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ABSTRACT 

unit activity was recorded from 92 ventrolateral spinal 

axons in seven anemically decerebrated spinal cat 

preparations, using a microdissection technique. Axons were 

classified into four categories according to their 

responsiveness to mechanical stimuli applied to skin and/or 

other tissues: 1) low threshold spinal axons (5%), 2) wide 

dynamic range spinal axons (57%), 3) high threshold spinal 

axons (23%), and 4) an "other" category which included axons 

responding to mechanical stimulation applied to visceral or 

deep tissue and axons responding to changes in limb or tail 

position. 

Sixty-one of the 92 spinal axons had an ongoing resting 

discharge. Hence, they were divided into three types on the 

basis of their resting discharge pattern: 1) units with no 

resting activity (34%), 2) units with intermittent resting 

discharge (23%), and 3) units' having continuous resting 

discharge (43%). consequently, each category of mechanically 

sensitive ventrolateral spinal axons was further subgrouped 

on the basis of resting discharge. 

In general, the fields of low threshold spinal axons 

were large and bilateral; the fields of wide dynamic range 

spinal axons were intermediate in size and ipsilateral; and 



the.fields of high threshold spinal axons were small and con

tralateral. 

The approximate location in the ventrolateral spinal 

white matter of different categories of spinal axons was 

mapped but no significant segregation was found. 

A comparison was made between different categories of 

mechanically sensitive ventrolateral spinal axons to deter

mine their sensitivity to the itch-producing stimulus, cow

hage. The wide dynamic range spinal axons were significantly 

affected. Of 34 wide dynamic range units which were tested, 

23% demonstrated a relatively high sensitivity to cowhage and 

hence might be regarded as pruritogen-responsive spinal 

axons. Sixty percent of the pruritogen-responsive units had 

an intermittent resting discharge pattern. 

Cowhage was applied on 14 high threshold and three low 

threshold ventrolateral spinal axons but no significant 

effect was demonstrated. 
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PREFACE 

The concept that itch is a distinct sensory modality has 

gained increasing support in the recent years. If true, then 

according to the specificity theory of sensation an itch

related channel must exist (Willis & Coggeshall, 1978). This 

channel should include a peripheral receptor that encodes the 

signal for pruritus, spinal cord processing circuits, spinal 

pathways, and the central information processing circuitry 

that produce the perception of itch. Although numerous 

sensory channels have been proposed and documented, 

comparatively little is known about the itch-related channel. 

After completion of a study of itch-related cutaneous 

receptors, my attention has been focused on how itch-related 

signals are transmitted within the central nervous system. 

The main purpose of this study was to find the distribution 

of itch-related spinal axons in the spinal white matter. 

Because ventrolateral cordotomy has been reported to release 

the itch sensation (Banzet, 1927; Hyndman & Wo1kin, 1943), it 

was reasonable to concentrate this search in the ventro

lateral spinal white matter. 

This dissertation is in two parts. In Part I, a common

ly used classification scheme has been used to classify cat 

ventrolateral spinal axons into four categories. Based on 

this classification, Part II presents evidence that only wide 



dynamic range ventrolateral spinal axons were significantly 

responsive to the classical itch-producing agent, cowhage. 

To my knowledge this is the first time that pruritogen

responsive spinal axons have been carefully documented in the 

central nervous system. To this end, a new technique 

developed in recent years by this investigator was used 

instead of microelectrode recording. It provides much better 

recording stability which was essential for the present study 

because of the necessity of the long length of recording time 

and of the mechanical manipulating of the preparation. 

Further experiments are planned to search the dorsolateral 

funiculus, dorsal and ventral columns for itch-related 

sensory pathways. 

I would like to express my sincere thanks to the members 

of my supervisory committee Dr. R.P. Tuckett, P.R. Burgess, 

K.W. Horch, C.E. Eyzaguirre, and G.G. Krueger for their 

encouragement, scientific guidance and help in completing the 

work for this dissertation and for their valuable criticism 

of the manuscript. I also wish to express my appreciation to 

the faculty and staff of the Department of Physiology for 

their encouragement and support. A special thanks is 

extended to Dr. H.T. Chang and E. Shen at the Shanghai Brain 

Research Institute and Dr. J.C.C. Hwang at Hong Kong 

University for their valuable contributions to my career and 

for their encouraging me to apply to graduate school. I 

particularly want to deeply thank Dr. R.P. Tuckett for his 

help in preparing and critically reviewing this manuscript, 
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Dr. P.R. Burgess for the use of his laboratory and his 

critical reading of the manuscript and Dr. K.W. Horch for his 

valuable suggestion on revising the manuscript. Their 

never-ending support will long be remembered and 

appreciated. 

My thanks is also extended to Dr. L.J. Stensaas and H. 

Kolb for teaching me the techniques of histology, and Mr. J. 

Fisher and Mr. B. Evans for their technical assistance. 

Finally, to my wife Lian Shen and my son Ching I can hardly 

express my gratitude for their timely help. 
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PART I: CLASSIFICATION OF CAT VENTROLATERAL 

SPINAL AXONS 



INTRODUCTION 

After completion of a study on itch-related cutaneous 

receptors (TUckett & Wei, 1987a, b), my interest has been 

focused on how itch-related siqnals are transmitted within 

the central nervous system. The white matter of the spinal 

cord is composed of a larqe number of both ascendinq and 

descendinq fibers which transmit information between 

peripheral and supraseqmental nervous systems. The spinal 

cord pathways responsible for the sensation of touch

pressure, flutter-vibration, pain, temperature, position 

sense and visceral sensation have been extensively 

investiqated. The results have been summarized in the 

monoqraph of Willis and Coqqeshall (1978). 

The mechanism by which the siqnal for itch is trans

mitted within the spinal cord is poorly understood. Clues 

come from clinical studies. For instance, Banzet (1927) 

reported that a case of severe itchinq with kraurosis vulvae 

was completely relieved by ventrolateral cordotomy. Relief 

was maintained when the patient was last seen two and one 

half years after the operation. Hyndman and Wolkin (1943) 

tested the response of patients to the classical itch

producinq substance cowhaqe (Mucuna pruriens) followinq 

unilateral (N=3) or bilateral ventrolateral cordotomy (N=7). 

Itch was not evoked in the analqesic zones but was definite 
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in normal areas. White and co-workers (1950) reported that 

after ventrolateral cordotomy, itch from a poison ivy 

dermatitis was abolished in the analgesic zone. They also 

reported that a case of agonizing itching associated with an 

intramedullary neoplasm of the cord was abolished following 

ventrolateral cordotomy. Later, Arthur and Shelley (1959), 

Graf (1960) and Taren and Kahn (1966) reported similar 

clinical observations. This clinical evidence suggests that 

the sensation of itch is mediated through the ventrolateral 

portion of the spinal white matter. 

Knowledge of the functional organization of the ventro

lateral spinal white matter can be traced back to 1878 when 

Gowers reported his observations of a case involving a 

unilateral spinal gunshot injury. He suggested that pain and 

temperature sensations are transmitted by axons in the ven

trolateral spinal white matter. In 1905, Spiller reported a 

patient who had spinal tuberculomas that bilaterally dis 

rupted ventrolateral spinal white matter. The patient had 

lost pain and temperature sensation over the lower half of 

his body, but tactile sensibility was preserved (Spiller, 

1905). This observation not only led to the first cordotomy 

for pain relief (Spiller & Martin, 1912) but also provided 

strong clinical evidence to support the concept that a 

spinothalamic tract in the ventrolateral spinal white matter 

conveys information related to pain (Collier & Buzzard, 1903; 

Mott, 1895; Thiele & Horsley, 1901). 
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since that time, many clinical investigations have 

focused on precisely locating pain-related spinal tracts. 

This has been done by performing cordotomies 1) at different 

neural axis levels (Graf, 1960; Walker, 1942) or 2) in 

different incision depths (White, et al., 1956; White & 

Sweet, 1969) and by 3) stimulating the ventrolateral spinal 

white matter prior to the operation with a percutaneous 

cordotomy technique in awake patients (Mullen, et al., 1963; 

Mayer, Price & Becker, 1975). As a consequence of these 

investigations, a detailed description has emerged of the 

functional organization of ventrolateral spinal white matter 

in man. It has been found that 1) the pain-related pathway 

is not a compact bundle as suggested earlier (White et al., 

1956). 2) There are other pain-related pathways located 

outside the ventrolateral spinal white matter that appear to 

be of lesser importance (White & Sweet, 1969). 3) Besides 

pain-and temperature-related pathways, there are pathways in 

the ventrolateral spinal white matter related to itch 

(Banzet, 1927; Hyndman & Wolkin, 1943; White, et al., 1950; 

Arthur & Shelley, 1959; Graf, 1960; Taren & Kahn, 1966), 

tactile sensibility (Noordenbos & Wall, 1976), visceral 

sensation (White & Sweet, 1969), and position sense (White, 

et al., 1950, Noordenbos & Wall, 1976). 

The complexity of functional organization of ventro

lateral spinal white matter has been further demonstrated in 

animal studies. For example, behavioral changes following 

interruption of the ventral quadrant in dog and monkey have 
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been studied (Cadwalader & Sweet, 1912; Vierck, et al., 

1971). These results not only confirmed the clinical obser

vations mentioned above but also provided additional evi

dence suqqestinq that in the monkey some ventrolateral spinal 

axons contribute to weiqht discrimination (De Vito, et al., 

1964). Another study showed that besides the spinothalamic 

tract there is a spino-reticular tract that projects to the 

medial tegmental reqion of the pons and medulla. Evidence 

from this study suqqested that the spino-reticular tract 

miqht subserve the motivational and affective dimensions of 

pain (Field & Anderson, 1976). 

Althouqh evidence to date favors the notion that ven

trolateral spinal axons may be involved in transmittinq 

information related to different sensory modalities, little 

is known about which axon population miqht convey itch

related information. Furthermore, in contrast with numerous 

papers on the pain-related spinothalamic tract cells, which 

were based on unit potential recordinq from the soma

dendritic reqion in the monkey spinal qrey matter, compara

tively few experimenters have directly recorded unit poten

tial activity from ventrolateral spinal axons. Several 

authors have mentioned that technical difficulties have 

limited the application of microelectrodes for recordinq from 

spinal axons (Oscarsson, 1964; Trevino, et al., 1972; 

Holloway, et al., 1978), especially in cat (FOX, et al., 

1980; Hancock, et al., 1975). For instance, usinq microelec

trodes to record unit activity from spinal axons may lead to 
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recording instability such that " ••• the duration of data 

collection is usually shorter than with extracellular re

cordings from the soma-dendritic region" (Willis, et al., 

1975). Moreover, it is difficult "to establish that the cell 

body (of the spinal axons) was located within the spinal cord 

rather than in the brain" (Applebaum, et al., 1975). 

Although the microdissection technique used in this study 

cannot be used for recording from the soma-dendritic region, 

it complements the microelectrode technique by providing 

stable recording conditions and unambiguous records when 

making unit recordings from spinal axons (Wei, 1981); hence, 

it will provide a useful tool with which to classify and gain 

a better understanding of the functional organization of cat 

ventrolateral spinal white matter. 

Although attempts have been made to classify cat ven

trolateral spinal axons (Fields, et al., 1970; Pomeranz, 

1973), none has classified them on the basis of a most 

commonly used classification scheme (Willis, et al., 1974; 

Price, et al., 1978; Dubner & Bennett, 1983; Chung, et al., 

1986). In order to find the distribution of pruritogen

responsive spinal axons in the cat ventrolateral funiculus, 

and compare these axons with those documented in the exist 

ing related literature, a commonly used classification method 

(Willis, et al., 1974) was used in this study to 1) classify 

the ventrolateral spinal axons; 2) present correlations 

between different types ofaxons and the size and the 

location of their receptive fields; and 3) describe the 



distribution of different axon categories in the 

ventrolateral funiculus. In the second paper (PART II) the 

sensitivity of different neuron categories to the 

itch-producing stimulus, cowhage, will be presented. 

7 



MATERIALS AND METHODS 

Animal preparation and the 
dissection of spinal axons 

To prevent the complications of both inhibitory and 

excitatory descendinq control (Jones & Gebhart, 1986; Soja & 

Sinclair, 1983; Tattersall, et al., 1986) and the effects of 

barbiturate anesthetic (Fields, et al., 1970; Raja, et al., 

1986), cats were spinalized under Ketamine induced anesthesia 

(25 mq/kq + 0.1 mq Atropine i.m.) at the cervicomedullary 

junction and anemically decerebrated. Laminectomy was per

formed from L2 throuqh L6. The dissection of spinal white 

matter was bequn about 4-6 hours later to allow for recovery 

from spinal shock. unit action potentials were recorded from 

filaments isolated at levels L2 to L3 of the ventrolateral 

funiculus by a microdissection technique (Wei, 1981; Wei, et 

al., 1984). The procedure for recordinq from ascendinq spi

nal axons was to pick up a strand of white matter from the 

rostral end of a small openinq in the meninqes with a pair of 

forceps. with another pair of forceps in the other hand, the 

strand was pinched in two at its most rostral point and then 

pulled qently away from the adjacent white matter and placed 

on a monopolar electrode of fine platinum wire 30 u in 

diameter. Because it is interrupted centrally, the 
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electrical activity recorded from this isolated filament must 

be from an ascending spinal axon. 

There were two reasons for recording at L2 to L3 spinal 

levels. Making the recording site distant from synaptic 

regions insured 1) that the information transmitted through 

spinal cord relays was not distorted as a consequence of the 

dissection (Brown, et a1., 1974; Carstens & Trevino, 1978) 

and 2) that the long ascending spinal axons from the hind 

limb had been formed (Ekholm, 1967). 

Percent expired C02 and systemic arterial blood pressure 

were monitored. Data were collected only if these vital 

signs remained within normal limits (4% to 5%, and >70 mm Hg, 

respectively). Rectal and cord temperatures were maintained 

near 370 C with external heat. 

The explored area 

Histologically, lateral and ventral columns are sepa

rated by a line corresponding to the dorsal-most ventral 

roots (Beusekom, 1955; Chung & Coggeshall, 1983a). Division 

of the lateral columns into dorsolateral and ventrolateral 

funiculi can be defined by a horizontal line extending 

laterally from the intermediate horn (Beusekom, 1955). 

During an experiment it was possible to find the dorsal-most 

ventral roots on the ventrolateral surface of the cord, but a 

horizontal line cannot be drawn from the intermediate horn 

without spinal transection. Moreover, the location of the 

intermediate horn in different spinal segments varies consi

derably (Beusekom, 1955). For example, Rexed lamina VI 



\ 
exists only in the cervical and lumbosacral enlargement of 

the spinal cord (Rexed, 1954). Therefore, the lateral den

ticular ligament was used as a landmark for division of the 

lateral columns into dorsolateral and ventrolateral funic-

10 

uli. Hence, the area shown in the left side of Figure 1B can 

be considered to include one third to two thirds of the 

lateral part of ventrolateral funiculus and some of the most 

dorsal part of ventral column. 

According to Flatau's law, long ascending and descending 

fibers course in the peripheral boundaries of the cord, 

whereas the shorter fibers are positioned more centrally (see 

Beusekom, 1955). Verhaart in his analysis of fibers in the 

cat anterior and lateral funiculi confirmed Flatau's law and 

noticed that the size of longer tracts decreased as they 

coursed caudally (Verhaart, 1953). Therefore, it seems rea

sonable to consider that the explored area (Fig. 1B) in 

cluded mostly long spinal axons in addition to some proprio

spinal fibers (Chung & Coggeshall, 1983b). Because the 

present interest is to study the functional organization of 

the ventrolateral funiculus, detailed information on the 

origin and destination of composed axons has not been 

elucidated. 

Mechanical stimuli 

All units described in this paper were activated with 

mechanical search stimuli delivered to the skin and/or deep 

tissue. In order to locate receptive fields and classify the 

units, different intensities of mechanical stimuli were used 
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Figure 1. Explored area in the cat ventrolateral spinal 
white matter. Panel A is a photograph of an 20 u thick 
unstained spinal cord section at L2, which was cut from a 
frozen block of tissue. The portion removed from the right 
side was the area explored during microdissection recording 
in one experimental animal. The right side of panel B has 
tracings from serial sections superimposed to show the outer 
perimeter of the cavity produced by the dissection, and the 
outline area on the left side represents the total range of 
explored areas from these seven experiments. 
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A 

B 
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which included: 1) light brushing (LB) during which only the 

tip of a camel's hair brush touched the skin, 2) firm 

brushing CFB) for which the camel's hair brush was firmly 

pressed against the skin, 3) pointed probe pressing CP) 

during which a pointed hand-held probe (0.15 mm, 0.0.) was 

pressed to the receptive field with a force of about 10 to 

20g and 4) forceps pinching (F) for which a thumb-dressing 

forceps (with a tip area of 15 mm2) was used to pinch the 

skin with a force of about 900g. When these stimuli were 

applied to the skin of the experimenter, light brushing 

induced the feeling of touch, firm brushing produced heavy 

pressure, and both pointed probe pressing and forceps 

pinching caused painful sensations. 

Receptive field searches were limited to the hind limb 

and lower lumbar regions with no effort made to search for 

receptive fields on the upper part of the body. The portion 

of the field with the lowest threshold to mechanical stimu

lation was called the main receptive field (Chung, et al., 

1986; Dubner & Bennett, 1983). Areas in which inhibitory 

effects could be induced by mechanical stimulation were 

designated inhibitory receptive fields (Chung, et al., 1986; 

Dubner & Bennett, 1983). The term "receptive field" appear 

ing in the following paragraphs will refer to the main 

receptive field unless otherwise specified. 

Histology 

To measure the dissected area, the spinal cord was fixed 

in 10% formaldehyde. Twenty to 40 u thick serial frozen 
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sections were made. The outline of the gray and white matter 

including the dissected area was traced on paper with a 

Tri-simplex microprojection (magnification 35X). The trac

ings were superimposed to obtain a drawing of the outer 

perimeter of the cavity produced by the dissection (the right 

side of Fig. 1B; Wei, 1981; Wei, et al., 1984). In some 

cases a photographic record of the dissected area (Fig. 1A) 

was obtained by placing the unstained sections on a glass 

slide and placing the slide directly in a photographic 

enlarger. 

Because the filaments were dissected consecutively one 

after another and layer-by-layer in an ordered sequence, the 

relative location of each unit in the dissected area (Fig. 8) 

could be determined by the sequence number of the filament 

from which the unit was recorded. This method has been used 

to estimate the location of position-signaling and other 

types of spinal axons in the dorsolateral funiculus (Wei, et 

al., 1984). 

Data recording and analysis 

Neural signals were amplified with conventional elec

trophysiological instruments and stored on magnetic tape. 

For analysis, the tape was played back. Unit potentials were 

distinguished by a window discriminator which in turn gene 

rated a 300 usecond standard pulse for each discriminated 

action potential. The standard pulse was then sent to a 

computer and stored on diskettes as instantaneous frequency 

versus time or impulse frequency versus time histogram data. 
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Display and analysis programs were used for data manipulation 

such as setting the start and end times, normalizing, averag

ing and summing. 

Before an experiment trial, the resting activity of 

every unit with ongoing discharge was recorded for one to 

four minutes. The resting discharge pattern of each unit was 

analyzed based on a histogram of impulse frequency versus 

time with a one second bin width that displayed data over a 

one minute period. 

In order to compare the responses of different units to 

different intensities of mechanical stimuli, the response 

magnitude to a particular stimulus for a particular unit was 

evaluated as an averaged value (in impulses per second) 

calculated from the total number of impulses generated by the 

stimulus divided by the duration of the stimulus. 

statistical tests were run on a personal computer. Both 

the t test and a nonparametric analog of the t test, the 

Mann-Whitney two sample (MW) test, were used to evaluate 

whether two samples had been drawn from the same population. 

The nonparametric analog of the parametric one way analysis 

of variance F-test, the Kruskal-Wallis (KW) test, was used to 

decide whether k independent samples were from different 

populations (Hintze, 1986). Linear regression and correla

tion were used to evaluate the extent of relationship between 

two sets of data. In some cases, the normality of the sample 

distribution was tested with the method of moment or W-test 

(Yang, 1985). 



Response to mechanical 
stimulation 

RESULTS 

Ninety-two ventrolateral spinal axons from seven experi-

ments, which could be activated by mechanical search stimu

li, are presented in this paper. These axons were classified 

into four categories on the basis of their responsiveness to 

different intensities of mechanical stimuli as described in 

the materials and methods section. 

ventrolateral spinal axons which responded to innocuous 

mechanical stimuli, such as light brushing (LB) and firm 

brushing (FB) , with the approximately the same response 

magnitudes as to noxious mechanical stimuli, such as pointed 

probe pressing (P) and forceps pinching (F), were categorized 

as low threshold spinal axons (Fig. 2A). Ventrolateral 

spinal axons responding to both innocuous and noxious stimuli 

in a graded fashion were called wide dynamic range spinal 

axons (Fig. 2B). Ventrolateral spinal axons which did not 

respond to light brushing were classified as high threshold 

spinal axons (Price & Dubner, 1977). About half of the high 

threshold spinal axons were driven by both firm brushing and 

noxious (P and F) levels of mechanical stimulation (Fig. 2C, 

Price & Dubner, 1977); the other half could only be excited 

by overtly noxious stimuli (Fig. 2D). Axons that responded 
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Figure 2. Impulse frequency versus time histograms illus
trating the responses of different spinal axon categories to 
a range of intensities of mechanical stimuli. Panel A is a 
low threshold unit; B, wide dynamic range unit; C, high 
threshold unit which could be activated by firm brushing; D, 
high threshold unit which could only be excited by noxious 
mechanical stimuli. Abbreviations: LB, light brushing and 
FB, firm brushing with a camel's hair brush; P, pointed probe 
pressing; and F, forceps pinching. These abbreviations are 
used in subsequent figures. Bin width is 1 second. The 
horizontal lines under the histogram indicate the time during 
which the stimulation was applied. Note the the Y scale in 
panels A and B is larger than in C and D, and the X scale in 
panel D is smaller than in A, B, and C. 
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only to mechanical stimuli applied to viscera or deep 

tissues, or to chanqes in limb or tail position with no clear 

cutaneous innervation were qrouped in an "other" cateqory. 

Because this paper focuses only on the spinal axon population 

that was driven by cutaneous afferents, the "other" cateqory 

was not considered. 

Restinq discharqe pattern 

Sixty-one of the 92 mechanically sensitive ventrolateral 

spinal axons demonstrated onqoinq restinq discharqe. Hence, 

these axons could also be qrouped into three types accordinq 

to their restinq discharqe characteristics: 1) ventrolateral 

spinal axons with no restinq activity, 2) spinal axons with 

intermittent restinq discharqe (Fiq. 3A), and 3) spinal axons 

with continuous restinq discharqe (Fiq. 3B & 3C). Within the 

continuous restinq discharqe population there was a ranqe of 

variability in discharqe. About half of the continuous 

restinq discharqe population showed a more requ1ar restinq 

discharqe pattern (Fiq. 3B) than the other half (Fiq. 3C). 

The definition of intermittent restinq discharqe was 

that durinq a one minute recordinq period there was at least 

one second durinq which no action potentials were recorded. 

Otherwise, it was called a unit with continuous restinq dis

charqe. Since the impulse frequency versus time histoqram 

displays used a one second bin width, all histoqrams of units 

with intermittent restinq discharqe had at least one out of 

60 bins in which the impulse frequency dropped to zero (Fiq. 

3A). The sample size of intermittent restinq discharqe units 
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Fiqure 3. units with intermittent (A) and continuous (B & C) 
resting discharge patterns are shown as instantaneous 
frequency, reciprocal of interspike interval, versus time 
(upper trace) and as the corresponding impulse frequency 
versus time histograms (one second bin width, lower trace). 
In panel A, there are 31 bins with no activity indicating an 
intermittent resting discharge pattern. Panel B illustrates 
a unit with more reqular discharge than unit in C. Note that 
the Y scale in panels A and B is smaller than in C. 
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was 21 (Table 1). Therefore, subtracting the two units 

belonging to the "other" category left a remainder of 19. Of 

these 19 units, 18 complete records were obtained. The 

number of bins with no activity ranged from two to 57 (N=18, 

mean=25.7, SO=17.2, median=21.5) and was normally distributed 

(W-test, p >0.9). 

The total number of units with continuous resting 

activity was 40 (Table 1). After subtracting eight units 

belonging to the "other" category and three units with a 

resting discharge of less than one minute, complete records 

from 29 units were available. Impulse frequency vs time his

tograms of 18 units with intermittent resting discharge were 

summed, as were those of 29 units with continuous resting 

discharge (Fig. 4A & 4B). To match the sample size, 18 out 

of the 29 units with continuous resting discharge (Fig. 4B) 

were randomly selected and their resting discharge histograms 

were summed (Fig. 4C). 

As a population, the distribution of fluctuations in 

discharge rate of both types (Fig. 4A & 4C) did not differ 

significantly from a normal distribution (method of moment 

test Fig. 4B, Ug1 P >0.5, Ug2 p >0.5; Fig. 4C, Ug1 P >0.2, 

Ug2 p >0.5). However, they did differ in two ways: 1) the 

average discharge rate of the summed histogram of 18 con 

tinuous resting discharge units (the broken line in Fig. 4C, 

mean=283.10, 80=21.08, N=60) was significantly greater than 

that of 18 units with intermittent resting discharge (the 

broken line in Fig. 4B, mean=29.38, SO=6.49, N=60, t test, p< 
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Figure 4. Comparison of units with intermittent and con
tinuous restinq discharqe patterns. Panel A shows a 
summation of impulse frequency vs time histoqrams of units 
with intermittent restinq discharqe (N=lS, mean=29.3S, 
SD=6.49, total spike count=1763). B shows units with 
continuous restinq discharqe (N=29, mean= 4S6.45, SD=25.79, 
total spike count=291S7). C shows lS units with continuous 
restinq discharqe which were randomly selected from B (N=lS, 
mean=2S3.10, S0=21.08, total spike count=16986). The hori
zontal broken lines in panel A, Band C indicate averaqe 
firinq rates. D is a plot of standard deviation vs mean 
inter-spike interval of lS intermittent (square) and 29 
continuous restinq discharqe units (cross). For both plots 
the correlations were siqnificant (for the intermittent 
restinq discharqe units r=0.9S: for the continuous restinq 
discharqe units r=0.77; t test, p< 0.001). The solid line is 
the linear reqression line for the intermittent restinq 
discharqe (slope=1.2, intercept=0.27) and the broken line, 
for the continuous restinq discharqe (slope=0.61, inter
cept=0.0012) units. The slopes of these linear reqression 
lines differed siqnificantly (U test, p< 0.01). A small 
square located at the upper riqht corner in D represents an 
off scale unit with a coordinate of X=16.31 Y=lS.94. E is an 
enlarqement of a larqe square area at the lower left corner 
of D showinq the detailed scatter plots of units with 
continuous restinq discharqe patterns. Note the Y scale in 
panel A is ten times smaller than in Band C. 
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0.001). 2) The coefficient of variation (CV-standard 

Deviation / Mean X 100%) of units with intermittent restinq 

discharqe (22.09%) was qreater than that of units with 

continuous restinq discharqe (7.45%). 

26 

The siqnificance of the difference in the two coeffi

cients of variation mentioned above was further illustrated 

by plottinq the mean interspike interval of each unit aqainst 

its standard deviation as shown in Fiqures 4D and 4E. 

Althouqh the correlations between the mean interspike 

interval and its standard deviation were siqnificant for both 

populations (r-0.98, N-18 for the intermittent; and, r-0.77, 

N-29 for the continuous restinq discharqe units, t test, p< 

0.001), the slopes of their linear reqression lines differed 

siqnificantly (solid line for units with intermittent, 

slope-1.19; broken line for unit with continuous restinq 

discharqe, slope- 0.61; U test, p< 0.01; Yanq, 1985). In 

summary, these differences indicate that units with 

intermittent restinq discharqe tended to have lower firinq 

rates and qreater fluctuations in discharqe than units with 

continuous restinq discharqe. 

Each cateqory of ventrolateral spinal axon seemed to 

include units with different patterns of restinq discharqe. 

For instance, 25% of wide dynamic ranqe units had no restinq 

discharqe (Fiq. SA), 31% had intermittent (Fiq. 5B) and 44% 

had continuous restinq discharqe patterns (Fiq. 5C & 5D). 

However, low threshold and hiqh threshold spinal axon popu

lations appeared to have a dominant pattern of restinq dis 
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Figure 5. Response patterns of wide dynamic range units to 
mechanical stimuli. Panel A is a unit with no resting 
activity. B is unit with intermittent resting discharge. C 
shows a unit with a more regular continuous level of resting 
discharge than the unit in D. Note that the Y scale in 
panels A - C are two times than in D. 
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charge. For instance, 80% of low threshold units demon

strated continuous resting discharge, whereas 62% of high 

threshold units had no resting discharge. 

As will be presented in Part II, it is interesting to 

note that about 60% of pruritogen-responsive wide dynamic 

range units had an intermittent resting discharge pattern, 

suggesting that variations in resting discharge may have 

functional significance. 

The criteria for classification 

29 

Table 1 summarizes the distribution of units in each 

group with respect both to their response sensitivity to 

mechanical stimuli and to their pattern of resting discharge. 

For the 92 mechanically sensitive spinal axons that were 

isolated from the area of ventrolateral funiculus shown in 

left side of Figure lB, 57% were wide dynamic range, 23% were 

high threshold, and 5% were low threshold units. The 

remainder (15%) belonged to the "other" category. About 

three-fourths of the wide dynamic range and four-fifths of 

the low threshold units had resting activity. In contrast, 

almost two-thirds of the high threshold units possessed no 

resting discharge. 

Figure 6 summarizes the response magnitude of each axon 

category to four grades of mechanical stimuli (LB, FB, P, and 

F). The resting discharge was subtracted from the response 

magnitude for each unit. Units from the three subtypes of 

each category (one subtype with no resting discharge, one 

with intermittent and one with continuous resting discharge) 
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Figure 6. Population response patterns for each axon catego
ry to four grades of mechanical stimuli. The magnitude of 
response is shown after subtracting resting discharge from 
the response magnitude for each unit. units from the three 
subtypes of each category (one subtype with no resting dis
charge, one subtype with intermittent and one with continuous 
resting discharge) were combined and then the mean response 
magnitude was calculated. The columns represent the mean 
magnitudes; bars, standard deviations; the number on the top 
of each bar, sample size. LB: light brushing; FB: firm 
brushing; P: pointed probe pressing;' F: forceps pinching. 
Panel A represents the response characteristic of wide 
dynamic range unit population, they responded to four grades 
of mechanical stimuli in a graded fashion (KW test, p< 0.001; 
MW test, p >0.07 for P-vs-F, p< 0.001 for the other paired 
test). B shows the "nearly equal" response pattern of low 
threshold units (KW test, p >0.8; MW test, p >0.3 for all 
paired test). The response features of high threshold units 
are presented in panel C and D. About half of high threshold 
units could not be activated by LB but responded to FB, P, 
and F stimuli (panel C, KW test, p< 0.01; MW test, p >0.9 for 
P-vs-F, p< 0.01 for LB-vs-FB, LB- vs-P, LB-vs-F, FB-vs-P, and 
FB-vs-F paired test). The other half of the high threshold 
units did not respond to LB and FB but could be activated by 
P and F mechanical stimuli (panel 0, KW test, p< 0.001; MW 
test, p >0.7 for LB-vs-FB and P-vs-F, p< 0.01 for LB-vs-P, 
LB-vs-F, FB-vs-P, and FB- vs-F paired test). 
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were combined, and then the mean response magnitude was 

calculated. As a population, the wide dynamic range spinal 

axons responded to the four grades of mechanical stimuli in a 

graded fashion (Fig. 6A, KW test, p< 0.001; MW test, p > 0.07 

for P-vs-F, p< 0.001 for the other paired test). In 

contrast, the low threshold spinal axons responded with 

nearly the same response magnitudes (Fig. 6B, KW test, p 

>0.8; MW test, p >0.3 for all paired test). About half of 

the high threshold spinal axons did not respond to light 

brushing but could be activated by firm brushing and noxious 

mechanical stimuli (Fig. 6C, KW test, p< 0.01; MW test, p 

>0.9 for P-vs-F, p< 0.01 for the other paired test). The 

other half did not respond to both either light or firm 

brushing. They could be excited only by noxious mechanical 

stimuli (Fig. 60, KW test, p< 0.001; MW test, p >0.7 for LB

vs-FB and P-vs-F, p< 0.01 for the other paired test). 

Location of axon categories 

The location of different spinal axon categories in the 

ventrolateral funiculus was mapped in four experiments. 

There was no sign of population segregation (Fig. 7). This 

result supports the possibility that different populations of 

spinal axons mix together within the ventrolateral funiculus 

(Applebaum, et al., 1975). 

Receptive field characteristics 

Table 2 summarizes the receptive field sizes of the 

different spinal axon categories. It shows that about one 
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Fiqure 7. Approximate locations of different axon categories 
in the ventrolateral white matter. Black circle, wide dyna
mic range spinal axon (WDR); white circle, high threshold 
spinal axon (HT); white square, "other" unit; cross, low 
threshold spinal axon (LT). Cal=l mm. 
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half of the hiqh threshold units had small (Fiq. SA) and the 

other half had intermediate to larqe receptive fields. The 

field sizes of low threshold spinal axons were intermediate 

(Fiq. SB) to larqe (Fiq. Se) and the field sizes of most wide 

dynamic ranqe spinal axons were intermediate. In four 

experiments, the approximate locations of units with dif

ferent receptive field sizes in the explored area are mapped 

in Fiqure 9. There was no obvious siqn of population 

qroupinq. 

Althouqh receptive fields could be located either ipsi-, 

contra-, or bilaterally, each axon cateqory seemed to have 

its own tendency (Table 3). Eiqhty percent of low threshold 

units had bilateral receptive fields, 22 of 52 wide dynamic 

ranqe units had an ipsilateral, whereas 10 of 21 hiqh 

threshold units had contralateral receptive fields. The 

approximate locations of units with ipsilateral, contra

lateral and bilateral receptive fields in the explored area 

were mapped and are shown in Fiqure 10. Aqain, no siqn of 

population seqreqation was obvious. 



Figure 8. Examples of different receptive field sizes. 
Panel A shows small size (see Table 2 leqend for the 
definitions); B, the intermediate; and C, the larqe size. 
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Fiqure 9. Distribution of units with different receptive 
field sizes in the ventrolateral white matter. Black circle, 
small size; white square, larqe size; star, the intermediate 
size. Cal=lmm. See Table 2 leqend for the definitions and 
Fiqure 9 for the examples. 
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Fiqure 10. Distribution of units with different receptive 
field locations in the ventrolateral white matter. Black 
circle, bilateral; white square, contralateral; and white 
circle, ipsilateral receptive field. Cal=lmm. 
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DISCUSSION 

Significance of the present study 

The classical definition of the spinothalamic tract is 

the spinal neurons in the gray matter with an axon which 

decussates and ascends in the ventrolateral white matter to 

the thalamus. This concept is based on clinical observations 

involving sensory deficits after ventrolateral cordotomies in 

human subjects (White & Sweet, 1969) and the studies of the 

anterograde degeneration in humans and animals (Willis & 

Coggeshall, 1978). 

Based on these clinical and animal studies, attempts 

have been made in different laboratories to further classify 

spinothalamic tract neurons with the microelectrode recording 

technique (Willis, et al., 1974; Price, et al., 1978). Most 

of these investigators made their unit action potential 

recordings from the soma-dendritic region. The responses of 

these neurons to natural (orthodromic) stimuli applied to 

their receptive fields and to electrical (antidromic) 

stimUlation from electrodes implanted in the thalamus were 

analyzed (Applebaum, et al., 1975). The advantages of this 

experimental protocol are that the location of the soma and 

the destination of the axon can be defined for individual 

neurons. However, the path traversed by the pro jecting axon 

is unknown. Therefore it has been unclear whether all these 



spinothalamic tract cells had their ascending axons in the 

ventrolateral spinal white matter as classically defined. 
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Furthermore, in contrast to the wealth of data avail

able for dorsal horn recording, comparatively few experi

menters have directly recorded from ventrolateral spinal 

axons. Even fewer attempts have been made to classify these 

axons with a commonly used classification system (Fields, et 

al., 1970; Pomeranz, 1973). Therefore, the significance of 

the present study was to record directly from the cat ven

trolateral spinal white matter and classify the isolated 

axons on the basis of the commonly used classification 

scheme. 

The classification data in this paper served as a basis 

for the study of the distribution of itch-related spinal 

axons in the cat ventrolateral spinal white matter, and the 

results were compared with the numerous data from the studies 

of monkey spinothalamic tract cells. 

The criteria for classification 

Although many classification schemes have been proposed, 

" ••• none satisfactorily represent the functions of the dorsal 

horn cells" (Chung, et al., 1986; also cf. Willis & Cog

geshall, 1978 pp 147-153). A major cause of this disparity 

might be that each classification system has been developed 

to fulfill a different goal. For example, to investigate the 

afferent connection of unmyelinated (C) fibers to the dorsal 

horn neurons, Gregor and Zimmermann classified dorsal horn 

neurons in cat into four types on the basis of synaptic delay 
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and the response to cutaneous nerve electrical stimulation: 

monosynaptic cells with C response, polysynaptic cells with C 

response, and correspondingly, mono- and polysynaptic cells 

without C input (Gregor & Zimmermann, 1972). 

On the other hand, for the purpose of studying pain

related tract cells, Willis and his co-workers have used 

different intensities of mechanical stimulation to classify 

spinothalamic tract neurons on the basis of their response to 

natural stimulation into four categories: low threshold 

cells, wide dynamic range cells, high threshold cells, and 

deep cells (Trevino, et al., 1973; Willis, et al., 1974). It 

is obvious that the first proposal emphasized C afferent 

synaptic connectivity, and therefore their classification 

criteria were based mainly on the electrical stimulation of 

peripheral nerves. In contrast, the second proposal focused 

on stimuli that can give rise to pain sensations, thereby 

having criteria for classification based on natural 

stimulation. 

Similar differences can be found in the classification 

of ventrolateral spinal axons. For instance, fibers have 

been classified on the basis of electrical stimulation at the 

first of cervical spinal segment as either ascending or prop

riospinal spinal axons (Fields, et al., 1970). On the other 

hand, fibers have been grouped according to the response to 

different kinds of natural stimuli into a monomodal 

subpopulation which responded exclusively to noxious stimuli 
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on the skin and a multimodal subpopulation which responded to 

various combinations of cutaneous stimuli (Pomeranz, 1973). 

It would be difficult, if not impossible, to have a 

system of classification criteria that would fit a wide 

variety of requirements. Classifying is naming. It is not 

necessary (or possible) that a naming scheme be able to 

include everything, but for effective communication it is 

necessary to have a basic scheme so that different people 

give the same name to the same objects. The most familiar 

example is the taxonomy of animals and plants, from which it 

is possible for different people to call the same species by 

the same name. Based on such a system further functional 

analysis or more detailed subpopulation clustering can be 

performed. 

An effective way to achieve a basic naming system is to 

select the most obvious and important characteristics of the 

objects as classification criteria. These characteristics 

have to be clear and reproducible so that they can be recog

nized consistently. Based on these considerations the crite

ria for classifying cat ventrolateral spinal axons in this 

paper were similar to those that have been used to classify 

cutaneous receptors (Horch, et al., 1977) and pain-related 

spinal dorsal horn neurons (Chung, et al., 1986; Willis, et 

al., 1974; Dubner & Bennett, 1983), which were based on the 

responsiveness to different intensities of the mechanical 

stimUli. 
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The main difference in the criteria used in this paper 

and those used by willis and co-workers (Chung, et al., 1986) 

was to incorporate the resting discharge characteristics onto 

the basic classification scheme. This was done for two 

reasons. First, different levels of resting discharge could 

be clearly differentiated and divided into different types. 

Second, evidence suggested that differences in patterns of 

resting discharge may have a functional significance. For 

example, as will be presented in PART II, about 60% of 

pruritogen-responsive wide dynamic range units demonstrated 

an intermittent resting discharge pattern. 

ventrolateral spinal axons and 
spinothalamic tract cells 

Because the naming system used in this classification 

study is the same as the system used for spinothalamic tract 

cells (Chung, et al., 1986), a direct comparison is possible. 

For instance, the percentage of low threshold, wide dynamic 

range, and high threshold spinal axons found in the ventro

lateral white matter of cat (N=78, 6%, 67%, and 27%, respec

tively) closely resembles to the results obtained from monkey 

dorsal horn spinothalamic tract cells (see Fig. 4G to 4I of 

Chung et al., 1986; N=128, 13%, 65%, and 23%, respectively, 

chi-square test, p >0.3). The percentage of the cat ventro

lateral spinal axons which were activated by mechanical 

stimuli applied to deep tissues or by position changes of the 

limbs or tail (N=92, 15%) was close to that of monkey spino

thalamic tract cells (Willis, et al., 1974; N=186, 11%; t 
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test, p >0.3). Furthermore, the interminqlinq distribution 

of different axons cateqories in the cat ventrolateral funi

culus was similar to the monkey (Applebaum, et al., 1975). 

Assuminq that all axons of the monkey spinothalamic 

tract cells ascend via the ventrolateral funiculus, the 

similarities mentioned above suqqest that the functional 

orqanization of cat and monkey ventrolateral funiculi are 

similar. 

This findinq differs from the common view held in 

recent years which has considered the distribution of pain

related spinal pathways in cat to be different from the 

monkey (Casey, et al., 1981: Kennrad, 1954; Willis, 1983; 

willis & Coqqeshall, 1978). The difference has been thouqht 

to be so obvious that it was even suqqested that "the cat 

should be re-classified as a 'red herrinq'" (Willis, 1985). 

It is obvious that more work should be done in this 

area. If the cat is a model for pain that is more similar to 

man than previously thouqht, it can be used more extensively 

as it has been for studies of other types of somatosensory 

function. 

Since pain is a prototypical of somatosensory modality 

related to basic protective function, different animal spe

cies must have neural structures to control this function. 

Hence, differences as well as similarities may be antici

pated. For example, in the monkey, the low threshold spino

thalamic tract cells have been shown to respond much less to 
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pressing, pinching, and squeezing than to brushing (see Fig. 

1A uppermost histogram of Chung, et al., 1986). The low 

threshold ventrolateral spinal axons reported in this paper 

responded to light and firm brushing with nearly the same 

magnitude as to pointed probe pressing and forceps pinching 

(Fig 2A & Fig. 6B). These differences may be ac counted for 

by differences in the animal preparations (Chung, et al., 

used anesthetized monkeys; in this paper, cats were 

spinalized). However, the differences between the percentage 

of low threshold spinal axons found in the cat ventrolateral 

funiculus (6%) and those found in monkey spinothalamic tract 

cells (13%) cannot be due to preparation differences. 

Preliminary observations on the cat dorso lateral funiculus 

have shown that many spinal axons dis sected from the dorsal 

part of the dorsolateral funiculus behave as do the low 

threshold of monkey spinothalamic tract cells. This finding 

suggests that in the cat, these axons might traverse the 

dorsal part of the spinal white matter. 

The distribution of different 
spinal axon categories in the 
cat ventrolateral spinal 
white matter 

Electrophysiological studies on the monkey lateral 

columns have shown that the axons of spinothalamic tract 

axons activated by tactile stimulation intermingle with axons 

that respond only to high-intensity stimulation (Applebaum, 

et al., 1975). This observation was found to hold true for 

cat (Fig. 7). This kind of randomized arrangement may have 
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biological significance, perhaps acting as a safety factor so 

that injury to one part of spinal ventro lateral funiculus 

will not result in a complete loss of a particular sensory 

function. 
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PART II: THE RESPONSE OF CAT VENTROLATERAL SPINAL AXONS 

TO AN ITCH-PRODUCING STIMULUS (COWHAGE) 



INTRODUCTION 

Itch can be defined as "an unpleasant cutaneous sensa

tion which provokes the desire to scratch" (Rothman, 1941). 

If itchinq may be equated with scratchinq, it is as universal 

as pain (Arthur & Shelley 1959). When localized and 

transient, for instance from a mosquito bite, itch is a 

trivial nuisance; but when severe and qenera1ized, it can 

become unbearable and disab1inq (Keele & Armstronq, 1964). 

For example, in patients with atopic dermatitis and the 

cutaneous manifestations of Hodqkints disease, itchinq may 

lead to a vicious cycle consistinq of increasinq1y violent 

scratchinq and itchinq episodes. Such scratch paroxysms may 

last many hours and may cease only because of somatic and 

psychic exhaustion of the patient (Rothman, 1941; Keele & 

Armstronq, 1964). There are 1.3 million Americans who suffer 

from atopic dermatitis (Burqess, et a1., 1979; Tuckett, et 

a1., 1984). Therefore, research invo1vinq the mechanisms of 

itch has not only academic but also clinical and economic 

siqnificance. 

It is not difficult to differentiate itch from sensa

tions such as temperature, vibration, or from the prick1inq 

sensation which is associated with circulatory arrest of the 

limbs (Rothman, 1922 & 1941; Bickford, 1938). However, the 

sensations of itch and pain have many similarities that have 
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led some investiqators to reqard itch as a subthreshold form 

of pain (Bishop, 1948; Rothman 1954). For instance, both 

sensations can be elicited by mechanical, thermal, electri

cal, or chemical stimuli and are experienced as beinq 

unpleasant. Both sensations have the similar characteristics 

such as radiation, poor localization, poor discrimination of 

different intensities, and the persistence of the feelinq 

after cessation of the stimulus (Keele & Armstronq, 1964; 

Rothman, 1941; Shelley & Arthur, 1957). 

On the other hand, evidence has accumulated to suqqest 

that itch and pain are indeed separate sensory modalities. 

For example, 1) they evoke different motor responses, 

scratchinq for itch, withdrawal for pain (Fjellner, 1981). 

2) They respond differently to morphine and naloxone admin

istration. Morphine inhibits pain but can promote itch 

(Hales, 1980; Bromaqe, 1984). Naloxone can inhibit itch in 

some subjects but can also lower pain threshold (Bernstein & 

Grinzi, 1981; Bernstein, et al., 1982; Summerfield, 1980). 

3) The thresholds for elicitinq itch and pain from the same 

area of skin are different, with a weak stimulus producinq 

itch and stronq stimUlUS inducinq pain (Shelley & Arthur, 

1957; Torebjork & Ochoa, 1981). 4) Itch and pain seem to 

oriqinate from different sensory neurons which innervate 

different layers of the skin, itch beinq related to neurons 

that innervate more superficial layers of skin than pain 

fibers (Shelley and Arthur, 1957). 5) Itch and pain can be 

felt simultaneously in the same area of the skin and to vary 
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independently in intensity (Arthur & Shelley, 1959; Keele & 

Armstronq, 1964). 6) Gradually reducinq the intensity of a 

pain stimulus has been reported to simply reduce and later 

eliminate pain without qivinq rise to itch (Keele, 1958; 

Moulton, et al., 1957). These observations stronqly suqqest 

that itch and pain are different sensory modalities and hence 

are subserved by different neuronal mechanisms (Burqess, et 

al., 1983 & 1984). 

If itch is a distinct sensory modality, then accordinq 

to the sensory channel hypothesis there must be an itch 

channel which includes the itch-related receptors, spinal 

cord processinq circuits, spinal pathways, and the central 

information processinq circuitry capable of producinq the 

perception of itch (Willis & eoqqeshall, 1978). 

In contrast to pain and other sensory modalities, little 

is known of the way the itch siqnal is transmitted within the 

central nervous system. However, enouqh information is now 

available to beqin investiqation of this sub ject. In the 

peripheral nervous system, evidence suqqests that the 

penicillate nerve endinqs of human hairy skin miqht be one of 

the itch-related receptors, and cutaneous unmyelinated (e) 

afferents miqht be involved in transmittinq the itch siqnals 

(eauna, 1977; Douqlas & Ritchie, 1959; Tore bjork, 1974; 

Torebjork & Ochoa. 1981; Handwerker, et al., 1986; Tuckett & 

Wei, 1987b). In the central nervous system, clinical studies 

on the sensory loss after ventrolateral cordotomy suqqest 

that an itch-related spinal pathway lies in the ventrolateral 



spinal white matter (Arthur & Shelley, 1959; Banzet, 1927; 

Graf, 1960; Hyndman, et al., 1943; Taren & Kahn 1966; 

White,et al., 1950). 
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Although this literature has provided clues for where to 

search for itch-related spinal axons, to my knowledge no 

experiments have been conducted to study pruritogen-respon

sive spinal axons in the cat ventrolateral funiculus. The 

major obstacles to a successful investigation of this issue 

are that 1) microelectrode recording in ventrolateral funic

ulus is technically more difficult than from the dorsal horn 

soma-dendritic region, as has been mentioned in Part I. 2) 

The neural response to pruritus-inducing agents is not as 

obvious as that to mechanical or thermal stimuli. Therefore, 

as will be presented in this paper, the data analysis is more 

complicated. There is one brief report of the responses of 

cat dorsal horn neurons to itch-producing stimuli, but the 

responses were not quantified (Wall & cronly-Dillon, 1960). 

Based on this background knowledge and the classifica

tion of ventrolateral spinal axons presented in PART I, it 

was possible to search the pruritogen-responsive spinal axons 

in the cat ventrolateral funiculus using the microdis section 

technique described above. To my knowledge, this is the 

first time pruritogen-responsive spinal axons have been 

convincingly documented. 



MATERIALS AND METHODS 

Animal preparation 

The cat was considered to be well-suited for this 

experimental paradigm. Because: 1) awake unrestrained cats 

have been shown to exhibit itch-related behavior such as 

scratching, twitching, and licking when the pruritogen cow

hage was applied to their skin (Wall & cronly-Dillon, 1960; 

Tuckett & Wei, unpublished observations); 2) anesthetized 

cats have been used in an extensive study of pruritogen

responsive cutaneous receptors (Tuckett & Wei, 1987 a, b); 3) 

their spinal axons in the ventrolateral funiculus have been 

classified on the basis of a commonly used classification 

scheme (Part I); and, 4) it has been shown that their 

functional organization is in some aspects similar to that of 

the monkey (PART I). 

The units discussed in this paper come from the same 

population of cat ventrolateral spinal axons which have been 

classified into four categories as reported in PART I. Only 

axons associated with cutaneous afferents were used in this 

experiment, there belong to three categories: 1) low thres

hold spinal axons, 2) wide dynamic range spinal axons, and 3) 

high threshold spinal axons. Each category was further sub

divided into three subtypes based on its pattern of resting 

discharge: 1) units with no resting activity, 2) units having 
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intermittent resting discharge, and 3) units showing a 

continuous resting discharge. Computer methods of data 

storage, display, and analysis were described previously (see 

PART I MATERIALS AND METHODS). 

Itch-producing stimulus 

The spicules of the bean plant cowhage, or Mucuna 

pruriens (Shelley & Arthur, 1955), have been used as a 

classical itch-producing stimulus since the first human 

psychophysical experiments on itching (Rothman, 1922). They 

have been applied as a clinical testing agent for evaluating 

the sensory deficit after anterolateral cordotomy (Hyndman & 

Wolkin, 1943). Cowhage consistently produced an unambiguous 

feeling of pruritus on human subjects (Arthur & Shelley, 

1959; Broadbent, 1953; Hardy, et al., 1952, Keele & 

Armstrong, 1964; Rothman, 1941; Tuckett, 1982), and this 

effect was considered to not involve an allergic reaction 

(Shelley & Arthur, 1955). Hence, in the search for an effec-

tive stimulus for experimental pruritus and considering later 

comparisons with the existing related literature, cowhage was 

considered superior to other stimuli (Shelley & Arthur, 

1955). 

Moreover, cowhage can be inactivated by boiling (Broad

bent, 1953) or autoclaving at 2500 C for 30 minutes (Shelley 

& Arthur, 1955). This inactive cowhage is a useful control 

with which to differentiate the effect of active cowhage as 

will be shown in this paper. To test for inactivation, 



spicules were inserted into the experimenter's skin, thus 

verifyinq a lack of pruritoqenic activity. 
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Data from human psychophysical experiments have revealed 

that after cowhaqe insertion, althouqh the latency, intensity 

and duration of pruritic sensation varied with different 

individuals, itchinq with a stronq desire to scratch appeared 

within 15-30 seconds and lasted for approximately five or 

more minutes with wave-like fluctuations in maqnitude 

(Broadbent, 1953; Hardy, et al., 1952; Keele & Armstronq, 

1964, Rothman, 1941; Shelley & Arthur, 1955 and 1957; 

Tuckett, 1982). From this psychophysical data it was deduced 

that the first minute after cowhaqe application would be an 

adequate time window in which to look for the initial staqes 

of cowhaqe activation of spinal pathways. Hence, in this 

experiment the analysis of neural response was limited to the 

first minute after cowhaqe application. 

Experimental protocol 

At the beqinninq of the experiment, the hair of both 

hind limbs and the lower lumbar reqion was clipped to about 

1-2 mm. Once a unit was isolated and its receptive field 

perimeter defined, the remaininq hair on a small portion of 

the most mechanically sensitive area of the receptive field 

was carefully removed with microscissors under microscopic 

maqnification (12-25X). Three qroups of inactive cowhaqe, as 

a control stimulus, or active cowhaqe, as itch-producinq 

stimulus, were applied to an area of about 4-6 mm in 

diameter, each qroup consistinq of 20-25 spicules. 
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Precautions were taken to minimize fatigue and sensiti

zation (Bessou & Perl, 1969; Dubner & Bennett, 1983) of the 

unit under study. For instance, only mechanical stimuli were 

used to search for receptive fields. The intensity of the 

stimulation was minimized, and usually the final classi

fication decision, as based on response to different inten

sities of mechanical stimulation, was made after the tests 

with inactive and active cowhage had been completed. More 

over, tested areas of skin were marked and not retested on 

subsequent units. 

Data analysis 

The significance level of differences between paired 

data accumulated in this experiment was evaluated with the 

wilcoxon matched pairs (WMP) test, which is the nonparametric 

analog of the parametric paired t-test. The number of 

nonzero values (NNZV) of the matched pairs will be specified 

along with the probability (p) levels in the figure legends. 

Unpaired data were examined by Mann-Whitney (MW) test 

(Siegel, 1956). Computer programs for running these 

statistic tests on a PC computer were available on the 

"Number Cruncher Statistical system" (Hintze, 1986). 



RESULTS 

Once a ventrolateral spinal axon had been isolated, its 

response to inactive and active cowhaqe were recorded in 

paired trials. Table 4 summarizes the types and sample sizes 

of the paired data. 

The responses of wide dynamic 
ranqe spinal axons to 
cowhaqe application 

A typical inactive cowhaqe versus active cowhaqe (IC

vs-AC) paired record is shown in Fiqure 11. A wide dynamic 

ranqe unit with no restinq activity was tested with inactive 

cowhaqe (Fiq. llA) and then with active cowhaqe (Fiq. llB). 

The horizontal lines under each display mark the time of 

cowhaqe application. As mentioned in PART I, although re

sponse sensitivities varied, by definition all types of 

mechanically sensitive ventrolateral spinal axons could be 

activated by mechanical stimulation. Therefore, the mechani

cal pressure caused by insertion of cowhaqe spicules into the 

skin initiated a discharqe which subsided after the 

mechanical stimulus was terminated. As shown, following 

active cowhaqe application there were bursts of activity 

followed by three to 15 seconds of silence that were not 

present after inactive cowhaqe application. The total amount 
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Fiqure 11. The response of a wide dynamic range unit with no 
resting activity to application of inactive (A) and active 
(B) cowhage. Solid lines under the impulse frequency vs time 
histograms indicate the time of spicule insertion. Bin 
width: one sec. The time interval between the two arrows was 
one minute. The difference in bin-to-bin discharge between 
the two arrows was significant (WMP test, p< 0.01, NNZV=17). 
Spikes count between the two arrows, A: 5, B: 54. 
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of spikes induced by active cowhage (Fig. 11B) was signifi

cantly greater than inactive cowhage (Fig. 11A, WMP test, p< 

0.01) • 

In the case of units with spontaneous resting activity, 

one to four minutes of resting discharge was recorded before 

inactive cowhage was applied (Fig. 12A & 13A). Units with 

intermittent and continuous resting discharge patterns are 

illustrated in Fiqures 12 and 13, respectively. For both, 

active cowhage typically elicited a higher rate of discharge 

than both inactive cowhage (Fig. 12C vs 12B, and Fig. 13C vs 

13B, WMP test, p< 0.001 for both pairs) and the resting dis

charge levels (Fig. 12C vs 12A, and Fig. 13C vs 13A, WMP 

test, p< 0.001 for both pairs). In contrast, inactive cow

hage sometimes induced a significantly greater number of 

spikes than the resting discharge level (Fig. 13B vs 13A, WMP 

test, 0.01< p < 0.05) and sometimes did not (Fig. 12B vs 12A, 

WMP test, p >0.4). 

These fiqures demonstrate that the response of a unit to 

inactive or active cowhage stimulation included two different 

components, the first being a response to mechanical stimulus 

and the second an afterdischarge. The second component 

represented the after effect of the mechanical stimulus in 

the case of inactive cowhage trials (Fig. 13B vs 13A for 

example), whereas, in the active cowhage trials, the after 

discharge was likely the combined effect of the mechanical 

stimulus and the pruritogenic agent found in active cowhage 

(Fig. 13C). Therefore, the difference between the second 
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Fiqure 12. The response of a wide dynamic range unit with 
intermittent resting discharge to application of inactive and 
active cowhage. Panel A shows impulse frequency vs time 
histogram of the intermittent resting discharge; B, the 
response to inactive cowhage; and C, to active cowhage. Bin 
width: one sec. Solid lines under the histograms indicate 
the time of spicules insertion. There was a one minute time 
interval between the two arrows. WMP test of the discharge 
between the two arrows was significant for C to B, (p<O.OOl, 
NNZV=47); and for C to A (p< 0.001, NNZV=43); but not for B 
to A (p >0.4, NNZV=37). Spikes count between the two arrows 
A: 41, B: 62, C: 201. Note that the Y scale in panel A is 
smaller then in Band C. 
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Figure 13. The response of a wide dynamic range unit with 
continuous resting discharge to the application of inactive 
and active cowhage. Panel A shows impulse frequency vs time 
histogram of the continuous resting discharge; B, the 
response to inactive cowhage; and C, to active cowhage. Bin 
width: one sec. Solid lines under the histogram indicate the 
time of spicule insertion. There was a one minute time 
interval between the two arrows. WMP test between the two 
arrows was significant for C to B (p< 0.001, NNZV=56); C to A 
(p< 0.001, NNZV=59); and for B to A (0.01< p <0.05, NNZV=57). 
Spikes count between the two arrows A: 412, B: 503, C: 790. 
Note that the Y scale in panel A is smaller than 
in Band C. 
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components in inactive and active cowhage trials was assumed 

to represent the pruritogenic effect of active cowhage (Fig. 

13C vs 13B). 

To further investigate this issue, under microscopic 

observation active cowhage spicules were applied very gently 

into the receptive fields of three wide dynamic range units 

so that no direct response to the mechanical insertion was 

produced. After insertion these units generated a greater 

number of spikes (the end of the insertions were indicated by 

the three arrows in Fig. 14 A2, B2, and C2) than their 

original resting discharge level (Fig. 14 A1, B1, C1; WMP 

test, p< 0.001). This result provides additional evidence to 

support the notion that, aside from the response to the 

mechanical stimulus, there is an active agent released from 

active cowhage that can induce increased levels of discharge. 

It is interesting to note that the pruritogenic effect 

of active cowhage on wide dynamic range units was not as 

vigorous as the direct effect of mechanical stimulation 

(compare the discharges underlined to the discharge between 

the two arrows in Fig. 11 to 13). In the case of units with 

resting activity (Fig. 12 & 13), the possibility existed that 

the difference between the second component of inactive and 

active cowhage trials was due to a fluctuation of resting 

activity with a tendency toward increasing firing rate with 

time. To test this possibility, it was necessary to study 

resting discharge versus resting discharge paired (RD-vs-RD) 

records. Therefore, in some experiments, resting discharge 
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Figure 14. Responses of three wide dynamic range units to 
the application of individual active cowhage spicules. 
Histograms of instantaneous frequency versus time showing the 
responses of three wide dynamic range units (A, B, and C) to 
application of individual active cowhage spicules. The arrow 
in trace 2 of each sample marks the time of the last spicule 
insertion. Note that there was no direct response to 
mechanical pressure during insertion. In each, trace 1 shows 
the resting discharge levels of 1076, 24, 84 impulses per 
minute, respectively. Trace 2 shows the afterdischarge of 
each unit after the insertion. The one minute spike counts 
are 1577, 53, and 336, respectively. The time scale is 6 
second. For A1 to A2 NNZV=60 and for C1 to C2 NNZV=58 WMP 
test, for both p< 0.001; for B1 to B2, WMP test, p< 0.01, 
NNZV=30. Note that the Y-axis scaling in panel A is more 
than an order of magnitude greater than Band C. 
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was recorded for two to four minutes and a comparison made 

between consecutive minute records. 
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To measure the percent difference of the firing rate 

during a two-minute recording period, the mean impulses per 

minute (IPM) in the first minute were subtracted from, and 

then normalized around, the mean number of impulses occur 

ring during the total two-minute interval. The same 

procedure was then followed for the mean of the second 

minute, with the result being the same as in the first 

minute, but opposite in sign. For example, a two-minute 

interval in which the first minute had 98 IPM and the second 

minute had 34 IPM would be normalized around a mean of 66 IPM 

and would show a "_" and a "+" 48% difference from the 

two-minute mean (66- 98)/66 X 100% and (66-34)/66 X 100%). 

The data were plotted in such a way that if the IPM during 

second minute was smaller than the first minute, the 

percentage was called negative and plotted on the left side 

of the histogram, and vice versa (Fig. 15). In the case 

cited above (the 98 and 34 IPM pair), the percent fluctuation 

was signed negative (-48%) and labelled with an asterisk in 

Fiqure 15A. Hence, the closer a cell was to the center of 

the histogram, the lesser the difference between the two 

values. 

Fiqure 15A demonstrates that although the percent dif

ferences for most cells were close to the center of the 

histogram, more cells were distributed to the left than to 

the right side, suggesting a tendency for the discharge in 



80 

Figure 15. Frequency distribution histograms illustrating 
the response sensitivity of wide dynamic range units to the 
application of cowhage. A comparison was made between two 
values of a data pair. For instance, in panel A, the number 
of spikes counted in the first minute of resting discharge 
was compared to the second minute (RO-vs-RO). In B, the 
number of spikes counted in the first minute of afterdis
charge after the first insertion of inactive cowhage was 
compared to the afterdischarge following a second insertion 
of inactive cowhage (IC-vs-IC). In C, a similar comparison 
was made between inactive and active cowhage insertion (IC
vs-AC). Sample sizes are listed in Table 4. Percent 
difference of paired values is used as a measure of response 
sensitivity (for details see the text). Percent differences 
on the right side of the 0% column indicate in A that the 
second minute spike count was greater than the first, in B 
that the second inactive cowhage application elicited more 
spikes than the first, and in C that active cowhage evoked 
greater activity than inactive cowhage. The converse holds 
true for the left side of the 0% column. Only panel C shows 
most of the cells being on the right side of the histogram 
indicating that active cowhage evoked more spikes than 
inactive cowhage. The large "*" in A marks of the calcula
tion example presented in the text. The two small "*"'s and 
the "a" and "b", and paired numbers 1 to 3 in C represent two 
measurements from two receptive field spots of 5 different 
units. See text for discussion. Panel 0 is the same as C, 
displaying the distribution of different subtypes of wide 
dynamic range units. The crossed cell represents a unit with 
no resting discharge; the white cell, a unit with inter
mittent; and, the black cell, a unit with continuous resting 
discharge. Note the nine cells, located on the right side of 
the 50% column, which represents cowhage sensitive wide 
dynamic range spinal axons, six of which were units with an 
intermittent resting discharge pattern. 
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the second minute to be less than in the first. This impres

sion was confirmed by the result of the Wilcoxon matched 

pairs test on these 25 RD-vs-RD pairs (0.01 < p < 0.02), 

indicating a significant tendency for firing rate to decrease 

with time. 

Because the experimental procedure required the appli

cation of three groups of inactive, and then active, cowhage 

it was possible that the higher one-minute spike counts on 

active cowhage trials shown on Figures 11-13 were due to 

sensitization caused by repeated insertion of spicules. To 

test this possibility inactive cowhage versus inactive cow

hage (IC-vs-IC) paired responses were compared. A naive 

situation occurred during the first experiment in this series 

in which the experimenter mistakenly used inactive cowhage as 

the active stimulus. Therefore, the data from all units 

obtained in this initial experiment were IC-vs-IC paired 

records (see Table 4 columns 3 & 4). Eleven IC-vs-IC pairs 

were distributed almost symmetrically with no significant 

shift from zero (Fig. 15B). The WMP test on 11 IC-vs-IC 

pairs (p >0.5) also indicated that the differences were not 

significant. 

In contrast, the IC-vs-AC pairs were distributed to the 

right (Fig. 15C) indicating that active cowhage induced a 

higher level of discharge than did inactive cowhage (WMP test 

on 47 IC-vs-AC pairs, p< 0.001). There was no tendency in 

either the RD-vs-RD (Fiq. l5A) or the IC-vs-IC (Fig. l5B) 

trials for the second minute count to be greater than the 
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first. Hence, it appears unlikely that the active cowhage 

stimulation, by virtue of being second in the paired stimulus 

paradigm, could be the cause of the increased discharge. In 

fact, just the opposite was found: the active cowhage 

stimulus had to overcome a tendency for the second in the 

pair to have a lesser rate of discharge. Furthermore, a 

comparison of Figure 15C to Figures 15A and 15B shows that 

although percent differences in RD-vs-RD and IC-vs-IC pairs 

were less than +50%, there was a peak-count at +50% in Figure 

15C. 

More than 23% (eight of 34 units) of the wide dynamic 

range units had differences greater than +50% and may repres

ent a subpopulation with higher sensitivity to active cowhage 

stimulation (for one unit, two receptive spots were tested 

and both had differences greater than +50%, as designated in 

Fig. 15C with two small "*" marks). In summary, these 

results suggest that the wide dynamic range population was 

cowhage sensitive. In addition, a subpopulation of about 23% 

demonstrated a relatively high sensitivity to cowhage (com-

pare Fig. 16A vs 16B) and thus might be referred to as 

pruritogen-responsive spinal axons. 

Comparison of the effect of 
active cowhage applied 
to more than one spot 

Ten of the 34 wide dynamic range units studied with 

inactive and active cowhage were tested on more than one spot 

within their mechanically excitable receptive fields (two 

spots on eight units, three spots on two units). spots were 



Figure 16. Summation of impulse frequency versus time 
histograms showing the population response of wide dynamic 
range units to inactive and active cowhage stimulation. 
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Panel A shows the histogram of nine inactive versus active 
cowhage (IC-vs-AC) paired data from eight wide dynamic range 
units with high sensitivity to cowhage stimulation and B, the 
histogram of 47 IC- vs-AC paired data from 34 wide dynamic 
range units. Black columns represent the summation of one 
minute spike counts after inactive cowhage application (N=311 
for A, N=19877 for B). The white columns show the summation 
after active cowhage stimulation (N=1336 for A, N=23435 for 
B). For both A and B the differences were significant (WMP 
test, p< 0.001 and NNZV=60). Note the tenfold difference in 
scaling of the Y-axis in A and B. 
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selected on the basis of their similarity in sensitivity to 

mechanical stimulation. For each, the difference in response 

to inactive and active cowhage application was compared. 

Seven units had the same results at different spots on their 

receptive fields (an example is shown in Fig. 15C with two 

small "*" marks). 

However, three units had a greater response to AC than 

IC on one spot but the opposite effect on the other spot. 

These effects are shown in Figure 15C with paired labels 1, 

2, and 3. In other words, for three wide dynamic range units 

although the mechanical stimulus produced a similar excita

tory effect on each tested spot, active cowhage produced more 

afterdischarge than inactive cowhage on one spot, but lesser 

on the other, raising the intriguing possibility that the 

cowhage defined receptive field might have inhibitory as well 

as excitatory areas although the whole field was mechanically 

excitatory. 

Effect of active cowhage applied 
to mechanically inhibitory 
receptive fields 

Figure 17 shows a simultaneous recording from one 

spinal filament of two wide dynamic range units. Both the 

first (Fig. 17A top trace) and the second (bottom trace) 

units had resting activity. The mechanically excitatory 

receptive field of the first unit and the inhibitory field of 

the second unit overlapped, with both innervating perineum. 

The mechanical stimulus associated with inactive and active 

cowhage application (Fig. 17B & 17C solid line) excited the 
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first unit and inhibited the second. This effect lasted only 

as long as the mechanical stimulation was applied. Fol'lowing 

inactive cowhage application, there were discharge levels 

similar to the resting level of activity (compare Figures 17A 

to 17B). In contrast, following active cowhage application, 

there was excitation of the first unit and inhibition of the 

second (compare Fig. 17C to Fig. 17A & 17B). In summary, the 

effects of active cowhage and mechanical stimulation were 

similar in that both produced an excitation of the first unit 

and inhibition of the second. 

The second unit had a mechanical excitatory field (in 

addition to its inhibitory field) which was located on the 

thigh and separated from the inhibitory field by about five 

cm. When active cowhage was applied to the mechanical 

excitatory receptive field of the second unit a clear 

excitatory effect was produced (compare Fig. 18A to 18B). 

These two opposite effects of active cowhage on the two 

different receptive spots of the second unit, one within the 

excitatory and the other within the inhibitory receptive 

field of the unit, are shown in the frequency distribution 

histogram of Figure 15C with "a" and "b" labels. 

Response of high and low 
threshold spinal axons 
to cowhage application 

Figure 19 shows the summation of impulse frequency 

versus time histograms of paired data from three low 

threshold (three pairs of data, Fig. 19A) and 14 high 

threshold spinal axons (15 pairs of data, Fig. 19B). The 
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Figure 17. Instantaneous frequency versus time histograms 
illustrating a simultaneous recording from two wide dynamic 
range units in the same filament. Panel A shows that both 
the first (upper trace) and second (lower trace) units had 
resting activity. The excitatory receptive field of the 
first unit and the inhibitory field of the second unit 
overlapped, both innervating the perineum. B the application 
of inactive and C of active cowhage excited the first unit 
and inhibited the second (the solid lines under the 
histograms). The afterdischarge following the inactive 
cowhage insertion was obviously different from the resting 
activity (compare A to B). In contrast, with active cowhage, 
the excitation of the first unit and inhibition of the second 
unit persisted after the active cowhage insertion (compare B 
and C). Time scale=10 second. There was a significant 
difference in activity during the time between the two arrows 
in the upper trace of A compared to C (NNZV=43) and B 
compared to C (NNZV=49) WMP test, p< 0.001. The lower trace 
of A compared to C and B compared to C were all significantly 
different (WMP test, p< 0.001, NNZV=60). 
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Fiqure 18. The response of the second unit in the Fiqure 17 
to inactive (A) and active (B) cowhage applied on its exci
tatory receptive field. WMP test on A to B, p< 0.001, 
NNZV=S7. 
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white column is the afterdischarge after inactive cowhage 

application, and the black column is the afterdischarge after 

active cowhage application. The wilcoxon matched pairs test 

showed significant differences between the white and black 

columns (WMP test, p< 0.01 for Fig 19A; p<O.OOl for Fig. 19B) 

indicating that inactive cowhage may have induced more 

afterdischarge than active cowhage. The tendency of the 

differences in Figures 19A and 19B (i.e., the application of 

inactive cowhage inducing more afterdischarge than active 

cowhage) was opposite to that in Figure 16, where active 

cowhage initiated more afterdischarge than inactive cowhage. 

But it was in the same direction as in Figure 15A, where the 

first minute resting discharge spike count was greater than 

the second minute. This suggests that the differences 

presented in Figures 19A and 19B might be due to a tendency 

toward decreasing firing rates with time, as occurred in the 

case of resting discharge (RD-vs-RD) pairs. This deduction 

gains additional support from the observation that the 

population response of four high threshold spinal axons (Fig. 

19C) to an initial application of inactive cowhage was 

significantly greater than to a second application (WMP test, 

p< 0.01). 

In summary, in contrast to wide dynamic range units, low 

threshold and high threshold ventrolateral spinal axons were 

not responsive to active cowhage stimulation. 
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Figure 19. Population responses of low and high threshold 
spinal axons to inactive and active cowhage stimulation. 
summation of impulse frequency versus time histograms showing 
the population response of three low threshold (A, three 
pairs of data) and 14 high threshold (B, 15 pairs of data) 
spinal axons to the application of inactive (white column) 
and active cowhage (black column). In contrast to Figure 16 
inactive cowhage induced a greater one minute spikes count 
than active cowhage (WMP test p< 0.01, NNZV=58 for Ai p< 
0.001, NNZV=60 for B). The IC-vs-IC histogram in C shows 
that the population response of four high threshold spinal 
axons to the first inactive cowhage application (white co
lumn) was also significantly greater than to a second inac
tive cowhage application (black column, WMP test, p< 0.01, 
NNZV=38). The spikes count in A: white column=2290, black 
column=1949i B: white column=7149, black column=6612i C: 
white column=73, black column=22. Note the Y scale in C is 
tenfold less than that in A and B. 
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DISCUSSION 

pruritogen-responsive ventrolateral 
spinal axons 

A principal finding of the present study was that wide 

dynamic range ventrolateral spinal axons of the cat were 

significantly affected by the itch-producing stimulus, CQW

hage. ' Because of their location and response characteris 

tics, these cowhage sensitive wide dynamic range ventrolat

eral spinal axons were speculated to be involved in relaying 

itch-related information within the central nervous system. 

However, the present study did not rule out the possibility 

of itch specific ventrolateral spinal axons (see APPENDIX). 

To my knowledge, this is the first time an experimental 

model has been used to confirm the clinical concept based on 

observations following cordotomy that there are itch-related 

ventrolateral spinal axons (Banzet, 1927; Hyndman & Wolkin, 

1943; White, et al., 1950; Arthur & Shelley, 1959; Graf, 

1960; Taren & Kahn, 1966). This finding suggests that simi

larities might exist between the functional organization of 

the ventrolateral funiculus of human beings and cats. 

Al"though the response was not as vigorQus to cowhage as 

to mechanical stimulation, it was obvious. For instance, a 

comparison of IC-vs-IC paired data showed no significant 

difference between the afterdischarge following the first and 
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second applications of inactive cowhage. Whereas, for 

IC-vs-AC paired data, active cowhage produced a significantly 

greater afterdischarge than inactive cowhage. This effect 

was especially prominent in about 23% of tested units. When 

applied to human subjects, active cowhage initiated an 

unambiguous feeling of itch but inactive cowhage did not 

(Tuckett, 1982). Hence, the difference between active and 

inactive cowhage induced afterdischarge in wide dynamic range 

units is likely generated by the pruritogenic agent in the 

active cowhage and may relay itch-related information to 

higher levels of the central nervous system. It seems 

appropriate to consider wide dynamic range ventrolateral 

spinal axons, especially the most cowhage sensitive 

subpopulation, as pruritogen-responsive ventrolateral spinal 

axons. 

Functional heterogeneity of the 
wide dynamic range spinal 
neuron population 

The term "wide dynamic range" spinal neuron was first 

introduced by Mendell (1966) to define spinocervical tract 

fibers that respond to both tactile and intense mechanical 

stimuli in a graded fashion. 

Willis and co-workers recognized that spinothalamic 

tract cells are a functionally heterogeneous population and 

classified the cells into four categories. Their "wide 

dynamic range" category of the cells was behaviorally similar 

to Mendell's definition (Willis, et al., 1974; Chung, et al., 

1986). 
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The potential involvement of wide dynamic range neurons 

in the central mechanisms of nociception has been studied 

extensively (Dubner & Bennett, 1983; Price & Dubner, 1977). 

Recently these neurons have been postulated to play a role in 

mediating sympathetically maintained pain (Roberts & 

Foglesong, 1986). Assuming the wide dynamic range spinal 

axons presented herein were the axons of these wide dynamic 

range neurons, it seems possible that wide dynamic range 

spinal neurons are also a functionally heterogeneous 

population. 

In PART I, wide dynamic range spinal axons were grouped 

into three different subtypes according to their resting dis-

charge pattern. Data presented in this report have shown 

that about 23% of wide dynamic range axons demonstrate a 

relatively high sensitivity to cowhage stimulation. Subdivi

sion of these cowhage sensitive units into subtypes as shown 

in Figure 150 revealed that 60% of them had intermittent 

resting discharge. These results suggest that the differ

ences in resting discharge pattern might correlate with the 

functional heterogeneity of wide dynamic range spinal neu

rons. 

Further evidence of functional heterogeneity comes from 

selective stimulation of the wide dynamic range neuron popu

lation in the human ventrolateral quadrant, which has been 

reported to elicit different qualities of pain (i.e., 

burning, pricking, etc.) (Mayer, et al., 1975). 



A possible mechanism for supra
segmental extraction of sensa
tion related to different 
sensory modalities 

As mentioned in Part I, evidence from clinical and 

animal studies favors the notion that ventrolateral spinal 
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axons may be involved in transmitting information related to 

different sensory modalities. According to the specificity 

theory of sensation, each quality of sensation is transmit 

ted via a different sensory channel. However, data presented 

in this study have shown that even the lightest mechanical 

search stimulus used in this experiment, light brushing, 

could simultaneously activate the low threshold and wide 

dynamic range ventrolateral spinal axons (see Fig. 2A & 2B). 

Assuming the signals recorded from the low threshold, wide 

dynamic range, and high threshold ventrolateral spinal axons 

simultaneously ascend to suprasegmental neural circuits, it 

can be postulated that a coactivation mechanism might be 

involved in separating these signals into different qualities 

of sensation. 

A possible coactivation mechanism can be illustrated by 

referring to the data in Figure 2 (Part I). First, wide 

dynamic range spinal axons, coactivated with low threshold 

spinal axons by light brushing (Fig. 2A & 2B, LB), could 

produce a feeling of light touch after being decoded by 

suprasegmental circuits. Second, in response to firm brush-

ing, which coactivates wide dynamic range, low threshold and 

high threshold spinal axons (Fig. 2A, 2B, and 2C, FB), a 

sensation of pressure could be produced. Third, when coacti-



99 

vation recruits high threshold axons, which only respond to 

overtly noxious stimuli (Fig. 2A, 2B, 2C & 20, P & F), a 

sensation of pain could result. Fourth, in contrast, if only 

wide dynamic range axons were activated, a sensation could be 

initiated which would be a function of which subset of the 

heterogeneous of wide dynamic range population was activated. 

For example, according to this model, activation of 

pruritogen-responsive wide dynamic range axons (as shown in 

Fig. lIB, 12C & 13C between two arrows) would produce the 

sensation of itch. 

This postulated mechanism is consistent with clinical 

observations of sensory deficits following ventrolateral 

cordotomy. For instance, it is thought that the reason why 

only minor tactile deficits can be detected after cordotomy 

is because of the small percentage of low threshold spinal 

axons in the ventrolateral funiculus (Foerster & Gagel, 1932, 

ref. #15 from Applebaum, et al., 1975; see also Table 1 in 

Part I). In contrast, because of the large percentage of 

high threshold and wide dynamic range axons in the ven

trolateral spinal white matter, pain and itch sensations are 

seriously affected after cordotomy (Hyndman & Wolkin, 1943; 

see also Table 1 in Part I). 



Magnitude of sensation and 
discharge frequency 

APPENDIX 

There are fundamental similarities between the neuronal 

activity evoked by cowhage as recorded from animal experi

ments and the sensory experience of human subjects following 

cowhage application. For example, in cats many itch-related 

receptors in the skin (likely, a subpopulation of the C 

polymodal receptor population, Tuckett & Wei, 1987b) and wide 

dynamic range units in ventrolateral funiculus were found to 

respond to active cowhage with an intermittent discharge 

pattern which is consistent with the wave-like fluctuations 

in the magnitude of itch experienced by human subjects 

(Shelley & Arthur, 1955; Tuckett, 1982). 

However, intriquing questions remain to be answered. 

For instance, moderate intensities of mechanical pressure 

applied to the receptive fields of wide dynamic range units 

usually evoked a much greater discharge than did active 

cowhage. In contrast, the itch feeling evoked by cowhage is 

often as strong as or even stronger than the sensation evoked 

by the mechanical stimulation (Tuckett & Wei, unpublished 

observations). A similar divergence was also seen in the 

response of itch-related C polymodal receptors to mechanical 

and cowhage stimulation (Tuckett & Wei, 1987b). 
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These findings suggest that the itch-related signal must 

be accentuated before producing the perception of itch (cf. 

sensory channels hypothesis of Willis & Coggeshall, 1978). 

An alternative explanation is that there may be an itch 

specific ventrolateral spinal axon which responds exclusively 

and vigorously to itch-producing stimuli but not to 

mechanical stimulation. Because the search stimulus used in 

present study was mechanical, itch-specific spinal axons 

might have been missed. 

The possibility of an itch 
specific spinal axon 

Mechanical stimuli were used to search for the receptive 

fields of pruritogen-responsive spinal axons in the 

ventrolateral funiculus. When located, cowhage was consist

ently applied to the center of each field. Consequently,it 

is likely that all population of ventrolateral spinal axons 

that can be excited by both mechanical and pruritogenic 

stimuli were sampled in this study. However, if spinal axons 

exist that respond exclusively to itch-producing stimuli, 

such hypothesized itch-specific spinal axons might be 

underestimated or even be missed in this study. 

One way to identify an hypothesized itch-specific spinal 

axon would be to apply an itch-producing agent over the 

entire body surface to be tested and then search for spinal 

axons with ongoing activity. There are at least two major 

weaknesses in this approach, both hinging on the adequacy of 

the search stimulus. 
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The first weakness would be the extreme difficulty in 

findinq the receptive field of an activated axon. Evidence 

from afferent receptor and animal behavioral studies suqqest 

that cowhaqe activated receptors will continue to fire for at 

least 30 minutes to 2 hours (Tuckett & Wei, unpublished 

observations). Approximate location of the receptive field 

would require repeated p1acinq of a second pruritoqenic 

stimUlUS on the skin and systematically searchinq until the 

discharqe of onqoinq activity of the recorded unit in 

creased. It would then to be presumed that the increase in 

discharqe was due to activation of a portion of the receptive 

field. 

The second weakness in this approach is that further 

definition of the receptive field boundary would be diffi

cult. It would require movinq the second itch stimUlUS and 

lookinq for further increasinq activity. If none was found, 

it would be concluded that either the unit's response was 

saturated or the search had extended beyond the field 

boundary. 

In summary, it is difficult to use a pruritoqen as a 

search stimUlUS because it cannot be easily contro11ed1 that 

is, it cannot be turned off as well as on. 

An alternative way to search would be to record unit 

activity from a strand of spinal white matter which contains 

several spinal axons, and then use mechanical search stimUli 

to locate the receptive fields of all mechanosensitive spinal 

axons in the strand. Then active cowhaqe would be applied to 



the center of the field, looking for recruitment of activity 

from units which originally were not activated by the 

mechanical stimulus. If recruitment were found, the 

cowhage-tested area of skin would be retested first with 

mechanical and thermal stimuli and then with more cowhage. 

If the spinal axon continued to display reactivity only to 

increasing doses of pruritogen, it would be assumed to be an 

itch-specific spinal axon. 
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An advantage of this experimental protocol would be that 

for each recording it would be necessary to apply only a 

small amount of cowhage to a restricted cutaneous area and 

hence the approximate field location of the itch-specific 

spinal axon would be immediately available. 

Three conditions must be met before this protocol would 

become practicable. First, the receptive fields of itch 

specific and mechanosensitive spinal axons must have an 

adequate degree of overlap. Second, a somatotopic organiza

tion must exist in the ventrolateral spinal white matter. 

Third, mechanosensitive spinal axons must not be segregated 

from itch-specific spinal axons. 

Condition 1: OVerlapping fields. One obvious featur~ of 

pruritic sensation is poor localization (Keele & Armstrong, 

1964; Rothman, 1941; Shelley & Arthur, 1957) suggesting the 

possibility that the itch-related channel and its associated 

spinal axons may have relatively large receptive fields. The 

data presented in Part I showed that the field size of most 

low threshold and wide dynamic range ventrolateral spinal 



axons was intermediate to large (Table 2). Therefore, the 

chance of overlap between the receptive fields of itch-

specific and mechanosensitive ventrolateral spinal axons 

would be high. 
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Condition 2: Somatotopic organization. Neurophysiolo

gical studies have established the existence of somatotopic 

organization at different levels of cat somatosensory system, 

including the dorsal root ganglia (Burton & McFarlane, 1973), 

dorsal column nuclei (Millar & Basbaun, 1975), lumbosacral 

dorsal horn (Brown & Fuchs, 1975), ventrobasal complex (Rose 

& Mountcastle, 1960), and the somatosensory cortex (Celesia, 

1963). Data from the present study show that, as in the 

monkey's spinothalamic tract axons (ventrolateral spinal 

axons, Applebaum, et al., 1975), the cat's ventrolateral 

funiculus has a rough somatotopic organization of 

mechanically sensitive spinal axons (see below and Fig. 20). 

Condition 3. As shown in Part I, different axon catego

ries were mixed in the cat ventrolateral funiculus (Fig. 7) 

with a dis~ribution similar to monkey (Applebaum, et al., 

1975). This finding supports the concept of an intermingling 

distribution of different axons categories in the ventrola

teral funiculus 

In conclusion, the conditions necessary to search for 

itch-specific ventrolateral spinal axons using combined 

mechanical and cowhage stimuli appear to be satisfied. 

The protocol used in the present experiments satisfied 

the above criteria, that is, during multiunit recording 
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active cowhage was placed in the center of receptive fields 

of all mechanosensitive ventrolateral spinal axons. Since no 

recruitment of other axons was observed, it can be concluded 

either that itch-specific axons are rare in the ventrolateral 

funiculus, that they travel in another portion of the spinal 

white matter or that they do not exist at the spinal level. 

The present study gives no evidence to support their 

existence in cat ventrolateral funiculus. 

Somatotopic organization of cat 
mechanically sensitive ventro
lateral spinal axons 

In four experiments, the most sensitive portion of the 

cutaneous receptive field to mechanical stimulation of each 

unit was indicated by a black circle as shown in Figure 20. 

This sensitive area was used to test for responsiveness to 

the pruritogenic agent cowhage, as has been presented in Part 

II. 

The location of each field was examined with reference 

to the placement of its corresponding axon in the ven

trolateral funiculus. As illustrated in Figure 20, there 

appeared to be a rough somatotopic organization. Axons with 

fields around the perineum or base of the tail were located 

in the dorsolateral part of the funiculus, whereas axons with 

fields on the lower leg or plantar region were located in the 

more ventromedially. Three other experiments gave similar 

results suggesting that the somatotopic organization of cat 

mechanically sensitive ventrolateral spinal axons might be 
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Fiqure 20. Somatotopic organization of mechanically sensi
tive ventrolateral spinal axons. Approximate location of 
each axon in one experiment was plotted in the transverse 
plane across the spinal cord. The most sensitive portion of 
the receptive field is represented by a black circle. The 
actual receptive fields were much large than the area shown. 
There was a rough somatotopic organization showing that the 
caudal parts of the body were represented in the dorsolateral 
portion of the ventrolateral funiculus, whereas the more 
rostral parts of the body were represented more ventro
medially. WDR: wide dynamic range spinal axon. HT: high 
threshold spinal axon. 
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similar to monkey spinothalamic tract (compare Fiq. 11 of 

this paper to Fiq. 12 of Applebaum, et al., 1975). 
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CONCLUSION 

1) In the cat, spinal axons in the ventrolateral funic

ulus have been classified into low threshold, wide dynamic 

ranqe, hiqh threshold, and "other" cateqories on the basis of 

a commonly used classification scheme. The results based on 

this classification can be directly compared to the existinq 

related literature, especially to data obtained from monkey. 

2) Assuminq that all axons of monkey spinothalamic tract 

cells reported by Willis's research qroup ascend to thalamus 

via the ventrolateral funiculus, the results presented in 

Part I suqqest that the functional orqanization of the cat 

ventrolateral funiculus is similar to monkey in terms of a) 

the percentaqe of each axon cateqory, b) the interminqlinq of 

each axon cateqory in the ventrolateral funiculus and c) the 

somatotopic orqanization of the mechanically sensitive spinal 

axons in the ventrolateral spinal white matter. 

3) Althouqh there is a chance that hypothesized itch 

specific spinal axons miqht have been missed by the mechani

cal search stimuli used in present study, evidence is qiven 

in Part II that wide dynamic ranqe ventrolateral spinal axons 

of cats were siqnificantly affected by the classical 

itch-producinq aqent, cowhaqe. This is the first time an 

animal model has been used to confirm the clinical concept, 

qained from observation followinq cordotomy, that there are 



itch-related axons in the ventrolateral funiculus. This 

findinq suqqests that the functional orqanization of the 

ventrolateral spinal white matter of human beinqs may have 

similarities to that of cats. 
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4) Patterns of restinq discharqe of spinal axons have 

been defined and incorporated into the commonly used classi 

fication scheme, so that each axon cateqory could be further 

subqrouped into three subtypes. About 60% of cowhaqe sensi

tive wide dynamic ranqe ventrolateral spinal axons were found 

to have an intermittent pattern of restinq discharqe. This 

result suqqests that the different patterns of restinq 

discharqe may have functional siqnificance. 
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