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ABSTRACT 

Accurate QRS detection is essential in on-line computerized 

rhythm monitoring systems. A major cause of error in QRS detection 

schemes arises from artifacts superimposed on the input signal. To 

a lesser extent identification of P or T waves as QRS complexes can 

represent another source of error. 

In an effort to reduce the incidence of false and missed alarms 

generated by the rhythm monitoring system currently used in the LDS 

Hospital Coronary Care Unit, a project was undertaken to improve the 

accuracy and reliability of the QRS detection algorithm, specifically 

in contaminated single lead electrocardiographic data. The algorithm 

uses a dual scan of the sample data combined with a peak detection 

scheme to locate a reference point on a QRS candidate. The candidate 

is then checked for evidence of baseline shift or an excessively low 

signal-to-noise ratio. If neither of these criteria is met, the candi­

date is assumed to be a QRS and a fiducial point is located on the 

complex. 

To assess the sensitivity and specificity of the QRS detection 

algorithm, an off-line evaluation was performed on forty-one patient 

records collected in the Coronary Care Unit. Arrythmias included in 

the evaluation were fast ventricular and atrial rhythms and heart 

block. Over 90 percent of the data base was contaminated with exces­

sive muscle artifacts. Of a total of 7,205 beats used in the 



evaluation, and positive predictive accuracy were .9641 and .9573, 

respectively. Of the error, 92.16 percent of the false positives and 

84.17 percent of the false negatives were due to excessive noise spike 

superimposition on the data. None of the false positive error (.0071) 

was due to P or T wave misidentification as a QRS complex. 

These results indicate that a s;gnal-in-noise approach to 

automated QRS detection is effective in identifying QRS complexes in 

the contaminated single lead electrocardiogram with minimal error. 

v 
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CHAPTER I 

INTRODUCTION 

Despite a reversal in the upward mortality trend of ischemic 

heart disease beginning in 1963, the disease still causes one-third of 

the deaths in the United States annually (Rosenberg and Klebba, 1978). 

Of these deaths approximately one-half are due to disorders in cardiac 

rate and rhythm (Katz, 1980). The establishment of Coronary Care Units 

(CCU) in the early 1960s has been successful in virtually eliminating 

primary arrhythmic death in patients with acute myocardial infarction, 

largely through the use of continuous electrocardiographic monitoring 

in these areas (Lown, Fakhro, Hood, and Thorn, 1967). The acute 

coronary care approach, however, has been ineffective in reducing the 

incidence of death due to heart failure in these patients. New know­

ledge in the management of acute myocardial infarction patients suggests 

that particular arrhythmias occurring in patients suffering from heart 

failure can cause further cardiovascular deterioration if not con­

trolled. Improved automated rhythm monitoring can enable earlier 

detection and management of these potentially damaging rhythm disorders 

in an effort to reduce morbidity in these high risk patients. 

Historically, the monitored electrocardiogram provided real-time 

and trend data enabling continuous evaluation of management protocols 

for the acute myocardial patient in the CCU. The initial goal in the 

unit was the immediate resuscitation of patients in cardiac arrest which 
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became possible with continuous electrocardiographic monitoring. How­

ever, Kimball and Killip (1966) reported that this had little effect on 

overall mortality. It was becoming increasingly evident through 

electrocardiographic monitoring that patients with acute myocardial 

infarction had a higher incidence of ventricular arrhythmias which com­

monly preceded ventricular fibrillation and cardiac asystole, both 

lethal if left untreated (Spann, Moellering, Haber, and Wheeler, 1964; 

Julian, Valentine, and Miller, 1964; Day and Averill, 1966). By 

immediately suppressing these prodromal rhythm disorders with anti­

arrhythmic agents, Lown, Vassaux, Hood, Fakhro, Kap1insky, and Roberge 

(1967) reported a tenfold reduction in primary cardiac arrest. Thus, 

early detection of potentially dangerous ventricular rhythm disorders 

and intervention with antiarrhythmic therapy was effective in reducing 

the incidence of primary arrhythmic death. 

With the development of full-time specially trained emergency 

teams and earlier detection provided by continuous rhythm monitoring in 

these units, a substantial improvement in the long-range survival fol­

lowing resuscitation also became evident. Prior to the establishment 

of CCUs, the percentage of recovery after resuscitation was less than 

5 percent (Hirrlmelhoch, Dekker, Gazzaniga, and Like, 1964). Flynn and 

Fox (1966) reported a long-range recovery of 38 percent of 121 cardiac 

resuscitations performed in various CCUs. Both the trauma involved in 

emergency resuscitation procedures and the myocardial deterioration 

that can result from such an emergency situation stresses the clinical 

importance of early detection of potentially lethal arrhythmias. 

The focus of the modern CCU has been to identify factors which 
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further compromise the clinical state of the heart failure patient. New 

knowledge concerning the underlying consequences of particular recur­

ring arrhythmias in the infarcted heart indicate that myocardial tissue 

necrosis is a dynamic process. Katz (1980) reported that the final 

infarct size was related not only to the magnitude of the initial insult 

but also to the cardiovascular events which occur subsequent to infarc­

tion. Recurring arrhythmias can further reduce coronary perfusion 

amidst an increased myocardial need for oxygen, thereby increasing the 

risk of enlarging the necrotic tissue mass. The extent of infarct has 

been shown to be a strong determinant of ventricular arrhythmias and 

mortality (Geltman, Ehsani, Campbell, Schechtman, Roberts, and Sobel, 

1979). When more than 50 percent of the left ventricle is damaged, the 

result is usually lethal (Killip, 1978). Therefore, it is important to 

promptly manage particular arrhythmias which have been identified as 

having the potential to increase infarct size. 

Power failure rhythms which have been defined as sequalae to 

heart failure have been reported to enlarge the infarct size if not 

controlled (Margolis and Wagner, 1976). The more common power failure 

rhythms include sinus tachycardia, atrial flutter, and fibrillation. 

Patients having anyone of these rhythm disorders have three times the 

risk of mortality of an individual not exhibiting any of these 

rhythms. Second degree and complete heart block can also lead to an 

extension of the infarct or serious tachyarrhythmias if not managed. 

With complete heart block the escape pacemakers are typically in the 

bundle branches or Purkinje system and are potentially unreliable. 

Second degree heart block precedes three-fourths of the cases of 
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complete heart block and both can invoke irreversible myocardial damage. 

Hence, more accurate detection and treatment of these potentially 

lethal disorders can improve prognosis in patients suffering from heart 

failure. 

The Electrocardiogram 

The electrocardiogram (EGG) is a body surface representation of 

the electrical events occurring in the heart and is obtained by record­

ing changes in potential between two exploring electrodes (bipolar lead 

system) or one exploring and one reference electrode (unipolar lead 

system). The electrical activity is caused by dynamic changes in ionic 

permeability of the cell membrane. The polarity (negative) of the rest­

ing cell interior is due to the active transport of sodium (Na) ions 

out of the cell in exchange for potassium (K) ions by the sodium pump. 

Since the resting membrane allows K ions to permeate the membrane but 

is impermeable to Na ions, the K ions leak from the inside causing a 

build-up of positive charges outside the cell. This results in a rest­

ing membrane potential of -90 mV. As the electronegativity of the 

interior decreases to the threshold potential (-75 mV), electrical cur­

rents are generated across the membrane. This process, called 

depolarization, is caused by the inward currents which result from the 

flow of positive ions, Na and calcium (Ga), into the cell. Once the 

membrane potential is reversed to approximately 20 mV, Na and Ga trans­

port channels close and the membrane is again permeable to K ions. 

During this phase (effective refractory period) of the action poten­

tial, a depolarizing stimulus cannot initiate a propagated action 
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potential. With the exchange of Na ions for K ions the sodium pump 

returns the cell to its normal resting membrane potential. The outward 

currents generated by the flow of positive ions (K) out of the cell 

is the process called repolarization. The inward and outward currents 

are collectively called an action potential. 

The initial depolarizing stimulus causes surrounding cell mem­

branes to open Na and Ca channels. In this way a wave of depolarization 

is propagated through the myocardium. Certain types of cells exhibit 

automaticity--the ability to automatically depolarize. The mechanism 

by which cells can generate an electrical impulse ;s in the inherent 

impermeability of their resting membrane to K ions. The sodium pump 

transports K ions to the cell interior where they become trapped, having 

a neutralizing effect on the polarity of the cell interior. 

The normal pacemaker of the heart is the sino-atrial (SA) node 

located in the upper region of the right atrium. Additional cells 

exhibiting automaticity are found in the lower atrioventricular (AV) 

node (40-55 impulses/minute), and the His Purkinje system (25-40 

impulses/minute). Since the SA node discharges impulses at the most 

rapid rate of all of the pacemaker cells (60-100 impulses/minute), 

it paces the heart. Should the SA node fail, one of the lIescape" pace­

makers found in the AV node or the His Purkinje system can take over. 

Conduction System 

The electrical impulse generated in the SA node sets up a wave 

of depolarization which spreads through the myocardium by specialized 

conduction pathways. All myocardial cells have the ability to 
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propagate impulses but the cells comprising the conduction system have 

the ability to conduct impulses at faster rates. The preferred pathways 

through the atria are three bands of tissue (internodal tracts) which 

are distributed in both the left and right chambers. The internodal 

tracts converge on the AV node which connects the atria to the ventri­

cles. The speed of conduction through the nodal cells is slow, around 

.02 to .04 meters/second compared to conduction velocities of 1 meter/ 

second through the atrial myocardium. The delay in propagation of the 

impulse through the AV node allows for ventricular filling from the 

a tri a. 

Once past the AV node the depolarizing wave conducts through the 

AV bundle and down the right and left divisions of the bundle branches 

simultaneously. The bundle branches run along the intraventricular 

septum to the apex of the heart where each branches into Purkinje fibers 

which line the endocardial walls of both ventricles. The Purkinje 

network and the Purkinje fibers of the bundle branches are specialized 

for very rapid propagation of impulses (.2-.4 meters/second) to the 

ventricular myocardium. This insures quick delivery of the depolariz­

ing stimulus to the large ventricular mass so that a cohesive 

ventricular contraction can occur. The speed of impulse conduction 

through the ventricular myocardium ;s slower than that in the Purkinje 

fibers and atrial myocardium, traveling approximately .3-1.0 meters/ 

second. 

Electrocardiogram Descriptors 

Linder normal circumstances the first deflection on the ECG 
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(see Figure 1) is the P wave which represents the depolarization of the 

atrial myocardium. The time taken for the depolarizing wave to traverse 

the atria takes approximately 160 to 200 msec. A segment of low level 

signal during atrial repolarization and AV node and His bundle activa­

tion follows atrial depolarization. Because of the small amount of 

tissue involved, the currents generated are not large enough to pick up 

a potential difference on the body surface using conventional amplifiers. 

The PR Interval (onset of P wave to onset of QRS complex) represents 

the time taken from the onset of atrial depolarization to the onset of 

ventricular depolarization and has a normal duration of 160 to 200 msec. 

If the PR Interval exceeds 200 msec, some type of AV block is present. 

The QRS complex represents ventricular muscle depolari~ation. 

Since the rate of impulse propagation is most rapid through the Purkinje 

fibers, ventricular activation produces the highest frequency deflection 

on the EGG. The first downward wave in the ventricular complex is the 

Q wave; any upward deflection is the R wave and any downward deflection 

following the R wave is the S wave. With some conduction defects an 

RJ wave (second upward deflection) can exist as well as an S' wave. 

The duration of the QRS complex is typically less than 100 msec but can 

last up to 200 msec in complete right or left bundle branch block. The 

repolarization of ventricular myocardium produces the ST segment and 

the T wave which are low frequency events as compared to the QRS com­

plex. 

Arrhymogenesis 

Any alteration in cardiac rhythm from normal sinus rhythm 
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constitutes an arrhythmia and can be attributed to a disturbance in 

automaticity and/or a disturbance in conduction. 

Basically, there are two mechanisms which influence automa­

ticity in normal and/or abnormal hearts. The first mechanism is due 
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to a neuronal or biochemical influence on the normal pacemaker--the SA 

node--of the heart while the latter results from an ionic imbalance in 

ischemic regions of the heart. The SA node is innervated by sympathetic 

and parasympathetic (vagal) nerve fibers which, when stimulated, have 

an acceleratory or inhibitory effect on the rate of discharge, respec­

tively. An increase in sympathetic tone produces sinus tachycardia 

(rate> 100 per minute) while excessive vagal influence produces sinus 

bradycardia (rate < 60 per minute). 

Regions of ischemic myocardium can predispose the heart to 

single or repetitive premature systoles or contractions. An ectopic 

focus can initiate an impulse if partial depolarization of the cell 

(to threshold potential) occurs before the normal SA node impulse 

reaches the cell. In ischemic regions the lack of available oxygen 

reduces the production of ATP which inhibits the sodium pump. Hence, 

extracellular K accumulates causing a fall in the resting potential. 

The acceleration in firing rate of the ectopic pacemaker can initiate 

a premature contraction, or repetitive premature contractions with sus­

tained firing. 

A conduction disturbance is manifested as slowed conduction, 

loss of the ability to conduct (block, or a process (reentry) which 

occurs in the presence of both). Slowed conduction can be caused by 

excess i ve vaga 1 tone, drugs, or by an i mpu 1 se enter"j ng an i schemi c 
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region. As previously explained, partial depolarization brought on by 

an ischemic environment partially deactivates the opening of the Na 

channel causing slowed conduction. In severely affected ischemic re­

gions the membrane potential falls to levels so low that an impulse 

cannot be initiated or propagated. This causes a block in the conduc­

tion of an impulse and can occur in any of the cells of the heart. 

Reentry is a process by which an impulse is propagated back to 

its point of origination. Slowed conduction, coupled with a unidirec­

tional block, allows the impulse to travel around the block and propagate 

through the blocked region (now capable of reexcitation) in the opposite 

direction. A unidirectional block can occur in diseased regions of the 

myocardium where the ability of the cells to propagate an impulse is 

blocked in one direction. Since repolarization is more rapid in 

ischemic cells due to the accumulation of extracellular K, the impulse 

can reenter the localized ischemic area in the opposite direction. 

Hence, an impulse can give rise to one or more additional impulses by 

the process of reentry. This phenomenon is believed to be responsible 

for the sudden onset of the more ominous arrhythmias, namely, atrial 

fibrillation and flutter and ventricular tachycardia, fibrillation 

and flutter. Reentrant tachycardias generally occur at higher rates 

than tachycardias initiated by abnormal impulse formation and repre-

sent a more serious threat to cardiac function. 

Historical Perspective of Automated 
Rhythm Analysis 

The clinical importance of early detection of potentially dan­

gerous rhythm disorders was realized by the end of the 1960s. 
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However, the question of the best approach to detection, i.e., auto­

mated or conventional methods, was unsettled. A definitive study by 

Romhilt, Bloomfield, Chou, and Fowler (1973) demonstrated that conven­

tional monitoring methods were unreliable for the precise and accurate 

detection of prodromal ventricular arrhythmias. In a retrospective 

automated analysis of tape recorded electrocardiograms of patients fol­

lowing acute myocardial infarction, prodromal ventricular arrhythmias 

were detected in virtually all the patients while conventional monitor­

ing recognized these events in less than 20 percent of the patients. 

They attributed the low incidence of detection by conventional methods 

to the inability of rate tachometers to respond to transient arrhythmias 

which did not cause enough change in rate to trigger an alarm. Vetter 

and Julian (1975) reported similar error results when comparing the 

detection performance of an analog and computerized alarm system in 

their Coronary Care Unit. Of the arrhythmias selected as clinically 

significant for the evaluation, the computer monitor detected 98 per­

cent while the conventional monitoring system detected only 36 percent. 

Frost, Yanowitz, and Pryor (1977) later reported in an evaluation of 

the automated arrhythmia alarm system at the LOS Hospital CCU that 

false positive abnormal alarms occurred only 25 percent as often with 

the computer system as with the conventional analog system. 

Although computerized monitoring has been shown to be the more 

accurate and reliable approach to arrhythmia detection, cardiac rhythm 

has proven to be difficult to diagnose with a computer. The perfor­

mance of real-time automated rhythm monitors is frequented with a 

considerable number of false and missed alarms despite reported 
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improved diagnostic accuracy with these systems in the last decade 

(Yanowitz, Kinias, Rawling, and Fozzard, 1974; Sanders, Alderman, and 

Harrison, 1977; Shah, Arnold, Haberern, Bliss, McClelland, and Clarke, 

1977). An evaluation of experimental and commercial real-time rhythm 

monitors by Fozzard and Kinias (1976) reports sensitivities for PVC 

detection in the range of 78-99 percent (percent total PVCs) with false 

positive abnormal rates (percent beats) ranging from .04-.45 percent. 

Cox, Nolle, and Arthur (1972) published results of various experimental 

rhythm monitor evaluations; sensitivities for abnormal detection ranged 

from 67-99.2 percent with false positive abnormal rates (percent 

normal beats) in the range of .8-33 percent and false negative rates 

(percent abnormal beats) in the range of 0.0-28 percent. The overall 

effect of missed and false alarms on the nurses is a lack of confidence 

in the monitoring system and a general desensitization to the alarms. 

Therefore, further improvement in computerized arrhythmia detection 

systems should be directed toward the factors causing the misdiagnosis 

of cardiac rhythm. 

Among the problems facing automated arrhythmia detection 

systems, artifact represents the most serious and frequent source of 

error (Pipberger, Dunn, and Berson, 1975; Nolle, 1977; Amazeen, 

Moruzzi, and Feldman, 1972). Poor signal condition is caused by fre­

quent muscle artifact induced by patient movement, poor electrode 

contact, and electronic pick-up. Engelse and Zeelenberg (1979) 

reported a false positive and false negative PVC error of 37 and 24 

percent, respectively, using their Automated Arrhythmia Detection 

System (AAD). Misclassification of noise accounted for 63 percent of 
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the false positive PVCs and 53 percent of the false negative PVCs. 

In the evaluation of the arrhythmia monitoring system currently in use 

at the LDS Hospital CCU, Frost et ale (1977) reported substantial error 

due to signal artifact. Forty-seven percent of the alarms generated 

during the controlled study were false alarms with artifact the most 

common cause of error. 

Furthermore, most investigators in this area are in agreement 

that the majority of false positives and false negatives can be attri­

buted to errors inherent in QRS detection and delineation schemes 

rather than classification per se (Engelse and Zeelenberg, 1979; 

Birman, 1982). Mead, Clark, Potter, Moore, and Thomas (1979) reported 

that greater than 95 percent of the false positives and 100 percent of 

the false negatives can be traced to QRS detection/delineation errors 

in the ARGUS/2H system. 

In view of the importance of signal artifact in error etiology, 

particularly with regard to QRS detection schemes, an examination of the 

causes of noise and its manifestations on the ECG follows. 

Noise: Definition and Problems 

In rhythm monitoring, superimposed noise on the ECG is a com­

mon phenomenon and one of the major obstacles to accurate QRS detection 

and delineation. Noise can arise from the electronic devices in the 

immediate environment surrounding the patient or from the patient. 

The task of distinguishing between noise and ventricular activity 

is particularly difficult with the computer because some types 

of noise and the QRS share common characteristics, i.e., high 



frequency components. These components are used to identify the QRS 

in the heart cycle. In addition, noise waveforms often correlate 

highly with the shape of the QRS. In the following sections, 

physiological and external sources of noise are discussed together 

with their manifestation on the ECG. 

Sources of Noise 

14 

Physiological sources. The physiological sources of noise that 

can alter the configuration of the ECG are neuronal stimulation and 

those associated with patient movement. As explained in the last sec­

tion, the acceleratory and inhibitory effects of sympathetic and vagal 

stimulation, respectively, cause an increase or decrease in the heart 

rate. This results in RR interval variation (see Figure 2). 

The sources of physiological noise associated with patient 

movement include changes in the position of the heart in the chest, 

respiration, and depolarization of nonmyocardial muscle cells. Figure 

3 shows an ECG in which the noise is caused by a change in the spatial 

relationship of the heart in the chest cavity, i.e., a change in the 

mean QRS vector. This results from the displacement of the heart when 

the patient changes body positions. The resulting variation in wave 

amplitude of the QRS, therefore, is not due to factors affecting myo­

cardial contractility, but rather is due to a change in the direction 

of the mean QRS vector with respect to the stationary, positive record­

ing electrode. 

The second source, respiration, causes the chest to move in and 

out with inhalation and exhalation. This respiratory movement can 
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manifest on the ECG, in the presence of a poor skin electrode inter­

face, as a periodic sinusoidal wave with a frequency equal to the 

respiratory rate. Respiratory variation in QRS amplitude can also 

result from changes in the volume conductor. Since air is a poor 

conductor, an increase in the chest volume with inspiration can re­

duce the signal voltage recorded on the body surface. With expiration 

the volume decreases and the amplitude of the QRS can increase. 

Figure 4 shows an ECG with manifestations of respiratory variation. 

Finally, since myocardial cells are not the only muscle cells 

in the body depolarizing, electrical potentials can be generated from 

other muscle sources. Electrodes measure the superimposition of all 

electrical currents; therefore, potentials generated by skeletal muscle 

cells can also be recorded on the body surface. The muscle noise re­

sulting from the depolarization of nonmyocardial cells is randomly 

distributed throughout the entire frequency band of the ECG and is one 

of the most frequent sources of noise contamination. 

Muscle noise can manifest as an abrupt shift in baseline (base­

line shift) and/or a sequence of variable-amplitude noise spikes. 

Baseline shifts are caused by sudden patient movement while noise 

spikes are the result of muscle cells depolarizing to achieve movement. 

An isolated example of baseline shift is shown in Figure 5. A more 

common manifestation of patient movement, i.e., baseline shift in 

conjunction with noise spikes, is shown in Figure 6, page 17. 

External sources. In addition to physiological noise, contamina­

tion of the signal from Jlexternal Jl or electronic noise can occur. The 

barrage of electronic devices powered by sixty cycle alternating 
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current in the immediate environment of the patient creates an electri­

cal field which can be sensed by monitoring electrodes. Sixty cycle 

noise pickup is commonly caused by loose or improperly shielded elec­

trodes. It typically manifests as a 60 Hz sinusoidal wave superimposed 

on the baseline. Depending on the amplitude of the 60 cycle noise, 

however, it can manifest as a notch on the QRS complex, P or T wave. 

Figure 7 shows a rhythm strip contaminated with 60 cycle noise. 

Specific electronic devices which are designed to electrically 

or mechanically stimulate the myocardium also contaminate the electro­

cardiogram. ECGs of patients with atrial and/or ventricular pacemakers 

show a high frequency spike before the P wave and/or the QRS complex, 

respectively, corresponding to the discharge of the electrical impulse. 

Ventricular pacing spikes are shown in Figure 8. 

A less commonly used tool, called a balloon pump, mechanically 

constricts and dilates the left ventricle. The resulting muscle noise 

is shown in Figure 9. 

Noise Considerations 

All superimposed noise alters the morphology of the electro­

cardiogram; therefore, its manifestations must, in principle, be taken 

into account. However, muscle artifact presents particular problems 

in QRS'detection and delineation. This noise can result in high fre­

quency deflections on the ECG and has to be differentiated from 

ventricular activity. Therefore, the next section reviews various 

approaches to beat detection in noise contaminated data. 
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Review of Computerized QRS Detection Algorithms 

The first reported technique for automatic QRS recognition was 

given by Stallmann and Pipberger (1961) in an evaluation of a multiple 

lead ECG analysis program used at the Veteran's Administration Hospital 

in Washington, D.C. Single lead arrhythmia detection systems were 

developed soon after the first ECG contour analysis programs and used 

similar derivative techniques for detection of ventricular activity. 

The rate of voltage change is typically expressed by first differences 

between consecutive ECG data points. Since the sampling period is a 

constant, the voltage differences are directly proportional to the time 

derivatives. The first difference can be algebraically represented by 

the formula: 

6Y(i) = Y(i+l) - Y(i) 

where Y(i+l) represents the voltage at the (i+l)th ECG data point and 

Y(i) represents the voltage of the ith data pOint. The first differ­

ences are computed in a specified time interval at the start of 

monitoring; and the maximal positive and/or negative first difference 

is assumed to occur on the QRS complex. Subsequent first differences 

exceeding a designated percentage of a maximum first difference is 

typically used to flag ventricular activity. 

Many variations in the derivative approach have been proposed. 

Early investigators used the maximum negative rate of change which 

typically occurs on the descending slope of the R-S segment to locate 

the QRS (Steinberg, Abraham, and Caceres, 1962). Hochberg, Weihrer, 
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McAllister, Calatayud, Zimmerman, and Caceres (1969) at the u.s. Public 

Health Service in Washington, D.C. reported in 1969 that QRS detection 

in bizarre arrhythmias can best be accomplished using the maximum abso­

lute derivative rather than the most negative. 

The percentage of the maximal positive or negative first 

difference used is typically dependent upon the number of scans per­

formed to detect a complex. If a single search is used, the percentage 

is typically less than fifty to insure detection of lower frequency 

ectopic depolarizations (Geddes and Warner, 1971). The high false 

positive rate resulting from a low tolerance search has prompted some 

investigators to use multiple scans (Sanders et al., 1977; Arnold, 

Shah, and Clarke, 1975). Upper tolerances typically exceed 50 percent 

of the first difference followed by a lower tolerance search{es), if 

necessa ry. Mul t"j P 1 e scans have been reported to di scri mi na te ventri cu­

lar activity more reliably in artifact than single scans. 

Other attempts to desensitize the derivative technique to noise 

have been reported. Frankel, Rothmeier, James, and Quaunor (1975) 

designate the tolerance as one-eighth the absolute maximum negative 

first derivative calculated between two samples 16 msec apart. A QRS 

is detected when seven consecutive points fall below this tolerance. 

These investigators found this algorithm to be effective in filtering 

out 60 Hz noise. Haywood, Murphy, Harvey, and Saltzberg (1970) use the 

secant rather than the slope for R wave detection, where the secant is 

defined by the formula: 

V'{i) = V{i+4) - V{i) 



with V (i) the ith data point. A trigger level (R) is then defined 

as: 

R = VI(min) + 1/6 [V'(max) - VI(min)] 
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where VI (max) and VI(min) denote the maximal positive and maximal nega­

tive secants, respectively. Each time this level is exceeded, the first 

minimum derivative falling below this level is considered a reference 

point and the beginning of a new cycle. Reference points typically 

fallon the descending limb of the R wave but can occur on the S wave 

depending on the lead selected. The R location was reported to be 

consistent in 60 Hz noise. Knoebel, Rasmussen, Lovelace, and Anderson 

(1975) at the Indiana University Medical Center also calculate the 

secant (Z') using a four sample displacement and then determine 

the mean maximal negative secant and the standard deviation of the 

samples (ZI(S)) for ten successive 2.5 second buffers. The threshold 

(T(h)) is then computed as: 

T(h) = ZI - ZI(S). 

Knoebel et ale (1975) determined experimentally that a displacement of 

four samples provided the most reliable results in excessive muscle 

noise. Another approach proposed by Holsinger, Kempner, and Miller 

(1971) at the National Institute of Health at Bethesda, Maryland~is 

to designate a percentage of the maximum negative derivative based on 

the requirement that a maximum of three consecutive first differences 
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fall below this tolerance. The tolerance is then continuously adjusted 

by requiring that a minimum of three but less than seven consecutive 

differences satisfy the tolerance criteria. 

Various digital filters designed for data smoothing have been 

incorporated in rhythm monitoring systems to further desensitize detec­

tion algorithms to signal artifact. Pryor (1971) used a weighted 

convolution equation: 

Y(i) = sum (A(k) * X(j-k)) 

where the A(k)s are the weights and Y(i) the output to the digitally 

filtered signal. This technique causes a minimum of signal distortion 

and effectively suppresses superimposed noise. Balda, Diller, 

Deardorff, Doue, and Hsieh (1977) with the HP Medical Products Group 

use an adaptive filter if the critical points (maxima, minima, and zero 

crossings) in the ECG record do not fall in the acceptability range. 

Analysis of the data resumes after filtering. 

One of the most widely respected computer programs for monitor­

ing of cardiac rhythms, ARGUS, originally developed by Nolle (1972) as a 

doctoral project at Washington University, uses a data compression 

scheme (AZTEC) and QRS detection/delineation scheme (PRIMITIVE) to 

identify QRS complexes. The preprocessing scheme codes line segments 

as a slope and a duration. A QRS is detected when a series of line 

segments satisfy specified sign and number restrictions. ARGUS, 

however, has been reported to be highly vulnerable to signal artifact 

(Nolle, 1977; Zeelenberg, Deutsch, Engelse, and Corbeij, 1977). AZTEC 
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data is screened for characteristic signs such as low data compression 

or an excessive number of local extrema to identify artifact. PRIMI­

TIVE then requires that AZTEC data be free of detected artifact for at 

least 800 msec. Sanders et ale (1977) version of ARGUS developed at 

Stanford University stops all beat detection and delineation upon 

detected artifact and requires five continuous seconds of nonnoisy data 

to resume analysis. 

Most of the prominent researchers in this field are in agreement 

that contextual analysis of the electrocardiogram, i.e., analysis of 

only noise-free data, ;s not a good solution to the noise problem in the 

clinical environment (Pipberger et al., 1975; Amazeen et al., 1972; 

Feldman, 1977). Reported data loss figures due to rejection of noise 

segments of the ECG have been high (Nolle, 1977; Zeelenberg et al., 

1977). Many of the existing rhythm monitoring systems, however, use a 

contextual approach to analysis because of the lack of better QRS 

detection and noise detection algorithms. 

With this in mind a project was designed to develop signal-in­

noise detection criteria which could accurately detect QRS complexes 

(normal and abnormal) in the contaminated ECG waveform. The conclu­

sions arrived at by investigators in this field are consistent with 

our findings using the automated rhythm~monitoring system at the LDS 

Hospital CCU: The majority of false positive (abnormal) alarms are 

caused by misidentification of ventricular activity. Hence, the 

objective of this project is to reduce the incidence of false positive 

complexes detected, while minimizing the incidence of false negatives. 

To accomplish this objective, the number of diagnostic criteria 
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have been increased in the program in an effort to diminish the number 

of false alarms. An inherent danger in this approach is a rise in the 

incidence of false negatives which clinically poses a more serious 

problem than false alarms. Hence, particular emphasis is placed on 

improving the sensitivity or the ability of the detection criteria to 

identify true ventricular activity without loss of specificity or 

ability to distinguish nonventricular activity from true ventricular 

activity. 

The approach to achieve this objective was to gather electro­

cardiographic data which was heavily contaminated with noise and 

representative of a broad spectrum of rhythm disorders, particularly 

the prodromal and lethal arrhythmias previously discussed. By doing 

so, development of the QRS detection/delineation criteria could be 

done on a data base representative of on-line monitored electro­

cardiographic data rather than on a simulated or well defined data 

base. 

The first step was to design an inclusive candidate detection 

algorithm which would flag all possible beats. The candidate set 

would then be subject to passage of discriminative criteria aimed at 

identifying noise configurations and assessing levels of muscle 

artifact. To accurately detect beats using this signal-in-noise 

approach, the following techniques were pursued. Levels of muscle 

artifact were determined relative to the amplitude of the QRS com­

plex. By rejecting only candidates with low signal-to-noise ratios, 

the data loss can be minimized. Another approach is to identify 

specific noise configurations that can be used to distinguish noise 
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from ventricular activity. Upon validation of a candidate as a beat 

by satisfying the above criteria, the final step would be to locate 

a consistent fiducial point on each complex. 



CHAPTER II 

METHODS 

Data Acquisition 

The lead chosen for rhythm monitoring in the LDS Hospital 

Coronary Care Unit is the Modified Vl. Typically, the lead systems 

employed for rhythm monitoring are those which best document atrial 

activity since the P wave configuration and its relationship to ventri­

cular activation is essential for adequate rhythm analysis. In 

addition, the Modified Vl differentiates between a right and left 

bundle branch block, both prodromal post-MI conduction disorders. 

For these reasons, the Modified Vl is the lead of choice for rhythm 

monitoring in this coronary care unit. 

The amplified ECG can be accessed from any of the twelve beds, 

including the four acute beds, from the Central Monitoring Station in 

the unit. The analog data were recorded with a four channel Hewlett­

Packard tape recorder onto magnetic instrumentation recording tape at 

3 3/4 ips. The data were then digitized on a Data General NOVA 3 

computer equipped with a 10 bit AID converter at a sampling rate of 

200 sps. For long-term storage the samples are written to an indexed 

data file on floppy disc using a double-buffering technique. When 

needed for algorithm development, a data file is transferred to the 

hard disc on the ECLIPSE computer. 

The amount of continuous data recorded for the off-line 
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analysis of each patient data file is limited by the inherent addres­

sing capabilities of the developmental computer--a Data General 

ECLIPSE S200. The extent of memory which can be directly accessed has 

an upper addressable limit of 32,767, 16 bit words. This is approxi­

mately 164 seconds (2 minutes, 44 seconds) of data. The American 

Heart Association recommends 30 seconds to 1 minute rhythm strips for 

accurate interpretation of rhythm disturbances. Approximately 5 

minutes of data were recorded on each rhythm, with the excess providing 

a backup to the initial 32K samples. 

The decision to sample at 200 sps was based on practical and 

theoretical considerations. A common practice in signal analysis is 

to sample at twice the highest frequency component in the signal to 

prevent aliasing (based on the Nyquist theory). The American Heart 

Association recommends that all recording equipment used in the moni­

toring of the ECG have a flat frequency response out to 100 cps. 

Therefore, similar detail is present in the analog recording as the 

digital data sampled at 200 sps. 

QRS Detection Algorithm 

The initial task in the detection of a QRS complex is the 

initialization of the beat detector. Since the QRS represents the 

highest frequency "waveform" in the noise-free heart cycle, differ­

ences between consecutive samples will be a maximum during the QRS. 

This maximum first difference must be calculated as well as the com­

plex search region. Therefore, to initialize the beat detector, the 

following steps are necessary: 
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1. Find the maximum absolute first difference (MXDF) in the 

initial 3 seconds, i.e., MXDF = max (abs (X{i) - X{i+l))) 

i = 0 to 599 where X{i) is the A/D value of the ith sample in the 

sample data array X. 

MXDF is typically found in the region of most rapid impulse conduc­

tion, i.e., the bundle branch system of the ventricles (.4 meters/ 

second). This 3 second region must not include high frequency noise 

or exclusively ventricular tachycardia, flutter, or fibrillation since 

either of these conditions could cause misdetection of subsequent 

complexes. 

2. Set the first- and second-pass candidate tolerances, 

CTOLR60 and CTOLR16, equal to 60 and 16 percent, respectively, 

of MXDF: CTOLR60 = (.60 * MXDF); CTOLR16 = (.16 * MXDF). 

3. Set the first- and second-pass boundary tolerances, 

BTOLR16 and BTOLR30, equal to 16 and 30 percent, respectively, of 

MXDF: BTOLR16 = (.16 * MXDF); BTOLR30 = (.30 * MXDF). 

4. Limit the complex search region (CPLX-REG) to the number 

of samples corresponding to two-thirds of twice the mean RR 

Interval over the initial ten complexes: CPLX-REG = 1.32 * 

({sum (RRARRY{i)) / (i-l)) i = 2 to 10, where RRARRY{i) is the RR 

Interval of the ith beat in the RR Interval array RRARRY. 

Once the tolerances and complex search region are initialized, 

the sample data is scanned in order to identify a QRS complex region 

(candidate) using a derivative technique. To localize a complex 

region, the following steps are necessary: 

1. Set the beginning of the candidate search region 
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(CAND-REG1) equal to 3 seconds relative to the beginning of the 

sample data file. Set the end of the candidate search region 

(CAND-REG2) equal to the beginning of the candidate search region 

plus the complex search region: CAND-REG2 = CAND-REGl + CPLX-REG. 

2. Beginning with the CAND-REGl calculate consecutive first 

differences: fdiff = X(i) - X(i+l) i = CAND-REGl to CAND-REG2. 

If the fdiff exceeds CTOLR60, then i is labeled the candidate's 

time of occurrence relative to the beginning of the sample data 

file. 

3. If a candidate is not located in the first-pass of the 

complex search region, then implement a second-pass search using 

CTOLR16 as the critical candidate tolerance. 

4. If a candidate is not located in the second-pass of the 

complex region, the candidate search region is incremented: 

CAND-REGl = CAND-REG2; CAND-REG2 = CAND-REGl + CPLX-REG. 

The dual tolerance approach to QRS complex recognition, i.e., lack of 

a qualifying first difference on an initial high tolerance search 

necessitating a second lower tolerance search, is needed in a multi­

focal complex environment. That is, changes in complex morphology that 

are initiated by abnormal impulse formation below the AV node (and not 

blocks which use the bundle branch system) necessitate a second search 

for complex detection. This is because ectopic ventricular depolariza­

tions use a less efficient conduction system, the venticular 

myocardium. Therefore, first differences are typically less than 

differences in complexes initiated from an atrial focus. 

Once a complex region is flagged, a "dominant" peak is located 
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in the next 150 msec (PK-REG). The peak detector identifies the most 

highly correlated interval of samples to a 100 msec duration peak. 

The filter is designed to detect a peak morphology using the follow­

ing weights: (-1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,-1). The weighted 

convolution equation: 

Y{i) = sum (H{j) * X{i-j)) j = -n to n 

where X{i) is the AID value of the ith sample in the sample data array 

X, H{j) the weight as a function of the interval value j, n the 

interval, and Y{i) the output to the equation reduces to the equation: 

Y(i) = abs (2 * X{i) - X{i-10) - X(i+10)) 

using a 10 sample interval. When the output Y{i) is at an absolute 

maximum, i is labeled the peak's time of occurrence (PK-TOC) relative 

to the beginning the sample data file. The PK-TOC is designated the 

candidate's fiducial point and is used as a reference for obtaining 

features which are necessary to validate the candidate as a QRS 

complex. 

This set of features stored for each candidate is used to 

validate each subsequent candidate once an initial beat is validated. 

Among these features are the RR Interval, the prepeak interval ampli­

tude and the postpeak interval amplitude. The candidate RR Interval 

(RR) is defined as the number of samples between the current PK-TOC 

and the last validated peak's time of occurrence (LST-PK-TOC): 
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RR = PK-TOC - LST-PK-TOC. 

The RR is assigned to the previous candidate RR Interval (LST-RR) 

after each new complex is validated. The prepeak and postpeak 

interval amplitudes (PREPK-AMP and POSTPK-AMP) represent amplitude 

offsets referenced to the candidate peak. Each value represents the 

change in amplitude between two nonconsecutive samples (tocl and toc2) 

where tocl and toc2 are the PK-TOC and a designated interval limit, 

respectively. The interval limit is equal to twelve samples; there­

fore, the PREPK-AMP and POSTPK-AMP represent -/+ 60 msec offsets, 

respectively, about the PK-TOC and can be expressed as: 

PREPK-AMP = X(PK-TOC) - X(PK-TOC - 12) 

POSTPK-AMP = X(PK-TOC) - X(PK-TOC + 12). 

Before the boundary values (QRS onset and offset) are located, 

the following conditions must be met: 

1. The complex must pass the noise criteria (defined in the 

next section). 

2. The instantaneous heart rate must be less than 200 beats 

per minute, i.e., RR > = 300 msec. 

If both conditions are true, the candidate is accepted as a valid 

QRS complex. If the candidate violates the initial condition, the 

candidate is rejected as noise. If the second condition is met, the 

following exception to boundary location is required if the LST-RR 



also corresponds to a heart rate greater than 199 bpm: 

1. No boundary search (defined below) occurs and the PK-TOC 

is used as the fiducial point (onset) and the "offset" of the 

complex. 

2. A polarity check is required. 
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The polarity algorithm requires that the prepeak interval 

amplitudes of the current and previous candidate (PREPK-AMP and LST­

PREPK-AMP) have the same sign. This check is necessary to insure con­

sistent fiducial point location in rhythms exhibiting rates in excess 

of 199 bpm. Since it is reasonable to assume that tachycardia 

morphologies exceeding 199 bpm, i.e., typically ventricular flutter 

and fibrillation, are commonly represented as alternating peak 

polarities in sequence, it is required that consecutive fiducial 

pOints be located on similar peak polarities. Using this polarity 

requirement, misclassification of similar beat morphologies is 

minimized. In addition, the RR Interval more accurately represents 

the actual timing between beats. 

The QRS delineation scheme locates an onset and offset on the 

complex. The QRS onset represents the fiducial point of the complex 

while the "offset" provides a consistent reference pOint to which the 

skip region is added once a beat has been detected. The location of 

an "offset" does not necessarily reflect the actual completion of 

ventricular depolarization (J point), i.e., can be the onset of the 

T wave, T wave peak, etc. The overriding consideration is that the 

offset location be morphologically consistent on similar complexes. 

A derivative technique similar to that implemented for 



candidate location is used for boundary location. The following 

steps are necessary: 

1. Designate the beginning of the onset, offset search 

regions (ONST-REG1, OFST-REG1) as -/+ 30 msec about the PK-TOC, 

respectively: ONST-REGl = (PK-TOC - 6); OFST-REGl = (PK-TOC + 

6). Designate the end of the onset, offset search regions 

(ONST-REG2, OFST-REG2) as -/+ 150 msec about the PK-TOC, 

respectively; ONST-REG2 = (PK-TOC - 30); OFST-REG2 = (PK-TOC + 

30). 
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2. Beginning with ONST-REGl search backward 120 msec for 

three consecutive absolute first differences less than BTOLR16 to 

locate the onset. If a sample interval satisfies this condition 

in the onset search region, then the onset is labeled the time 

of occurrence of the initial sample in the interval (ONST-TOC). 

Likewise, search forward 120 msec beginning with OFST-REGl for 

six consecutive absolute first differences less than BTOLR16 to 

locate the offset. If an interval satisfies this condition in the 

offset search region, then the offset is labeled the time of 

occurrence of the initial sample in the interval (OFST-TOC). 

3. If an interval of four or seven samples (depending on 

type search) does not satisfy the previous requirement, then 

implement a second-pass absolute first difference search in each 

respective region using BTOLR30 as the critical boundary 

tolerance. This second search is necessary for onset and/or 

offset location when high frequency noise is superimposed on 

either region. 
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4. If an interval of samples in the onset search region does 

not satisfy the above requirement using a second search, then 

the candidate is rejected as being too noisy. If the offset 

criteria is not satisfied, then the offset's time of occurrence 

is assigned 30 msec following the PK-TOC: OFST-TOC = (PK-TOC + 

6). 

Once a fiducial point has been located on the beat, the RR 

Interval (RR-INTV) is calculated: 

RR-INTV = ONST-TOC - LST-ONST-TOC 

where the LST-ONST-TOC corresponds to the last validated beat's onset 

time of occurrence. The (onset) RR-INTV more accurately represents the 

actual timing between validated beats than the candidate RR Interval 

(RR) since onset location is more consistent than peak location on 

similar beats (discussed in Results). Therefore, all rate dependent 

calculations employed in a classification scheme should use the more 

accurate interval, RR-INTV. 

Once the RR Interval has been calculated, one of four no­

search regions is designated based on the instantaneous heart rate. 

If the heart rate is: 

1. Greater than or equal to 300 bpm, then skip forward 50 

msec from the PK-TOC 

2. Less than 300 bpm but greater than or equal to 200 bpm, 

then skip forward 150 msec from the PK-TOC 

3. Less than 200 bpm but greater than 120 bpm, then skip 



forward 150 msec from the OFST-TOC 

4. Less than or equal to 120 bpm, then skip forward 250 

msec from the OFST-TOC. 

The first-pass candidate search resumes with the initial sample fol­

lowing a no-search region. 

Noise Detection Algorithm 
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As previously stated, muscle artifact contributes the majority 

of false positive error in candidate location due to the high fre­

quency components superimposed on the waveform. Two manifestations 

of muscle artifact superimposition, which are identified in the noise 

detection algorithm, are baseline shifts and high frequency noise 

spikes. 

Baseline Shift Identification 

To identify a candidate as a shift in baseline due to non­

myocardial potential superimposition, the peak morphology is checked 

for evidence of "one-leggedness." As defined in the previous sec­

tion, two legs, the PREPK-AMP and POSTPK-AMP, are calculated for each 

candidate peak. When a baseline excursion occurs due to patient move­

ment, a large disparity in these magnitudes results. Using the 

absolute value of each leg: 

LEGl = abs (PREKP-AMP) 

LEG2 = abs (POSTPK-AMP), 
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the ratio of minimum to maximum leg is calculated: LEG-RTO = min 

(LEG1,LEG2) I max (LEG1,LEG2). If the magnitude of the minimum leg 

is less than 25 percent of the maximum leg (i.e., LEG-RTO < .25), then 

the candidate is labeled a shift in baseline and rejected as noise. 

Nonpeak Identification 

Taking into account the morphology of a peak, i.e., two 

ascending intervals (maximum) or two descending intervals (minimum) 

about a peak, a nonpeak is identified when the prepeak and postpeak 

interval values, PREPK-AMP and POSTPK-AMP, exhibit dissimilar sign. 

Candidates labeled as nonpeaks are rejected as noise. 

Noise-Spike Identification 
and Quantization 

To assess the "level" of noise spike superimposition about a 

peak, maxima and minima that meet signal to noise (SIN) requirements 

are counted. To locate and verify an extremum, the following steps 

are required: 

1. Set the signal S(i) equal to the output of the peak 

detector: S(i) = abs (2 * X(i) - X(i-10) - X(i+10)), where 

i corresponds to the PK-TOC of the candidate. 

2. Set the noise tolerance, NTOLR15, equal to 15 percent of 

S(i): NTOLR15 = (.15 * S(i)). If NTOLR15 is less than or equal 

to 10 AID units (corresponding to S(i) < 66), then output the 

message "Increment the Gain" and default NTOLR15 to 1. Unless 

the gain is incremented, the probability of detection error is 

increased due to the low signal to noise ratio. 



3. Designate the beginning, end of the maxima/minima search 

region (MXMN-REG1, MXMN-REG2) as -/+ 150 msec about the PK-TOC, 

respectively: MXMN-REGl = (PK-TOC - 30); MXMN-REG2 = (PK-TOC + 

30). 

4. Beginning with MXMN-REGl calculate consecutive first 

differences: fdiffl = X(i); fdiff2 = X(i+l) - X(i+2). 

If fdiffl and fdiff 2 exhibit opposite sign, designate the 

extremum as a maximum or minimum time of occurrence depending 
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on the sign order: MX-TOC = [(-)fdiffl, (+)fdiff2]; MN-TOC = 

[(+)fdiffl, (-)fdiff2]. (NOTE: These sign assumptions are based 

on unsigned A/D values with the maximum A/D value representing 

maximum voltage, the minimum A/D value representing minimum 

voltage). 

5. To qualify the maximum or minimum as a valid noise candi­

date (N(i)), the following steps are necessary: 

a. Set amplitude limits of the potential maximum, 

minimum equal to -/+ NTOLR15 about MX-TOC and MN-TOC, 

respectively: MAX-LMT = (MX-TOC - NTOLR15); MIN-LMT = 

(MN-TOC + NTOLR15). 

b. To verify a potential maximum, continue an incre­

mental first difference calculation beginning with MX-TOC: 

fdiff = X(i) - X(i+l) where the initial value of i is MX-TOC. 

Validation of the maximum occurs when the following conditions 

are true: (1) X(i+l) < MAX-LMT and (2) inclusive first dif­

ference sign(s), i.e., in region beginning with MX-TOC and 

ending with sample i satisfying the initial condition, are 
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positive. To verify a potential minimum, continue an incre­

mental first difference calculation beginning with MN-TOC: 

fdiff = X(i) - X(i+l) where the initial value of i is MN-TOC. 

Validation of the minimum occurs when the following conditions 

are true: (1) X(i+l) > MIN-LMT and (2) inclusive first dif­

ference sign(s), i.e., in region beginning with MN-TOC and 

ending with sample i satisfying the initial condition, are 

negative. If condition 2 is violated before condition 1 is 

true, the extremum is invalidated. 

c. Upon validation, MX-TOC or MN-TOC is stored in N(k). 

If k is greater than 7 (i.e., > 7 extrema corresponding to 

an SIN ratio < 6.67), then the candidate is rejected as being 

too noisy. 



CHAPTER III 

JUSTIFICATION OF METHODS 

Approach 

To design a robust QRS detection delineation algorithm, the 

following phases were implemented: 

1. Visual identification of all complexes in each data file 

2. Refinement of the algorithm to achieve minimum QRS detec­

tion error in the data base. 

An overview of the data is listed in Table 1. Of the forty-one 

data files, fifteen rhythm disturbances are represented (excluding 

normal sinus rhythm). Note that the prodromal and lethal arrhythmias 

discussed in the first chapter are included in the data set. In 

addition, high frequency noise is superimposed on more than 90 percent 

of the patient data files. 

The initial phase involved generating a validated index file 

(for each patient data file) containing feature specific time of 

occurrences located by the candidate detection algorithm. Features 

included in each validated file were peak, onset and offset time of 

occurrences, respectively. To verify accurate detection of the 

complex, a patient data file was transferred to memory from the 

disc, the algorithm executed, and then the respective features 

located were superimposed on the waveform and verified using a 

Tektronic graphics terminal. In order to validate a peak time of 

~ 
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TABLE 1 

DATA BASE OVERVIEW 

NSR 

NSR with PACs 

NSR with PVCs 

Rhythm 

NSR with PACs and PVCs 

NSR with PVCs and Paced 

NSR with PSVT 

Atrial Fibrillation-Flutter 

Atrial Fibrillation with PVCs 

PSVT 

PSVT with PVCs 

PSVT with AV Block 

AV Block 

Bundle Branch Block 

Accelerated Ventricular Rhythm 

NSR with Ventricular Tachycardia 

NSR with Ventricular Fibrillation-Flutter 

Total 

Number of 
Data Fil es 

3 

11 

1 

1 

4 

2 

3 

2 

3 

2 

2 

3 

41 

42 

Total 
Seconds 

404 

128 

1,423 

163 

163 

46 

40 

440 

245 

491 

76 

322 

394 

220 

245 

87 

4,894 

NOTE: NSR = normal sinus rhythm; PAC = premature atrial depolari­
zation; PVC = premature ventricular depolarization; PSVT = paroxysmal 
supraventricular tachycardia; and AV = atrio-ventricular. 
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occurrence, the location had to be accurate (i.e., the apex of the 

most prominent peak in the QRS) and consistent (i.e., the same loca­

tion on each complex). If a complex was not detected, the criteria 

were modified in an effort to isolate the appropriate peak time of 

occurrence. After a valid peak time of occurrence was identified for 

all complexes, including those contaminated with noise, the time­

specific values were stored in a validated index file (filename.VIDX) 

and stored on the disc. 

Considerable variation in the empirical values was necessary 

to arrive at a complete set of peak time of occurrences for each file. 

Not only was there variation among complexes in a file but variation 

from file to file. 

The second phase involved converging on a fixed set of para­

meter values that represented minimal error in complex detection and 

delineation over all the data. First, it was necessary to isolate the 

best combination of values for each file. To achieve this, a value­

specific index file was generated using the same algorithms that 

produced the validated index file. By comparing this file to the 

validated index file, the error (FN and FP) between the two files 

could be quantitated. The goal was to converge on a minimum error 

combination of values. 

The initial approach to identifying the minimum error combina­

tion was to input n values (n = 1,10) for each of the nine parameters. 

Each value-specific file generated was then compared to the validated 

index file and the error calculated. In theory, the ten combinations 

of values with minimum error generation were to be saved. Practically, 
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the cycle time (execution of one combination/one record) was 

approximately 25 msec, therefore, requiring approximately twenty­

four years to execute one billion combinations for a thirty-two 

record file. Even to execute a five value minimum error evaluation 

(thirty-two records) would take approximately seventeen days. There­

fore, it was necessary to change from a multivalue to a single value 

approach. 

Using the experience gained from the validated index file 

generation, a good guess at the "best" combination of values was 

possible. This approach, coupled with the justification of all FN 

and FP errors, ultimately defined all parameter values. The error 

justification identified all worst-case phenomena, thereby reducing 

the number of false negatives. 

Justification of QRS Detection Criteria 

Dual Complex Search 

The use of a dual complex search is necessary to meet the peak 

search region (PK-REG) and complex tolerance constraints. The PK-REG 

is limited by the minimum RR Interval since it should not include more 

than one complex. This occurs between consecutive flutter beats and 

is thirty points (corresponding to a rate of 400 bpm). Therefore, 

to prevent nondetection of a flutter beat, the PK-REG is set equal to 

thirty samples. 

The complex tolerance must be small enough to flag PVCs. To 

quantitate the percent of the maximum absolute difference necessary 

to detect all PVCs, noise-free PVCs were searched thirty pOints prior 

to the peak time of occurrence (PK-TOC). The maximum difference 



between consecutive points in this region represents a percentage of 

the maximum difference calculated in the first 600 points (MXDF). 

Figure 10 shows a histogram with the relative frequencies of maximum 

percent (for each PVC) of MXDF. Only maximum percentages less than 

40 percent MXDF are plotted. Of the 250 PVCs searched, the minimum 

percent of MXDF was sixteen, with 14.8 percent of the PVCs less than 

30 percent of MXDF, 29.6 percent of the PVCs between 30-40 percent 

MXDF, and 55.6 percent of the PVCs exceeding 40 percent MXDF. The 

minimum percent of MXDF was shared by two PVCs, one isolated occur­

rence and the other in a ventricular tachycardia sequence. 
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With the tolerance set equal to 16 percent of MXDF, the P wave 

would be flagged in the normal heart cycle. Since the normal range 

ences. 

Las1 L488 

MAXIMUM % MXDF 
MEANa L 438381 
MEDIANtL42 

SDaL 128442 
Nt 248 

L712 

Fig. 10. Frequency of maximum percent of PVCs first differ-



for the PR Interval is 120-200 msec (twenty-four to forty points), 

the PK-REG could fall short of the QRS complex thereby detecting the 
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P wave. In addition, some arrhythmias such as AV block have prolonged 

PR Intervals insuring P wave detection. Therefore, it is necessary 

to use a first search to detect the majority of complexes and a 

second, lower tolerance search to detect lower frequency complexes. 

The success of a dual complex search depends on the designa­

tion of an appropriate complex search region (CPLX-REG). The CPLX-REG 

must be limited to one complex since second-search phenomena (i.e., 

PVCs) might not be detected if more than one complex is included. With 

the majority of PVCs compensatory, one and one-third average RR 

Intervals would include the PVC but not the following beat. ,Some 

error has been attributed to this search region, however, and is dis­

cussed in the next chapter. 

Peak Polarity Check 

The polarity check insures that consecutive tachycardiac and 

flutter complexes are detected consistently. Rhythms with rates 

equally or exceeding the minimum tachycardia rate (200 bpm) include 

supraventricular and ventricular tachycardia (150-250 per minute) and 

ventricular flutter and fibrillation (200-300 per minute). Because of 

the sinusoidal configuration of some tachycardic (typically exceeding 

199 bpm) and flutter waves, the location of the PK-TOC on the wave 

varied from the peak R wave to the peak T wave. The importance of 

locating similar morphological complexes in a consistent location is 

to prevent labelling similar beats as different morphologies. 
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Rejection based on different peak polarities, however, can 

cause a missed beat. Sequences of ventricular beats (i.e., idioven­

tricular rhythm or ventricular tachycardia) ending in a fusion beat or 

returning to normal sinus rhythm can cause rejection of the initial 

takeover beat if the minimum tachycardia rate is less than the ventri­

cular rate. Rejection of some multifocal complexes in a run of 

ventricular tachycardia can also occur if the minimum tachycardia rate 

is sufficiently low. Because of the potential rejection of valid 

complexes associated with fast ventricular rhythms and "slowerll 

ventricular tachycardias (i.e., rate between 100-200 bpm), the minimum 

tachycardia rate was set equal to 200 per minute. Therefore, ventri­

cular rhythms whose rates exceed 199 bpm and ventricular flutter and 

fibrillation waves are subject to a peak polarity check. 

Onset, Offset 

The designation of the QRS onset and offset is necessary to 

define complexes and the skip region between them, respectively. The 

QRS onset provides a consistent fiducial point for the complex. 

Attempts to use peaks (PK-TOC, local peak time of occurrences) or 

mean area as the fiducial point failed because of the inherent incon­

sistency in location. The location of the QRS offset is necessary 

to define skip regions between complexes. The original skip region 

added to the PK-TOC was limited to thirty points to prevent skipping 

over a flutter wave in succession. Using this algorithm, however, 

caused ventricular conlplexes with T wave inversion to be detected 

twice on the same complex (i.e., on both the Rand T wave peaks). With 

the offset of the complex designated as the beginning of the skip 



region, however, a consistent skip region between complexes can be 

designated, thereby minimizing T wave picks. 
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The onset and offset search regions include the 150 msec pre­

ceding and following the PK-TOC, respectively. Assuming the PK-TOC 

to be the midpoint of the complex, the longest QRS duration of 200 

msec (associated with a complete bundle branch block) would require 

twenty points to reach the onset and offset, respectively. The remain­

ing ten points should then be sufficient to locate the offset (six 

consecutive first differences), as well as the onset (three consecu­

tive first differences). 

Searching for the onset or offset begins six points before or 

after the PK-TOC, respectively. Points in this region are assumed 

to be on the ascending or descending legs of the peak since the lower 

limit of the normal range of QRS duration is 30 msec. In addition, the 

skipped region prevents premature boundary location of complexes which 

have a low frequency, "plateaued" peak indicative of slowed or blocked 

conduction. 

The number of consecutive differences less than the boundary 

tolerance to identify an onset or offset is determined by the duration 

of the preonset and postoffset (ST Segment) baseline, respectively. 

The preonset baseline duration (80 msec) is approximately two-thirds 

of the ST Segment duration (120 msec). Hence, a 20 msec interval 

(three qualifying consecutive differences) detects an onset while a 

35 msec interval (six qualifying consecutive differences) detects an 

offset. 

Since 16 percent MXDF represents the lowest frequency 
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ventricular depolarization, consecutive differences less than this 

tolerance would suggest that the points lie off the complex. There­

fore, the first-pass onset, offset tolerance is set equal to 16 percent 

MXDF. The second-pass tolerance of 30 percent MXDF is used for bound­

ary recognition when high frequency noise is superimposed on these 

areas. Of the total number of complexes, 109 percent were rejected 

because no onset was found while the offset location was estimated on 

.6 percent of the complexes. 

Skip Region 

The purpose of a cardiac rate dependent skip region is to 

maximize a no-search region between complexes, thereby reducing the 

possibility of error and saving computing time. Four alternatives 

for skip region designation exist, depending on the heart rate. 

The two critical heart rates for defining skip regions are 120 

and 300 bpm, respectively. Special consideration for instantaneous 

heart rates greater than or equal to 300 was necessary to prevent 

nondetection of ventricular flutter and fibrillation waves. Using a 

150 msec skip region from the PK-TOC caused the PK-REG (typically 

beginning at the skip index on the second complex search) to encom­

pass the peaks of two complexes. However, with a 50 msec skip region 

from the PK-TOC, the PK-REG is confined to the following complex. 

Complexes with an instantaneous rate exceeding 120 bpm (but 

less than 300 bpm) use a 150 msec skip region and rates less than or 

equal to 120 bpm use a 250 msec skip region. In theory, a forty pOint 

(200 msec) skip region from the PK-TOC for HR < 200, < 300, would be 
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sufficient to accommodate the minimum RR Interval (forty points) in 

this rate category. Complexes that are common to this rate category, 

however, are typically lower frequency ventricular phenomena, i.e., 

qualifying difference < CTOLR60. In practice, the qualifying differ­

ence is flagged in the second complex search on the prepeak leg of the 

R (or S,T) wave peak, rather than on the peak itself. A 150 msec skip 

region from the PK-TOC, therefore, excludes the prepeak leg interval 

for consecutive complexes with instantaneous RR Intervals equal to 

or less than forty samples. 

For RR Intervals between sixty and one hundred points, thirty 

points is sufficiently small to accommodate the minimum RR Interval 

in this rate category_ If the offset is detected at the upper limit 

of the search region, approximately thirty points remain before the 

next complex. The decision to limit the skip region to fifty pOints 

for rates < 120 per minute is necessary to prevent skipping over PVCs 

which occur on the T wave (R on T phenomenon). R on T PVCs can occur 

any time after peak ventricular repolarization to the end of ventricu­

lar recovery_ The minimum RR Interval between a complex and a PVC 

on its T wave in this data is forty-five points (225 msec), although 

the normal interval from peak R wave to mid-T wave is 240 msec. 

Therefore, fifty points is sufficiently small to prevent skipping an 

R on T PVC in most cases. 

Justification of Noise Detection Criteria 

Baseline Shift 

The ratio between the legs of a peak ;s a function of the 
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interval defining the legs. As discussed in the previous section, this 

interval should extend to the baseline to accurately represent the peak. 

Therefore, a minimum of ten points should be used, corresponding to a 

QRS duration of 100 msec. 

The intent was to maximize the leg ratio while minimizing the 

number of rejections of valid complexes. To calculate this ratio, an 

analysis of the "worst casel! peak is necessary, i.e., the R wave of a 

normal sinus beat with high ST Segment take-off. Leg ratios were cal­

culated for 233 complexes having this morphology using a ten and twelve 

pOint interval, respectively. Figure 11 shows a histogram plotting the 

frequency of leg ratios as a function of the interval. Clearly, the 

maximum leg ratio with the minimum number of rejections occurs using a 

twelve point interval. A minimum leg ratio of .25 was chosen with an 

associated 4.3 percent FN rate. 

Maximum/Minimum Quantization 

The maxima/minima noise algorithm is aimed at rejecting noise 

spikes that are not associated with a complex, or when associated, 

result in a small SIN ratio. On the other hand, multiple peak 

complexes should not be rejected as noise. 

To empirically converge on the most robust set of values to 

satisfy these conditions, two types of complexes were examined. The 

right bundle branch block (RBBB) complex was chosen to represent the 

"worst case" multiple peak complex. Inherently, this complex can have 

up to five peaks representing the Q, R, S, R' , and S' waves, respec­

tively. In addition, this complex can be associated with a large, 
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Fig. 11. Frequency of prepeak, postpeak leg ratios using ten­
point and twelve-point intervals. 



biphasic P wave bringing the possible number of peaks in the search 

region to seven. The other type of complex examined was the normal 

sinus complex contaminated with varying amplitudes of noise spikes. 

Of the 636 beats analyzed from four data files, 46 percent were RBBB 

complexes and 54 percent were contaminated normal sinus complexes. 

Two trials were carried out with different values for the 

three criteria, i.e., percent S(i), maxima/minima search region, and 

the maxima/minima criteria were tallied for each set of values. The 

values chosen for each of the criteria are listed in Table 2 repre­

senting seventy-two different combinations. The weighted average 

error (AV(s)) was calculated for each combination of values: 

TABLE 2 

MAXIMUM/MINIMUM CRITERIA VALUES 
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Percent S( i) Maxima/Minima Search Region Maxima/Minima Limit 

·8 
10 
15 

20 
25 
30 

Tri a 1 I 

20 
30 
40 

Trial II 

20 
30 
40 

6 
7 
8 

10 
12 

5 
6 
7 

NOTE: S(i) = maximum absolute output to the peak detector. 
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AV(w) = sum (E(i) + IDX (i)) / IDX (total) i=l to 4 

where i represents the data files (A10150, Bl1580, C20440, E20310), 

E the number of FNs, and IDX the number of indices. The four combina-

tions with the minimum error are presented in Table 3. Based on these 

results, the optimal values for percent S(i), maxima/minima search 

region, and the maxima/minima limit are 15, 150 msec, and 7, 

respectively. 

TABLE 3 

MAXIMUM/MINIMUM WEIGHTED AVERAGE ERROR 

Percent (S(i) Maxima/Minima Search Region Maxima/Minima Limit AV(w) 

15 30 7 1 .1808 
15 30 8 1 .2013 
15 40 8 1.1887 
15 40 9 1 .2013 

NOTE: S (i) = maximum-absolute output to the peak-detection 
detector; AV(w) = weighted average. 



CHAPTER IV 

RESULTS 

This chapter is concerned with evaluating the performance of 

the QRS detection algorithm using a patient database collected in the 

LDS Hospital Coronary Care Unit. The algorithm, as described in 

Chapter II, was ultimately designed by successive identification and 

refinement of error sources. A final analysis was then performed 

using the criteria empirically determined to result in minimum QRS 

detection. 

The evaluation of the test results can be divided into two 

phases: 

1. Calculation of the error, sensitivity, and positive pre-

dictive accuracy of the algorithm 

2. Examination of the causes of residual error. 

Phase 1 is discussed in the next section followed by an analysis of 

the remaining error causes and their respective contribution to the 

total error. 

Calculation of Error, Sensitivity, and 
Positive Predictive Accuracy 

The rate of beat misdiagnosis (false negative and false posi­

tive rates, respectively), correct beat diagnosis (sensitivity), and 

positive predictive accuracy were calculated, given the respective 
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frequencies of true positives (TPs), false negatives (FNs), and false 

positives (FPs) (see Table 4). All visually verified peak time of 

occurrences in the patient data files, without regard to wave con­

figuration, represent the total number of actual QRS complexes in the 

data. The number of true complexes detected by the algorithm repre­

sent the true positives, complexes not labeled as such represent the 

false negatives, and noncomp1exes detected as complexes represent the 

false positives. One of two verdicts was possible for each complex in 

the data, i.e., positive or negative. A positive test result indi­

cated a valid beat affirmation by the algorithm, while a negative test 

result indicated an invalidation of the beat candidate. 

By comparing the true diagnosis to the results of the test, the 

rate of TPs (TPR, or sensitivity), FNs (FNR), and FPs (FPR) were 

calculated. The rate of correctly (TPR) and incorrectly (FNR and 

FPR) diagnosed complexes are listed in Table 4. Of a total of 

7,205 QRS complexes in the database, the rate of FN and FP error is 

.0359 and .0071, respectively, the sensitivity .9641, and the positive 

predictive accuracy .9573 (see Table 4 for calculations). 

Causes of Error 

An investigation of the causes of the error is important since 

the statistical results are dependent upon the type of rhythm dis­

turbances and the amount of noise superimposition in the data. 

The principal cause of false negative and false positive error 

is noise spike contamination, due to the superimposition of muscle 

artifact on the waveform. Excessive noise spike superimposition 

accounts for 84.17 and 92.16 percent of the FN.and FP outcomes, 



TABLE 4 

TEST RESULTS 

Test 
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Number + Total 

TP 
TN 

Total 

6,946 
51 

6,997 

259 7,205 

NOTE: FNR = FN/TP + FN = 259/7,205 = .0359; FPR = FP/TP + FN = 
.0071; TPR = TP/TP + FN = 6,946/7,205 = .9641; Positive Predictive 
Accuracy = TP/TP + FP + FN = 6,946/6,997 + 259 = .9573. 

respectively. FNs induced by noise (FN{ns)) are those beats rejected 

because of excessive muscle artifact superimposed on the complex. 

Even to the trained cardiologist, the task of identifying ventricular 

activity in such waveforms is difficult and uncertain, rendering the 

signal lIunprocessable." FPs attributed to such noise (FP{ns)) are 

typically caused by isolated noise spikes or a larger amplitude noise 

spike relative to adjacent smaller amplitude noise spikes. 

The remaining error is caused by variant QRS morphologies 

which qualify the candidate as noise. These invalid candidate rejec­

tions are caused by QRS waveforms qualifying as a shift in baseline, 

sudden cardiac rate changes which can cause a complex search region 

or skip region malfunction, limitation of the polarity comparison 

algorithm in ventricular flutter-fibrillation, or insufficient gain 

which results in a low SIN ratio. 

Table 5 justifies the occurrence of all false negative and 



TABLE 5 

CAUSES OF ERROR 
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Number of Percent of 
Causes Candidates Error 

False Negative Error FN (259) FN (Total) 

Excessive Noise Spike 
Superimposition (FN(ns)) 218 84.17 

Baseline Shift (FN(bs)) 25 9.65 
Complex Search Region (FN(cr)) 6 2.32 
Skip Region (FN(sr)) 4 1 . 54 
Polarity Comparison (FN(pc)) 3 1 . 16 
Low Gain (FN(lg)) 3 1 . 16 

False Positive Error FP (51 ) FP (Tota 1 ) 

Excessive Noise Spike 
Superimposition (FP(ns)) 47 92.16 

FN-Induced FP (FP(fn)) 4 7.84 

false positive error, respectively, and tabulates the percent of total 

error each cause represents. An analysis of the critical noise voltage 

level for the acceptance/rejection of a candidate contaminated by 

noise spike superimposition is examined initially, followed by an 

in-depth investigation of the remaining causes of false negative and 

false positive error, respectively. 

Critical Voltage for Noise 
Spike Rejection 

The level of muscle artifact interference can be measured in 

terms of root mean square (RMS). Beats rejected because of excessive 

noise spike contamination (FN(ns)) were examined to assess the critical 
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RMS voltage above which the candidate is rejected as being too noisy. 

The RMS value represents the average voltage defined over one 

period, and is calculated from the formula: 

RMS(i) = (sum ((X(i) - X(m)))2 / n / k )i i=l to n 

where n is the number of samples in one period, X(m) the mean of the 

samples X(l), X(2), ... X(n), and k the number of periods. 

Twenty-seven false negatives chosen from the set of FN(ns)s 

that were rejected because of violation of the maximum/minimum criteria 

(i.e., summation of extrema> 7) were viewed on the Tektronix graphics 

terminal to identify period(s) of extrema. A period is defined as a 

sequence of maximum-minimum-maximum or minimum-maximum-minimum, and must 

satisfy the following criteria: 

1. The period must not include the QRS complex. 

2. The period must occur within the maxima/minima search region. 

Knowing the instantaneous values of valid periodic extrema, an 

RMS voltage (RMS(i)) was calculated and the maximum absolute output 

to the peak detector (S(i)) recorded. 

Since the RMS(i) values are a function of the S(i), a linear 

regression was done. The regression equation was computed using the 

following formula: 



where bO and b equal: 

bO = sum (X{i) - X{m)) (Y{i) - Y{m)) / sum (X{i) - X{m))2 

b = Y{m) - bOX{m) 

with X representing the S{i) values, Y the RMS(i) values, X(m) the 

mean of samples X(l), X(2) ••. X(27), and Y{m) the mean of samples 

Y{l), Y(2) •.. Y(27). 

The calculated regression equation is: 

RMS(i) = .095 S{i) - .049 • 
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A plot of the regression line and the RMS(i) and S(i) values are shown 

in Figure 12. 

The sample correlation coefficient (r) was calculated using 

the equation: 

r = sum (X(i) - X(m)) (Y{i) - Y(m))/ 

(sum (X{i) - X{m))2 * sum (Y(i) - Y(m))2)t . 

The calculated value of r is .844. 

To test whether r is statistically significant, a test of the 

null hypothesis, r = 0, was done. Using Table SA in Statistical 

Methods in Medical Research (Armitage, 1977) and n-2 degrees of 
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Fig. 12. 
output in mv. 

Linear regression plot of noise vs. peak detector 

freedom, the null hypothesis can be rejected at a significant level 

of 0.001 for r values> .597. Hence, there is predictive value in 

using this regression equation for determining the critical RMS values 

for acceptance/rejection of beats contaminated with noise spikes. 

False Negative Error 

Baseline shift rejection. Baseline shift rejection accounts for 

9.65 percent of the total FN error. In theory, candidates with a 

minimum leg amplitude less than 25 percent of the maximum leg ampli­

tude are considered to be a shift in baseline due to patient movement 



rather than a complex. However, three types of complexes can have 

(max S(i)) peak configurations with leg ratios less than .25. These 

complexes include: 

1. Ventricular flutter waves 

2. R waves with elevated ST Segment 

3. RBBB complexes. 

Typically, these rejections are wide peaks, i.e., prolonged 

62 

wave duration which manifest from slowed or blocked conduction in local­

ized regions of the ventricles. The sinusoidal configuration inherent 

to the Rand T wave of a ventricular flutter wave is the result of 

slowed impulse conduction through the ventricular myocardium rather 

than the specialized Purkinje network. The R wave morphology (asso­

ciated with ST Segment elevation) and the configuration of the RI or 

51 wave of an RBBB complex are the result of blocked conduction imposed 

by an infarcted region in the left ventricle and the right bundle branch 

of the right ventricle, respectively. 

Ventricular flutter waves (6.15 percent, total) were rejected 

as baseline shift because the leg ratio of the peak R or T wave was less 

than .25. Ventricular flutter is produced by a ventricular ectopic 

focus discharging at a rate of 200-300 impulses per minute. The ven­

tricular II con tractions ll elicited at rates exceeding 250 bpm, however, 

are the most vu1nerable to baseline shift rejection. As the rate of 

discharge increases, the ability of the partially depolarized ventri­

cular cells to initiate an Na-dependent action potential becomes 

progressive1y more inhibited. The result is a reduction in peak to 

peak amplitude (i.e., R to T) and a widening of peak morphology due to 
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the impaired, slow-rising action potential. This wide peak configura­

tion can qualify the candidate as a shift in baseline. 

An acute or recent myocardial infarction can cause the ST Seg-

ment to rise above the baseline resulting in a premature leveling 

{beginning at the j point} of the descending leg of the R wave peak. 

Hence, the amplitude of the descending leg decreases as the slope of 

the ST Segment {included in-the leg interval} decreases. FN{bs}s caused 

by R waves with high ST Segment take-off account for 60.00 percent of 

the FN{bs) total; however, only 4.30 percent of the total number of 

candidates exhibiting this phenomenon were rejected by the baseline 

shift criteria. Remember that this FN rate was chosen as a trade-off 

between maximizing the leg ratio and minimizing the number of FNs. 

Baseline shift rejection of RBBB complexes is an infrequent 

phenomenon occurring in only 1.06 percent of all RBBB complexes. 

Infarcted regions of the right bundle branch, however, can cause widen­

ing of the RI or SI wave (depending on the location of the infarct). 

Those waves which encompass the infarct on one of two legs, but not 

both, can be rejected if the infarcted leg amplitude is sufficiently 

reduced from the other {maximum} leg amplitude. 

Complex search region and skip region rejection. A reduction in 

the RR Interval from the average RR Interval can cause the complex 

search region (CPLX-REG) to include more than one complex or the skip 

region (SKP-REG) to include a TP. Skip region omissions (FN{sr)) 

are caused by large changes in consecutive RR Intervals; however, the 

majority of FNs caused by cardiac rate changes are due to the failure 

of the CPLX-REG to include only one TP in the designated region when 



an increase in heart rate occurs. These search and skip region mal­

functions account for 3.86 percent of the FN(nn) and are examined 

individually. 
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Complex search region rejection. Remember that the CPLX-REG is 

designated as two-thirds of twice the average RR Interval calculated 

over the initial ten complexes. If a 50 percent or more increase in 

the average RR Interval occurs, then the CPLX-REG can encompass more 

than one TP. The problem arises when the complexes included in the 

CPLX-REG present at different frequencies, i.e., at least one complex 

has a qualifying difference greater than CTOLR60 (a first search 

phenomenon) with at least one complex less than CTOLR60 (a second 

search phenomenon). When a second search phenomenon precedes a first 

search phenomenon in the same CPLX-REG, the former is not detected. 

Episodes of consecutive complexes which tend to represent 

second to first-search transitions include sinus capture of second 

search phenomena (generally ventricular tachycardia, flutter, or 

fibrillation), consecutive ventricular flutter waves, deterioration 

of ventricular flutter into ventricular fibrillation, and consecutive 

multifocal PVCs. Ectopic ventricular depolarizations can be first or 

second-search phenomena, although they are typically the latter since 

the route of depolarization is via the slower-conducting ventricular 

myocardium. 

Skip region rejection. Skip region omissions are caused by 

changes in consecutive RR Intervals from one rate category to the next. 

Fifty percent of the FN(sr) are attributable to the inclusion of an R 

on T PVC in the skip region when a rate change from less than 120 bpm 
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(normal sinus complex) to 199-299 bpm (PVC) occurs. Since an ectopic 

focus discharging during ventricular repolarization can occur at any 

heart rate, the 120 bpm or less rate category is the most vulnerable 

to omission of an R on T PVC. The designated skip region for this 

rate category (250 msec), however, was chosen as a compromise between 

maximizing the skip region and minimizing skip region omissions. An 

FN error (total) of less than 1 percent (.77 percent) was the result 

of skip region omission of R on T PVCs. 

Consecutive ventricular flutter waves are particularly vulner­

able to skip region omission since instantaneous heart rates in a 

flutter sequence alternate between the 199-299 and greater than 299 

bpm rate categories. A decrease in consecutive RR Intervals from 

forty to sixty to less than forty points can cause the nondetection 

of the "early" complex if the prepeak interval amplitude containing 

a qualifying first difference is included in the 150 msec skip region. 

The final source of FN(cr) is the lack of a positive test 

(i.e., TP and FP) in a previous CPLX-REG. If the complexes preceding 

and following the FN are detected (TPl and TP2, respectively), TP2 is 

subject to an offset search since its "RR Interval" is greater than 

sixty, i.e., actually encompasses two heart cycles. This search, in 

turn, can cause omission by sk"ip region inclusion of the complex 

following TP2. 

Figure 13 shows a sequence of four complexes whereby the first 

and third complexes are detected and the second complex is an FN. 

Assuming the RR Interval to be the same for TP1-FN (RR1), FN-TP2 

(RR2), and TP2-TP3 (RR3), a minimum "heart rate" of 400 bpm (RR = 30) 
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would be necessary to exempt TP2 from an offset search. Therefore, 

assuming that the RR Intervals are equal (RRl = RR2 = RR3) and that 

the end of TP2 was located at the upper--lIworst case" limit--i.e., 

twenty four points from the PK-TOC, all FNs with RR Intervals between 

thirty and seventy-five (corresponding to a rate of 160-400 per minute) 

would qualify an offset search for TP2 and subsequent rejection of the 

next complex (TP3). Twenty-five percent of the FN(sr)s are caused by 

the nonvalidation of a candidate in a CPLX-REG, i.e., FN-induced. 

Polarity comparison rejection. As mentioned previously, with 

rapid ventricular rates (250-300 per minute), it is difficult to 

consistently detect either the R or T wave; however, the nondetection 

of a beat by T wave recognition can occur. If the peak detection in a 

flutter sequence begins with the R wave and the following T wave 

represents a maximum S(i) peak, then the T wave will be rejected by 

polarity and the complex will not be detected. Seven and one-third 

(7.33) percent of the FN(nn) are caused by polarity rejection of the 

T wave -in a ventricular flutter sequence. 

Low gain rejection. A low gain signal makes it particularly 

difficult to discriminate noise from actual ventricular activity. 

For instance, 15 percent of the peak detector output used for maximal 

minima quantization can approach such a small magnitude that 

rejection of valid complexes can occur. In addition, it is highly 

probable that low amplitude ectopic beats will not be flagged due to 

the small deflection from baseline. Rejection caused by a low gain 

signal in this analysis accounts for 1.16 percent of FN(nn). 
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False Positive Error 

False negative-induced false positive. The FP error attributable 

to the occurrence of a previous FN (FP(fn)) is caused by the rejection 

of a first-pass true positive candidate whose morphology represents 

a P-QRS sequence. On the second-pass search, the P wave can be 

detected, constituting an FN-induced FP. Typically, lower frequency 

ventricular contractions are not preceded by a P wave since the 

depolarizing wave is initiated and propogated in the ventricular 

myocardium and not the specialized conduction system. Therefore, 

second-pass P wave detection is seen only in complexes which are 

initiated from an atrial focus. 



CHAPTER V 

DISCUSSION AND CONCLUSION 

This research project was proposed to design a QRS detection 

algorithm which could accurately detect ventricular activity in con­

taminated single lead electrocardiographic data. The algorithm did not 

include classifying the beat as normal or abnormal. The reason for 

undertaking such a research endeavor is because most automated rhythm 

monitoring systems, including the system currently in use at the LDS 

Hospital CCU, report unacceptably high error rates. The majority of 

error has been reported to be the result of misclassification of signal 

artifact as ventricular activity or failure to identify the beat be­

cause of rejection of noisy segments of data. The goal of this research 

was to minimize this error due to noise misclassification in an attempt 

to provide a more clinically useful automated arrhythmia monitoring 

system. 

To insure that the algorithms could function accurately and 

reliably in noise contaminated data, over 90 percent of the develop­

mental data base was contaminated with noise. In addition, a wide 

array of rhythm disorders were included, particularly those labeled 

as potentially dangerous to the patient. The initial phase involved 

identifying a reference point on each complex in the data by visual 

inspection. An attempt was then made to converge on a set of criteria 

which generated minimum QRS detection error over all the data complexes 



files. The error was reported in terms of the FPR (.0071) and FNR 

(.0359); the ability of the algorithm to detect ventricular activ­

ity was expressed in terms of sensitivity (.9641) and positive 

predictive accuracy (.9573), respectively. 

Because the algorithm development was performed off-line on 
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a selective data base gathered in the CCU at the LDS Hospital, it is 

difficult to assess how well the criteria would function in a real­

time monitoring environment. Furthermore, a comparison of the reported 

error in the system currently in use in the LDS Hospital CCU and the 

results of this criteria is difficult since the former error was re­

ported in terms of false alarms. The major cause of error reported in 

the LDS CCU system evaluation was attributed to signal artifact. It 

was the consensus that the error was incurred in the QRS detection 

phase rather than the classification phase of analysis. Since a 

low FPR was reported in this analysis using a heavily noise con­

taminated data base, it can be concluded that this QRS detection/ 

delineation algorithm shows a substantial improvement over the current 

system. 

The key to designing accurate beat recognition criteria was in 

realizing that the most significant problem confronting automated 

rhythm analysis is signal artifact and that liberal rejection of 

noisy segments of data and toleration of high FPRs to minimize the 

risk of FNs is not a good solution to the noise problem in the clin­

ical monitoring environment. Most systems identify the QRS complex by 

some variation of the derivative technique and assume that this is 

sufficient to validate the presence of ventricular activity. The first 
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automated rhythm monitoring programs used a high threshold to minimize 

the incidence of FPs while subsequent programs have used low thresholds 

to minimize the number of FNs. However, this approach is invariably 

at the expense of increasing the incidence of the other. Other systems 

use limited noise detection criteria to identify the presence of 

muscle artifact and then suspect analysis upon detection. The majority 

of rhythm analysis systems, however, neglect to include noise detec­

tion criteria in the QRS recognition phase. 

The approach taken in this project is a unique one in that a 

candidate must satisfy numerous noise·detection criteria before valida­

tion. An inclusive derivative search (i.e., a dual scan) was used to 

initially detect all possible candidates. The beat candidates were 

then subject to passage of noise detection algorithms for validation 

as a QRS complex. The noise criteria have shown to be effective in 

minimizing the incidence of FPs in the candidate set without a sub­

stantial increase in FNs. The high FN rate relative to the FP rate 

can be attributed to excessive muscle artifacts superimposed on over 

90 percent of the data, rendering it unprocessable even to the trained 

cardiologist. Furthermore, a false negative error rate of 3.59 percent 

(percent total beats) reported in this analysis is small in comparison 

to results published in evaluations of rhythm monitor1s performance 

in the literature (see Chapter I). 

The algorithm used to quantitate the maxima and minima to 

determine the level of noise spike superimposition is used in a few 

detection schemes, of which ARGUS is one. An SIN approach to counting 

extrema for defining acceptable/unacceptable noise levels was first 
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proposed by Pryor (1972) in his dissertation titled IIAutomated Com­

puter Analysis of the Electrocardiogram. 1I This approach is more 

effective than simply quantitating extrema without taking into con­

sideration the amplitude of the noise spikes in relation to the 

dominant peak in the complex. Simple extrema counts ultimately result 

in high data losses as reported in evaluations of automated rhythm 

monitoring systems using this technique. This approach has improved 

the SIN technique for maxima/minima quantitation described by Pryor. 

First of all, a lower SIN ratio is tolerated, i.e., SIN ratio < 6.67 

as compared to an SIN ratio < 10 proposed by Pryor. Second, the signal 

is defined as the output to a weighted convolution equation rather than 

the change in amplitude between the maximum and minimum QRS value. 

Also, a symmetrical search region for maxima/minima quantization was 

used since the one-sided search used by Pryor (i.e., 250 msec back­

wards) can overlap into the previous QRS complex region in high heart 

rates. 

Two original algorithms designed to identify manifestations of 

noise were put forth in this project. Both capitalize on inherent 

morphologic discrepancies between artifact and QRS complex morphology. 

The initial algorithm was designed to detect shifts in base­

line .. Baseline shifts are a frequent occurrence in monitored 

electrocardiographic data, and in the author's opinion constitute an 

underestimated source of FP error in automated rhythm analysis systems. 

In evaluations of other systems there is no reported attempt to iden­

tify shifts in baseline per se, although there are limited filtering 

techniques designed to reduce their impact. Despite the lack of hard 
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data to assess the frequency of candidates rejected as baseline shifts 

in this research, the number of maxima/minima rejections were super­

ceded by baseline shift rejections. This is not surprising in light 

of the excessively noisy data base used in the analysis and the at­

tempt to minimize the data loss due to noise spike contamination, but 

it does imply that a high percentage of FPs in the initial candidate 

set were shifts in baseline. In retrospect this algorithm has im­

proved the sensitivity at the expense of a small number of FNs. 

A second algorithm restricts the interval of samples correlat­

ing most highly to a peak configuration. If a nonpeak is identified, 

then the candidate is rejected as nonventricular activity. This 

approach was effective in rejecting large intervals of high frequency 

(ascending or descending) shifts in baseline, even though these 

shifts did not occur as frequently as smaller amplitude shifts in 

baseline. FNs rejected as nonpeaks occurred only when there was in­

sufficient gain or the signal was part of a cascading or ascending 

shift in baseline. 

Areas of vulnerability in this QRS detection/delineation 

algorithm can be strengthened by improving existing algorithms and 

developing new discriminative criteria. Improvement of existing 

algorithms could result in a reduction of false positive error, 

although the overriding consideration is to reduce the incidence of 

false negatives. A possible reduction in the allowable SIN ratio to 

further minimize the data loss is possible, although it is probable 

that it would result in an increase in classification error. The 

philosophy of flexible skip regions based on the heart rate could be 
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search region designation. The small incidence of error due to the 

inclusion of more than one complex in the complex search region can 

be prevented by designating its range based on the instantaneous RR 

Interval or a "selective" averaged RR Interval. In addition, passage 

of other criteria could be required before a baseline shift rejection 

is definitive. For example, if the candidate identified as a shift 

in baseline was part of a fast ventricular sequence, then the allow­

able leg ratio could be reduced, thereby preventing the rejection of 

some ventricular tachycardiac, flutter, and fibrillation beats. 

The problem of isolated noise spike detection remains to be 

the most significant source of FP error in this project. New algor­

ithms need to be developed to identify the presence of noise not 

associated with a beat, although this is difficult in rhythm moni­

toring analysis since consecutive RR Intervals can be markedly 

irregular and noise spikes often have the same configuration as a 

QRS complex. This source of FP error could possibly be reduced in 

the classification phase of the analysis. 

As a proposal of continuation, the next phase in this re­

search project would be to add a classification scheme so that cardiac 

rhythm could be diagnosed. This would require development of diagnos­

tic logic for single and multibeat pattern recognition. 

Ultimately the real value of this research project will depend 

on how well the QRS detection/delineation algorithm functions in a 

clinical monitoring environment. Hence, this project represents only 

the first step in the analysis of cardiac rhythm and has shown that 



ventricular activity, even in the presence of noise, can be detected 

by a computer with minimal error. 
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