable linkers exist, they do not offer the generality and flexibility of our system.

A user-space loader such as OMOS is no longer unusual [21, 8]. Many operating systems, even
those with monolithic kernels, now use an external process to do program loading involving shared
libraries, and therefore linking. However, the loader/dynamic linker is typically instantiated anew
for each program, making it too costly for it to support more general functionality such as in
OMOS.

Utilities exist, such as did [12], to aid programmers in the dynamic loading of code and data.
These packages tend to have a procedural point of view, provide lower-level functionality than
OMOS , and do not offer the control over module manipulation th a t OMOS provides. The did utility
does offer dynamic unlinking of a module, which OMOS currently does not support. However, since

11

OMOS retains access to the symbol table and relocation information for loaded modules, unlinking
support could be added.

The Apollo DSEE [1] system was a server-based system which managed sources and objects,
taking advantage of caching to avoid recompilation. DSEE was primarily a CASE tool and did not
take part in the execution phase of program development.

Several architecture definition languages (ADLs) have been proposed, e.g., Rapide [13], the
POLYLITH Module Interconnection Language (MIL) [5, 20], and OMG’s Interface Definition Lan
guage (IDL) [9]. These languages all share the characteristic tha t they support the flexible specifi
cation of high-level components and interconnections. Our approach offers the im portant advantage
tha t 0 -0 like program adaptation and reuse techniques (inheritance, in all its meanings) can be
applied to legacy components written in non-0 -0 languages.

An environment for flexible application development has been pursued in the line of research
leading to the so-called subject-oriented programming [19, 10, 11]. However, the emphasis of this
line of research has been new language design for application programming, rather than layered
evolutionary support.

7 C u r r e n t S t a t u s a n d F u t u r e W o r k

OMOS is currently about 17,000 lines of C /C + -1- code. OMOS also uses the Stk version of Scheme
(11,000 lines) and the Gnu BFD object file library. OMOS runs on i386 and HP/PA-RISC platforms
under the Mach operating system.

A forseeable point of future work is to be able to support message sending, as described in
Section 4.1.3. We have a design for converting static calls to IPCs. The basic idea is th a t a module
instance corresponds to one thread in an address space, thus one can have many instances of a
module in the same address space. W ith this, message sending between instances is modeled as
IPC, by converting static calls to IPC calls. For example,

(msg-send m l foo m2 bar)

wraps the static call to foo() within ml with an IPC stub tha t calls the bar() routine within an
instance of m2, which is itself wrapped with a receiving IPC stub. The crucial question here is tha t
of determining the identity of the receiving instance of m2. One answer to this question is to have
the msg-send routine also generate a constructor function tha t establishes the IPC environment
between ml and m2. For example, the constructor routine for m2 registers instances of m2 with a
name service, and invocations of m l ’sfoo() look up the identity of an m2 instance and establishes
an IPC handle using tha t name. The particular instance of m2 tha t the name service returns can
either be constant for the duration of the program, or be programmatically controlled from within
base language modules.

8 C o n c l u s i o n s

In this paper, we have argued tha t application environments supported by conventional operating
systems lack support for the effective management of application components. We illustrate tha t
the problems faced by application builders are similar to those tha t are solved by the concepts of
0 - 0 programming. We thus conclude tha t it is beneficial to support 0 - 0 functionality within the
component manipulation and binding environment.

12

We show tha t support for 0 - 0 development can be achieved by elevating the physical modularity
(i.e. separately compiled files) of application components to a separate layer of logical modularity,
managed by a system-wide server process. The server supports a module language based on Scheme,
using which first-class modules can be manipulated via a powerful suite of operators. Expressions
over modules are used to achieve various 0 -0 effects, such as encapsulation and inheritance, thus
directly supporting application development in an 0 - 0 manner. Furthermore, the server is designed
to be a central operating system service responsible for mapping module instances into client
address spaces. In this manner, we enable a superior application development environment within
a conventional operating system infrastructure.

A cknow ledgem ents.

We gratefully acknowledge much implementation work on OMOS by Jeff Law. We thank him as well as
Jay Lepreau and Nevenka Dimitrova for support and several useful comments on this paper.

R e f e r e n c e s

[1] Apollo Computer, Inc, Chelmsford, MA. DOMAIN Software Engineering Environment (DSEE) Call
Reference, 1987.

[2] Guruduth Banavar and Gary Lindstrom. Object-oriented programming in Scheme with first-class mod
ules and operator-based inheritance. Technical Report UUCS-95-002, University of Utah, February
1995.

[3] Guruduth Banavar, Gary Lindstrom, and Douglas Orr. Type-safe composition of object modules. In
Computer Systems and Education, pages 188-200. Tata McGraw Hill Publishing Company, Limited,
New Delhi, India, June 22-25, 1994. ISBN 0-07-462044-4. Also available as Technical Report UUCS-94-
001.

[4] Gilad Bracha and Gary Lindstrom. Modularity meets inheritance. In Proc. International Conference on
Computer Languages, pages 282-290, San Francisco, CA, April 20-23, 1992. IEEE Computer Society.
Also available as Technical Report UUCS-91-017.

[5] John R. Callahan and James M. Purtilo. A packaging system for heterogeneous execution environments.
IEEE Transactions on Software Engineering, 17(6):626—635, June 1991.

[6] William Clinger and Jonathan Rees. Revised4 report on the algorithmic language scheme. ACM Lisp
Pointers, 4(3), 1991.

[7] William Cook and Jen Palsberg. A denotational semantics of inheritance and its correctness. In Proc.
ACM Conf. on Object-Oriented Programming: Systems, Languages and Applications, pages 433-444,
1989.

[8] Robert A. Gingell. Shared libraries. Unix Review, 7(8):56-66, August 1989.

[9] Object Management Group. The common object request broker: Architecture and specification. Draft
10 Rev 1.1 Doc # 91.12.1, OMG, December 1991.

[10] William Harrison and Harold Ossher. Attaching instance variables to method realizations instead of
classes. In Proc. International Conference on Computer Languages, pages 291-299, San Francisco, CA,
April 20-23, 1992. IEEE Computer Society.

[11] William Harrison and Harold Ossher. Subject-oriented programming (a critique of pure objects). In
Proceedings of OOPSLA Conference, pages 411 - 428. ACM Press, September 1993.

13

[12] Wilson Ho and Ronald Olsson. An approach to genuine dynamic linking. Software— Practice and
Experience, 21(4):375-390, April 1991.

[13] Dinesh Katiyar, David Luckham, and John Mitchell. A type system for prototyping languages. In Proc.
of the ACM Symp. on Principles of Programming Languages, pages 138-150, Portland, OR, January
1994. ACM.

[14] Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The A rt of the Metaobject Protocol. The
MIT Press, Cambridge, MA, 1991. '

[15] Douglas Orr, John Bonn, Jay Lepreau, and Robert Mecklenburg. Fast and flexible shared libraries. In
Proc. USENIX Summer Conference, pages 237-251, Cincinnati, June 1993.

[16] Douglas B. Orr. Application of meta-protocols to improve OS services. In HOTOS-V: Fifth Workshop
on Hot Topics in Operating Systems, May 1995.

[17] Douglas B. Orr and Robert W. Mecklenburg. OMOS — An object server for program execution. In
Proc. International Workshop on Object Oriented Operating Systems, pages 200-209, Paris, September
1992. IEEE Computer Society. Also available as technical report UUCS-92-033.

[18] Douglas B. Orr, Robert W. Mecklenburg, Peter J. Hoogenboom, and Jay Lepreau. Dynamic program
monitoring and transformation using the OMOS object server. In The Interaction of Compilation
Technology and Computer Architecture. Kluwer Academic Publishers, February 1994.

[19] Harold Ossher and William Harrison. Combination of inheritance hierarchies. In OOPSLA Proceedings,
pages 25-40, October 1992.

[20] James M. Purtilo. The POLYLITH software bus. ACM Transactions on Programming Languages and
Systems, 16(1):151—174, January 1994.

[21] Marc Sabatella. Issues in shared libraries design. In Proc. of the Summer 1990 USENIX Conference,
pages 11-24, Anaheim, CA, June 1990.

[22] Donn Seeley. Shared libraries as objects. In Proc. USENIX Summer Conference, Anaheim, CA, June
1990.

Last modified on April 14, 1995.

14

