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ABSTRACT 

After young adult male rats were injected intraperi-

toneally with NH4Cl, the content of K (hereafter, CP [K]) within 

the epithelial cells of the choroid plexus increased greatly while 

that of Na (CP [Na]) decreased. This dissertation has focused on 

elucidating the primary stimulus and mechanism of the NH Cl-4 

induced increase in CP [K], with some investigative focus on the 

induced decrease in CP [Na]. The primary stimuli under considera-

tion are the NH4Cl-induced increases in plasma [NH4 ], [K], and 

[H], and decreases in [HC03 ] and [Na]. An acidosis-induced 

augmentation in the concentration of catecholamines available to 

CP beta-adrenoceptors has also been considered. Since sympathec-

tomy, adrenalectomy or pretreatment with beta-adrenoceptor 

blockers did not reduce the effects of NH4Cl, it was possible to 

rule out an involvement of catecholamines as the stimulus. A com-

parison of the time-courses of plasma [ammonia] with CP [K] and 

[Na] indicated that the primary stimulus was not plasma [NH4]. A 

comparison of the effects of nine individual salt treatments on 

plasma [K] with CP [K] and [Na], revealed that plasma [K] was not 

the primary stimulus. Significant statistical correlations were 

drawn between plasma [H] and the induced increase in CP [K] and 

decrease in CP [Na]. Since an elevation of plasma [H] was most 

consistently associated with an increase in CP [K], the mechanism 



through which [H] operates was investigated. The increase 1n CP 

[K] and decrease in CP [Na] must result from either an increase in 

Na-K exchange (Na-K ATPase), or from a decrease in K efflux and Na 

influx; or perhaps a combination of both. With a physiological 

analog of K (i.e., Rb), it was demonstrated that acidosis does not 

increase the slope of the initial ·linear uptake of 86Rb in vitro; 

thus no effect of acidosis to 1ncrease Na-Rb exchange (i.e., Na-K 

exchange) was found. Since acidosis augments the steady-state 

1 f d · . b' f 86Rb ·· . h . . vo ume 0 1str1 ut10n 0 1n v1tro, W1t out an 1ncrease 1n 

Na-Rb exchange, it would appear that acidosis augments CP Rb by 

effecting a reduction 1n Rb efflux and, by analogy, would also 

reduce the efflux of CP K. In conclusion, NH4 Cl induces an 

increase in CP [K] by increasing plasma [H] which in turn acts to 

reduce the efflux of K across the apical and/or basolateral 

membranes of the CPo An in vivo indication that acidosis reduces 

the efflux of K across the apical membrane was suggested by a 

decrease in CSF [K]. 

v 
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Choroid Plexus 

CHAPTER 1 

INTRODUCTION 

Overview. The choroid plexus (CP) is a non-neural epithe­

lial tissue located within the lateral, third and fourth ventricu­

lar cavities of the mammalian central nervous system (CNS). The 

epithelium of the CP acts as a partition between the cerebrospinal 

fluid (CSF) and the plasma u1trafi1trate of the choroidal capil­

laries. The blood-CSF barrier, as the above epithelial partition 

is called, serves to regulate the composition and formation of the 

CSF (Wright, 1978; Bradbury, 1979; Wright, 1982). The b100d-CSF 

barrier achieves its CSF regulatory role not only by acting as a 

physical barrier but also by trans locating selectively plasma 

constituents into the CSF and CSF constituents into the plasma. 

The transport mechanisms involved in the transfer of K and Na, and 

those factors which modulate these mechanisms, are the subject 

matter of this dissertation. With a better understanding of CP 

ion-transport processes, we will more clearly understand the role 

of the CP in the homeostasis of the CSF and further elucidate its 

role in the pathology and treatment of hydrocephalus, intracranial 

hypertension and cerebral edema. 

Embryology. The lateral (LVCP), third (3VCp) and fourth 

(4VCP) ventricular choroid plexuses (CP's) are derived from two 
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distinct embryologic origins. The LVCP (telencephalic) ~s derived 

from the medial wall of the cerebral hemispheres; the 3VCP 

(diencephalic) and 4VCP (myelencephalic) both ar~se from an 

invagination of the single-layered roof plate (Dohrmann, 1970). 

The difference in the origins of the CP's may underlie possible 

functional differences among the LVCP, 3VCP and 4VCP. 

Microanatomy and Physiology. The fluid volume of the CP 

~s composed predominantly by the choroidal epithelium (about 

50-60% of total wet tissue weight); the vessel luminal and extra­

vascular stromal volumes each constitute about 15% of total wet 

tissue weight (Quay, 1972; Johanson, Reed and Woodbury, 1976). 

Since the choroid plexus ~s primarily composed of epithelial 

cells, hereafter this cell type will be referred to by CPo The CP 

may be envisioned as the middle fluid compartment of a 

three-compartment system ~n series, where the basolatera1 

(p1as~a-facing side) and apical (CSF-facing side) membranes of the 

CP delineate the three compartments. Thus, the three compartments 

contain the interstitial fluid of the CP (Le., plasma 

ultrafiltrate of the choroidal capillaries), the intracellular 

fluid of CP, and the cerebrospinal fluid. The structure and thus 

function of each CP membrane differs. Na-K-activated ATPase (Na-K 

ATPase) ~s observed predominantly on the apical membrane in rat, 

rabbit and frog (Quinton, Wright and Tormey, 1973; Smith and 

Johanson, 1980; Masuzawa, Saito and Sato, 1980; Miwa, Inagaki, 

Fujiwara and Takaori, 1980; Masuzawa, Saito and Sato, 1981). 
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Thus. Na-K exchange predominantly occurs across the apical 

membrane. On the other hand. Na-H exchange (via a Na-H antipor­

ter) has been postulated to occur across the basolateral membrane 

(Wright. 1977; Murphy, unpublished data)' This sidedness with 

respect to Na-K and Na-H exchange is an important consideration in 

the elucidation of the mechanisms responsible for establishing and 

regulating the concentrations of K and Na in the CPo 

Potassium Influx. Intracellular K is typically accumula­

ted against a concentration gradient by the activity of Na-K 

ATPase (Sweadner and Goldin, 1980). Apical Na-K ATPase (Na-K 

exchange pump) exchanges CP Na for CSF K. The unique apical 

distribution of Na-K ATPase forms part of the homeostatic 

mechanism responsible for the clearance of K from the CSF into the 

plasma (Bradbury and Stulcova. 1970; Johanson, Reed and Woodbury, 

1974; Husted and Reed, 1976; Macknight, 1977). Miwa gt~. (1980) 

have shown that the activities of Na-K ATPase in the LVCP, 3vCp 

and 4VCP of the rabbit are similar. 

Potassium Efflux. Our current knowledge of K efflux 

across the membranes of the CP indicates that K leaves the cells 

down an electrochemical gradient into the CSF and plasma 

(presumably through K-selective channels). The rate of this 

efflux is largely determined by the permeability of the cell 

membranes to K. Although, Zeuthen and Wright (1981) demonstrated 

that most of the K efflux from the CP occurs across the apical 

membrane into the CSF (frog), Wright (1982) also reported that 
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there is some K efflux across the basolateral membrane into the 

plasma. Thus, in normokalemic animals a net movement of K from 

CSF to plasma is achieved by the active uptake of CSF K across the 

apical membrane (Na-K exchange pump), followed by the efflux of K 

across the basolateral membrane into the interstitial (stromal) 

fluid of the CP (and thus into capillary plasma). Although the CP 

has a role in the removal of K from the CSF, its role to prevent 

the loss of CSF K 1n hypokalemia should not be overlooked 

(Johanson gt al., 1974). 

Sodium Influx. Moving down an electrochemical gradient, 

extracellular Na may gain access into the CP by way of facilitated 

diffusion. Several facilitated diffusion exchangers have been 

proposed. The exchanger of interest in this dissertation is the 

aforementioned basolateral Na-H antiporter, which exchanges 

stromal fluid Na for CP H. 

Sodium Efflux. As with K influx, Na efflux is largely a 

consequence of the Na-K exchanger, i.e., the exchange activity of 

apically located Na-K ATPase (Johanson gt ~., 1974). 

Receptors. Adenylate cyclase has been demonstrated 1n the 

CP of mammals (Cramer, Hammer, Maier and Schindler, 1978; Feldman, 

Epstein and Brusilow, 1979), Nathanson, 1979; Nathanson 1980; 

Masuzawa gt al., 1981). Lindvall (1979) has demonstrated the ex-

istence of adrenergic innervation to the CP (see below). Since 

adeny1ate cyclase activity and adrenergic innervation are often 

associated with the presence of beta-adrenoceptors, many authors 



5 

have proposed the existence of CP beta-adrenoceptors. Nathanson 

(1980) has investigated the efficacy of various beta-adrenoceptor 

agonists to modulate the activity of adenylate cyclase in cat CP; 

his results indicate that CP adenylate cyclase is modulated by the 

stimulation of beta-2 adrenoceptors. 

Innervation. Adrenergic nerve fibers and terminals have 

been visualized histochemically near the basolateral surface of 

the LVCP, 3VCP and 4VCP of many mammalian species, e.g., cat, 

rabbit and rat (Lindvall and Owman, 1981). Regional variations in 

the density of innervation follow the order 3VCP > LVCP > 4VCP. 

Bilateral superior cervical ganglionectomy has been shown to 

abolish completely the adrenergic innervation to all of the 

plexuses· in the cat and rat. Unilateral sympathectomy produces 

complete disappearance of adrenergic innervation in the homolater­

al LVCP of rabbit (Lindvall and Owman, 1981) and rat (Lindvall, 

Owman and Winbladh, 1981). Lindvall, Owman and Winbladh (1982) 

demonstrated an adrenergic stimulatory tone on rat CP Na-K ATPase 

activity; sympathectomy resulted in nearly a 40% decrease in the 

activity of Na-K ATPase after 6 days. In rabbits, full adrenergic 

innervation to the entire CP system develops by 3 weeks of 

postnatal age (Lindvall gt ~., 1981). 

CP Response to Ammonium Chloride 

In vivo studies have demonstrated that systemic acidosis 

induces a unique effect on the contents of K and Na in the Cp·s of 

young adult rats (Smith and Johanson, 1980; Pershing and Johanson, 
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1982). In the above two studies, the authors reported that 

respiratory or metabolic acidosis, induced by CO2 inhalation or 

intraperitoneally injected ammonium chloride (NH4CI), augmented 

the intracellular content of CP K (hereafter, CP [K]) and lowered 

that of Na (CP [Na]); interestingly, this effect of acidosis on CP 

[K] and [Na] is opposite to that observed in skeletal muscle (Lade 

and Brown, 1963; Adler, Roy and ReIman, 1965). The 

acidosis~induced increase in CP [K] and decrease in [Na] will be 

referred to as the CP response. Systemic acidosis has been shown 

to raise the titer of plasma catecholamines (Morris and Millar, 

1962); a plethora of evidence suggests that catecholamines 

stimulate the activity of membrane-bound Na-K ATPase in a variety 

of tissues both in vivo and in vitro (see Discussion); and, the CP 

is richly endowed with Na-K ATPase on its apical membrane. 

Therefore, Pershing and Johanson (1982) suggested that the CP 

response is mediated by the catecholamine-induced stimulation of 

CP Na-K ATPase. The pathway by which plasma-borne catecholamines 

could stimulate apical Na-K ATPase has been postulated (Pershing 

and Johanson, 1982); thus, plasma-borne catecholamines may 

stimulate beta-adrenoceptors on the basolateral membrane of the 

CP, which 1n turn leads to an increase 1n the production of 

cyclic-AMP through the coupled stimulation of adenylate cyclase; 

an l.ncrease 1n the intracellular concentration cyclic-AMP, 

finally, acts as a second messenger to stimulate Na-K ATPase. 

Alternately, an increase in the concentration of catecholamines 
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within the synaptic cleft of the adrenergic nerves innervating the 

CP may be induced by acidosis (Vanhoutte, Verbeuren and Webb, 

1981) . Aside from the catecholamine hypothesis, Pershing and 

Johanson (1982) alluded to the possibility of an acidosis effect 

on the permeability of the basolateral and apical membranes of the 
• 

CP to K and Na. Thus, increased CP [K] due to a reduction in K 

efflux, and decreased CP [Na] to a reduction in Na influx. This 

alternate hypothesis (effect on membrane permeability) is equally 

plausible since it can explain the observed changes in CP [K] and 

[Na] without a need for a stimulated increase in the activity of 

ATPase. 

Focusing my attention on the NR4Cl-induced CP response, I 

have attempted to answer the following two questions: 

(1) What is the primary stimulus to the response? Is it 

an NH4C1-induced increase in plasma [NH4 ] , [catecholamines], [K] 

or [R], or decrease in plasma [RC03 ] or [Na]? 

(2) What invoked mechanism{s) generates (generate) the 

response? Is it a stimulus-induced increase 1n apical Na-K 

exchange pump activity or decrease in the permeability of the 

apical and basolateral membranes to K and Na? 



CHAPTER 2 

DOSE-RESPONSE AND SIXTY-MINUTE TIME-COURSE ANALYSES 
OF THE EFFECTS OF NaCl AND NH4CI ON [K] AND 

[Na] IN CHOROID PLEXUS: METHODS 

Experimental Protocols 

Sixty-eight 6-8 week-old male Sprague-Dawley rats were 

used in the studies described below. Prior to the experiments, 

the animals were housed in cages wherein they had free access to 

food and water, and were regularly exposed to alternating l2-hour 

periods of darkness or overhead-fluorescent lighting. During the 

experiments, rats had continued free access to food and water in 

cages receiving room-light. Five minutes before fluid sampling 

and tissue removal were initiated, each animal was injected 

intraperitoneally with 80 mg/kg ketamine hydrochloride. This 

anesthetic dose of ketamine, which did not change the animal's 

rate of respiration, required 5 minutes to effect sedation. Each 

rat was killed by exsanguination after the blood sample was taken. 

In the experiments described below, the following were measured: 

plasma [H], [HC03], [K] and [Na], blood pC02 and p02' and choroid 

plexus [K] and [Na]. In some experiments, [K] and [Na] in the 

cerebrospinal fluid were also measured. 

Dose-Responses. Sixteen rats (180-250 grams) were 

divided equally into four groups in this first experiment. The 

animals in each respective group were injected intraperitoneally 
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with one of four doses of NH4Cl, i.e., 0.00 (control), 2.33, 4.67 

or 7.00 mmol/kg; NaCl was formulated into each of these four 

solutions in order to maintain a constant concentration of Cl 

(Table 2-1). Sixty minutes after NH4Cl was administered, a sample 

of blood and of cerebrospinal fluid were taken, and the fourth and 

lateral ventricular choroid plexus~s were removed from each animal 

(all in the order described). 

Time-Responses. Thirty-six rats (140-250 grams) were 

separated into two equal groups in this second experiment. The 

animals in each respective group were injected intraperitoneally: 

controls received NaCl (see Table 2-1); treated animals received 

NH4Cl (4.67 mmol/kg, Table 2-1). Five, 15, 30 or 60 minutes after 

injection, a sample of blood was taken, and the fourth (4VCP), 

third (3VCP) and lateral (LVCP) ventricular choroid plexuses were 

removed from each animal (all in the order described). 

Regional Analyses of Choroid Plexus [K] and [Na]. Four 

rats (330-380 grams), representing eight lateral ventricular 

choroid plexuses (2 LVCP's per rat), were used in this third 

experiment. Following the ketamine anesthetic, a sample of blood 

was taken, and the 4VCP, 3VCP and LVCP's were removed from each 

animal. The removed LVCP samples (approximately 10 mm in length) 

were sectioned into anterior and posterior halves. Thus, four 

3VCP's and 4VCP's, and eight anterior LVCP's (A/LVCP) and 

posterior LVCP's (P/LVCP), were available for a comparative 

analysis. 



SOLUTIONS: 

Table 2-1. COMPONENTS OF INJECTION SOLUTIONS 

I 

0.00 
7.00 
7.00 

II 

2.33 
4.67 
7.00 

III 

4.67 
2.33 
7.00 

10 

IV 

7.00 
0.00 
7.00 

The amounts of NaCI, NH4CI and CI given with solutions I-IV are 
shown. In the dose-response experiment, the injections referred 
to as 0.)0 (control), 2.33, 4.67 and 7.00 mmo1/kg NH4CI, respec­
tively refer to solutions I-IV. In the time-response experiment, 
4.67 mmol/kg NH4Cl refers to solution III; control refers to 
solution I. All solutions were injected intraperitoneally (0.020 
ml/kg) • 
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Extracellular Fluid Volumes of Choroid Plexuses. Twelve 

rats (200-250 grams) were used in this fourth experiment. Each 

animal was bilaterally nephrectomized immediately before it 

received an intraperitoneal injection: controls received NaCl; 

treated animals received NR4Cl (4.70 mmol/kg); both solutions 

contained 3R-raffinose (0.015 mCi/ml; a dose of 0.3 mCi/kg). 

Sixty minutes later, a sample of blood and of cerebrospinal fluid 

were taken, and the 4VCP, 3VCP and LVCP's were removed from each 

animal. 

Sampling Procedures 

Arterial Blood. Sampling was initiated by opening the 

abdominal cavity, quickly draining and drying the cavity of any 

residual fluid from the injection, and exposing the abdominal 

aorta. After withdrawing a 4-ml sample of blood from the abominal 

aorta near the femoral bifurcation, the aorta was clamped proximal 

to the inserted needle. The needle was then withdrawn from the 

artery and removed from the syringe. The syringe was capped and 

gently mixed; thereafter, a 2-ml aliquot of blood was transferred 

into a Falcon tube. The remaining blood, after syringe recapping, 

was placed into an ice bath for later acid-base and blood-gas 

analyses. Centrifugation of the 2-ml aliquot of blood was begun 

while further sampling continued. 

Cerebrospinal Fluid. After removing the scalp, the animal 

was exsanguinated (killed) by incising the abdominal aorta 

proximal to the aforementioned clamp. A sample of CSF was then 
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aspirated from the cisterna magna after penetrating the muscle 

tissue above the foramen magnum with a specially prepared 

micropipette (see below). The CSF sample was transferred onto a 

piece of Parafilm; a O.025-m1 aliquot of CSF was immediately taken 

from the Parafilm and transferred into a tared Falcon tube for 
• 

. later weighing. CSF samples contaminated with blood or muscle 

tissue were not used. 

The micropipettes used to sample CSF were prepared by 

pulling their heated ends to a rapidly narrowing, yet patent, 

bore. A vertical pipette puller was used to ensure consistency of 

manufacture. This pulling-induced, funnel-shaped segment of 

tubing was scored at its narrowest diameter and broken along the 

score to obtain a minimally jagged fluid-sampling insertion tip. 

Choroid Plexuses. The brain was removed and placed on 

normal saline-wetted filter paper. With the aid of a stereotaxic 

microscope, the fourth (4VCP), third (3VCP) and both lateral 

(LVCP) ventricular choroid plexuses, 1n the above order, were 

dissected free from the brain and placed on tared weighing boats 

for drying and later weighing on an electrobalance. 

The weighing boats were 1/4 x 1/2-inch rectangles of 

aluminum foil; each weighed 4.0 mg. Before use, these weighing 

boats were thoroughly rinsed 1n deionized water and air-dried 

after a final rinse in acetone. Micropipettes were similarly 

cleaned. 

Plasma. Lastly, a 0.025-m1 sample of plasma, taken from 
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the previously centrifuged 2-m1 aliquot of blood, was transferred 

into a tared Falcon tube for later weighing. 

Analyses and Calculations 

Arterial Blood. All blood samples for acid-base and gas 

analysis were withdrawn into sterile heparinized glass syringes 

where the syringe and needle dead space was filled with heparin 

(see Methods). If small bubbles were observed in the blood after 

sampling, they were displaced from the syringe before placing the 

capped sample into an ice bath. Generally, all sealed blood 

samples remained in an ice bath no longer than 20 minutes before 

. 0 
their analysis with a Radiometer ABL2 Laboratory at 37 C; such a 

20-minute wait in an ice bath does not significantly alter pH, 

pC02 or p02 values. 

Cerebrospinal and Plasma Fluids. Cerebrospinal and plasma 

fluid samples were weighed to the nearest 0.0001 gram; they were 

then diluted 1:200 by the addition of 5 ml of a solution 

(hereafter called LH) containing 15.0 mM LiCI and 0.02 N HN03 • 

After mixing, the diluted samples were set aside for later [K] and 

[Na] analysis. The sample contents of [K] and [Na] obtained from 

flame photometry were corrected for sample and extraction-fluid 

weights. These values, as mmoles of K or Na per kg of fluid, were 

further corrected for the . contributory weight of CSF or plasma 

proteins; thus, the final CSF and plasma K and Na concentrations 

are reported as mmoles per kg of water (mmol/kg water). The cor-

rection factors used were 0.99 for CSF and 0.92 for plasma; these 
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factors are those previously reported for the percentages of water 

in the CSF and plasma of adult rats (Johanson et al., 1976). 

Choroid Plexuses. Choroid plexus samples were desiccated, 

at 600 c for 2-4 hours, and weighed on a Cahn electrobalance; 

weights were recorded to the nearest 0.001 mg. The weighed 

choroid plexus and its adhering weighing boat were then placed 

into a Falcon tube; the extraction of tissue [K] and [Na] 

commenced by the addition of 2 ml of LH solution. After 12-24 

hours of extraction at room temperature, with occasional mixing, 

the tissue extracts were analyzed for K and Na. The final tissue 

K and Na concentrations are reported as mmo les per kg of dry 

tissue (mmol/kg dry tissue). 

Extracellular Fluid Volumes of Choroid Plexuses. The 

steady-state extracellular fluid volumes of distribution of 

3H-raffinose were calculated by dividing the activity of raffinose 

1n the wet choroid plexuses by that in plasma. 

Statistics. Statistically significant differences between 

the results of each treatment and the corresponding controlCs) 

were determined with a one-tailed Student's t-test. Two levels of 

probability are reported, 0.05 or 0.01. With two-factor linear 

correlation analyses, the slope of each regression line was 

analyzed for a significant difference from zero with a one-tailed 

Student's t-test. For linear 

coefficient of determination (r2) 

regression statistics, the 

and the slope are presented. 

For each slope, a significant difference from zero is reported at 
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the 0.05, 0.01, or 0.001, probability levels. 

Naterials 

Analytical grade ammonium chloride and sodium chloride 

were purchased from Mallinckrodt, Inc. (Paris, KY). All stock 

solutions of ammonium or sodium chloride were prepared with 

deionized water. Lipo-Repin/BL, which contained 1000 units of 

heparin and 3.4 mg Na per ml, was acquired from Riker Laboratories 

(Northridge, CA). Ketamine hydrochloride, 100 mg/ml, was obtained 

from Bristol Laboratories (Syracuse, NY). Disposable O.Ol-ml 

micropipettes were obtained from Dade Diagnostics (Miami, FL). BD 

Multifit 5-ml glass syringes were acquired from Becton, Dickinson 

and Com~any (Rutherford, NJ). Sterile 12 x 75 mm capped 

polypropylene 

(Oxnard, CA). 

tubes were procured from 

3R-raffinose (7.8 mCi/mmol) 

Falcon, Incorporated 

and Biofluor liquid 

scintillation cocktail were obtained from New England Nuclear 

(Boston, MA). 

Instrumentation 

Blood pH, pC02 , [HC03 ] and p02 values were determined with 

a Radiometer ABL2 Acid-Base Laboratory (Copenhagen, Denmark). The 

concentrations of K and Na in the fluid and tissue sample extracts 

were analyzed with an Instrumentation Laboratories 443 flame 

photometer (Lexington, MA). Solution osmolality was determined 

with a Wescor 5100B vapor pressure osmometer (Logan, UT). Choroid 

plexuses were weighed on a Cahn Instruments 4700 automatic 
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electrobalance (Cerritos, CA) . Constant bore micropipette 

insertion tips were manufactured with a David Kopf Instruments 

700B vertical pipette puller (Tujunga, CA). Fluid and tissue 

3H-raffinose radioactivity analyses were performed with a Beckman 

LS 7500 liquid-scintillation counter (Irvine, CA). 



CHAPTER 3 

DOSE-RESPONSE AND SIXTY-HINUTE TIME-COURSE ANALYSES 
OF THE EFFECTS OF NaCl AND NH4Cl ON [K] AND 

[Na] IN CHOROID PLEXUS: RESULTS 

Dose-Responses 

The doses of NH4Cl used in this first experiment were 0.00 

(control), 2.33, 4.67 or 7.00 mmol/kg; 60 minutes after each cor-

responding injection, the effects reported below were observed. 

Acid-Base and Gas Analyses of Arterial Blood. With each 

of the three increasing doses of NH4Cl, plasma [H] was augmented 

from 38 (control) to 45, 49 and 59 nmol/l (Figure 3-1A); plasma 
I 

[HC03 ] was decreased from 20 (control) to 18, 14 and 13 nunol/l 

(Figure 3-1B). Plasma [H] values are presented as pH data in 

Table 3-1. There were no dose-related changes in blood pC02 (32 

torr, on average) or p02 (75 torr) (Table 3-1). 

Cerebrospinal Fluid and Plasma [K] and [Na]. Cerebrospi-

. nal fluid (CSF) [K] remained stable around 3.02 mmol/kg, even 

though plasma [K] increased from 4.1 to 4.3, 4.5 and 5.4 mmol/kg 

(Figure 3-2A). Similarly, CSF [Na] also remained stable during 

metabolic acidosis (around 156 nunol/kg), even though plasma [Na] 

decreased from 158 to 154, 151 and 147 mmol/kg (Figure 3-2B). 

Choroid Plexus [K] and [Na]. The effects of NH4 CIon 

lateral (LVCP) and fourth (4VCP) ventricular choroid plexuses 

(CP's) were investigated. Progressive augmentations of the dose 
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Figure 3-1. Dose-response analyses of the effects of NH4CI on [H] 
(A) and [RC03] (B) in arterial plasma. 

Arterial blood samples were taken 60 minutes after an 
intraperitoneal injection of 0.00 (control), 2.33, 4.67 or 7.00 
mmol/kg NR4CI (see Table 2-1 for a description of the contents of 
each dose). Values shown are means ~ SEM of data from four to six 
adult male rats. The significance of the induced differences from 
the corresponding control in each panel was determined with a 
one-tailed Student's t-test: * indicates p < 0.05; ** indicates p < 
0.01. 
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. 
Table 3-1. DOSE-RESPONSE ANALYSES OF THE EFFECTS 

OF NH4Cl ON pH, peo2 AND p02 IN ARTERIAL BLOOD 

DOSE (nmol/kg) : 0.00 2.33 4.67 7.00 

pH 7.42 .±. .01 7.35 .±. .01** 7.31 .±. .01** 7.23 .±. .03** 
pC~ 33.5.±. .35 33.9 .±. .66 29.4 .±. 1.3* 31.4.±. 2.1 

p02 72.2 .±. 1.5 68.3 .±. 2.5 78.1 .±. 3.8 79.4 .±. 4.5 

Blood gas concentrations are in torr units. Arterial blood 
samples -·rere taken 60 minutes after an intraperitoneal l.nJection 
of 0.00 (control), 2.33,4.67 or 7.00 mmol/kg NH4Cl (see Table 2-1 
for a description of the contents of each dose). Values shown are 
means .±. SEM of data from three to four adult male rats. The 
significance of the induced differences from corresponding 
controls was determined with a one-tailed Student's t-test: * 
indicates p < 0.05; ** indicates p < 0.01. 
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Figure 3-2. Dose-response analyses of the effects of NH4CI on [K] 
(A) and [Na] (B) in cerebrospinal fluid and arterial plasma. 

Cerebrospinal fluid (CSF) and arterial blood samples were taken 
60 minutes after an intraperitoneal injection of 0.00 (control), 
2.33, 4.67 or 7.00 mmol/kg NH4CI (see Table 2-1 for a description 
of the contents of each dose). Values shown are means ±. SEM of 
data from two to four adult male rats. Unfilled squares connected 
by a dashed line are CSF values. Filled squares connected by a 
continuous line are plasma values. The significance of the 
induced differences from the corresponding controls in each panel 
was determined with a one-tailed Student's t-test: * indicates p < 
0.05; ** indicates p<O.Ol. 
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of NH4Cl induced progressive increases in CP [K] (Figures 

3-3A,3B): LVCP [K] increased from 500 (control) to 552 (+10%), 617 

(+23%) and 664 (+33%) mmo1/dry kg; 4VCP [K] increased from 493, to 

519 (+5%), 539 (+9%) and 555 (+13%) mmol/dry kg. LVCP 

demonstrated greater 
. . 
~ncreases ~n [K] than did 4VCP. LVCP and 

4VCP [Na] tended to decrease with the augmented doses of NH4 Cl; 

notably, LVCP [Na] decreased from 276 to 237 mmol/dry kg (- 14%) 

after the 4.67 mmol/kg dose (p < 0.05). 

Summary. The greatest treatment-induced alterations of CP 

[K] and [Na] occurred after the 4.67 and 7.00 mmol/kg doses of 

Whereas animal morbidity was associated with the 7.00 

mmol/kg dose of NH4Cl, the next lower dose given (4.67 mmol/kg) 

was chosen for use in all of the remaining experiments in this 

chapter. Animals receiving 4.67 mmol/kg were slightly sedated 

10-20 minutes after its injection; the duration of this sedation 

was 10-20 minutes. 

Sixty-Minute Time-Courses 

In this second experiment, except where noted, all of the 

effects described below will refer to NH4Cl-induced increases 

above or decreases below time-matched control data. The terms 

baseline and treatment are adjectives which refer to the effects 

observed after an injection of either NaCl or NH4Cl during the 

time-period being investigated, i.e., 5-60 minutes. Mean-baseline 

or mean-treatment are adj ectives which refer to the average of 

baseline or treatment data; mean-treatment increase or 
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Figure 3-3. Dose-response analyses of the effect of NH4Cl on [K] 
in LVCP (A) and 4VCP (B). 

Lateral (LVCP) and fourth (4VCP) ventricular choroid plexus 
samples were taken 60 minutes after an intraperitoneal injection 
of 0.00 (control), 2.33,4.67 or 7.00 mmol/kg NH4Cl (see Table 2-1 
for a description of the contents of each dose). Values shown are 
means ±. SEM of data from two to four adult male rats. The 
significance of the induced differences from the corresponding 
control in each panel was determined with a one-tailed Student's 
t-test: * indicates p<O.05j ** indicates p<O.Ol. 



25 

7ee 
•• 

,.... A 
Dl 65e 

.:,&. 

>. 
L. 
." , 6ee 
0 
e e 
'"' 
.-. sse 
+ 
~ 
I-J 

a.. 50e u 
> 
...J 

450 

7ee 

B 
Dl 650 

.:,&. 

>. 
L. 
." , 6ee 
0 
E 
E • 
.-. sse 
+ 
~ 
....... 

a.. 500 u 
> 
~ 

450 
e 2 3 4 5 6 7 

NH4Cl emmol/kg) 



26 

mean-treatment decrease refers to the difference between 

mean-baseline and mean-treatment data. 

Acid-Base and Gas Analyses of Arterial Blood. Plasma [H] 

was increased maximally from 38 to 51 nM at 30 minutes (Figure 

3-4A); this increase corresponds to a decrease in pH from 7.42 to 

7.29, a change of 0.13 pH unit (Table 3-2). In controls, NaCI 

caused a time-related reduction in baseline plasma [H]; this 

decrease may have been related to a plasma dilution caused by the 

the volume of the injected solutions (2 ml per 100 grams of body 

weight) • Plasma [HC03 ] was reduced below baseline at least 4 

mmol/l during metabolic acidosis; a maximal reduction from 21 to 

14 mmol/l occurred at 30 minutes (Figure 3-4B). Blood pC02 and 

p02 data are shown in Table 3-2. Neither pC02 nor p02 was greatly 

affected by NH4CI; baseline and treatment values tended to remain 

between 30-35 torr (C02) and 70-80 torr (02)' The arterial 

hematocrit (HCT) was not significantly altered; the HCT remained 

around 39%. 

Plasma [K] and [Na]. Plasma [K] was increased maximally 

from 3.6 to 5.3 mmol/kg at 5 minutes (Figure 3-5A); beyond 15 

minutes treatment [K] continuously declined but was always greater 

than corresponding baseline values. Baseline [K] remained steady 

around 3.7 mmol/kg. Baseline [Na] was approximately 156 mmol/kg; 

a treatment-induced maximal decrease of 7 mmol/kg occurred at 30 

minutes (Figure 3-5B). 

Choroid Plexus [K] and [Na]. All three regions of the 
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Figure 3-4. Time-course analyses of the effects of NaCl and NH4Cl 
on [H] (A) and [RC03] (B) in arterial plasma. 

Arterial blood samples were taken 5, 15, 30 or 60 minutes after 
an intraperitoneal ~nJection (4.67 mmol/kg) of either NaCl 
(control) or NH4Cl (treatment). Values shown are means ± SEM of 
data from three to five adult male rats. Filled squares connected 
by continuous line are control values. Unfilled squares connected 
by a dashed line are treatment values. The significance of the 
induced differences from time-matched controls was determined with 
a one-tailed Student's t-test: * indicates p < 0.05; ** indicates p 
< 0.01. In panel B, all of the treatment values shown are 
significantly different from their time-matched controls (p < 
0.01) • 
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Table 3-2. TIME-COURSE ANALYSES OF THE EFFECTS 
OF NaCl AND NH4Cl ON pH, pC02 AND p02 IN 

ARTERIAL BLOOD 

MINUTES: 5 15 30 60 

CONTROL 

pH 7.37.:t. .02 7.41 .:t. .01 7.42 .:t. .01 7.39 ±. .01 

pC~ 34.7 .:t. 2.1 33.9 .:t. 1.7 32.0 ±. .49 34.4 ±. .77 

P~ 71.3 .:t. 2.3 70.1 .:!:. 3.1 73.0 .:!:. 1.8 78.7 .:!:. .57 

TREATMENT 

pH 7.35.:!:. .01 7.32 .:!:. .01** 7.29 ±. .01** 7.31 ±. .02 

pC~ 30.0 .:!:. 1.1 31.0 .:!:. 1.8 31.8 .:t. 1.3 30.1 .:t. 1.6 

p02 79.6 .:t. 1.6* 80.0 .:t. 2.5* 77.3±.3.2 80.5 .:t. 2.0 

Blood gas concentrations in torr units. Arterial blood samples 
were taken 5, 15, 30 or 60 minutes after an intraperitoneal 
injection (4.67 mmol/kg) of either NaCl (control) or NH4Cl 
(treatment) (see Table 2-1 for a description of the contents of 
each dose). Values shown are means .:t. SEM of data from three to 
five adult male rats. The significance of the induced differences 
from time-matched controls was determined with a one-tailed 
Student's t-test: * indicates p <0.05; ** indicates p <0.01. 
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Figure 3-5. Time-course analyses of the effects of NaCI and NH4C1 
on [K] (A) and [Na] (B) in arterial plasma. 

Arterial blood samples were taken 5, 15, 30 or 60 minutes after 
an intraperitoneal injection (4.67 mmol/kg) of either NaCl 
(control) or }''R4Cl (treatment). Values shown are means.±. SEM of 
data from three to five adult male rats. Filled squares connected 
by continuous line are control values. Unfilled squares connected 
by a dashed line are treatment values. The significance of the 
induced differences from time-matched controls was determined with 
a one-tailed Student 1st-test: * indicates p < 0.05; ** indicates p 
< 0.01. In panel A, all of the treatment values shown are 
significantly different from their time-matched controls (p < 
0.01) • 
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blood-CSF barrier have been analysed during NH4Cl-induced 

metabolic acidosis. These regions, the lateral (LVCP), third 

(3VCP) and fourth (4VCP) ventricular choroid plexuses (CP's), 

responded to NH4Cl with increases in [K] which were maximal at 30 

minutes; these consistent increases 1n mean [K] were with the 

order LVCP [103] > 4vCP [81] > 3VCP [48] (here and below, values 

in brackets are mmol/kg dry tissue) (see Figures 3-6A,6B,6C). 

None of the observed increases in [K] returned to baseline by 60 

minutes. It is of interest that mean-baseline [K] differed with 

the order LVCP [505] > 4VCP [480] > 3VCP [446]. [Na} 1n the CP 

was reduced generally by NH4Cl (Figures 3-7A,7B,7C). In control 

CP's, the following mean-baseline [Na] values were observed: LVCP 

[249] < 4VCP [266] < 3VCP [336]. There were differences in 

mean-baseline [K] and [Na] among the control Cp's and in the 

degree to which each tissue responded to treatment. If [K] and 

[Na] are related to each other as a ratio, i.e., [K]/[Na], there 

1S a relationship between the corresponding ratios of each CP 

after NaCl and NH4Cl; the greatest increases in [K]/[Na] after an 

injection of NH4 Cl occurred in those Cp's having the greatest 

ratio of [K]/[Na] after NaCl (control) (Figure 3-8). 

Summary. Alterations in [K] and [Na] 1n CP occurred as 

early as 5 minutes after an injection of NH4Cl. The 

treatment-induced increases in CP [K] and decreases in CP [Na] 

were maximal at 30 minutes, repectively; [K] was still 

significantly elevated at 60 minutes (Figures 3-9A,9B,9C). Among 
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Figure 3-6. Time-course analyses of the effect of NaCl and NH4Cl 
on [K] in LVCP (A), 3VCP (B) and 4VCP (C). 

Lateral (LVCP), third (3VCP) and fourth (4VCP) ventricular 
choroid plexus samples were taken 5, 15, 30 or 60 minutes after an 
intraperitoneal injection (4.67 romol/kg) of either NaCl (control) 
or NH4Cl (treatment). Values shown are means ± SEM of data from 
three to five adult male rats. Filled squares connected by 
continuous line are control values. Unfilled squares connected by 
a dashed line are treatment values. The significance of the 
induced uifferences from time-matched controls was determined with 
a one-tailed Student 1st-test: * indicates p < 0.05; ** indicates p 
< 0.01. 
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Figure 3-7. Time-course analyses of the effect of NaCl and NH4Cl 
on [Na] in LVCP (A), 3VCP (B) and 4VCP (C). 

Lateral (LVCP), third (3VCP) and fourth (4VCP) ventricular 
choroid plexus samples were taken 5, 15, 30 or 60 minutes after an 
intraperitoneal injection (4.67 mmol/kg) of either NaCl (control) 
or NH4Cl (treatment). Values shown are means ~ SEM of data from 
three to five adult male rats. Filled squares connected by 
continuous line are control values. Unfilled squares connected by 
a dashed line are treatment values. The significance of the 
induced differences from time-matched controls was determined with 
a one-tailed Student 1st-test: * indicates p < 0.05; ** indicates p 
< 0.01. 
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Figure 3-8. Effect of NaCl and NH4Cl on [K]/[Na] in LVCP, 3VCP 
and 4VCP. 

Lateral (LVCP), third (3VCP) and fourth (4VCP) ventricular 
choroid plexus samples were taken 30 minutes after an 
intraperitoneal injection (4.67 mmol/kg) of either NaCl (control) 
or NH4Cl (treatment). [K]/[Na] refers to the ratio of the 
contents of K and Na in dry choroid plexus samples. Values shown 
are means!. SEM of data from three to five adult male rats. 
Unhatched bars represent the control ratios. Hatched bars 
represent the ratios after the treatment. The significance of the 
induced differences from corresponding controls was determined 
with a one-tailed Student's t-test: * indicates p < 0.05; ** 
indicates p < 0.01. 
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Figure 3-9. Time-course analyses of the changes induced from 
time-matched controls by NH4C1 on [K] and [Na] in LVCP (A), 3VCP 
(B) and 4VCP (C). 

Lateral (LVCP), third (3VCP) and fourth (4VCP) ventricular 
choroid plexus samples were taken 5, 15, 30 or 60 minutes after an 
intraperitoneal injection (4.67 mmol/kg) of either NaCl (control) 
or NH4C1 (treatment). Values shown are mean ~ SEM of data from 
six to ten adult male rats. Filled diamonds represent tissue [K] 
and filled squares represent tissue [Na]. The significance of the 
induced differences from time-matched controls was determined with 
a one-tailed Student 1 s t-test: * indicates p < 0.05; ** indicates p 
< 0.01. 
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the three CP controls, there appeared to be an inverse 

relationship between mean-baseline [K] and [Na]. The control CP 

with the greatest ratio of [K]/[Na] responded the most to NH4C1. 

Regional Analyses of Choroid Plexus [K] and [Na] 

The results of this study indicate that there is no 

significant difference of [K] and [Na] in the anterior versus 

posterior halves of the LVCP. For comparative purposes, 3VCP and 

4VCP were also sampled and analyzed. As observed in controls in 

the Time-Course study (above), the concentration of [K] (LVCP > 

4VCP > 3VCP), was reciprocally associated with that of [Na] (LVCP 

< 4VCP < 3VCP)j see Table 3-3. 

Extracellular Fluid Volumes of Choroid Plexuses 

NH4C1 did not significantly alter the extracellular fluid 

volumes of LVCP, 3VCP or 4Vcp (Table 3-4). The extracellular 

fluid volumes of each tissue were estimated with the steady-state 

distribution of 3H-raffinose. 



REX;ION: 

[K] 

[Na] 
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Table 3-3. ANALYSES OF TISSUE [K] AND [Na] IN 
FOUR CHOROID PLEXUS REGIONS 

3VCP 

441 .±. 9.4 
364 .±. 25.5 

4VCP 

450 ~ 4.7 
294 ~4.8* 

A/LVCP 

478 ~ 8.4* 
239 ~ 5.1** 

P/LVCP 

460 ~ 6.8 
246 ~ 6.0** 

[K] and [Na] are in mmo1/kg dry tissue units. After the 
lateral (LVCP) ventricular choroid plexus tissues were dissected 
out of the brain, they were sectioned into anterior (A/LVCP) and 
posterior (P/LVCP) halves before being analyzed for [K] and [Na]. 
The third (3VCp) and fourth (4VCP) ventricular choroid plexus 
tissues were also removed and analysed. All choroid plexus 
samples were taken from untreated animals. Values shown are means 
~ SEM of data from three to four adult male rats. With a 
one-tailed Student's t-test, it was determined that [K] and [Na] 
in A/LVCP did not significantly differ from that in P/LVCP; 
however, [K] and [Na] in the 3VCP significantly differed from that 
in other regions: * indicates p < 0.05; ** indicates p < 0.01. 



R.tX;ION : 

NaCl 

NHL.Cl 

Table 3-4. EFFECT OF NH4Cl ON THE Vd OF 
3H-RAFFINOSE IN THREE CHOROID PLEXUS 

REGIONS AND CEREBROSPINAL FLUID 

3VCP 

12.9 .!. 1.0 
14.8 .!. 2.4 

LVCP 

14.9 .!. 0.9 
14.3 .!. 1.1 

4VCP 

16.3.!. 0.5 
15.6 .!. 0.8 

43 

CSF 

1.50 .!. 0.12 
1.18 .!. 0.10* 

Lateral (LVCP), third OVCp) and fourth (4VCP) ventricular 
choroid plexus, and cerebrospinal fluid (CSF) samples were taken 
60 minutes after an intraperitoneal injection (4.70 mmol/kg) of 
either NaCl (control) or NH4Cl (treatment); 3H-raffinose (0.3 
mCi/kg) was formulated into each solution. Values shown are means 
.!. SEM of data from three to four bilaterally nephrectomized adult 
male rats. The effect of NH4Cl on the volumes of distribution 
(Vd) of 3H-raffinose were compared to corresponding controls with 
a one-tailed Student's t-test: * indicates p < 0.05; ** indicates p 
< 0.01. 



CHAPTER 4 

EFFECTS OF UNILATERAL SUPERIOR CERVICAL GANGLIONECTuMY 
AND BILATERAL ADRENALECTOMY ON THE EFFECTS OF 

NaCI AND NH4CI ON [K] AND [Na] IN 
CHOROID PLEXUS: METHODS 

Experimental Protocols 

Eighteen male Sprague-Dawley rats were used Ln the studies 

described below. Prior to each experiment, animals were housed in 

cages wherein they had free access to food and water, and were 

regularly exposed to alternating 12-hour periods of darkness or 

overhead fluorescent lighting. During the experiments, rats had 

continued free access to food and water Ln cages receiving 

room-light. Five minutes before fluid sampling and choroid plexus 

removal were initiated, each rat was injected intraperitoneally 

with 80 mg/kg ketamine hydrochloride. This anesthetic dose of 

ketamine, which did not change the animal's rate of respiration, 

required 5 minutes to effect sedation. Each rat was killed by 

exsanguination after the blood sample was taken. In the 

experiments described below, the following were measured: plasma 

[H], [HC03], [K] and [Na]; blood pC02 and p02; and choroid plexus 

[K] and [Na]. In one of the experiments, the concentrations of K 

and Na in the cerebrospinal fluid were also measured. 

Unilateral Superior Cervical Ganglionectomy. Twelve 7-8 

week-old rats (225-325 grams) were used in this first experiment. 
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Six days prior to the experiment, each animal was prepared for 

surgery with an intraperitoneal injection of ketamine 

hydrochloride (100 mg/kg). With the aid of a stereotaxic 

microscope, both superior cervical ganglia, in each animal, were 

surgically exposed and gently separated from the surrounding 

fascia. After removing only one ganglion per rat, each animal was 

sutured and placed into one of two designated post-operative 

recovery cages. The sa animals which had their right superior 

cervical ganglion excised were placed into a cage designated 

R-SCGX; the six animals which had their left superior cervical 

ganglion removed were placed into a cage designated L-SCGX. In 

each R-SCGX and L-SCGX group, the unremoved ganglion, ~n each 

animal ,served as a sham-operated control. An operation was 

considered a success if a unilateral ptosis developed only in the 

eye located on the same side as the ganglionectomy. 'Six days 

after the surgical ganglionectomy (SCGX), three animals from each 

R-SCGX and L-SCGX cage were placed into one of two injection 

groups: controls received NaCI; treated animals received NH4 CI 

(4.70 mDlOl/kg, intraperitoneally). Each of these two injection 

groups had three R-SCGX and L-SCGX representatives; therefore, 

possible variations in the sidedness of the effect of SCGX on 

choroid plexus [K] and [Na] was controlled. Thirty minutes after 

injection, a sample of blood was taken, and the fourth, third and 

lateral ventricular choroid plexuses were removed, ~n the order 

mentioned. 
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Bilateral Adrenalectomy. Six 6-7 week-old Sprague-Dawley 

rats (190-230 grams) were used in this second experiment. One day 

prior to the experiment, animals were prepared for surgery with an 

intraperitoneal injection of ketamine hydrochloride (100 mg/kg). 

In each animal, both adrenal glands were surgically exposed and 

removed from their superior renal positions. Following each 

bilateral adrenalectomy, all incisions were sutured, and animals 

were placed into post-operative recovery cages wherein they had 

continued free access to food and normal saline (0.9% NaC1). One 

day after the bilateral adrenalectomy (ADRNx), the animal's were 

injected. Controls received NaC1; treated animals received NH4C1 

(4.70 mmo1/kg, intraperitoneally). Thirty minutes after 

injection, a sample of blood was taken, and the fourth, third and 

lateral ventricular choroid plexuses were removed, 1.n the order 

mentioned. 

The materials, instruments and procedures used in the 

sampling, analysis and calculation of blood pH, pC02 and p02' and 

fluid and choroid plexus [K] and [Na], have been described in 

Chapter 2. 



CHAPTER 5 

EFFECTS OF UNILATERAL SUPERIOR CERVICAL GANGLIONECTOMY 
AND BILATERAL ADRENALECTOMY ON THE EFFECTS OF 

NaCI AND NH4CI ON [K] AND [Na] IN 
CHOROID PLEXUS: RESULTS 

Unilateral Superior Cervical Ganglionectomy 

In this first experiment, the effect of a unilateral 

superior cervical ganglionectomy (SCGX) on the response of the 

lateral (LVCP) ventricular choroid plexus (CP) to the effects of 

an intraperitoneal injection of NH4CI were investigated; control 

animals received an injection of NaCI. In comparison to control 

animals, NH4CI induced the following changes. 

Acid-Base and Gas Analyses of Arterial Blood. Plasma [H] 

was increased from 40 to 57 nmol/l (Table 5-1), a decrease in pR 

from 7.40 to 7.24 (Table 5-2). Plasma [RC03 ] was decreased 6 

nunol/l (from 21 to 15 mmol/l). Both control and treatment group 

mean pC02 remained at 36 torr. Some enhancement of respiration 

was suggested by an increase of 10 torr in blood p02 (from 67 to 

77 torr). No change in the arterial hematocrit (RCT) was 

observed; the HCT in both groups was 41%. 

Cerebrospinal Fluid and Plasma [K] and [Na]. Cerebrospi-

nal fluid (CSF) [K] decreased from 3.08 to 2.94 mmol/kg (Table 

5-3), even though plasma [K] increased from 3.7 to 4.5 mmo1/kg 

(Table 5-1). CSF [Na] significantly decreased from 157 to 153 



Table 5-1. EFFECT OF UNILATERAL SUPERIOR CERVICAL 
GANGLIONECTOMY ON THE EFFECTS OF NaCl AND NH4Cl ON 

[H], [HC03], [K] AND [Na] IN ARTERIAL PLASMA 

PLASMA NaCl mv.Cl 

[H) 40.4.:!:. 1.49 57.0 ±. 0.92** 
[HCOj] 21.3 .:!:. 0.73 15.0 ±. 0.42** 

[K] 3.68.:!:. 0.11 4.48 .:!:. 0.06** 
[Na] 141 .:!:.. 0.60 134 ±. 0.33** 

48 

[H], [HC03], and [K] and rNa], are in the following respective 
units: nmol/l, romol/l, and romol/kg water. Arterial blood samples 
were taken 30 minutes after an injection (4.70 mmol/kg) of either 
NaCI (control) or NH4CI (treatment). Values shown are means.:!:. SEM 
of data from six unilaterally superior cervical ganglionectomized 
adult male rats. The significance of the induced differences from 
corresponding controls was determined with a one-tailed Student's 
t-test: * indicates p < 0.05; ** indicates p < 0.01. 



BLOOD 

pH 

pC~ 

p02 

Table 5-2. EFFECT OF UNILATERAL SUPERIOR CERVICAL 
GANGLIONECTOMY ON THE EFFECTS OF NaCl AND NH4Cl ON 

pH, pC02 AND p02 IN ARTERIAL BLOOD 

NaCl Nli4Cl 

7.40 .±. .016 7.24 .±. .007** 
35 . 5 .±. 1. 90 35.9 .±. 1.10 
67.3.±. 3.50 76.5 .±. 2.40* 

49 

Blood gases are in torr units. Arterial blood samples were 
taken 30 minutes after an injection (4.70 mmol/kg) of either NaCl 
(control) or ~"'R4Cl (treatment). Values shown are means .±. SEM of 
data from six unilaterally superior cervical ganglionectomized 
adult male rats. The significance of the induced differen'ces from 
corresponding controls was determined with a one-tailed Student's 
t-test: * indicates p < 0.05; ** indicates p < 0.01. 



Table 5-3. EFFECT OF UNILATERAL SUPERIOR CERVICAL 
GANGLIONECTOMY ON THE EFFECTS OF NaCl AND NH4Cl ON 

[K] AND [Na] IN CEREBROSPINAL FLUID 

CEREBROSPINAL FLUID NaCl ~Cl 

[K] 
[Na] 

3.08 Z 0.02 
157 Z 0.33 

2.94 Z 0.04** 
153 Z 0.45** 

50 

[K] and [Na] values are in romol/kg water units. Cerebrospinal 
fluid (C~F) samples were taken 30 minutes after an injection (4.70 
mmol/kg) of either NaCl (control) or NH4Cl (treatment). Values 
shown are means Z SEM of data from six unilaterally superior 
cervical ganglionectomized adult male rats. The significance of 
the induced differences from corresponding controls was determined 
with a one-tailed Student 1 s t-test: * indicates p < 0.05; ** 
indicates p < 0.01. 
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mmol/kg; plasma [Na] decreased from 141 to 134 mmol/kg. All of 

the above CSF and plasma changes are statistically significant. 

Lateral Ventricular Choroid Plexus [K] and [Na]. The sham 

SCGX-LVCP response to NH4CI was similar to the choroid plexus (CP) 

responses seen ~n Chapter 1: CP [K] increased (from 458 to 595 

mmol/dry kg); and, CP [Na] decre~sed (from 277 to 256 mmol/dry 

kg); see Figures 5-1A,lB. In the SCGX-LVCP, NH4Cl also induced an 

increase in [K] from 455 to 594 mmo1/dry kg and a decrease in [Na] 

from 282 to 241 mmo 1/ dry kg. These results indicate that the 

responses to NH4 Cl observed in sham SCGX-LVCP were the same as 

those observed ~n SCGX-LVCP. Thus, innervation to the LVCP 

through the superior cervical ganglion does not appear to be a 

requirement for NH4Cl-induced effects on [K] and [Na] in the CP's. 

Bilateral Adrenalectomy 

This second experiment investigated the effect of 

bilateral adrenalectomy on the effect of NaCl (control) and NH4CI 

(treatment) on [K] and [Na] in the lateral (LVCP), third (3VCP) 

and fourth (4VCP) ventricular CP's of adult male rats. In 

comparison to controls, NH4CI (treatment) induced the results 

described below. 

Acid-Base and Gas Analyses of Arterial Blood. Plasma [H] 

was increased from 38 to 68 nmol/l (Table 5-4), a decrease in pH 

from 7.43 to 7.17 (Table 5-5). Plasma [RC03 ] was decreased from 

21 to 15 mmol/l. NH4CI augmented pC02 from 33 to 42 torr; blood 

p02 decreased from 74 to 57 torr. It is noted that 
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Figure 5-1. Effect of unilateral superior cervical ganglionectomy 
on the effects of NaCI and NH4CI on [K] (A) and [Na] (B) in LVCP. 

Lateral (LVCP) ventricular choroid plexus samples were taken 30 
minutes after an intraperitoneal ~nJection (4.67 mmol/kg) of 
either NaCI (control) or NH4CI (treatment). Values shown are 
means .!. SEM of data from six adult male rats. Unhatched bars 
represent control values. Hatched bars represent concentrations 
of tissue electrolytes after treatment. The significance of the 
induced differences from corresponding controls was determined 
with a one-tailed Student 1 s t-test: * indicates p < 0.05; ** 
indicates p < 0.01. 
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PLASMA 

[H] 
[HCO] ] 

[K] 

[Na] 

Table 5-4. EFFECT OF BILATERAL ADRENALECTOMY 
ON THE EFFECTS OF NaCI AND NH4CI ON [H], 
[HC03], [K] AND [Na] IN ARTERIAL PLASMA 

NaCl NHt.Cl 

37.5 1:. 1.16 67.8.:!:.4.31** 
21.4.:!:. 1.34 14.6 1:. 0.50** 

4.451:. 0.16 5.39 1:. 0.14** 
153 1:. 1.20 142 + 1.20** 

54 

[H], [HC03]' and [K] and [Na] are in the following units: 
nmol/l, mmol/l, and mmol/kg water. Arterial blood samples were 
taken 30 minutes after an injection (4.70 mmol/kg) of either NaCl 
(control) or 1~4CI (treatment). Values shown are means + SEM of 
data from three bilaterally adrenalectomized adult male rats. The 
significance of the induced differences from corresponding 
controls was determined with a one-tailed Student's t-test: * 
indicates p < 0.05; ** indicates p < 0.01. 



BLOOD 

pH 

pC~ 

p~ 

Table 5-5. EFFECT OF BILATERAL ADRENALECTOMY 
ON THE EFFECTS OF NaCI AND NH4CI ON 
pH, pC02 and p02 IN ARTERIAL PLASMA 

NaCI mv.,CI 

7.43 .±. .014 7.17 .±. .027** 

33.2 .±. 2.92 41.6 :!:. 1.40* 

73.9 .±. 1.68 56.5.±. 6.92* 

55 

Blood gases are in torr units. Arterial blood samples were 
taken 30 minutes after an injection (4.70 mmol/kg) of either NaCI 
(control) or NH4Cl (treatment). Values shown are means:!:. SEM of 
data from three bilaterally adrenalectomized adult male rats. The 
significance of the induced differences from corresponding 
controls was determined with a one-tailed Student 1 s t-test: * 
indicates p<0.05; ** indicates p<O.OI. 



56 

adrenalectomized animals did not tolerate very well the injection 

of NH4 Cl; in general their rates of respiration were depressed. 

No change 1n the arterial hematocrit (HCT) was observed; in both 

groups it was about 40%. 

Plasma Electrolytes. Plasma [K] increased from 4.4 to 5.4 

mmol/kg (Table 5-4); plasma [Na] decreased from 153 to 142 

mmol/kg. 

Choroid Plexus [KJ and [Na]. NH4Cl induced a substantial 

increase in [K] in the LVCP, 3VCP and 4VCP (Figure 5-2A). LVCP 

[KJ increased from 510 to 643 mmol/dry kg; 3VCP [KJ increased from 

466 to 558 mmol/dry kg; and 4VCP [K] increased from 521 to 633 

mmol/dry kg. [Na] in the cpt s was not significantly affected 

(Figure J-2B). The results indicate that bilateral adrenalectomy 

does not block the effect of NH4Cl to increase CP [KJ. Thus, a 

release of hormones or other substances from the adrenal glands 

does not appear to be a requirement for the NH4Cl-induced increase 

in CP [K]. 
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Figure 5-2. Effect of bilateral adrenalectomy on the effects of 
NaCl and NH4Cl on [K] (A) and [Na] (B) in LVCP, 3VCP and 4VCP 

Lateral (LVCP), third (3VCP) and fourth (4VCP) ventricular 
choroid plexus samples were taken 30 minutes after an 
intraperitoneal injection (4.67 mmol/kg) of either NaCl (control) 
or NH4Cl (treatment). Values shown are means ~ SEM of data from 
three adult male rats. Unhatched bars represent control values. 
Hatched bars represent concentrations of tissue electrolytes after 
the treatment. The significance of the induced differences from 
corresponding controls was determined with a one-tailed Student's 
t-test: * indicates p<0.05; ** indicates p<O.Ol. 
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CHAPTER 6 

EIGHT-HOUR TIME-COURSE ANALYSES OF THE EFFECTS 
OF NaCI AND NH4CI ON [K] AND [Na] 

IN CHOROID PLEXUS: METHODS 

Experimental Protocols 

Sixty-seven 6-8 week-old male Sprague-Dawley rats (165-300 

grams) were used in the studies described below. Prior to each 

experiment, the animals were housed in cages wherein they had free 

access to food and water and were regularly exposed to alternating 

12-hour periods of darkness or overhead-fluorescent lighting. For 

the experiment, rats were separated into two groups: controls 

received NaCI; treated animals received NH4CI (4.70 mmol/kg, 

intraperitoneally). During the experiment rats had continued free 

access to food and water in cages receiving room-light. 

One-quarter, 0.5, 1, 2, 4 or 8 hours after injection, a sample of 

blood and of cerebrospinal fluid were taken, and the fourth 

(4VCP), third (3VCP) and lateral (LVCP) ventricular choroid 

plexuses were removed from each rat, all in the order mentioned. 

Five minutes before fluid sampling and choroid plexus removal were 

initiated, each animal was injected intraperitoneally with 80 

mg/kg ketamine hydrochloride. This anesthetic dose of ketamine, 

which did not change the animal's rate of respiration, required 5 

minutes to effect sedation. Each rat was killed by exsanguination 

after the blood sample was taken. In the experiments described 
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below, the following were measured: plasma [H], [HC03 ), [K] and 

[Na], blood pC02 and p02' choroid plexus [K] and [Na], and 

cerebrospinal fluid [K] and [Na]. 

Technique of Brain-Blood Washout 

The choroid plexus (Cp) is a very vascular and 

predominantly epithelial tissue (Dohrmann, 1970). Whole blood 

represents about 15% of the total wet weight of the CP (Johanson 

et g., 1974; 1976). Epithelial cells represent about 50-60% of 

the total wet weight of the CP (Quay, 1972; Johanson II a1., 

1974). When a CP sample is excised from an animal's brain and 

analyzed for [K] and [Na], it must be realized that a portion of 

the total [K] and [Na] detected is contributed by the blood 

present in the vasculature of this tissue. In order to minimize 

the blood, and thus maximize the epithelial cell, contributions of 

K and Na in each CP sample, blood was washed out of the Cp's 

before they were removed from the brain. In this study, residual 

blood was displaced by means of a brain-blood washout. The 

washout immediately followed the acquisition of a cisternal CSF 

sample: a drainage port was incised into the inferior vena cava; 

with the abdominal aortic clamp still in place (see Sampling 

Procedures), 18 ml of a 280 mM chilled sucrose solution was 

perfused (with a peristaltic pump through a 25-gauge venoset) into 

the left ventricle of the heart over a l-minute period; as the 

sucrose solution moved from the left ventricle to the brain and 

then to the drainage port in the inferior vena cava, the blood in 
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the vasculature of the choroid plexuses was almost totally 

displaced. The sucrose perfusion-fluid also contained bovine 

serum albumin (4% w/v) in order to simulate the normal oncotic 

pressure present in blood. Under similar washout conditions with 

51 Cr-tagged erythrocytes, the percentage of blood removed from the 

CP was determined to be 95-99% (Murphy, unpublished data). 

Sampling Procedures 

Arterial Blood. Sampling was initiated by opening the 

abdominal cavity, quickly draining and drying the cavity of any 

residual fluid from the injection, and exposing the abdominal 

aorta. After withdrawing a 4-m1 sample of blood from the abominal 

aorta near the femoral bifurcation, the aorta was clamped proximal 

to the inserted needle. The needle was then withdrawn from the 

artery and removed from the syringe. The syringe was capped and 

gently mixed; thereafter, a 2-ml aliquot of blood was transferred 

into a Falcon tube. The remaining blood, after syringe recapping, 

was placed into an 1ce bath for later acid-base and blood-gas 

analyses. Centrifugation of the 2 ml-aliquot of blood was begun 

while further sampling continued. 

Cerebrospinal Fluid. After the scalp was removed, the 

animal was exsanguinated (killed) by incising the abdominal aorta 

above the aforementioned clamp. A sample of CSF was then 

aspirated from the cisterna magna by penetrating the muscle tissue 

above the foramen magnum with a specially prepared micropipette. 

The CSF sample was transferred onto a piece of Parafilm; 
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immediate 1y, a O.025-m1 aliquot of CSF was transferred from the 

Parafi1m into a tared Falcon tube for later weighing. CSF samples 

contaminated with blood or muscle tissue were not analyzed. 

Choroid Plexuses. The washed-out brain was removed and 

placed on normal sa1ine-wetted filter paper. with the aid of a 
. 

stereotaxic microscope, the fourth (4VCP), third (3VCP) and both 

lateral (LVCP) ventricular choroid plexuses, in the above order, 

were dissected free from the brain and placed on tared, 4.0-mg, 

aluminum foil weighing boats for drying and later weighing on an 

e1ectroba1ance. 

Plasma. Lastly, three plasma samples were taken from the 

previously centrifuged 2-m1 aliquot of blood: (1) a 0.025""1111 

sample was transferred into a tared Falcon tube for a later 

weighing, (2) a O. 70-m1 sample was drawn into and capped in a 

sterile I-m1 tuberculin syringe and immediately placed into an ice 

bath for a later analysis of ammonia (see below), and finally, (3) 

a O.50-m1 sample was transferred into a Falcon tube for a later 

determination of osmolality. 

Analyses and Calculations 

Plasma Anrrnonia Analysis. The Automatic Clinical Analyzer 

(ACA) method of plasma ammon 1 a analysis, by DuPont, uses an 

adaptation of the glutamate dehydrogenase (GLDH) enzymatic method 

of van Anken and Schiphorst (1974). This plasma ammonia analysis 

does not distinguish NH4 from NH3 . Therefore, the term ammonia in 

this text will refer to the sum of plasma [NH4 ] and [NH3 ]. 
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Individual ionized or un-ionized forms of ammonia will be referred 

to specifically. All blood samples taken for plasma ammonia 

analysis were immediately centrifuged. Following centrifugation, 

0.70 ml of plasma was aspirated into a sterile 1-ml tuberculin 

syringe that was immediately capped and placed into an ice bath. 

Each sample was analyzed 20-60 minutes later. The ACA method of 

plasma ammonia analysis has a company-tested reliability range of 

0-1000 micromol/!. I determined that the ACA was capable of 

reliably analysing sample ammonia concentrations in excess of 2000 

micromol/l. Since all of the samples were well below this new 

upper limit, no plasma samples were diluted. Thus, microorganisms 

had no opportunity to contaminate a plasma sample before its 

analysis: blood samples were aseptically drawn into heparinized 

sterile glass syringes; aliquots were placed into capped sterile 

Falcon tubes for centrifugation; plasma samples were drawn into 

sterile tuberculin syringes, aseptically sealed and placed into an 

ice bath; plasma samples were injected into sampling reservoirs 

for ACA analysis. The plasma concentrations of NH4 and NH3 , at 

each time investigated, were calculated from plasma [a] data; 

plasma ammonia data; and the acid dissociation constant for NH4 

(Ka). The Ka value and equations used are in Table 6-1. 

Arterial Blood. All blood samples for acid-base and gas 

analysis were withdrawn into sterile, heparinized, glass syringes 

where the syringe and needle dead space was filled with 

Lipo-Hepin/BL (total dead space volume was about 0.075 ml). If 



Terms 

Table 6-1. TERMS, CONSTANTS AND EQUATIONS USED IN 
THE CALCULATION OF PLASMA [NH4] AND [NH3] 

CA Concentration of Acid: NHq. 
CB Concentration of Base: NH3 
CT Concentration Total: [~] + [NH3] 
[H] = Plasma Concentration of Hydrogen Ion at 370 

Constants 
Ka = Dissociation Constant of NH4 at 370 : 1.288 x 10-9 
Kw = Dissociation Constant of H20 at 370 : 2.388 x 10-14 

General Acid-Base Equation 
Ka 

Plasma Ammonium Equation 

[H](CB + [li] - [OH]) [OH] = Kw/[H] 
CA - [li] + [OH] 

[~] = [H](CT + [li]) - Kw + Ka([H] - Kw/[H]) 
Ka + [H] 

Plasma Ammonia Equation 
[NH3] Ka(CT + Kw/[H]) + Kw - [H](Ka + [H]) 

Ka + [H] 

64 
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small bubbles were observed 1n the blood after sampling, they were 

displaced from the syringe before placing the capped sample into 

an ice bath. Generally, all blood samples remained in an ice bath 

no longer than 20 minutes before their analysis with a Radiometer 

ABL2 Laboratory; such a 20-minute wait does not significantly 

alter pH, pC02 or p02 values. 

Cerebrospinal and Plasma Fluids. Cerebrospinal and plasma 

fluid samples (0.025 ml) were placed into tared Falcon tubes. 

They were weighed to the nearest 0.0001 gram and were then diluted 

1:200 by the addition of 5 ml of a solution (hereafter called LR) 

containing 15.0 mM LiCl and 0.02 N RN03 • After mixing, the 

diluted samples were set aside for later [K] and [Na] analysis. 

The sample contents of [K] and [Na] obtained from flame photometry 

were corrected for sample and extraction-fluid weights. These 

va lues, as mmo les of K or Na per kg of fluid, were further 

corrected for the contributory weight of CSF or plasma proteins; 

thus, the final CSF and plasma K and Na concentrations are 

reported as mmoles per kg of water (mmol/kg water). The correc­

tion factors used were 0.99 for CSF and 0.92 for plasma; these 

factors are those previously reported for the percentages of water 

in the CSF and plasma of adult rats (Johanson et ~., 1976). 

Choroid Plexuses. Choroid plexus samples were desiccated, 

at 600 C for 2-4 hours, and weighed on a Cahn electrobalance; 

weights were recorded to the nearest 0.001 mg. The weighed 

choroid plexus and its adhering weighing boat were then placed 
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into a Falcon tube. The extraction of tissue K and Na was 

commenced with the addition of 2 ml of LH solution. After 12-24 

hours of extraction at room temperature with occasional mixing, 

the tissue-extracts were analyzed for [K] and [Na]. The final 

tissue K and Na concentrations are reported as mmoles per kg of 

dry tissue (mmol/kg dry tissue). 

Statistics. Statistically significant differences between 

the results of each treatment and the corresponding control(s) 

were determined with a one-tailed Student's t-test. Two levels of 

probability are reported, 0.05 or 0.01. With two-factor linear 

correlation analyses, the slope of each regression line was 

analyzed for a significant difference from zero with a one-tailed 

Student's t-test. For linear regression statistics, the 

coefficient of determination (r2) and the slope are presented. 

For each slope, a significant difference from zero is reported at 

the 0.05, 0.01, or 0.001, probability levels. 

Materials 

Grade-l sucrose and bovine serum albumin were obtained 

from Sigma Chemical Company (St. Louis, MO). Analytical reagent 

grade ammonium chloride and sodium chloride were purchased from 

Mallinckrodt, Inc. (Paris, KY). All stock solutions of ammon1um 

or sodium chloride were prepared with deionized water. 

Lipo-Hepin/BL, which contained 1000 units of heparin and 3.4 mg Na 

per ml, was acquired from Riker Laboratories (Northridge, CA). 

Ketamine hydrochloride, 100 mg/ml, was obtained from Bristol 
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Laboratories (Syracuse, NY). Disposable O.Ol-ml micropipettes 

were obtained from Dade Diagnostics (Hiami, FL). BD Multifit 5-ml 

glass syringes were acquired from Becton, Dickinson and Company 

(Rutherford, NJ). Sterile 12 x 75 mm capped polypropylene tubes 

were procured from Falcon, Incorporated (Oxnard, CA). 

Instrumentation 

Plasma ammonia levels were analyzed with a Dupont ACA-III 

Automatic Clinical Analyzer (Wilmington, DE). Brain perfusion was 

accomplished with the use of a Sage Instruments 375A peristaltic 

tubing pump (Cambridge, MA). Blood pH, pC02 , [HC03 ] and pOZ 

values were determined with a Radiometer ABL2 Acid-Base Laboratory 

(Copenhagen, Denmark). Fluid and tissue-extract [K] and [Na] were 

analyzed with an Instrumentation Laboratories 443 flame photometer 

(Lexington, ~~). Solution osmolality was determined with a Wescor 

5100B vapor pressure osmometer (Logan, UT). Choroid plexus 

tissues were weighed on a Cahn Instruments 4700 automatic 

e1ectrobalance (Cerritos, CA). Constant bore micropipette 

insertion tips were manufactured with a David Kopf Instruments 

700B vertical pipette puller (Tujunga, CA). 



CHAPTER 7 

EIGHT-HOUR TIME-COURSE ANALYSES OF THE EFFECTS 
OF NaCl AND NH4Cl ON [K] AND [Na] IN 

CHOROID PLEXUS: RESULTS 

Eight-Hour Time-Courses 

The effects of ammonium chloride on (1) the concentration 

of plasma ammonia, (2) pH, pC02 and p02 in the arterial blood, (3) 

[K] and [Na] in cerebrospinal fluid (CSF) and plasma, (4) [K] and 

[Na] Ln the lateral (LVCP), third (3VCP) and fourth (4VCP) 

ventricular choroid plexuses (CP's) and (S) blood hematocrit and 

plasma oc:molality, have been investigated. A time-course study 

was devised whereby the effects of an ammonium chloride injection 

were temporally compared to the effects of sodium chloride at six 

times during an eight-hour period: 0.2S, O.S, 1, 2, 4 and 8 hours. 

Except where noted, all of the effects described below will refer 

to NH4 Cl-induced increases above or decreases below time-matched 

control data. The terms baseline and treatment are adjectives 

which refer to the effects observed after an injection of either 

NaCl or NH4Cl during the time-period being investigated, Le., 

0.2S-8 hours. Mean-baseline or mean-treatment are adjectives 

which refer to the average of baseline or treatment data; 

mean-treatment increase or mean-treatment decrease refers to the 

difference between mean-baseline and mean-treatment data. 

Plasma Ammonia. The baseline ammonia concentration was 33 
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micromol/l (Figure 7-1). At 15 minutes, the earliest time-point 

measured, plasma ammonia was maximally elevated to 1168 

micromoi/i. Plasma ammonia rapidly returned to baseline by 1 

hour. As determined by first-order kinetics, the half-life of 

this elimination was 10.4 minutes. Derived plasma [NH4 ] and [NH3 ] 

data are shown in Table 7-1. Approximately 95% of the ammonia 1n 

plasma existed in the ionized form, NH4 • The concentrations of 

NH4 and NH3 were both maximal at 15 minutes: respectively, 1135 

and 32.7 micromoi/i. 

Acid-Base and Gas Analyses of Arterial Blood. The time­

courses of [H] and [HC03 ] are shown in Figure 7 -2. Baseline [H] 

averaged 36 nmol/l (pH 7.45); treatment [H] was maximally 

increased to 56 nmol/l at 30 minutes (pH 7.26). Baseline [HC03 ] 

averaged 20.5 mmol/l; treatment [HC03] was maximally depressed to 

13.7 mmol/l at 30 minutes. At 8 hours, treatment [H] returned to 

baseline levels, while [HC03 ] was still 1.4 mmol below control (p 

<0.05). pH data corresponding to the values in Figure 7-2A, and 

blood-gas data, are shown 1n Table 7-2. 

generally differ from a baseline of 30 torr. 

about 8 torr at 0.25-2 hours. 

The pC02 did not 

p02 was elevated 

Cerebrospinal Fluid and Plasma [K] and [Na]. The 

time-courses of plasma [K] and [Na] are shown in Figure 7-3. 

Baseline [K] averaged 4 mmol/l; there was a maximal treatment 

1ncrease of 1.2 mmol/l .at 15 minutes. Baseline [Na] averaged 154 

mmol/l; [Na] was maximally decreased 9 mmol/l at 15 minutes. 
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Figure 7-1. Time-course analysis of the effect of NaCl and NH4Cl 
on plasma ammonia. 

Arterial blood samples were taken 0.25, 0.5, 1, 2, 4 or 8 hours 
after an intraperitoneal injection (4.70 mmol/kg) of either NaCl 
(control) or NH4Cl (treatment). Values shown are means ± SEM of 
data from four to six adult male rats. The term ammonia refers to 
the sum of the combined concentrations of plasma [NH4] and [NH3]. 
Filled squares connected by continuous line are control values. 
Unfilled squares connected by a dashed line are treatment values. 
The sign~ficance of the induced differences from time-matched 
controls was determined with a one-tailed Student 1 s t-test: * 
indicates p < 0.05; ** indicates p < 0.01. 
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Table 7-l. TIME-COURSE ANALYSES OF THE EFFECTS 
OF NaCl AND NH4Cl ON [NH4] AND [NH3] IN 

ARTERIAL PLASMA 

HOURS: 0.25 0.5 1 2 4 8 

CONTROL 

[NHL.] 30.8.±. 3.2 28.5 .±. 1.2 31.5 .±. 1.6 30.4 .±. 2.8 28.7 .±. 2.6 33.0.±. 2.4 
[NH3] 1.72.±. .11 1.71 .±. .10 1.85 .±. .08 1. 77 .±. .13 1.80 .±. .07 1. 76 .±. .06 

TREATMENT 

[~] 1135 .±. 59** 368 .±. 69** 55.3 .±. 7.8* 76.2 .±. 17* 32.3.±. 3.4 33.8 .±. 1.5 
[NH3] 32.7 .±. 1. 9** 9.15 .±. 1.8** 2.06 .±. .29 2.59 .±. .50 1.68 .±. .09 1.72 .±. .06 

[NH4] and [NH3] are in micromol/l plasma units. [NH4] and [NH3] were derived 
from plasma [HI data (see Figure 7-2), arterial plasma total ammonia data (see 
Figure 7-1) and the ammonium dissociation constant (see Table 6-1). Arterial blood 
samples were taken 0.25, 0.5, 1, 2, 4 or 8 hours after an intraperitoneal injection 
of either NaC! (contro 1) or NH4Cl (treatment>. Values shown are means.±. SEM of 
data from four to five adult male rats. The significance of induced differences 
from time-matched controls was determined with a one-tailed Student' 8 t-test: * 
indicates p < 0.05; ** indicates p < 0.01. 

...... 
N 
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Figure 7-2. Time-course analyses of the effects of NaCl and NH4C1 
on [H) (A) and [HC03] (B) in arterial plasma. 

Arterial blood samples were taken 0.25, 0.5, 1, 2, 4 or 8 hours 
after an intraperitoneal injection (4.70 mmol/kg) of either NaCl 
(control) or NH4Cl (treatment). Values shown are means ~ SEM of 
data from four to six adult male rats. Filled squares connected 
by continuous line are control values. Unfilled squares connected 
by a dashed line are treatment values. The significance of the 
induced differences from time-matched controls was determined with 
a one-tailed Student 1st-test: * indicates p < 0.05; ** indicates p 
<0.0l. 
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Table 7-2. TIME-COURSES ANALYSES OF THE EFFECTS 
OF NaCl AND NH4Cl ON pH, pC02 AND p02 IN 

ARTERIAL BLOOD 

HOURS: 0.25 0.5 1 2 4 8 

CONTROL 
pH 7.43 .±. .01 7.45.±. .01 7.46 .±. .01 7.45 ~ .01 7.47 .±. .02 7.43 + .01 

pC02 31.2 .±. .46 28.9 + .86 28.3 ~ .21 30.0 ~ .71 28.7 .±. 1.8 32.1 ~ .55 

POz 74.3 .±. 1.7 74.3 ~ 2.8 74.1 .±. 1.5 69.9 ~ 1.8 75.0.±. 3.6 74.9 ~ 1.2 

'IREATMENT 

pH 7.35 .±. .01** 7.26 .±. .01** 7.34 .±. .02** 7.33 .±. .01** 7 .42 ~ .01* 7.43 .±. .02 

pC02 27.7 .±. .74** 31.2 .±. .76* 26.0 .±. 2.5 29.9 ~ .61 28.9 ~ .68 30.3 ~ 1.0 

POz 82.8 + 2.7* 81.4 .±. 1. 9* 82.7 ~ 5.2 77.5 ± 1.8** 76.3 ± 2.2 73.9 ± 1.1 

Blood gases are in torr units. Arterial blood samples were taken 0.25, 0.5, 1, 
2, 4 or 8 hours after an injection (4.70 mmo1/kg) of either NaCl (control) or NH4Cl 
(treatment>. Values shown are means .±. SEM of data from four to five adult male 
rats. The significance of the induced differences from time-matched controls was 
determined with a one-tailed Student's t-test: * indicates p < 0.05; ** indicates p 
<0.01. 

..... 
VI 
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Figure 7-3. Time-course analyses of the effects of NaCl and NH4Cl 
on [K1 (A) and [Na] (B) in arterial plasma. 

Arterial blood samples were taken 0.25, 0.5, 1, 2, 4 or 8 hours 
after an intraperitoneal injection (4.70 mmol/kg) of either NaCl 
(control) or NH4Cl (treatment). Values shown are means.±. SEM of 
data from four to six adult male rats. Filled squares connected 
by continuous line are control values. Unfilled squares connected 
by a dashed line are treatment values. The significance of the 
induced differences from time-matched controls was determined with 
a one-tc...iled Student 1st-test: * indicates p < 0.05; ** indicates p 
< 0.01. 
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Unlike the alterations of plasma [H] and [HC03 ], the alterations 

of plasma [K] and [Na] returned to baseline by 4 hours. The 

effects of NH4 Cion CSF and plasma [K], and on the CSF /plasma 

ratio of [K], are shown in Table 7-3. Likewise, the effects of 

NH4Cl on CSF and plasma [Na], and on the CSF/plasma ratio of [Na] 

are shown in Table 7-4. Although [K] and [Na] in the CSF were not 

significantly altered, the CSF/plasma ratio of K was significantly 

decreased during the first 2 hours of acidosis. Additionally, 

there were significant increases in the CSF/plasma ratio of Na 

during the first 60 minutes investigated. 

Changes in plasma [H] were correlated with plasma [HC03 ], 

plasma [K] and plasma [Na] by linear regression. As expected, 

plasma lHC03 ] decreased and plasma [K] increased with the 

augmentation of plasma [H]; plasma [Na] decreased with increases 

in plasma [H] (Figures 7-4A,4B,4C). 

Blood Hematocrit and Plasma Osmolality. Table 7-5 

summar~zes plasma osmolality and blood hematocrit (HCT) data. 

NH4Cl did not alter plasma osmolality in either the baseline or 

treatment groups: both groups averaged 289 mOsm/kg. Baseline HCT 

was 37.5%; the HCT remained fairly stable in both groups at all 

times except 30 minutes where NH4Cl caused a significant increase 

from 38.6 to 42.4% (p < 0.01). 

Choroid Plexus [K] and [Na]. The time-courses of [K] and 

[Na] (mmol/kg dry tissue) in LVCP, 3VCP and 4VCP are shown in 

Figures 7-5 and 7-6. The K and Na concentrations found in these 



Table 7-3. TIME-COURSE ANALYSES OF THE EFFECT 
OF NaCl AND NH4Cl ON [K] IN CEREBROSPINAL 

FLUID AND ARTERIAL PLASMA 

HOURS: 0.25 0.5 1 2 4 8 

CON'IROL 

CSF 3.2 .:!:. .02 3.1 .:!:. .02 3.1 .:t .02 3.0.:t .05 3.1 .:t .04 3.0.:t .02 

PLASMA 3.9 .:!:. .12 4.1 .:t .07 3.9.:t .06 4.0 .:t .11 4.0 .:t .04 4.2 .:t .07 

RATIO .81 .:!:. .03 .75 .:!:. .01 .81 .:t .02 .74 .:t .04 .77 .:!:. .02 .73 .:t .01 

TREATMENT 

CSF 3.0 .:t .04 3.1 .:t .13 3.1 .:t .03 3.1 .:t .03 3.0 .:t .10 3.1.:t .06 

PLASMA 5.1 .:!:. .07 4.9 .:t .13 5.0.:t .15 4.7 .:t .07 3.9 .:t .07 4.0 .:t .13 

RATIO .60 .:!:. .01** .64 .:t .01** .63 .:t .02** .65 .:t .01* .78 .:t .01 .76 .:t .01 

[K] is in mmol/kg water units. Arterial blood and cerebrospinal fluid (CSF) 
samples were taken 0.25, 0.5, 1, 2, 4 or 8 hours after an intraperitoneal injection 
of either 4.70 mmol/kg NaCl (control) or NH4CI (treatment). Values shown are means 
.:t SEM of data from three adult male rats. The significance of induced differences 
from time-matched controls was determined with a one-tailed Student's t-test: * 
indicates p < 0.05; ** indicates p < 0.01. 

....., 
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Table 7-4. TIME-COURSE A.J.~ALYSES OF THE EFFECT 
OF NaCl AND NH4C1 ON [Na] IN CEREBROSPINAL 

FLUID AND ARTERIAL PLASMA 

HOURS: 0.25 0.5 1 2 4 8 

CONTROL 

CSF 158 .±. 1.2 156 .±. 2.4 156 .±. 1.2 154 .±. .89 154 .±. 1.9 153 .±. .59 

PLASMA ISS.±. 1.3 ISS.±. 1.3 156 .±. 1.3 153 .±. 1.5 153 .±. .31 lSI.±. .74 
RATIO 1.02 .±. .01 1.01 .±. .01 1.00 .±. .01 .99 .±. .01 1.01 .±. .01 1.02 .±. .01 

TREATMENT 

CSF 157 .±. 2.5 154 .±. 1.5 153 .±. 1.7 153 .±. .89 ISS.±. .50 152 .±. .87 

PLASMA 146 .±. 2.4 146 .±. .70 148 .±. 2.8 ISO.±. 1.0 152 .± 1.2 152 .±. 1.5 

RATIO 1.07 .±. .01* 1.06 .±. .01** 1.03 .±. .01* 1.02.±. .01 1.01 .±. .01 1.01 .±. .01 

[Na] is in mmol/kg water units. Arterial blood and cerebrospinal fluid (CSF) 
samples were taken 0.25, 0.5, 1, 2, 4 or 8 hours after an intraperitoneal injection 
of either 4.70 mmol/kg NaCl (control) or NH4CI (treatment). Values shown are means 
~ SEM of data from three adult male rats. The significance of induced differences 
from time-matched controls was determined with a one-tailed Student's t-test: * 
indicates p < 0.05; ** indicates p < 0.01. 

00 
o 
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Figure 7-4. Correlation analyses of the effects of NH4Cl on 
[HC03] (A), [K] (B) or [Na] (C) in plasma, with the effect of 
NH4Cl on plasma [H]. 

Arterial blood samples were taken 0.25, 0.5, 1, 2, 4 or 8 hours 
after an intraperitoneal injection of NH4Cl (4.70 mmol/kg). The 
probability that the slope of each fitted line was statistically 
different from zero was determined with a one-tailed Student's 
t-test. The linear regression coefficient of determination, 
slope, sample population and probability, are listed respectively: 
(A) r 2 =0.659, m=-0.310.:!:. 0.045, n=27, p<O.OOl; (B) r 2 =0.5l6, 
m = 0.056 .:!:. 0.011, n = 25, P < 0.001; (C) r2 = 0.309, m = -0.323 .:!: 
0.101, n=25, p<O.Ol. 
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Table 7-5. TIME-COURSE ANALYSES OF THE EFFECTS 
OF NaCl AND NH4C1 ON HCT AND OSMOLALITY OF 

ARTERIAL BLOOD 

HOURS: 0.25 0.5 1 2 4 8 

CONTROL 

HCT 38.0.±. 1.1 38.6 + 0.4 36.7 .±. 1.2 37.2 .±. 1.0 37.0.±. 0.7 37.8+1.0 
mOsm/kg 292 .±. 1.2 292 .±. 1.3 292 .±. 1.9 287 .±. 0.8 290 .± 2.6 285.± 1.6 

TREATMENT 

HCT 38.6 .±. 1.0 42.4 .±. 1.0** 39.0 .±. 2.1 37.6 + 0.9 38.3 .±. 1.8 38.4.±. 0.6 
mOsm/kg 292 .± 1.5 291 .±. 1.3 288 .± 1.4 288 .± 1.4 288 .±. 0.3 288 .± 0.4 

HCT refers to the hematocrit. Arterial blood samples were taken 0.25, 0.5, 1, 
2, 4 or 8 hours after an intraperitoneal injection of either 4.70 mmo1/kg NaC1 
(control) or NH4C1 (treatment). Values shown are means.±. SEM of data from four to 
five adult male rats. The significance of the induced differences from 
time-matched controls was determined with a one-tailed Student's t-test: * 
indicates p < 0.05; ** indicates p < 0.01. 

00 
w 
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Figure 7-5. Time-course analyses of the effect of NaCl and NH4Cl 
on [K] in LVCP (A), 3VCP (B) and 4VCP (C). 

Lateral (LVCP), third (3VCP) and fourth (4VCP) ventricular 
choroid plexus samples were taken 0.25, 0.5, 1, 2, 4 or 8 hours 
after an intraperitoneal injection (4.70 mmol/kg) of either NaCl 
(control) or NH4Cl (treatment). Values shown are means.:!:. SEM of 
data from four to six adult male rats. Filled squares connected 
by continuous line are control values. Unfilled squares connected 
by a dashed line are treatment values. The significance of the 
induced differences from time-matched controls was determined with 
a one-tailed Student's t-test: * indicates p <0.05; ** indicates p 
< 0.01. 
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Figure 7-6. Time-course analyses of the effect of NaCl and NH4Cl 
on [Na] in LVCP (A), 3VCP (B) and 4VCP (C). 

Lateral (LVCP), third (3VCP) and fourth (4VCP) ventricular 
choroid plexus samples were taken 0.25, 0.5, 1, 2, 4 or 8 hours 
after an intraperitoneal injection (4.70 mmo1/kg) of either NaCl 
(contro 1) or NH4CI (treatment). Values shown are means .±. SEM of 
data from four to six adult male rats. Filled squares connected 
by continuous line are control values. Unfilled squares connected 
by a dashed line are treatment values. The significance of the 
induced differences from time-matched controls was determined with 
a one-tailed Student's t-test: * indicates p < 0.05; ** indicates p 
< 0.01. 
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tissues are proportional to the concentrations of K and Na in the 

tissue parenchymal cells. Figures 7-SA, SB, SC, respectively show 

the induced elevations of [K] in LVCP, 3VCP and 4VCP. [K] was 

maximally increased by 86 mmol/kg at 30 minutes in the LVCP. In 

the 3VCP and 4VCP, the maximal increases ~n [K], also at 30 

minutes, were both about 67 mmol/kg. Figures 7-6A,6B,6C show the 

induced decreases in [Na] below baseline. A maximal decrease in 

[Na], in LVCP, 3VCP and 4VCP, of about 43 mmol/dry kg occurred at 

1 hour. Note that in all three CP I s the peak increase in [K] 

occurred at 30 minutes, whereas, the greatest reduction in [Na] 

occurred around 60 minutes. 

There were differences in the baseline concentrations of 

CP [K] and [Na] (Figures 7-S and 7-6). Baseline [K] (mmol/kg dry 

tissue) differed for each CP with the order [476 (LVCP)] ~ [470 

(4VCP)] > [402 (3VCP)]. LVCP had the greatest concentration of K; 

3VCP had the least. Baseline [Na] (mmol/kg dry tissue) also 

differed for each CP: [232 (LVCP)] < [271 (4VCP)] < [288 (3VCP)]. 

Note that 3VCP had the greatest [Na]; LVCP had the least. 

Figures 7-7A,7B,7C summarize the treatment-induced changes 

~n [K] and [Na] from time-matched controls for all three plexus 

tissues shown in Figures 7-5 and 7-6. All treatment- induced 

changes in [K] and [Na] returned to control by 4 hours. 

Plexus [K] was correlated with plasma [H] in Figure 7-8. 

Treatment ~ncreases in LVCP, 3VCP and 4VCP [K] correlated 

significantly with treatment increases in plasma [H] (Figure 
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Figure 7-7. Time-course analyses of the changes induced from 
time-matched controls by NH4Cl on [K] and [Na] in LVCP (A), 3VCP 
(B) and 4VCP (C). 

Lateral (LVCP), third (3VCP) and fourth (4VCP) ventricular 
choroid plexus samples were taken 0.25, 0.5, 1, 2, 4 or 8 hours 
after an intraperitoneal injection (4.70 mmol/kg) of either NaCl 
(control) or NH4Cl (treatment). Values shown are means.±. SEM of 
data from four to six adult male rats. Filled diamonds represent 
changes in tissue [K]. Filled squares represent changes in tissue 
[Na] • The significance of the induced differences from 
time-matched controls was determined with a one-tailed Student's 
t-test: * indicates p < 0.05; ** indicates p < 0.01. 
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Figure 7-8. Correlation analyses of the effect of NH4Cl on [K] in 
LVCP (A), 3VCP (B) or 4VCP (C), with the effect of NH4Cl on plasma 
[H] • 

Arterial blood, and lateral (LVCP), third (3VCP) and fourth 
(4VCP) ventricular choroid plexus samples were taken 0.25, 0.5, 1, 
2, 4 or 8 hours after an intraperitoneal injection (4.70 mmol/kg) 
of NR4Cl (treatment). The probability that the slope of each 
fitted line was statistically different from zero was determined 
with a one-tailed Student's t-test. The linear regression 
coefficient of determination, slope, sample population and 
probability, are listed res~ectively: (A) r2 = 0.288, m = 3.91 .±. 
1.25, n=26, p<O.Ol; (B) r =0.330, m=3.06.±. 0.911, n=25, p< 
o .01; (C) r 2 = 0 .314, m = 3 .44 .±. 1.11, n = 23, p < 0.01 • 
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7-8A,8B,8C). LVCP and 3VCP 

treatment increases in plasma 
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[Na] correlated negatively with 

[H] (p < 0.05). Changes in CP [K] 

and [Na] were also tested for correlation with treatment-induced 

changes in plasma [HC03 ] and [K] • Significant negative 

correlations are shown between CP [K] and plasma [HC03 ] (Figures 

7-9A, 9B, 9C). With the exception of LVCP [Na] (p < 0.05), there 

were no significant correlations between CP [Na] and plasma 

[HC03]. Significant positive correlations were shown between CP 

[K] and plasma [K] (Figures 7-10A,10B,10C). There were no 

significant correlations between CP [Na] and plasma [K]. 
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Figure 7-9. Correlation analyses of the effect of NH4Cl on [K] in 
LVCP (A), 3VCP (B) or 4VCP (C), with the effect of NH4Cl on plasma 
[HC03] . 

Arterial blood, and lateral (LVCP), third (3VCP) and fourth 
(4VCP) ventricular choroid plexus samples were taken 0.25, 0.5, 1, 
2, 4 or 8 hours after an intraperitoneal injection (4.70 mmol/kg) 
of NH4Cl (treatment). The probability that the slope of each 
fitted line was statistically different from zero was determined 
with a one-tailed Student's t-test. The linear regression 
coefficient of determination, slope, sample population and 
probability are listed respectively: (A) r2 = 0.324, m = -10.6 ±. 
3.14, n = 26, p < 0.01; (B) r2 = 0.269, m = -7.28 + 2.50, n = 25, P < 
0.01; (C) r 2 =0.367, m=-9.44 ±. 2.70, n=23, p<O.Ol. 
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Figure 7-10. Correlation analyses of the effect of NH4Cl on [K] 
in LVCP (A), 3VCP (B) or 4VCP (C), with the effect of NH4Cl on 
plasma [K]. 

Arterial blood, and lateral (LVCP). third (3VCP) and fourth 
(4VCP) ventricular choroid plexus samples were taken 0.25, 0.5. 1, 
2. 4 or 8 hours after an intraperitoneal injection (4.70 mmol!kg) 
of NH4Cl (treatment). The probability that the slope of each 
fitted line was statistically different from zero was determined 
with a one-tailed Student's t-test. The linear regression 
coeffici~nt of determination, slope, sample population and 
probability are listed respectively: (A) r2 = 0.347. m = 55.1 .:t. 
15.7. n = 25. p < 0.001; (B) r2 = 0.385. m = 42.6 .:!:.. 11.5. n = 24. p < 
0.001; (C) r 2 =0.345. m=45.S .:t.14.O. n=22. p<O.Ol. 
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CHAPTER 8 

COMPARISON OF THE EFFECTS OF NaCl, NH4Cl AND OTHER 
SALTS ON [K] AND [Na] IN CHOROID PLEXUS; AND THE 

EFFECT OF ACIDOSIS ON THE UPTAKE OF 86Rb 
INTO IN VITRO CHOROID PLEXUS: METHODS 

In Vivo Experimental Procedures 

Fifty-four 6-8 week-old male Sprague-Dawley rats (190-310 

grams) were used in the studies described below. Pr ior to each 

experiment, the animals were housed in cages wherein they had free 

access to food (Purina rat chow) and water, and were regularly 

exposed to alternating 12-hour periods of darkness or overhead 

fluorescent lighting. For the experiment, rats were separated 

into nine groups: controls received sodium chloride; the animals 

in the eight treatment groups received either lactic acid (HL), 

sodium lactate (SL), sodium bicarbonate (SB), potassium 

bicarbonate (KB), ammonium bicarbonate (AB), sodium chloride (SC), 

potassium chloride (KC), ammonium chloride (AC) or hydrochloric 

acid (HC). All doses were injected intraperitoneally (4.70 

mmol/kg). During the experiment, rats had continued free access 

to food and water in cages receiving room-light. One hour after 

each rat was injected, blood and choroid plexus sampling were 

begun. Five minutes before fluid sampling and tissue removal was 

begun, each animal was intraperitoneally injected with 80 mg/kg of 

ketamine hydrochloride. This anesthetic dose of ketamine, which 
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did not change the animal's rate of respiration, required 5 

minutes to effect sedation. Each rat was killed by exsanguination 

after the blood sample was taken. The experimental procedures 

used in the sampling, analysis and calculation of blood pH, pC02 

and pOZ' and cerebrospinal fluid, plasma and choroid plexus [K] 

and [Na] have been been described in Chapter 4. The choroid 

plexus samples analyzed had their residual blood removed with a 

brain-blood washout technique described earlier (Chapter 6). 

In Vitro Experimental Procedures 

Twenty-eight adult rats 050-280 grams) were separately 

anesthetized with an intraperitoneal injection of 100 mg/kg 

ketamine hydrochloride. Five minutes after the anesthetic waS 

administered, each rat was killed by exsanguination. After the 

brain was quickly removed from the cranial cavity, each of the two 

lateral ventricular choroid plexuses (LVCP's) was separately 

removed and transferred into a preincubation tube containing 3 ml 

of simulated cerebrospinal fluid (CSF) for ZO minutes. The 

simulated CSF was maintained at 37 0 C and continuously equilibrated 

with humidified 95% 02 and 5% CO2 , The gas-equilibration system 

is described as follows: Gas was bubbled through an aeration 

stone placed under 500-1000 ml of deionized water; this humidified 

air was equally distributed into 10 similar lengths of flexible 

Tygon tubing terminally connected to 10 micropipette couplers; 

each coupler was attached to O.005-ml micropipettes of a length 

that was shortened so that the tip would remain 1 ml above the 
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bottom of the incubation tube and 2 ml below the surface of the 

incubation medium. The gas was gently (very fine bubbles), yet 

rapidly, bubbled into all tubes. Plexus samples were placed into 

gassed tubes by first removing the aeration micropipette, then 

placing the plexus into the medium, allowing time for the plexus 

to settle to the bottom of the tube, and then, replacing the 

aeration micropipette. Care was taken throughout the experiment 

to confirm that all plexuses were not agitated by the gentle 

currents generated by the bubbling process. 

Incubation Media. A stock solution of simulated CSF, with 

a pH of 7.3 (Table 8-1), was divided into two aliquots. Each 

aliquot under the conditions of vigorous aeration and a 

temperature of 37 0 C was separately adjusted with 1 M HCI or 1 M 

NaOH, ~n order to establish one of two incubation conditions: 

acidosis (pH 7.00) or control (pH 7.40). Any differences in the 

osmolalities of the two CSF solutions, introduced by the addition 

of HCI or NaOH, were balanced by appropriate addition of 1 M NaCl. 

An analysis of [K] and [Na] in the simulated CSF revealed 

that the concentrations of K and Na were the same in control and 

acidotic media; respectively, 2.85 and 150 mmol/l. Ionized [Cal 

varied slightly with the pH of the medium; 1.15 (pH 7.0) and 1.04 

mmol/l (pH 7.4). 

Effect of CSF pH on the Uptake of 86Rb into Lateral Ven-

tricular Choroid Plexus. After the above 20-minute preincubation 

period, with identical conditions, each plexus was transferred 



Table 8-1. COMPOSITION OF SIMULATED 
CEREBROSPINAL FLUID 

INGREDIENTS CONCENTRATION 

NaCI 

KCl 

NaRC<» 

CaCl2 • 2H20 

NaH2P04 • H2O 

Na2HP04 

MgCl2 • 6H20 
Urea 

Lactic Acid 

Citric Acid. H2O 

Dextrose 

Na2S04 
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(1lIII0 1/ 1) 

117.00 

2.96 

18.00 

l.50 

0.125 

0.50 

0.80 
2.00 

2.11 

0.20 

12.10 

2.35 

A solution of simulated cerebrospinal fluid (CSF) with the 
above ingredients has a pH of 7.3 when bubbled with humidified 95% 
02 and 5% C02 at 37oC. In order to achieve the desired control 
(pH 7.40) and acidotic (pH 7.10) media used in the experiments 
described in the text, two aliquots of the above solution were 
pH-adjusted, respectively under the same conditions, with either 
NaOH or HCI (1 M). The concentrations of Na in both aliquots were 
balanced osmotically with the addition of 1 M NaCI. 
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into another tube of simulated CSF containing 86Rb (2 microCi/ml). 

After the transfer, each plexus was incubated for 0.25, 0.5, 1, 2, 

4, 8, 16, or 32 minutes. After the incubation with 86Rb , the 

plexus was quickly removed and blotted by drawing it along a 

standardized length of dry plate glass. Dried lateral ventricular 

choroid plexus samples, and their adhering aluminum foil weighing 

boats, were placed into 2 ml of a solution containing 15.0 mM LiCl 

and 0.02 N RN03 . After 24 hours of extraction at room 

temperature, with occasional mixing, samples were analyzed for 

gamma emissions with a Beckman BioGamma II gamma radiation 

counter. Subsequently, all samples were analyzed for [K] and [Na] 

as described in Chapter 2. 

Extracellular Fluid Volume. In this in vitro experiment, 

the extracellular fluid (ECF) volume of the lateral ventricular 

choroid plexus (LVCP) was determined from the steady-state volume 

of distribution of 3H-raffinose. After 20 minutes of preincuba­

tion (above) in either control or acidotic CSF, each plexus was 

transferred into a corresponding 86Rb-free CSF medium containing 

3H-raffinose, for an additional incubation time of 20 minutes. 

Dried choroid plexus samples on their adhering aluminum foil 

weighing boats, and CSF samples, were extracted overnight in 2 ml 

of 1 M piperidine. Liquid scintillation cocktail (see Materials) 

was added to each extract for LVCP and CSF 3H-raffinose radioac-

tivity analyses. A more detailed description of the procedures 

utilized have been described elsewhere (Johanson ~~., 1974). 
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Calculations 

86Rb Volume of Distribution. The volume of distribution 

of was determined on a dry tissue-weight basis; Le. , 

86 activity of Rb per gram of dry LVCP, divided by the activity of 

86 Rb per ml of incubation fluid. 

Materials 

All of the chemicals used were of analytical grade: lactic 

acid, sodium lactate (Baker, Phillipsburg, NJ), sodium 

bicarbonate, potassium bicarbonate, ammonium bicarbonate, sodium 

chloride, potassium chloride, ammonium chloride and hydrochloric 

acid (Baker), calcium chloride dihydrate, monobasic sodium 

phosphate, dibasic sodium phosphate, magnesium chloride 

hexahydrate, urea, citric acid monohydrate, anhydrous dextrose 

(Baker) and anhydrous sodium sulfate, with exceptions noted, were 

obtained from Mallinckrodt, Inc. (Paris, KY). All solutions were 

prepared with deionized water. 3H-raffinose (7.8 mCi/mmol) and 

86Rb (1.0 mCi/mg) were acquired from New England Nuclear (Boston, 

MA). Sterile 80 x 12.5 rom polypropylene tubes with screw caps, by 

Nunc InterMed, were obtained through Cole Scientific (Calabasas, 

CA). Disposable O.OOS-ml micropipettes were acquired from Fischer 

Scientific Corporation (Pittsburg, PA). The liquid scintillation 

cocktail used contained toluene (2600 ml), triton-X 100 (1300 ml), 

PPO (21.9 gram) and POPOP (0.200 gram). All of the other 

materials used have been described in Chapters 2, 4 and 6. 
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Instrumentation 

Plasma osmolality was determined with an Advanced 

DigiMatic model 3DII Osmometer by Advanced Instruments, Inc. 

(Needham Heights, MA.) • 3H-raffinose was obtained from New 

Fluid and tissue 3H-raffinose and England Nuclear (Boston, MA). 

86 Rb analyses were, respectively, analyzed with a Beckman LS 7500 

liquid-scintillation counter and a Beckman BioGamma gamma emission 

counter (Irvine, CA). All of the other instruments used have been 

described in Chapters 2, 4 and 6. 



CHAPTER 9 

COMPARISON OF THE EFFECTS OF NaCl, NH4Cl AND OTHER 
SALTS ON [K] AND [Na] IN CHOROID PLEXUS; AND THE 

EFFECT OF ACIDOSIS ON THE UPTAKE OF 86Rb INTO 
IN VITRO CHOROID ~LEXUS: RESULTS 

In Vivo Salt Treatments 

The following lactate, bicarbonate and chloride salts were 

given by intraper itoneal injection: sodium lactate (5L), lactic 

acid (HL) , sodium bicarbonate (SB), potassium bicarbonate (KB), 

ammonium bicarbonate (AB) , sodium chloride (5C) , potassium 

chloride (KC), ammonium chloride (AC) or hydrochloric acid (HC). 

The effeds of these agents on the acid-base chemistry of the 

blood and on the sodium and potassium 10n concentrations of 

cerebrospinal fluid, plasma, and lateral (LVCP) and third (3VCP) 

ventricular choroid plexus tissues, are all compared below; the 

results shown are the drug-induced effects after a 60-minute 

exposure period. Unless otherwise stated, all effects of 

treatment were statistically compared to the SC (control) group 

with a one-way analysis of variance followed with the 

Hartley-Newman-Keuls sequential mUltiple range comparison. 

Acid-Base and Gas Analyses of Arterial Blood. The three 

acidifying salts, HL, AC and HC, induced the greatest increases in 

plasma [H] (Figure 9-1A); these increases were, respectively, 7, 

12 and 20 nM. The neutral (not acidifying or alkalinizing) agent, 
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Figure 9-1. Effects of eight separate salt treatments, compared 
to control, on [H] (A) and [HC03] (B) in arterial plasma. 

Arterial blood samples were taken 60 minutes after an 
intraperitoneal injection (4.70 mmol/kg) of either sodium lactate 
(SL), lactic acid (HL) , sodium bicarbonate (SB), potassium 
bicarbonate (KB), ammonium bicarbonate (AB), sodium chloride (SC), 
potassium chloride (Ke), ammonium chloride (AC) or hydrochloric 
acid (HC). Values shown are means ~ SEM of data from five to six 
adult male rats. The significance of the induced differences from 
control ,SC) was determined with the Hartley-Neuman-Keuls mUltiple 
range comparison: * indicates p < 0.05; ** indicates p < 0.01. 
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KC, also caused a significant, but smaller increase ~n [H]. Of 

the alkalinizing salts, SL,SB and KB all significantly reduced 

plasma [H], by 8, 8 and 5 nM, respectively; AB had no effect on 

[H]. Plasma bicarbonate was maximally increased by about 7 mM, by 

SL, SB and KB; AB also induced a significant increase (Figure 

9-1B). Plasma bicarbonate was maximally decreased about by 8 mM 

by HL and HC; AC also caused a significant decrease; KC had no 

effect. Blood pH, pC02 , p02 and hematocrit (HCT) values are shown 

in Table 9-1. Blood pC02 was not significantly altered by any of 

the groups from a baseline value of about 29 torr, with the 

exception that HL induced a reduction of about 7 torr (p<O.Ol). 

In general, changes in pC02 followed the increases and decreases 

in pH. Blood p02 remained stable in all groups, except with HL 

and HC; in these two cases, p02 was elevated about 14 torr. None 

of the nine salts examined significantly affected plasma 

osmolality which averaged 284 mOsm/kg. The HCT averaged about 

39%, except for the HL and HC groups in which it was respectively 

increased to 52 and 44% (p < 0.01). 

Cerebrospinal Fluid and Plasma [K] and [Na1. Treatment 

effects on cerebrospinal fluid (CSF) [K] are shown in Figure 9-2A; 

the two acidifying agents, HL and HC, and AB, all reduced CSF [K1 

by about 0.14 mmol/l. CSF [K] was not significantly altered by 

the other salts. CSF [Na] tended to be lower in the HL, AB, AC 

and He groups (Figure 9-2B); the other salts did not induce a 

significant effect. The effects of the various salts on plasma 
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Table 9-1. EFFECTS OF EIGHT SEPARATE SALT 
TREATMENTS, COMPARED TO CONTROL, ON pH, 

pC02, p02 AND HCT IN ARTERIAL BLOOD 

SALT pH pC02 p02 HCT 

SL 7 .54 ~ .014** 30.9 ~ 0.99 74.9 ~ 1.52 37.9~.88 

In. 7 .36 ~ .012** 21.7 ~ 0.52** 88.4 ~ 2.54** 51.5 ~ 1.4** 

SB 7 .54 ~ .010** 32.4 ~ 0.44 73.6 ~ 1.61 37.6 ~ .60 
KB 7 .51 ~ .018** 33.6 ~ 2.13* 73.5 ~ 2.24 39.8 + 1.1 
AB 7 .47 ~ .015 32.4 ~ 0.78 75.1 ~ 1.22 38.2 j: .60 

SC 7.44 + .006 29.2 ~ 1.09 76.4 ~ 0.90 37.2 ~ 1.2 
KC 7 .41 ~ .012* 30.7 ~ 0.62 70.6 ~ 1.16 39.3 ~ .80 
AC 7 .32 ~ .014** 28.0 ~ 0.69 78.6 ~ 1.27 39.5~.76 

HC 7 .25 ~ .008** 25.8 ~ 1.22 92.2 ~ 1.80** 43.5 ~ .72** 

Blood gases are listed in torr units. HCT refers to the 
hematocrit. Arterial blood samples were taken 60 minutes after an 
intraperitoneal injection (4.70 mmo1/kg) of either sodium lactate 
(SL), lactic acid (HL), sodium bicarbonate (SB), potassium 
bicarbonate (KB), ammonium bicarbonate (AB), sodium chloride (SC), 
potassium chloride (KC), ammonium chloride CAC) or hydrochloric 
acid (HC). Values shown are means ~ SEM of data from five to six 
adult male rats. The significance of the induced differences was 
compared to control eSC) with the Hartley-Neuman-Keuls mUltiple 
range comparison; statistical siginificance is shown: * indicates 
p < 0.05; ** indicates p < 0.01. 
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Figure 9-2. Effects of eight separate salt treatments, compared 
to control, on [K] (A) and [Na] (B) in cerebrospinal fluid. 

Cerebrospinal fluid (CSF) was sampled 60 minutes after an 
intraperitoneal injection (4.70 mmol/kg) of either sodium lactate 
(SL), lactic acid (HL), sodium bicarbonate (SB), potassium 
bicarbonate (KB), ammonium bicarbonate (AB), sodium chloride (SC), 
potassium chloride (KC), ammonium chloride (AC) or hydrochloric 
acid (HC). Values shown are means ~ SEM of data from four to six 
adult male rats. The significance of the induced differences from 
control (SC) was determined with the Hartley-Neuman-Keuls multiple 
range comparison: * indicates p < 0 .05; ** indicates p < 0.01. 



111 

3.3 

A 
,.., 
m 
~ 

3.1 , 
0 
e 
e ..... 

r""I * * + * ~ 
&..I 2.9 
~ 
U) 
u 

2.7 
SL HL SB KB AB SC KC AC HC 

160 

B 
,.., 
m 
~ , 

155 
0 e 
e ..... 

* r""I 

+ ., 
z 150 &..I 

u.. 
(J) 
u 

SL HL SB KB AB SC KC AC HC 
SALT TREATMENT 



112 

Figure 9-3. Effects of eight separate salt treatments, compared 
to control, on [K] (A) and [Na] (B) in arterial plasma. 

Arterial blood samples were taken 60 minutes after an 
intraperitoneal injection (4.70 mmol/kg) of either sodium lactate 
(SL), lactic acid (HL), sodium bicarbonate (SB), potassium 
bicarbonate (KB), ammonium bicarbonate (AB), sodium chloride (SC), 
potassium chloride (KC), ammonium chloride (AC) or hydrochloric 
acid (HC). Values shown are means ~ SEM of data from five to six 
adult male rats. The significance of the induced differences from 
control (SC) were determined with the Hartley-Neuman-Keuls 
multiple range comparison: statistical * Indicates p < 0.05; ** 
indicates p < 0.0l. 
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[K] and [Na] are shown in Figure 9-3. As seen in panel A, plasma 

[K] was increased by HL, KB, KC, AC and HC by 1.1, 3.1, 2.6, 1.1 

and 1.9 mmol/kg water, respectively. The greatest increases were 

caused by KB and KC, not by HL, AC or HC; in comparison, SL and SB 

had no significant effect. Plasma [Na] was significantly reduced 

about 8 mmol/l by both HL and HC; 'other salts showed slight or no 

significant changes from control. 

Choroid Plexus [K] and [Na]. The treatment-induced 

alterations of [K] and [Na] in the LVCP are shown in Figure 9-4. 

LVCP [K] was substantially increased by HL, AC and HC, 

respectively 95, 76 and 110 mmol/dry kg (Figure 9-4A). AB also 

caused a significant increase in plexus [K] (also, Table 9-2). 

The alka~inizing salts tended to reduce plexus [K] or to have no 

effect. LVCP [Na] was significantly decreased about 60-80 

mmol/dry kg by HL and HC (Figure 9-4B). The other salts did not 

significantly change LVCP [Na], although SB tended to raise plexus 

[Na]. Fewer treatment-induced alterations were seen with 3VCP 

(Figure 9-5). HC significantly increased 3VCP [K] by 110 mmol/dry 

kg (Figure 9-5A). 3VCP [Na] was reduced about 30 mmol/dry kg by 

HL and HC (Figure 9-5B) - about one-half the decrease seen with 

the LVCP. SB raised plexus [Na] about 50 mmol/dry kg. It is 

apparent in Figures 9-4 and 9-5 that the 3VCP has approximately 80 

nnnol/ dry kg less [K] than the LVCP in each corresponding salt 

group; additionally, 3VCP has approximately 45 mmol/dry kg more 

[Na] than does LVCP in each corresponding salt group. 
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Figure 9-4. Effects of eight separate salt treatments, compared 
to control, on [K] (A) and [Na] (B) in LVCP. 

Lateral ventricular choroid plexus (LVCP) samples were taken 
60 minutes after an intraperitoneal injection (4.70 mmol/kg) of 
ei ther sodium lactate (SL), lactic acid (Ht), sodium bicarbonate 
(SB), potassium bicarbonate CKB), ammonium bicarbonate (AB), 
sodium chloride CSC), potassium chloride (KC), ammonium chloride 
CAC) or hydrochloric acid (HC). Values shown are means ~ SEM of 
data from five to six adult male rats. The significance of the 
induced differences from control eSC) was determined with the 
Hartley-Neuman-Keuls mUltiple range comparison: * indicates p < 
0.05; ** indicates p < 0.01. 
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Table 9-2. EFFECTS OF EIGHT SALTS, ON THE INDUCED 
CHANGES FROM CONTROL, ON [K] AND [Na] IN 

LVCP AND 3VCP 

LVCP 3VCP 
SALT [K] [Na] [K] [Na] 

SL - 14 - 18 - 34 0.0 
HI. 95** - 64** 58 - 36 

SB - 22 11 - 39 49 
KB 0.0 - 18 - 17 - 35 
AB 43* - 28 18 1 

KC 33 - 25 15 - 5 
AC 76** - 27 37 - 5 
HC 11* - 80 110** - 30 

[K] and [Na] are in romol/kg dry tissue units. Lateral (LVCP) 
and third (3VCP) ventricular choroid plexus samples were taken 60 
minutes after an intraperitoneal injection (4.70 romol/kg) of 
ei ther sodium lactate (SL), lactic acid (RL), sodium bicarbonate 
(SB), potassium bicarbonate (KB), ammonium bicarbonate (AB), 
potassium chloride (KC), ammonium chloride (Ae) or hydrochloric 
acid (HC). The values shown are the means ~ SEM of the 
differences from control of each of the eight salt treatments (see 
Figures 9-4 and 9-5). The significance of the induced differences 
from control is that depicted in Figures 9-4 and 9-5: * indicates 
p < 0.05; ** indicates p < 0.0l. 
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Figure 9-5. Effects of eight separate salt treatments, compared 
to control, on [K] (A) and [Na] (B) in 3VCP. 

Third ventricular choroid plexus (3VCP) samples were taken 60 
minutes after an intraperitoneal 1nJection (4.70 mmol/kg) of 
either sodium lactate (SL), lactic acid (HL), sodium bicarbonate 
(SB), potassium bicarbonate (KB), ammonium bicarbonate (AB), 
sodium chloride (SC), potassium chloride (KC), ammonium chloride 
(AC) or hydrochloric acid (HC). Values shown are means ~ SEM of 
data from five to six adult male rats. The significance of the 
induced differences from control (SC) was determined with the 
Hartley-Neuman-Keuls multiple range comparison: * indicates p < 
0.05; ** indicates p < 0.01. 
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Figure 9-6. Correlation analyses of the effects of nine salts on 
[K] (A) or [Na] (B) in LVCP, with the effect of all nlne salts on 
plasma [H]. 

Lateral ventricular choroid plexus (LVCP) and arterial blood 
samples were obtained 60 minutes after an intraperitoneal 
injection (4.70 mmol/kg) of either sodium lactate (SL), lactic 
acid (RL), sodium bicarbonate (SB), potassium bicarbonate (KB), 
ammonium bicarbonate (AB), sodium chloride (SC), potassium 
chloride (KC), ammonium chloride (AC) or hydrochloric acid (HC). 
Treatment data are represented by symbols corresponding to the 
respective salts: filled square (Re), filled diamond (AC), 
unfilled square (KC), unfilled diamond (SC), filled inverted 
triangle (AB), unfilled triangle (KB), unfilled inverted triangle 
(SB), filled circle (HL) and unfilled circle (SL). The proba­
bility of the slope of each line, fitted to the data of the nine 
salt treatments, being statistically different from zero was 
determined with a one-tailed Student's t-test. The linear regres­
sion coefficient of determination, slope, sample population and 
probability are listed respectively: (A) r2 = 0.649, m = 4.77 ±. 
0.517, n=48, p<O.OOl; (B) r2 = 0.442, m=-2.37 ±.0.401, n=46, p 
< 0.001. 
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Figure 9-7. Correlation analyses of the effects of nine salts on 
[K] (A) or [Na] (B) in LVCP, with the effect of all n~ne salts on 
plasma [RC03]. 

Lateral ventricular choroid plexus (LVCP) and arterial blood 
samples were taken 60 minutes after an intraperitoneal injection 
(4.70 mmol/kg) of either sodium lactate (SL), lactic acid (HL), 
sodium bicarbonate (SB), potassium bicarbonate (KB), ammonium 
bicarbonate (AB), sodium chloride (SC), potassium chloride (KC), 
ammonium chloride (AC) or hydrochloric acid (RC). Treatment data 
are repr~sented by symbols corresponding to the respective salts: 
filled square (RC), filled diamond (AC), unfilled square (KC), 
unfilled diamond (SC), filled inverted triangle (AB), unfilled 
triangle (KB), unfilled inverted triangle (SB), filled circle (HL) 
and unfilled circle (SL). The probability of the slope of each 
line, fitted to the data of the nine salt treatments, being 
statistically different from zero was determined with a one-tailed 
Student's t-test. The linear regression coefficient of 
determination, slope, sample population and probability are listed 
respectively: (A) r2 = 0.583, m = -6.74 .:t 0.830, n = 49, p < 0.001; 
(B) r 2 =O.366, m=3.12.:t 0.613, n=47, p<O.OOl. 
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Since LVCP yielded greater responses than 3VCP to the salt 

treatments, only LVCP [K] and [Na] are correlated with plasma [H) 

(Figure 9-6), plasma [HC03 ] (Figure 9-7) and plasma [K] (Figure 

9-8). By linear regression analysis, the best correlations and 

significantly different slopes were shown between LVCP [K], and 

plasma [H) or plasma [HC03]; not between LVCP [K] and plasma [K]. 

Similarly, with LVCP [Na], the best correlations and sigificantly 

different slopes were shown with plasma [H) or plasma [HC03-]; 

again, not with plasma [K]. The results of the individual data, 

from each respective salt group, have been portrayed with one of 

nine symbol fonts. It can be seen from these data that the acidic 

salts (HC, HL and AC) caused the greatest increases in [K] and 

decreases in [Na] in the LVCP; KC and SC, the agents which did 

not affect plasma pH, did not alter the control levels of [K] and 

[Na] in the LVCP; while, the alkalinizing salts, AB, KB, SB and 

SL, caused the greatest decreases in [K] and increases in [Na] in 

LVCP. 

In Vitro 86Rb Uptake 

Lateral Ventricular Choroid Plexus Rubidium. An analysis 

of the initial uptake of 86Rb into LVCP incubated in control or 

acidotic media revealed that the slopes of the lines fitted to the 

initial uptake data under these two conditions were not 

significantly different (Figure 9-9A, 9B); thus, there did not 

appear to be an acidosis-induced increase in the active transport 

of 86Rb into LVCP (see Discussion). The steady-state uptake of 
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Figure 9-8. Correlation analyses of the effects of nine salts on 
[K] (A) or [Na] (B) in LVCP, with the effect of all n1ne salts on 
plasma [K]. 

Lateral ventricular choroid plexus (LVCP) and arterial blood 
samples were taken 60 minutes after an intraperitoneal injection 
(4.70 mmol/kg) of either sodium lactate (SL), lactic acid (HL), 
sodium bicarbonate (SB), potassium bicarbonate (KB), ammonium 
bicarbonate (AB), sodium chloride (SC), potassium chloride (KC), 
ammonium chloride (AC) or hydrochloric acid (HC). Treatment data 
are represented by symbols corresponding to the respective salts: 
filled square (HC), filled diamond (AC), unfilled square (KC), 
unfilled diamond (SC), filled inverted triangle (AB), unfilled 
triangle (KB), unfilled inverted triangle (SB), filled circle (HL) 
and unfilled circle (SL). The probability of the slope of each 
line, fitted to the data of the nine salt treatments, being 
statistically different from zero was determined with a one-tailed 
Student's t-test. The linear regression coefficient of 
determination, slope, sample popUlation and probability are listed 
respectively: (A) r 2 =O.051, m=9.95.±. 6.38, n=47, p<O.10j (B) 
r 2 =0.1l6, m=-9.01.±. 3.80, n=45, p <0.05. 
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Figure 9-9. Effect of cerebrospinal fluid pH on the initial 
uptake of 86Rb into the in vitro LVCP. 

Lateral ventricular choroid plexus (LVCP) samples were 
incubated in simulated cerebrospinal fluid (CSF) conta1n1ng 86Rb 
for 0.25, 0.5, 1 or 2 minutes after being preincubated for 20 
minutes in a similar solution not containing 86 Rb (all CSF 
solutions were equilibrated with humidified 95% 02 and 5% C02 at 
37 0 C). Two CSF conditions were investigated: control pH (7.4) and 
acidosis pH (7.0). All values depicted represent the mean ~ SEM 
of two to three LVCP samples. In panel A, the continuous line 
corresponds to the slope of the initial uptake data of 86Rb under 
control conditions (filled squares); in panel (B), the dashed line 
corresponds to the slope of the initial uptake data of 86Rb under 
the conditions of CSF acidosis (unfilled squares). 
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86Rb into LVCP is depicted in Figure 9-10. A significant 

elevation in the plateau of the pH 7.0 uptake curve revealed that 

acidosis induced a significant increase, over control, in the 

volume of distribution of 86Rb in LVCP; this effect is consistent 

with a decrease ~n the efflux of intracellular 86Rb (see 

Discussion). 

In Vitro Extracellular Fluid Volume 

Acidosis appeared to reduce the extracellular fluid (ECF) 

volume of distribution (Vd) of 3H-raffinose ~n the ~n vitro 

lateral ventricular choroid plexus. The control Vd (%) was 45.2 + 

1.9; while under acidotic conditions the Vd decreased to 33.9 + 

1.0. These values are statistically different (p <0.01). 
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Figure 9-10. Effect of cerebrospinal fluid pH on the uptake of 
86Rb into the in vitro LVCP. 

Lateral ventricular choroid plexus (LVCP) samples were 
incubated in simulated cerebrospinal fluid (CSF) containing 86Rb 
for 0.25, 0.5, 1, 2, 4, 8, 16 or 32 minutes after being 
preincubated for 20 minutes in a similar solution not containing 
86Rb (all CSF solutions were equilibrated with humidified 95% 02 
and 5% C02 at 37 0 C). Two CSF conditions were investigated: 
control pH (7.4) and acidosis pH (7.0). All values depicted 
represent the mean .±. SEM of two to three LVCP samples. Filled 
squares along the continuous curve correspond to control data; 
unfilled squares along a dashed curve correspond to acidosis data. 
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CHAPTER 10 

DISCUSSION 

Stimulus and Mechanism of the 
CP Response to Ammonium Chloride 

Plasma Ammonia. In order to analyze the effect of plasma 

ammonium (NH4 ) on the CP response, the concentration of plasma 

ammonia was analyzed for 8 hours after an injection of NaCl or 

NH4Cl (Chapters 6 and 7). Several authors have demonstrated that 

NH4 can substitute for extracellular K in the stimulation of Na-K 

ATPase ~n soleus muscle and choroid plexus (Akaike, 1975; 

Claire-A';'cken and Thomas, 1977; Saito and Wright, 1982). Such 

direct stimulation might account for an effect of NH4 to reduce CP 

[Na] but it would not account for an increase in CP [K] (a 

stimulation of Na-K ATPase with NH4 would lead to an increase in 

intracellular NH4 , not K). Although plasma NH4 might be effecting 

a reduction in CP [Na] during the first hour (see Figure 7-7), its 

return to the control level at 1 hour (Figure 7-1) would not 

explain the sustained decrease in CP [Na] at 2 hours (Figure 7-7). 

A possible indirect effect of ammonia on Na-K ATPase, 

through an effect on the concentration of ATP, was investigated by 

Schenker and Mendelson (964); however, no change in cerebral 

cortical ATP concentration was observed in rats injected with 

ammon~um acetate. 
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Wiechetek, Breves and Holler (1979) investigated the 

effect of NH4 on the activity of adenylate cyclase (AC) in various 

tissues. They reported that physiological concentrations of NH4 

reduced the activity (-30%) of AC ~n liver particles. 

Furthermore, NH4 did not affect AC activity in muscle particles, 

but did increase AC activity (+40%) ~n brain particles. If 

increases in plasma NH4 had an effect to stimulate AC ~n rat CP 

and thus to stimulate CP Na-K ATPase (see Pershing and Johanson, 

1982), this effect would only account for the alterations seen in 

CP [K] and [Na] during the first hour, not the second through 

fourth hours. 

Plasma Bicarbonate. Pershing and Johanson (1982) reported 

that both respiratory and metabolic acidosis induce an increase in 

CP [K] and a decrease in that of [Na]; smce plasma [HC03 ] 

increases and decreases, respectively, ~n these types of acidosis, 

plasma [RC03 ] is not considered a likely inducer of the CP 

responses seen ~n NH4 C1-induced acidosis. Thus, the high degree 

of correlation between CP [K] and plasma [HC03 ] (Figure 7-9) is 

most likely attributable to the coincidental correlation between 

plasma. [HC03 ] and [H] (Figure 7 -4) • 

Plasma Catecho1amines. The literature is replete with 

evidence which demonstrates that catecho1amines modulate the 

activity of Na-K ATPase in vitro and in vivo. A differentiation 

between a1pha- and beta-adrenoceptor modulation needs discussion. 

Akaike (1981) demonstrated a central mechanism which mediates the 
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inhibition of rat skeletal muscle Na-K ATPase by the stimulation 

of alpha-adrenoceptors; this inhibition was observed in rats fed a 

K-deficient diet. In contrast to alpha-adrenoceptor stimulation, 

beta-adrenoceptor stimulation serves to increase the activity of 

Na-K ATPase both in vivo and in vitro. Bia and DeFronzo (1981) 

reviewed the action of epinephrine to stimulate Na-K ATPase. Bia 

and DeFronzo (1981) demonstrated that the epinephrine-stimulated 

uptake of K is independent of the concentration of plasma insulin 

and that this effect is mediated by beta-2, not by beta-I, adreno­

ceptors. Clausen and Flatman (1980) demonstrated that physiologi­

cal concentrations of epinephrine enhance Na-K exchange, an effect 

inhibited by ouabain or propranolol. Lockwood and Lum (1974) 

proposed that beta-2 adrenoceptors subserve a hypokalemic action 

to protect the intact animal against hyperkalemia. Rosa, Silva 

and Young (1980) demonstrated that epinephrine enhances the 

extrarenal disposal of an acute potassium load. Vick, Todd and 

Luedke (1972) reported that epinephrine increases the uptake of K 

by liver and skeletal muscle. Wang and Clausen (1976) have used 

salbutamol (beta-2 adrenoceptor agonist) to alleviate hyperkalemia 

and paralysis precipitated by exercise or administration of 

potassium chloride. In addition, Wang and Clausen (1976) have 

demonstrated that salbutamol and adrenaline stimulate 42K influx 

and 22Na efflux in isolated rat soleus muscle. Thus, a plausible 

beta-adrenoceptor mediated mechanism exists through which 

catecholamines might stimulate CP Na-K ATPase. 
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The stimulus and sources of catecholamine release during 

systemic acidosis have been investigated by several authors. 

Hypercarbic acidosis raises the titer of plasma catecho1amines in 

dogs; the stimulus of this increase has been attributed to 

increases in blood CO2 and/or decreases in plasma pH (Morris and 

Millar, 1962); probable sources have been attributed to the 

acidosis-induced release of catecho1amines from adrenal glands 

(Morris and Millar, 1962), and/or the acidosis-induced inhibition 

of catecholamine reuptake by sympathetic nerve endings (Morris and 

Millar, 1962; Vanhoutte ..tl. El., 1981). Pershing and Johanson 

(1982) suggested that an acidosis-stimulated release of 

catecholamines could enhance the activity of CP Na-K ATPase, and 

thus Na-K exchange. 

In 1-wk rats there is a paucity of innervation to the CP's 

(Lindvall ..tl. El., 1981), and also an inability of the LVCP and 

4VCP to increase their content of K in response to metabolic 

acidosis (Pershing and Johanson, 1982). Thus it seemed possible 

that an increase in the impulse traffic of the sympathetic 

(adrenergic) nerves to the CP, or an acidosis-induced decrease in 

the reuptake of catecho1amines into the sympathetic nerve endings, 

might explain the CP responses in adults after NH4C1 treatment. 

The ability of the sympathetic nervous system to stimulate CP Na-K 

ATPase seemed even more certain by the observation of Lindvall ..tl. 

~. (1982) that sympathectomy reduces the activity of Na-K ATPase 

in rat CPo However, sympathectomy did not alter the CP response 
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to NH4 Cl (Figure 5-1). If a humor ally adrenergically-mediated 

modulation of CP Na-K ATPase occurs during NH4Cl-induced metabolic 

acidosis, it was unclear if the CP adrenoceptors could be 

stimulated by catecholamines released from the adrenal medulla. 

As shown in Figure 5-2, even bilateral adrenalectomy did not block 

the NH4Cl-induced CP response. 

suggested that the adrenal 

Cohen, Piasecki and Jackson (1982) 

medulla is a major source of 

catecholamines during hypoxemia; however, except for NH4Cl-induced 

acidosis in bilaterally adrenalectomized rats (Chapter 5), blood 

p02 in metabolic acidosis was never decreased below control; in 

fact, blood p02 was usually increased (Tables 7-2 and 9-1). What 

a the likelihood that catecholamines are responsible for the 

NH4Cl-induced effect on CP [K] and 

catecholamines are the primary 

sympathectomy (Figure 5-1) nor 

[Na]? It is unlikely that 

stimulus because neither 

adrenalectomy (Figure 5-2) 

prevented the induced CP response. Furthermore, neither nadolol 

nor propranolol pretreatment (beta-adrenoceptor blocking drugs; 

unpublished results) blocked the NH4Cl-induced CP response. 

Poole-Wilson and Langer (1975) demonstrated that acidosis reduces 

the efflux of K from septal cardiac cells and leads to an increase 

in the cardiac content of K. Poole-Wilson and Langer (1975) could 

not mimic this increase 1n K by epinephrine administration or 

block this increase with propranolol. Since Nathanson (1980) 

demonstrated a greater beta-adrenoceptor mediated increase in 

adenylate cyclase activity in 4VCP, rather than in LVCP, one might 
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expect catecholamines to 1ncrease 4VCP [K] more than LVCP [K]; 

however, since NH4Cl increased 4VCP [K] less than LVCP [K] (Figure 

3-8), this is further evidence against a catecholamine-induced 

increase 1n Na-K exchange. 

Plasma Potassium. Since extracellular K can stimulate 

Na-K ATPase (Stekhoven and Bonting, 1981), it is of interest to 

consider the role of plasma [K] as a possible stimulator of Na-K 

exchange in CPo Since CP Na-K ATPase is predominantly located on 

the apical membrane, a discussion of the effect of an increase in 

[K] in the plasma on apical Na-K exchange is probably moot, unless 

that increase in plasma [K] is transferred into CSF. Since no 

increase in CSF [K] was detected in metabolic acidosis (Chapters 

3, 5, 7 and 9), and since decreases 1n CSF [K] were in fact 

observed (Table 5-3 and Figure 9-2), it is considered unlikely 

that elevated plasma [K] is the prime stimulus of NH4 Cl-induced 

increases in CP [K] (Figure 9-8). 

Plasma Sodium. Since the Na-H exchanger (antiporter) 

requires an inwardly directed Na gradient and an outwardly 

directed H gradient, the observed increase in plasma [H] (Figure 

7-2) and decrease in plasma [Na] (Figure 7-3) would be expected to 

lower the influx of Na and efflux of H across the basolateral 

membrane of the CPo Such effects on Na influx and H efflux would 

be expected to reduce CP [Na] (Figure 7-6 and 9-4) and increase CP 

[H]; these responses have been observed 1n both HCl- and 

NH4Cl-induced acidosis (Murphy, unpublished data). 
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Plasma Hydrogen. The literature is replete with evidence 

which demonstrates that acidosis decreases the conductance of K in 

the membranes of several cell types. Biagi, Kubota, Sohtell and 

Giebisch (1981) demonstrated, in rabbit proximal straight tubule 

perfused in vitro, that reducing bath pH with low concentrations 

of bicarbonate led to a depolarization of the basolateral 

membrane; their results suggest an acidosis-induced decrease in 

the K permeability of the basolateral membrane. In the rat, 

metabolic acidosis caused an 80% decrease in distal tubular K 

secretion (Malnic, de Mello Aires and Giebisch, 1971); this effect 

was attributed to a decrease in intracellular pH. O'Neil (1981) 

discussed a model of K transport across rabbit cortical collecting 

tubule. Cortical collecting tubule is similar to CP in that one 

side of the epithelium has Na-K ATPase (basolateral membrane), 

while the apical side (lumen facing) appears to contain Na-H 

antiporters (O'Neil, 1981). K transport across these tubule 

epithelial cells is considered a two-step process whereby 

extracellular K is pumped into the cell by basolateral Na-K ATPase 

and leaves the cell (apical side) down an electrochemical 

gradient; if decreased luminal pH lowers the permeability of the 

membrane to K, this model can account for a reduction in the 

apical secretion of K when the pH of the lumen is decreased. 

Wanke, Carbone and Testa (1979) demonstrated that perfused squid 

giant axon behaves as if it had membrane-titratable groups which 

regulate the conductance of the membrane to K (pKa 6.9); this 
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effect was only observed when protons were applied 

intracellularly. Stanton and Giebisch (1982) demonstrated, with 

microperfused rat distal tubule in vitro, that a decrease 1n bath 

pH inhibited K secretion into the lumen, while an 1ncrease 1n bath 

pH stimulated K secretion. Boudry, Stoner and Burg (1976) 

observed, in rabbit cortical collecting tubules perfused in vitro, 

that when perfusate pH was lowered from 7.4 to 6.8, K secretion 

into the lumen decreased by an average of 47%; net sodium 

absorption was also slightly decreased. Since Murphy (unpublished 

data) demonstrated that an intraperitoneal injection of HCl causes 

a decrease in plasma, CSF and CP pH, it is proposed that an 

increase in plasma, CSF and/or CP [H) decreases the permeability 

of the basolateral and/or apical membranes of the CP to K. 

Conceivably, such an effect on either or both membranes could lead 

to an increase in CP [K] (as seen in Chapters 3, 5, 7 and 9). If 

a reduction in the K permeability of the apical membrane were to 

occur, a decrease in CSF [K] would be expected. Such a decrease 

in CSF [K] was observed (Table 5-3, Figure 9-2). Finally, if 

acidosis were to induce a decrease in the efflux of K (by 

decreasing the permeability of the CP membranes to K), an increase 

in the content of Rb (a physiological analog of K) would be 

expected. LVCP was incubated in vitro in an acidotic medium 

(simulated CSF) containing 86 Rb • As seen in Figure 9-10, an 

increase in the steady-state volume of distribution of 86 Rb 

occurred without any demonstrable 1ncrease 1n the Na-K 
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exchange-mediated uptake (influx) of 86 Rb (Figure 9-9). Further 

support that acidosis does not stimulate the uptake of K (i.e., 

stimulate Na-K ATPase) comes from Skou (1979). He reported that a 

reduction in pH from 7.4 to 5.7 decreases the activity of Na-K 

ATPase (ox brain). Henquin (1981) demonstrated that extracellular 

acidosis reduced the efflux of 86Rb from pancreatic islet cells. 

Poole-Wilson and Langer (1975) observed that acidosis reduces the 

efflux of K from septal cardiac cells and leads to an increase in 

the cardiac content of K. All of the above results, taken 

together, suggest that acidosis in the CP induces a decrease in 

the intracellular efflux of 86 Rb and K by decreasing the 

permeability of the basolateral and/or apical membranes to Rb and 

K. Since the in vitro CP is exposed primarily to the acidotic 

medium on the CSF-facing side, presumably the decrease in 86Rb 

efflux occurred mainly across the apical membrane. 

Conclusion. CP [K] increases and [Na] decreases in the 

young adult male rat treated intraperitoneally with NR4CI. It is 

concluded that an increase 1n plasma [H] caused by the 

intraperitoneal injection of NR4CI is the primary stimulus of the 

NH4Cl-induced increase in CP [K]. It is further concluded that an 

increase in plasma, CSF and/or CP [H] causes a reduction in the 

efflux of K across the basolateral and/or apical membranes of the 

CP (see #2 and #3 in Figure 10-1). These reductions in K efflux 

lead to an increase in CP [K]. The observed decrease in CP [Na] 

is attributed to a reduction in basolateral Na-H exchange (see 14 
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Model of the choroidal epithelium of the blood-CSF 
its relationship to the plasma and cerebrospinal 

The arrows indicate the direction of ion movements. The slope 
of each line indicates the gradient in effect (control conditions) 
for each ion as it crosses the basolateral (plasma-facing) or 
apical (CSF-facing) sides of the epithelium (CP). Na-K ATPase 
activity, primarily located on the apical side of the CP (11), 
actively pumps CSF K into the cell as it extrudes intracellular 
Na; this activity is primarily responsible for the establishment 
and maintenance of the intracellular and extracellular K and Na 
gradients, i.e., the intracellular concentration of CP K > plasma 
and CSF [K]j the intracellular concentration of CP Na < plasma and 
CSF [Na]. Intracellular K leaves the epithelial cells down an 
electrochemical gradient (#2,#3); this movement is governed by the 
permeability of the basolateral and apical membranes to K. It is 
proposed that NH4Cl-induced increases in plasma, CSF and/or CP 
[H], decrease the. permeability of the basolateral and/or apical 
membranes to K efflux (#2,#3); this leads to an accumulation of K 
within the CPo It is further proposed that an NH4Cl-induced 
decrease in plasma [Na], in addition to the increase in plasma 
[H], decreases CP [Na] by reducing the Na and H gradients 
responsible for Na influx and H efflux by the basolateral Na-H 
antiporter (14). 
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1n Figure 10-1). The reduction in Na-H exchange is attributed to 

an increase 1n plasma [H] and perhaps a decrease in plasma [Na]. 

Finally. if systemic acidosis leads to a decrease 1n CSF 

pH and thus a release of K into the interstitial fluid of the 

brain (from CNS cells), a decrease 1n the efflux of K across the 

apical membrane of the CP into the CSF could minimize the build-up 

of [K] in the interstitial fluid. 
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